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Euclidean Sections of Direct Sums
of Normed Spaces

A. E. Litvak and V. D. Milman

Abstract. We study the dimension of “random” Euclidean sections of direct sums of normed spaces.

We compare the obtained results with results from [LMS], to show that for the direct sums the stan-

dard randomness with respect to the Haar measure on Grassmanian coincides with a much “weaker”

randomness of “diagonal” subspaces (Corollary 1.4 and explanation after). We also add some relative

information on “phase transition”.

0 Introduction

Since the Dvoretzky theorem, the structure of Euclidean sections of finite-dimen-

sional normed spaces is the best understood subject of the Asymptotic Theory of
normed spaces. In spite of that some interesting observations are still left unnoticed.
In this note we study the largest integer k such that a “generic” k-dimensional sub-

space of an N-dimensional normed space is Euclidean, up to a factor 4, say. Usually
“generic” means for us “with high probability”, for some natural probability distri-
bution on the Grassmanian GN,k. However in some cases one can introduce another
natural probability distribution. Of course, the meaning of the word “generic” will

be different in different cases, thus the different answers can be naturally expected.
Surprisingly, in the case we study these answers essentially coincide (Corollary 1.4).

Our note is closely related to [LMS], where several instances of a phase transition
behavior were discovered. We recall some of them and, summarizing some old and
new facts, add more phase transitions to the behavior of the distance function to the

Euclidean space of “generic” k-dimensional subspaces of the family of `n
q subspaces.

1 Direct Sum of Normed Spaces

Given an integer m we denote by | · | and 〈· , ·〉 the canonical Euclidean norm on R
m

and the canonical inner product. Gm,k denotes the Grassmanian of all k-dimensional
subspaces of R

m and µ = µGm,k
denotes the canonical normalized Haar measure on

the Grassmanian. By e1, . . . , em we denote the canonical orthonormal basis.

By gi , gi j , we always denote the independent standard Gaussian random variables.
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Given an m-dimensional space Z = (R
m, ‖ · ‖, | · |) and q > 1 we denote

b(Z) := max
x 6=0

‖x‖/|x| = ‖ Id : `m
2 → Z‖,

Mq :=
(

∫

Sm−1

‖x‖q dν
) 1/q

,

where dν is normalized Lebesgue measure on Sm−1, and

Eq(Z) =

(

E

∥

∥

∥

m
∑

i=1

giei

∥

∥

∥

q) 1/q

.

Let A and B be some parameters or functions. We denote A ≈ B if there exist positive
absolute constants c and C such that cA ≤ B ≤ CA. It is well-known (and can be

directly computed) that

(1) Eq(Z) ≈ √
m + qMq(Z).

As usual d(X,Y ) denotes the Banach-Mazur distance between spaces X and Y , i.e.

d(X,Y ) = inf {‖T‖ · ‖T−1‖ | T : X → Y is an invertible linear operator};

dX denotes d(X, `k
2), where k = dim X. We also denote the maximal dimension of a

“random” Euclidean section of Z by k(Z), i.e. k(Z) =

max
{

k | µ
(

{E ∈ Gm,k | (M1/2)|x| ≤ ‖x‖ ≤ 2M1|x| for all x ∈ E}
)

> 1/2
}

.

It was proved in [MS2] that k(Z) ≈
(

E1(Z)/b(Z)
) 2

. Note that it is known that
changing k(Z) to ck(Z) for some absolute constant c > 0 we increase the measure µ
of such “almost” Euclidean subspaces to 1 − e−k.

We also recall the following result from [LMS].

Lemma 1.1 Let 1 ≤ q ≤ m. There exist absolute positive constants c, C such that

max

{

M1, c
b
√

q√
m

}

≤ Mq ≤ max

{

2 M1,C
b
√

q√
m

}

.

In other words

(i) Mq(Z) ≈ M1(Z), for 1 ≤ q ≤ k(Z),

(ii) Mq(Z) ≈ b(Z)
√

q
m

, for k(Z) ≤ q ≤ m,

(iii) Mq(Z) ≈ b(Z), for q > m.
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Fix now an n-dimensional normed space X = (R
n, ‖ · ‖, | · |). Let

Y = Yq =

t
⊕

1

X

be nt-dimensional space with the norm defined by

‖y‖Y = ‖y‖q =

(

t
∑

i=1

‖xi‖q/t
) 1/q

,

where y = (x1, x2, . . . , xt ) ∈ Y . Below by log t we always mean the logarithm with

the fixed base a, where a > 1 is an absolute positive constant, which will be specified
later in the proof of Theorem 1.2, Case 3. Clearly, if q ≥ log t then

‖y‖log t ≤ ‖y‖q ≤ ‖y‖∞ = max
i

‖xi‖ ≤ a‖y‖log t .

So we consider the case q ≤ log t only.

For simplicity we denote b(X), Mq(X), Eq(X) by b, Mq, Eq correspondingly.

The main computation we would like to present is combined in the following

Theorem 1.2 Let t be an integer, q ∈ [1, log t] and α = 1/ max{2, q}. Then we have

k(Y ) ≈ t2α max{k(X), q}.

The main interest of this formula lies in comparison with the following result from

[LMS]:

Theorem 1.3 Let q > 1. Let tq = tq(X) be the smallest integer such that there are

orthogonal transformations u1, . . . , ut ∈ O(n) with

(2)
Mq

2
|x| ≤

( 1

t

t
∑

i=1

‖uix‖q
) 1/q

≤ 2Mq|x|, for all x ∈ R
n.

Then for q ≤ n one has

t2α
q ≈ n

max{k(X), q} ,

α = 1/ max{2, q}. Moreover the “random” choice of orthogonal transformations gives,
with the probability exponentially close to one, the same estimate as the best one, i.e.
there exists an absolute constant c0 such that for a random choice of independent rota-

tions u1, . . . , ut with t2α ≥ c0n/ max{k(X), q} one has (2).

The following corollary is immediately implied by Theorems 1.2, 1.3 (the restric-
tion q ≤ cn is needed to satisfy condition q ≤ log t in the case q ≥ k(X)).
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Corollary 1.4 Let X, Y be defined as above. Let t be such that k(Y ) = n. Then

t2α ≈ t2α
q

for q ≤ cn, where α = 1/ max{2, q} and c is an absolute constant.

The meaning of the equivalence in this corollary should be explained. It shows

that in some sense the randomness with respect to the Haar measure on Grassma-
nian Gtn,n coincides with a much “weaker” randomness of “diagonal” subspaces.
More precisely, given n-dimensional space X let Y = Yq be as above and let ū =

(u1, . . . , un) : Y → Y , ui ∈ O(n), be the linear operator defined by ūy = (u1x1, . . . ,
ut xt ). By a “diagonal of ūY ” we mean the subspace of all vectors (u1x, u2x, . . . , ut x) ∈
Y , x ∈ X. We are looking for t such that for a random ū ∈

∏t
1 O(n) this diagonal is

equivalent to the Hilbert space, i.e. for every x

‖y‖q =

(

t
∑

i=1

‖uix‖q/t
) 1/q

≈ Mq|x|.

The two previous theorems show that the answer to this question is the same as the
answer to the question for what t we have k(Y ) = n, which means that Gtn,n-random

subspace is Euclidean. Let us emphasize again that in the first question (Theorem 1.3)
we take t “random” operators and “diagonal of Y ”, but in the second (Theorem 1.2),
in fact, we take the random operator on the group O(tn).

To prove Theorem 1.2 we need the following lemma.

Lemma 1.5 Let t be an integer, q ∈ [1,∞) and α = 1/ max{2, q}. Then we have

(i) b(Y ) = t−αb,
(ii) E1 ≤ E1(Y ) ≤ Eq(Y ) = Eq,

(iii) M1 ≤ c1

√
tM1(Y ) ≤ c2

√

t + q/nMq(Y ) ≈
√

1 + q/nMq, where c1, c2 are abso-
lute positive constants.

Proof Let y = (x1, x2, . . . , xt ) ∈ Y . Then by the definition of the norm on Y and of
the b = b(X) we have

‖y‖ ≤ t−1/qb
(

∑

|xi |q
) 1/q

≤ t−αb
(

∑

|xi |2
) 1/2

= t−αb|y|.

Thus b(Y ) ≤ t−αb. To get the equality it is enough to take y = (x0, x0, . . . , x0) if
q ≤ 2 and y = (x0, 0, . . . , 0) if q ≥ 2, where x0 ∈ X is such that ‖x0‖ = b|x0|.

Denote by {ei j}, i ≤ n, j ≤ t the canonical basis of R
nt

=

⊕t
1 R

n. Clearly,

E1 = E

∥

∥

∥

n
∑

i=1

giei

∥

∥

∥
= E

t
∑

j=1

1

t

∥

∥

∥

n
∑

i=1

gi jei j

∥

∥

∥
≤ E

(

t
∑

j=1

1

t

∥

∥

∥

n
∑

i=1

gi jei j

∥

∥

∥

q) 1/q

= E1(Y ) ≤ Eq(Y ) =

(

E

t
∑

j=1

1

t

∥

∥

∥

n
∑

i=1

gi jei j

∥

∥

∥

q) 1/q

= Eq(X).
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The last inequality follows from (1).

Proof of Theorem 1.2

Case 1 q ≤ max{k(X), 2} (Then, by Lemma 1.1, Eq ≈ E1.)

In this case we have

k(Y ) ≈
(

E1(Y )/b(Y )
) 2 ≤

(

Eq(Y )/b(Y )
) 2

= t2α(Eq/b)2 ≈ t2α(E1/b)2 ≈ t2αk(X).

On the other hand

k(Y ) ≈
(

E1(Y )/b(Y )
) 2 ≥

(

E1/b(Y )
) 2

= t2α(E1/b)2 ≈ t2αk(X).

We turn now to the cases when q ≥ max{2, k(X)}. Then α = 1/q.

Case 2 k(X) < q ≤ k(Y ) (Then, by Lemma 1.1, Eq(Y ) ≈ E1(Y ).)

We obtain

k(Y ) ≈
(

E1(Y )/b(Y )
) 2 ≈

(

Eq(Y )/b(Y )
) 2

= t2α(Eq/b)2

≈ t2α(q + n)(Mq/b)2 ≈ t2α(q + n)
min{q, n}

n
≈ t2αq.

Case 3 k(Y ) < q ≤ log t

We show that this case is impossible for an appropriate choice of the base of the

logarithm. Indeed, using Lemma 1.1 we obtain

Mq ≈
√

min{q, n}
n

b thus Eq ≈
√

q + nMq ≈
√

qb,

and

Mq(Y ) ≈
√

q

nt
b(Y ) ≈

√

q

nt
t−αb thus Eq(Y ) ≈ √

qt−αb.

But Eq = Eq(Y ), therefore tα ≤ c, i.e. t ≤ cq for some absolute constant c > 1.
Letting a > c we obtain a contradiction with the condition q ≤ log t = loga t .

Finally we would like to reformulate Theorem 1.3. The theorem, in particular,

shows that “randomly” defined tq has, up to an absolute constant, the same bounds
as tq. i.e. a random choice of independent rotations gives “almost” the same result as
the best possible one. The theorem below provides the estimates. Note that tq in it is
defined slightly differently.
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Theorem 1.6 Let 2 < q ≤ n, X be an n-dimensional normed space, b = b(X), and
Mq = Mq(X). Let 1 < A < b/Mq and tq = tq(X, A) be the smallest integer such that

there are orthogonal transformations u1, . . . , ut ∈ O(n) with

( 1

t

t
∑

i=1

‖uix‖q
) 1/q

≤ AMq|x| for all x ∈ R
n.

Let c, C be the constants from Lemma 1.1.

There exists an absolute constant c0 > 1 such that if tq ≥ (c0b/M2)2 and q ≤
n/(eC2A2) then with high probability a random choice of tq independent rotations
u1, . . . , utq

∈ O(n) gives

c1Mq|x| ≤
( 1

tq

tq
∑

i=1

‖uix‖q
) 1/q

≤ 2c0AMq|x| for all x ∈ R
n,

where

1/c1 = (3C/c)

√

1 + 2
ln(c0CA/c)

ln
(

n/(qC2A2)
) .

Moreover, if q ≤ k(X) then c1 can be replaced with an absolute positive constant.

Remark 1 The restriction q ≤ n/(eC2A2) seems to be reasonable, since otherwise,
by Lemma 1.1, we have b ≤ (2C/c)AMq, i.e. ‖x‖ ≤ (2C/c)AMq|x| for every x ∈ R

n.

Remark 2 In particular, if C3A3q ≤ n then we can substitute the constant c1 with an
absolute positive constant. More precisely, if (CA)2+εq ≤ n, ε ∈ (0, 1] then

1/c1 ≤ (9C/c)

√

ln(c0/c)

ε
.

The theorem follows immediately from results proven in [LMS]. For completeness
we show the proof.

Proof First we define c0. Let c0 ≥ max{4,C2} be such that given 1 ≤ p ≤ n one can
apply “moreover” part of Theorem 1.3 for

t2α
= t2/ max{2,p} ≥ c0 min{(b/M2)2, n/p}

rotations. Such c0 exists, since k(X) ≈ (M2/b)2n.

Now let s be the largest number such that

tq ≥ (c0b/Ms)
s.

(Of course we may assume that s exists and that tq = (c0b/Ms)
s.)
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Clearly, tq = (c0b/Ms)
s increases when s grows. Since tq ≥ (c0b/M2)2 we have

s ≥ 2. Thus, by Lemma 1.1,

t2/ max{2,s}
q = t2/s

q = c2
0(b/Ms)

2

is larger than (c2
0/4)(b/M2)2 for small s (namely s ≤ k(X)) and is larger than

(c2
0/C2)(n/s) for large s. Hence, by the choice of c0, we can apply “moreover” part

of Theorem 1.3 and obtain that random choice of tq rotations satisfies

Ms

2
|x| ≤

( 1

tq

tq
∑

i=1

‖uix‖s
) 1/s

≤ 2Ms|x| for all x ∈ R
n.

If s > q we are done. Assume s ≤ q. Then we have

( 1

tq

tq
∑

i=1

‖uix‖s
) 1/s

≤
( 1

tq

tq
∑

i=1

‖uix‖q
) 1/q

≤ t1/s−1/q
q

( 1

tq

tq
∑

i=1

‖uix‖s
) 1/s

.

Thus to prove the theorem it is enough to show that

c1Mq ≤ Ms/2 and t1/s−1/q
q Ms ≤ cAMq.

By Theorem 2.3.1 of [LMS] and definition of tq we obtain

(3) tq =

( c0b

Ms

) s

≥
( b

AMq

) q

.

This immediately implies the upper estimate. The lower estimate follows from
Lemma 1.1. Indeed, if q ≤ k(X) then Mq ≈ M2 ≈ Ms. Let q ≥ k(X). By Lemma 1.1
and (3) we observe

( 1

CA

√

n

q

) q

≤
( c0

c

√

n

s

) s

.

Denote c2 = c0/c, CA = CA and a = q/s. Then we have

a ln
(

n/(qC2
A)

)

≤ ln(ac2
2n/q),

which implies

a ≤ ln a +
ln(c2

2n/q)

ln
(

n/(qC2
A)

) = ln a + 1 + 2
ln(c2CA)

ln
(

n/(qC2
A)

) .

Thus a ≤ 2
(

1 + 2 ln(c2CA)
ln(n/(qC2

A))

)

. Applying Lemma 1.1 again we obtain

Mq

Ms/2
≤ (2C/c)

√
a.

That concludes the proof.
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2 More on Euclidean Sections of `q

Lemma 1.1 and Theorems 1.2 and 1.3 provide a few cases of a so-called “phase transi-
tion” phenomenon in high-dimensional theory. Functions which describe behavior
of some important parameters of the space are changing their analytic description at

specific values. Of course, in the Asymptotic Theory all functions are described in an
isomorphic form, i.e. up to some universal factors. In this section we will interpret a
result from [GGMP] on distances of k-dimensional “random” subspaces of `q to the
Euclidean space to emphasize phase transition of the distance function. This com-

plements, in our mind, phase transitions we studied above for `q-sum of spaces. The
following theorem combines some classical well-known facts with new information
from [GGMP].

Theorem 2.1 Let 2 ≤ q ≤ (ln n)/2. There are absolute positive constants c1, c2, c3

such that for every k ≤ n a “random” k-dimensional subspace F ⊂ `n
q satisfies

(i)
dF ≤ 3

for k ≤ c1qn1/q,
(ii)

dF ≤ c3

√
k

n1/q√q

for c1qn1/q ≤ k ≤ c2e−qqn,
(iii)

dF ≤ c3

√
k

n1/q
√

ln(2n/k)

for c2e−qqn ≤ k.

Let us note that the case (i) is well-known (see e.g. [MS1]). The estimates with

some constant Cq depending on q only instead of
√

q (in the case (ii)) or
√

ln(2n/k)
(in the case (iii)) were also known earlier ([MS1]).

Remark We would like to emphasize that the estimates are sharp up to absolute

constants. Moreover, each subspace of `q (not only “random”) satisfies the lower
estimates of the same order. (For the case (ii) see e.g. [CP, GGMP, MS1], the case (iii)

follows, since for any k-dimensional subspace E ⊂ `n
∞ one has dE ≥ c

√
k√

ln(2n/k)
(see

e.g. [BLM, CP, G1]). Indeed, let Ē be a k-dimensional subspace of R
n, E be Ē endowed

with ‖ · ‖∞, and F be Ē endowed with ‖ · ‖q. Then, since n−1/q‖x‖q ≤ ‖x‖∞ ≤ ‖x‖q

for every x ∈ R
n, we have

dE ≤ d(E, F)dF ≤ n1/qdF,

which implies the estimate.)
Taking into account the remark above we can reformulate the previous theorem

in the following way
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Theorem 2.2 Let c1, c2, c3 be the positive constants from Theorem 2.1. Let n, k be
integers satisfying c1e2 ln n ≤ k ≤ 2c1n. Let q0 and q1 be numbers defined by equations

k = c1q0n2/q0 and k = c2e−q1 q1n,

thus
2 ln n

ln
(

k/(c1 ln n)
)

+ ln ln
(

k/(c1 ln n)
) ≤ q0 ≤

2 ln n

ln
(

k/(c1 ln n)
)

and

ln(c2k/n) ≤ q1 ≤ ln(c2k/n) + ln ln(c2k/n)2.

Then there is a positive constant c4 such that for a “random” k-dimensional subspace
F ⊂ `n

q we have

(i)

1 ≤ dF ≤ 3

for 1 ≤ q ≤ q0,
(ii)

c4

√
k

n1/q√q
≤ dF ≤ c3

√
k

n1/q√q

for q0 ≤ q ≤ q1,

(iii)

c4

√
k

n1/q
√

(2n/k)
≤ dF ≤ c3

√
k

n1/q
√

ln(2n/k)

for q1 ≤ q ≤ (ln n)/2.

Let us note that the restriction q ≤ (ln n)/2 can be omitted, since for larger q
the space `n

q is equivalent to the space `n
∞ (in fact, d(`n

q , `
n
∞) ≤ e2) and for `n

∞ the

inequality in the item (iii) is well known ([G2]). Therefore, the distance function
dF for a “random” k-dimensional subspace of `q, as a function by q, 1 ≤ q, has two
points of phase transition q0 and q1.
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