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1. Introduction

Until recently, very little work has been done on the second order properties
of Markov chains. Craven [1] has studied the joint distributions of Markov chains
having a Borel subset of n-dimensional Euclidean space as state space. His idea
was to consider the process as a time series.

More recently, Daley [2] has introduced a class of Markov chains on a Borel
subset of the real line, which he calls stochastically monotone Markov chains.
Under certain conditions, he has shown that for stationary Markov chains,
{X,}¢ of this class, the correlation coefficient of f(X;) and f(X,) is a monotone
non-increasing sequence, where f(*) is a monotone function from the state space of
{X,} into the real line. In a further study, Daley [3] has considered a special Mar-
kov chain of this class, namely the imbedded waiting time Markov chain in the
stationary GI/G/1 queue. In this particular case, the proofs on the behaviour of the
sequence of correlation coefficients are simpler in detail than they are for the more
general case.

In this paper, we shall only be concerned with Markov chains on the non-
negative integers. In Section 2, we introduce the required notation and two key
results which will be used in discussing the second order properties. Section 3
presents some simple properties of stochastically monotone Markov chains on
the non-negative integers, and in Section 4 we discuss their second order properties.
We show that the type of arguments used in [3] carry over to the present case, and
we consider a somewhat wider class than that of stationary Markov chains.

2. General considerations

Let {X,}& be a Markov chain with the non-negative integers as state space,
Z. Let p{} be the n-step transition probability from state i to j, and let p,; = p{}.
Finally let f(-) : £ — B, where B is a countable subset of the real line. We shall
always assume that E{f(X,)} is finite, that is, the series ) 2, a;f(i) converges
absolutely, where a; = Pr {X, = i}.
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Define 8 forn = 0,1, - - and je & by
0 =Y f(i) Pr {X, = i, X, = j} = E{f(X,); X, = j}
i=0

Then when the Markov chain is ergodic and Pr (-) is the stationary probability
measure for the process {X,},

6 =3 f()Pr{X, =i, Xpem=Jj} (m=0,1,--")
i=0
Defining forn,j = 0,1, - -
P = 29(") Zf()Pr{Xo— i, X, < j} = E{f(Xo); X, < j}

it follows from the absolute convergence of Y ;2o f(i) Pr {X, = i} and the domi-
nated convergence theorem that

" = lim ¢ = ¥ 60 = E{f(X,)}
i=0

Jj= o

It follows by absolute convergence again and the Markovian nature of {X,} that

0P = 500y = S0 (1= 12000
When the chain is ergodic, the absolute convergence of Y 2, 0% and the domi-
nated convergence theorem imply that 6" — n; E{f(X,)} (n— ), where {n;}
is the limiting distribution of {X,}.

Suppose that {X,} is irreducible and aperiodic, that the 0§") are non-negative
for all #» and j, that Yim,,_, 6(1.") = 0 exists (j = 0,1, ) and 0; is positive for
some particular j, and that ) 2, 9&0) is finite. Then it is easily seen that {X,} is posi-
tive recurrent, that 6 is positive for all jand that Y 20 0, = > 7200 (n =0, 1,

- +). Theorem 1 shows that the same conclusions follow if we assume the finiteness
of Y., 0; rather than that of ) 2, 6.

THEOREM 1. Let {X,} be an irreducible aperiodic Markov chain on a countable
state space I and let {2\"} be a non-negative measure on I. Define X" =Y ;. A{%p?
(possibly = o), and suppose that lim,_, , A\ = ; exists for each j, that A; > 0
for some particular j, and that Y ;. A; < . Then the Markov chain X, is positive
recurrent, every A; > 0, and ¥ ;.; 20 =Y., A; for all n.

Proor, Fatou’s lemma applied to A{*™ = Y . A™p{? implies that
A; = liminf A" = ¥ lim inf A{™p{P = z A p.

m— o iel m—-©
That 4; 2 0 and that ) ., 4; is finite imply that we have equality in the last ex-
pression and so by a theorem of Foster [4], the chain is positive recurrent and
4; > 0 for each j.
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Now let A2(N) = 22 if je Iy and A{”(N) = 0 otherwise, where {I,} is a
monotone increasing sequence of finite subsets of 7 for which Iy — I (N — o0).
Then oo > Y ;. AV(N) = Y ;o1 A%, the convergence being monotone from below.
With the definition of AP(N) = Y., A2(N)p{P, 2? = 0 implies the monotone
convergence of A{’(N) to A’ (N — o) for every n and j. Tonelli’s theorem shows
that ¥, A2 = ¥, 4 (n = 0,1, - - *) and the chain being ergodic implies, by
the dominated convergence theorem, the existence of 4;(N) = lim,_,, A7(N) =
;Y ier A2(N), where {n;} is the limiting distribution of {X,}. This and monotone
convergence imply that Y A; = limy o ¥ e A{(N) = limy_, o ¥ s AV (N) =
Y ier A2 and the proof is complete.

Let g(-) : & — C, where C is a countable subset of the real line. An object
of this paper is the study of the second order moments E{f(X,)g(X,)} = M™
of the Markov chain {X,} with certain initial distributions. By the Cauchy-
Schwartz inequality, these moments are well defined if both E{f*(X,)} and
E{g*(X,)} are finite. If f(-) is a non-negative (or non-positive) function and if
0 < E{f(X,)} < oo, then, as Craven [1] has shown, these second order moments
can be expressed in terms of the first order moments of a related Markov chain
which is in general non-stationary. Specifically, let {¥,}5 be the Markov chain
whose n-step transition probabilities are identical to those of {X,} but whose initial
distribution is given by 0'”/[E{f(X,)}]. Then M™ = E[f(X,)}E{g9(Y,)}-

In discussing these second order moments, we use the following theorem.

THEOREM 2. Let X and Y be (not necessarily independent) random variables such
that Pr {Y < x} = Pr {X £ x} (all real x), and let f(x) be a monotonic non-de-
creasing function with E{|f(X)|} < co. Then if f(*) is non-negative or if X and Y
have the same distribution,

E{f(X); Y S x}—-E{f(X); X <x} 20 (all x).
ProOF. The left hand side of the last inequality is equal to
E{f(X); X >x, Y= x}—-E{f(X); X <x,Y > x}
2 E{f(x); X >x, Y < x}—E{f(x); X £ x, Y > x}
=f(x)[Pr{Y < x}-Pr{X <x}]20.
We shall make frequent use of the following result.

LemMa 1. Let {a;} and {b;} (j = 0, 1, - - -) be two sequences such that Y 7., a;b;
is convergent. Let A; be the j-th partial sum of the series Y 7, a;, which is supposed
convergent with sum A. If {b;} is a bounded sequence, then

™5

Jj=

ji=0

and if {b;} has a finite limit b, then
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j=0 j=0

The first equality holds if Y’ 7, a;b; converges absolutely and if {b;} is a monotone
sequence.

ProOF. Abel’s transformation shows that

© M-1
Y a;b; =lim { Z Aj[b;—b; ]+ Ay by}
i=0 M—-o j=0
M-1
—Alllm{Z(A Aj)(bjs1—b;)—(A— Ap)bac+ bo}
-0 j=0

The second result follows immediately, and the first follows on noting that under
either set of hypotheses, (4 — Ay )by — 0 (M — o0).

3. Stochastically monotone Markov chains

Let Q;; = Yi-opuand OF = Yi_,p® (n = 2,3, ). Let P be the matrix
[pij] and P" = [P;:)]

DEFINITION. A Markov chain {X,}§’ having one step transition probabilities
p;j is said to be stochastically monotone if for each j = 0,1, -+, Q;; = Qi4y,;
(f=0,1,---).

If this condition holds, we will also say that P is stochastically monotone. This
definition is the specialization to Markov chains on the non-negative integers of
Daley’s [2] original definition, which applied to Markov chains on a Borel subset
of the real line. Daley has shown that if P is stochastically monotone, then so is P".
The remainder of this section is devoted to the derivation of some simple properties
of stochastically monotone Markov chains.

LemMMA 2. If P is stochastically monotone, then {Q§)}- is monotone non-
increasing for each j, and in particular {p$}} is a monotone non-increasing renewal
sequence.

PROOF. Q5D = Y2 po; O < OF) 326 Pos the inequality following from

the stochastic monotomclty of P".

COROLLARY 1. Let {X,} be an irreducible stochastically monotone Markov chain.
Define P™(x) =3 2op50%x" (0 £ x £1), then P™(x) | I(x) (n — ) where
II(x) is the generating function of the limiting distribution.

ProOF. Daley [2] has shown that an irreducible stochastically monotone chain
is aperiodic, and so the limiting distribution exists; being defective if the Markov
chain is not positive recurrent. For x = 1, there is nothing to prove, while for
0 < x < 1, the result follows from
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12 PP%x) = (1-x)Y Q5x) = P"*V(x) 2 0
j=0
by Lemma 2.

COROLLARY 2. Let f(*) : & — B, a countable subset of the real line, be a non-
decreasing function such that E{| f(X,)|} < oo for any initial distribution which may
be used. Define the following condmonal expectations: b = E{f(X,)|X, = i} =
Y20 PPF(G) and BW(H) = Y20 ab™ where £ = {a;}§ is an arbitrary initial
distribution. Then {b§"}. . is a non-decreasing sequence, {b{"}{, is a non-decreas-
ing sequence for each fixed n, and b < b™*™ (/) for each n,m = 0,1, - - and
any .

Proor. We have E{|f(X,)||X, = i} = m; £ K for some finite constant K. For
if not, then there exists a strictly increasing sequence i, , i,, * * *, i, - - * of positive
integers such that m; = 1,---,m; =k, -+, and then setting a, = 6/n%k?,
a; = 0if i # i, for some k, we have Y a; = 1, a;m; = 627> ) 1/k = oo. Thus
the existence of all quantities is guaranteed. On applying Lemma 1 to the defining
series for b{™, we have

B = 5(0)+ 3, G+ D~ G)IL-0)

The conclusions follow on noting that the stochastic monotonicity of P"and Lem-
ma 2 imply that 0§} = 0§"™ = QG*™ (n,m,i,j =0,1,--- '

We can derive upper and lower bounds for the state probabilities of a
stochastically monotone Markov chain.

LEMMA 3. Let {X,} be a stochastically monotone Markov chain with an arbitrary
initial distribution and let Pr () be the probability measure so defined. For a fixed n
define h by h = min {i|Pr {X, = i} # 0}. Then Pr {X,,, <j} £ Q,j, and ifj = h,
Pr{X,.s £j} 2 Q;;Pr{X, =/}

PROOF. By the definition of &, we have Pr {X, ., <j} = Y2, Pr{X, =i}Q,;.
The first part of the lemma follows easily. The second part follows because

Pr{X,., £j} 2 Y, Pr{X, =i}0;; = Q;; i, Pr{X, =i}.

4. Second order properties

THEOREM 3. Let {X,} be a stochastically monotone Markov chain with an initial
distribution such that Pr {X; <j} 2 Pr{X, <j} (j=0,1,--*). Let f(*) be a
non-decreasing non-negative function from Z to a countable subset of the real line
such that E{f(X,)} < c; or let f(*) be simply non-decreasing and such that
E{|f(Xo)l} < oo and let X, and X, be identically distributed. Then for each fixed
j=0,1---, ¢§n+1) = ¢§n) (n =0,1,-- )
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Proor. The hypotheses of Theorem 2 are satisfied, so we have ¢{ = ¢?
(j=0,1,--). Since ¢ = Y2, 6" VQ,;, we have from Lemma 1 that

0
frU=g0 = Z 191" - ¢ Q= Qe ]

The stochastic monotone property implies the existence of lim;_, ,, Q;;. The theorem
is now proved by using the stochastic monotone property and arguing inductively.

If the Markov chain in Theorem 3 is irreducible, then, by a theorem of Daley
[2], it is aperiodic, and Fosters theorem [4] shows that if X, and X, are identically
distributed, the chain is positive recurrent and the initial distribution is then the
limiting distribution. If the first set of hypotheses holds and the chainisirreducible,
then it is ergodic. For we can choose a function f(-) such that ¢§°) > 0 for some
particular j, and so we have 0 < ¢ < -+ - < ¢ < ¢+ < -+ - If the chain
is not ergodic, then lim,.,, QY =0 (i,j = 0,1,---) and the dominated con-
vergence theorem then shows that lim,,,, ¢{” = 0, a contradiction.

If /(i) is the unit step function having its jump at &, then under the conditions
of Theorem3,Pr{X, 2 k, X, < j} S Pr{Xy, 2k, X,y <j}(n,j,k=0,1,--).
Lemma 1 then shows that E{g(X,); X, = k} = E{g9(X,+,); Xo 2 k} provided
these expectations exist and g(*) is a non-decreasing function from % to a count-
able subset of the real line.

Theorem 3 covers the special case of stationary Markov chains. A version of
Theorem 3 for stationary Markov chains on a Borel subset of the real line is im-
plicitly contained in the proof of Theorem 4 of [2].

We now turn our attention to the second order moments M® = E{f(X,)
9(X,)} where f() and g(*) are functions from Z to countable subsets of the real
line. We assume that f(*), g(-) and the initial distribution of {X,} is such that both
E{f*(X,)} and E{f*(X,)} are finite, so that by the Cauchy-Schwartz inequality,
the M™ are well defined.

THEOREM 4. Let {X,} be a stochastically monotone Markov chain with an initial
distribution such that Pr {X; < j} =2 Pr{X, £} (j=0,1,---). Let f(*) and g(*)
be monotone non-negative functions from Z to countable subsets of the real line; or
let Xy and X, be identically distributed and let f(-) and g(-) be simply monotone
functions. In either case let both E{f*(X,)} and E{g*(X,)} be finite. Then {M™}&
is @ monotone non-increasing sequence if both f(-) and g(-) are both monotone non-
decreasing or non-increasing, and it is a monotone non-decreasing sequence if one of
f(-) and g(*) is monotone non-decreasing and the other is non-increasing. If {X,}
is irreducible, then lim, _, , M™ = E{f(X,)} 3520 9(j)n;, where {n,} is the limiting
distribution.

If {X,} is irreducible and stationary, then y™ = cov {f(X,), 9(X,)} converges
monotonically to zero from above or below, according as f(*) and g(-) have the same
monotone behaviour or not.
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Proor. It clearly suffices to consider the case where both f(*) and g(-) are
monotone non-decreasing. It is easily seen that M™ = Y%, 61g(j), and the
hypotheses together with the Cauchy-Schwartz inequality show that the series
converges absolutely and so Lemma 1 shows that

M® = g0+ 3 [#7— 6P Ta(+D-g()]  (n=0.1.--)

and the first conclusion follows on using Theorem 3. Using the monotone converg-
ence theorem in the last expression, the remarks following Theorem 3, and the

o

limiting behaviour of {6{"}:2, for an ergodic chain (Section 2), shows that

lim M® = E{f(Xo)}ji[l - iéoﬂj][g(ﬂ 1)—g(j)1+4(0)

= E(f(Xo)} 3, % 90)

by Lemma 1, and this also proves the final part of the theorem.

It should be noted that the monotone behaviour of {M™} depends on the
stochastic monotone property of {X,} and the monotone behaviour of f(-) and
g(*), but reference to Theorem 4 of Daley [2], shows that the convergence of 7™
to zero is a consequence of the uniqueness of the stationary distribution of ergodic
Markov chains.
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