
HOMOMORPHIC IMAGES OF RESTRICTIVE STAR
SEMIGROUPS

by KENNETH D. MAGILL, Jr.

(Received 16 January, 1969)

0. Introduction. Let Y be a subspace of a topological space X. Then S(X, Y) denotes the
semigroup, under composition, of all continuous selfmaps of X which also carry Y into Y.
In the special case Y = X, the simpler notation S(X) is used. We have devoted several recent
papers ([4], [7] and [8]) to the problem of determining when S(Z) and S(X, Y) are isomorphic
and, more generally, when S(Z) is a homomorphic image of S(X, Y). In this paper, we investi-
gate the analogous problem for certain semigroups of functions on spaces which were intro-
duced in [5]. These include semigroups of closed functions which are treated in further detail.

1. Some results on 9?-spaces. In this section, we recall some definitions and extend some
results from [5, §2, pp. 526-530] which we shall subsequently need.

DEFINITION (1.1). ^(X) denotes the power set of a nonempty set X and the subfamily of
@(X) which consists of X and all singletons of X is referred to as the core of 3P{X).

DEFINITION (1.2). Let & be any subfamily of 0>(X). A selfmap / of X is said to be
^-invariant if/[//]e & for each He&.

DEFINITION (1.3). A subfamily 2F of(?{X) is an 9?-family if it contains the core and each
member of the family is the range of an ^-invariant function.

DEFINITION (1.4). An 9i-space is a pair (X, &) where A' is a nonempty set and & is an
9?-family of subsets of X.

We shall often take the liberty of referring to X itself as an SR-space. It is to be under-
stood that some SR-family of subsets is associated with X. For a discussion of 5R-families
(and also families which are not SR-families), see [5, §2, pp. 526-530]. In particular, the
following result which we state without proof is verified there.

THEOREM (1.5). Let X be any nonempty set and let & be a family of subsets of X which
satisfies the following conditions:

(1.5.1) & contains the core of 3?{X),

(1.5.2) ^ is closed under finite intersections,

(1.5.3) HKj{p}e& for each HeSF and peX.

Then OF is an 'Si-family.

The next two corollaries are immediate consequences of this theorem.

COROLLARY (1.6). The family of all closed subsets of a Tv topological space is an 'Si-family.
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COROLLARY (1.7). The family of all compact subsets of a Hausdorjf space, together with
the space itself, is an 'H-family.

SR-families of the type described in Theorem (1.5) play enough of a role in our con-
siderations to make it convenient to provide them with a name.

DEFINITION (1.8). Any subfamily of 0>(X) which satisfies conditions (1.5.1), (1.5.2) and
(1.5.3) will be referred to as a principal 9?-family and the corresponding 9?-space will be
referred to as a principal 91-space.

The next result extends Theorem (2.8) of [5, p. 530]. The same basic techniques are used
in the proof.

THEOREM (1.9). Let X be any completely regular Hausdorjf space whose cardinality does
not exceed c, the cardinality of the continuum, and let (<2X consist of the core of &(X) together
with any family of connected subsets ofX. Then <€x is an 31-family.

Proof If X is totally disconnected, then ^x must necessarily be the core of &(X) and the
conclusion is immediate. Suppose that X is not totally disconnected and let H be any element
of Wx which is different from A (̂it follows at once that Xis the range of a ^-invariant function,
namely the identity function). We must prove the existence of a ^-invariant function/whose
range is H. Since X is not totally disconnected, there exist two distinct points p and q which
belong to a connected subset of X and, by complete regularity, there exists a continuous
function g mapping A' into the closed unit interval /, such that g(p) = 0 and g{q) = 1 . It
follows that the range of g is all of/. Now we define a selfmap of /. For each x # 0 in /, let

.axa2az... an . . . (a, = 0 or 1)

denote the nonterminating binary expansion of x. Define the function h by

h(x) = limsup {(a, +a2+ . . . +an)/n},

/;(0) = 0.

The function h is discussed in [2] on page 82, where it is observed that the image of any non-
degenerate subinterval (closed, open or half-open) of / is all of /. Since the cardinality of H
does not exceed c, there exists a surjection k from /onto H. L e t / = kohog and let Kbt any
connected subset of A'. Then g[K] is a connected subset of / and, consequently, must be a
point or a nondegenerate interval. In the first case /![#[£]] is a point and in the second
h[g[K] ] = /. It follows that f[K] = k[h[g[K] ] ] is either a point or all of H. Thus / is a
<&x- invariant selfmap of X whose range is H.

DEFINITION (1.10). The symbol <&x will be used exclusively for denoting an 9t-family
consisting of the core of 3P{X) together with a collection of connected subsets of a completely
regular Hausdorff space X whose cardinality does not exceed c. The 9?-family consisting of
the core together with all connected subsets of such a space X will be denoted by Wx.

2. Dependant SR-spaces. In the theory of topological spaces, one associates, in a very
natural way, a unique topology with every subset Y of a topological space X. The subspace
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topology on 7 is simply defined to be the intersections of Y with the open subsets of X. We
give an example to show that, in general, this technique does not work for <R-spaces and then
we introduce the notion of a dependant 9?-space which, in a certain sense, is analogous to a
subspace of a topological space.

EXAMPLE (2.1). Let X denote the set of natural numbers and let A = ^ - { 5 } , B =
X- {3,4} and Y = {1,2,3,4,5}. Denote by $fx the subfamily of 0>(X) consisting of the core
together with the two sets A and B. It is not difficult to show that !FX is an SR-family. For
instance, l e t / b e any function mapping the set {neX:n ^ 6} onto B, such that/(n) ~2. 6 for
I g n | 5. Then f[X] =f[A] =f[B] = B and it follows that B is the range of an ^- invar iant
function. Similar remarks hold for A and it follows that ^x is indeed an 9?-family. Actually,
one can prove the more general result that the core together with any finite family of infinite
subsets of any infinite set is an 5R-family [5, p. 526, Theorem (2.2) ].

Now let !Fy denote the family of intersections of 7 with members of 2FX. It follows from
the more general considerations of Example (2.4) in [5, p. 528] that !FY is not an 9?-family.
However, the verification in this special case is not long and it may be worthwhile to give it.
$FY consists of the core of 0>(Y~) together with the two sets A' = {1,2,3,4} and B' = {1,2,5}.
We show that A' is not the range of any .^-invariant function. Suppose that / is .^-invariant
and / [7 ] c A'. Then/[5'] cannot be equal to B' and for cardinality reasons cannot be either
7 or A'. Thus f[B'] must be a singleton. It follows tha t / [7 ] can consist of at most three
points and therefore cannot possibly be A'.

It is now apparent that one cannot always expect to get an 5R-family for 7 by intersecting
7 with the members of an SR-family of X. There is a very natural way to provide 7 with an
9?-family which is closely related to the SR-family SF x of A'. One readily verifies that

&Y = {/[WAY] c 7 a n d / i s an ^- invar iant selfmap of X)

is indeed an 9?-family. It is appealing from the standpoint that it is the largest possible
9?-family on 7 whose members are images of 7 under ^- invar iant functions which take 7
into 7. The difficulty, however, is that quite often the more interesting 9?-families are
actually proper subfamilies of the latter. For consider the following

EXAMPLE (2.2). Let X be any completely regular Hausdorff space with cardinality less than
or equal to c and let 7 be any nonempty subspace of X. Let ^x, the family of all connected
subsets of X, together with X itself, be the 9?-family associated with X. It is quite natural to
want to consider $ y as a candidate for the 5R-family on 7. <^y, however, may well be a proper
subset of i f Y defined above. To see this, let X = [0,2] and let 7 = X- {1}. Define a continuous
selfmap of X by

f(x) = (x+l)/2 for O ^ x ^ l ,

fix) = x for l ^ x ^ l

It follows t h a t / [ 7 ] = [1/2,1)u(l, 2] belongs to i f K but certainly not to <8Y. All this has led
us to the following
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DEFINITION (2.3). Let (X, S?x) and (Y, SFY) be two 5R-spaces. We say that (Y, SFY) is a
y-dependant (or simply a dependant) of (X, tFx) if Y <= X and, for each He 2FY, there exists
an ^- invar iant selfmap/of A'which satisfies the following two conditions:

(2.3.1) The restriction o f / t o Y is an ^"y-invariant selfmap of Y,

(2.3.2) f[Y] = H.

THEOREM (2.4). Let X be any completely regular Hausdorjf space with cardinality less than
or equal to c and let Ybea nonempty subspace ofX. Then (Y, %>Y) is a dependant of(X, $x) , where
$ x is the family of all connected subsets of X, together with X, and^Y is any family consisting
of the core of^(Y) together with any collection of connected subsets of Y.

Proof. It follows from Theorem (1.9) that both {X,%x) and (Y,%Y) are SR-spaces. The
verification that {Y,^Y) is actually a dependant of (X,^x) proceeds in much the same way as
in the proof of Theorem (1.9). If Fis totally disconnected, ^Y coincides with the core of 0>(Y)
and the conclusion follows at once. Otherwise, Y contains a nondegenerate connected subset
and, for any connected subset H of Y, one constructs, just as in the proof of Theorem (1.9), a
function/with the properties that /pf] =f[Y] = H and the image of any connected subset of
X is either a singleton or all of H.

We note that, if Y happens to be connected, then ^Y agrees with <£Y. Moreover, in view
of Theorem (2.4), we can easily describe all SR-families on Y which result in dependants of
(X, <$x). They are simply all families of the form #,..

We observed earlier that one cannot always expect to get an SR-family for a subset Y by
intersecting Y with the members of an 9?-family on X. As the next result shows, however, this
is a valid procedure for an important class of 5R-spaces.

THEOREM (2.5). Let (X, tFx) be a principal 11-space and let Y be a nonempty subset of X,
Then SFY= {YnH:He &x) is a principal %-familyfor Yand{Y, ^Y) is a dependant of(X, &x).

Proof. It is immediate that !FY is a principal 9l-family for Y. To see that (Y, !FY) is a
dependant of (X, 2FX\ let H be any nonempty set which belongs to J^V. Then H = Kn Y,
where Ke ^ x . Choose p e H and define a selfmap / of X by

f(x) = x for xeK, and

f(x)=p for xeX-K.

It is evident that / |T] = H. Furthermore, for any Ve ^ x , we have

f[V] =f[VnK]vf[V-K] = [V

The set Kn K belongs to 2FX and/[K— K] is either empty or consists of the point p. In either
event, [Vr\K]<of[V— K] belongs to 8FX and we conclude that / is an ^- invar iant function. In
the same manner, if We 3FY, we have

= [fVnK]uf[Y-K],
and it follows that the restriction of/to Y is an J^-invariant selfmap of Y.
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3. Restrictive star semigroups.

DEFINITION (3.1). Let (Y, ^Y) be a dependant of the SR-space (X, &x). Then we denote
by St (X, Y) the semigroup, under composition, of all .^-invariant selfmaps of X whose
restrictions to Y are .^"invariant selfmaps of Y. Such semigroups will be referred to as
restrictive star semigroups. In the special case where Y is identical with X (from which it
necessarily follows that !Fy = !FX), we use the notation St(A') and refer to this as a star semi-
group.

Our main efforts in this section are directed toward determining precisely when

(A) St (Z) is a homomorphic image of St {X, Y)

and more specifically, when

(B) St(Z) and St(X, Y) are isomorphic.

As we mentioned in the introduction, this has been done for semigroups of continuous
functions in [4], [7] and [8]. As we will see, the answer to (A) is rather similar to that for the
analogous problem for semigroups of continuous functions. The answer to (B), however, is
very different from its counterpart for semigroups of continuous functions. We assume when
proving these results that St (X, Y) is doubly transitive on Y. That is, for each quadruple of
points p, q, r, s of Y with p ^ q, there exists a n / e St {X, Y) such that/(p) = r and/(?) = s. The
next several results indicate that this is not really a serious restriction.

THEOREM (3.2). Suppose that both 2FX and 2FY are principal ^-families. Then St[X, Y) is
doubly transitive on Y.

Proof. This is a consequence of the fact that any selfmap of X whose range is a finite
subset of Y is .^-invariant and its restriction to Y is .^-invariant.

THEOREM (3.3). Let X be a completely regular Hausdorjf space with cardinality c and let Y
be any nonempty subspace which is not totally disconnected. Let <%x and ̂ Y be the ^-families
on X and Y respectively. Then St(Ar, Y) is doubly transitive on Y if and only if Y is connected.

Proof. If Y is connected, one can modify the proof of Theorem (1.9) to produce the
desired result. Suppose, on the other hand, that Y is not connected. Then Y is the union of
two nonempty disjoint open subsets A and B. Since Y is not totally disconnected, one of the
two, say A, must contain two distinct points p and q which belong to a connected subset of Y.
Choose any reB. There exists no function/in St(Ar, Y) such that/(/>) =/? and/(qr) = r.

As for totally disconnected Y, Si{X, Y) is doubly transitive on some Y but not on others.
For example, one readily shows (for any Y) that if two distinct points of Y belong to the same
component in X and a third point of Y belongs to a different component in X, then St(jf, Y)
is not doubly transitive on Y. As the next result shows, however, St{X, Y) is doubly transitive
on many totally disconnected Y.
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THEOREM (3.4). Suppose that X is a normal Hausdorff space with cardinality c and Y is a
countable metrizable closed subset which is contained in a connected subset of X. Again,
let $>x and fly be the tR-families associated with X and Y respectively. Then St(Ar, Y) is doubly
transitive on Y.

Proof. Since Y is countable, it must be totally disconnected and, consequently, <$Y

coincides with the core of 9>{ Y). Thus the ^-invariant selfmaps of Y are the constant maps
together with all functions which map Y onto Y. Now let p, q, r, s be points of Y with p ¥= q.
We prove the existence of a ^-invariant selfmap/of X such that/(/?) = r and/(^r) = s and
the restriction o f / t o Y is ^-invariant. We can assume r ^ s since otherwise a constant map
will suffice. By Corollary 1 [9, p. 141], there exists a homeomorphism g from Y into the
rational numbers which lie between 0 and 1. Let H denote a connected subset of X which
contains Y. Since H has cardinality c, there are two distinct points a,beH— Y. Extend g by
defining g(a) = 0 and g(b) = 1. Then g maps Yv{a,b} continuously into the closed unit
interval / and, by The Tietze Extension Theorem, can be continuously extended to a function
g' which maps all of X into /. Now we define a function h mapping / into /. For rational x,
let h(x) = x. For irrational x, let

.axa2a3...an... (af = 0 or 1)

denote the nonterminating binary expansion of x and let

h{x) = lim sup {(a, + a2 + ... + an)/n}.

One can show that the image under h of any nondegenerate interval of / is all of /. Finally,
let k denote any function mapping / onto H with the properties that

k(g'(p)) = r, k(g'(q)) = s,

k(9'(r))=p, k(g'(s)) = q,

= y for

Define/= k°hog'. We note that the restriction o f / t o Y maps Y bijectively onto itself and,
consequently, is <ty-invariant. Furthermore, f(p) = r and f(q) = s. It remains to show t h a t /
is ^-invariant. Let K be any connected subset of X. Then g'[K] is connected and must be
either a point or a nondegenerate subinterval of / . In the first case h[g'[K] ] is a point and in
the second it is all of /. It follows that f[K] is either a point or all of H.

It is convenient to have two more definitions before we state and prove the two main
results of this section.

DEFINITION (3.5). A bijection h from an 9l-space (X, !FX) onto an 9?-space (Y, ^Y) is

referred to as an IR-bijection if h[A]e #"y for each A e 2Fx and h~l[B]e 2FX for each Be^y.
When such a bijection exists between two 9l-spaces, we say that they are equivalent.

DEFINITION (3.6). A dependant (Y, &?) of {X, &x) is said to conform to (X, 3FX) if
each .^-invariant selfmap of Y can be extended to an J^-invariant selfmap of X. At times,
when there can be no misunderstanding as to the 9?-families involved, we shall say simply
that y conforms to X.
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In the following two theorems, {X, Fx), (Y, ^Y) and (Z, ^z) are all SR-spaces and (Y,
is a dependant of (X,

THEOREM (3.7). Suppose that St(Z, Y) is doubly transitive on Y and Z has more than one
point. Then St(Z) is a homomorphic image of St(X, Y) if and only if Z and Y are equivalent
and Y conforms to X.

Proof. First suppose that q> is a homomorphism from St(Ar, Y) onto St(Z). For each
peX, we let </>> denote the function which maps every point of X into p, i.e., </?>(*) — P
for each xeX. It follows that {(y}:yeY} is the kernel (minimal ideal) of St(^", Y) and
{(z}:zeZ} is the kernel of St(Z). Then, for any yeY, there exists a zeZ such that
<K y} = <z>- We define A(j>) = z. Then /i is a function mapping 7 into Z with the property

(3.7.1) <P<y> = <h(y)>

for each j e Y.
Now let z be any point of Z. Since q> is surjective, <p(/) = <z> for some / e St (X, Y).

Then, for any peY,

<P<AP)>= <p(f°<p» = <K/)° <P<P> = <*>° K/»> = <̂ >-
Thus each <z> is the image of at least one element in the kernel of St(Ar, Y). Choose any ye Y
such that <p< y} = <z> and define k(z) = y. Then fc is a mapping from Z into y such that

(3.7.2)

for each ZGZ. NOW let any/GSt(Ar, 7) and any z e Z be given. Using both (3.7.1) and (3.7.2),
we get

(h o/o k)(z) =

Therefore

(3.7.3) fl»(/) = hofok for each/in St(Z, y).

Let ix, iY, iz denote the identity functions on X, Y and Z respectively. Then (p(ix) = iz

and it follows from (3.7.3) that

(3.7.4) hck = iz.

Suppose, however, that

(3.7.5) koh^iy.

Then there exists a point p e Y such that

(3.7.6)

Choose any zeZ and get

(3.7.7) (ko
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Now assume that A[y] consists of one point g, i.e., h(y) = q for each ye Y. This, together with
(3.7.3), implies that <p(f) = < ?> for each/eSt^, Y). But the semigroup St(Z) has more than
one element since Z has more than one point, and this contradicts the fact that q> is surjective.
Consequently, we must conclude that there exist points r and s in Y such that h(r) # h(s).
Since St(Ar, Y) is doubly transitive on Y, there exists a function/in St(Ar, Y) such that

f(p) = r and (fokoho(p}ok)(z) = s.
It follows that

which is a contradiction since hofo(p}ok is(/>(/°</>>) and hofok°ho(p}ok\s (p(f)°<p(p}-
Therefore statement (3.7.5) is not valid and we conclude that

(3.7.8) koh = iY.

Statements (3.7.4) and (3.7.8) together imply that h is a bijection from Y onto Z and that
A: = h~x. Thus (3.7.3) may be rewritten as

(3.7.9) <p(/) = / ,o/o/r1 for each feSt(X,Y).

Next, we show that h is an 5R-bijection. For any He JFY, there exists a function/e St {X, Y)
such that/[y] = H. This is a consequence of the fact that (Y, 5FY) is a dependant of (A', &x).
Then we have

h[H\ = AL/m] = Ao/o/r'[Z] = <p(f)[Z],

which implies that h[H] belongs to ̂ z •
Now suppose that Ke ^ 2 . Let g be any function in St(Z) whose range is K and choose

any function j such that q>(j) = g. By (3.7.9), g = hojoft'1 and we have

Sincey[y] belongs to ̂ y, it follows that /i is an 5R-bijection.
In order to show that Y conforms to X, let / be any .^-invariant selfmap of Y. Then

Zio/o/r1 belongs to St(Z) and, since cp is surjective, (p(g) = hofoh'1 for some g in St(Ar, F).
It follows from (3.7.9) that Aogoh~l = hofoh'1. This implies that # is an extension of/and
the necessity portion of the proof is complete.

Sufficiency follows quite readily. Suppose that h is an *R-bijection from Y onto Z and
that Y conforms to X. One easily shows that the mapping q> which is defined by

?(/) = hofoh-1,

for each / in St (X, Y), is a homomorphism from the latter into St (Z). Let g be any element in
St(Z). Then/i"1ogo/i6St(y)and, since Yconforms to X, there exists a function/in St(JT, Y)
whose restriction to Y is h~l og oh. It follows that <p(f) = g. Thus <p is surjective and the
proof is complete.

THEOREM (3.8). Suppose that St(A', Y) is doubly transitive on Yand also that all two element
subsets of X belong to !FX. Then St(Z) and St(X, Y) are isomorphic if and only if Z and Y are
equivalent and Y = X. When Y = X it necessarily follows that ̂ Y = ^x •
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Proof. First of all, one easily checks that, if (Y, ^Y) is a dependant of (X, ̂ x) and Y = X,
then 2Fy = !FX. The sufficiency portion of the proof is immediate so we comment only on
the necessity. It follows quite readily that, if St(Z) and S t ^ , Y) are isomorphic and Z con-
sists of only one point, then Yalso consists of one point and X— Y. As for the case where Z
has more than one point, there exists, just as in the proof of Theorem (3.7), an SR-bijection h
from Y onto Z such that

for e a c h / e S t ^ , Y), where <p denotes an isomorphism from S t ^ , Y) onto St(Z). If Y ^ X,
choose any peX— Y and qsYand define

f(x) = p for xeX-Y,

f(x) = q for xeY.

Since all two element subsets of X belong to 8FX, it follows that/is an Fy-invariant selfmap of
X. Moreover, it is immediate that its restriction to Y is an .^-invariant selfmap. Thus /
belongs to St(X, Y). We have reached a contradiction, since

b u t / # <9>. We conclude, therefore, that 7 = X.

REMARKS. Theorem (3.7) is very much like its counterpart for semigroups of continuous
functions [7, Theorem (4.1) and 8, Theorem (3.2)]. Theorem (3.8), on the other hand,
differs in a very important respect from its counterpart in semigroups of continuous functions.
Whereas there are some important nontrivial cases where S(X, Y) is isomorphic to a semigroup
of the form S(Z) [8, Theorems (4.7) and (4.8)], many of the semigroups St(Ar, Y) can only be
isomorphic to an St(Z) if Y = X, which then implies that J^y = &x, i.e., the two 5K-spaces
(X, $?x) and (Y, ^Y) are identical.

Theorem (3.7) emphasizes the need to be able to determine whenever Y conforms to X,
that is, to be able to determine whenever certain selfmaps of Y all have a certain type of
extension to a selfmap of X. This is not always an easy task but it is completely determined
for semigroups of closed functions on first countable Hausdorff spaces in the next section.

One more remark about Theorem (3.8) seems to be in order. The condition that SFX

contain all two element subsets rules out SR-families of the form <$>x. The following example
shows, however, that one cannot hope to prove the theorem without some such restriction.

EXAMPLE (3.9). Let X be a totally disconnected space with more than one point and let
Y = X— {/>}, where p is any point that belongs to X. Let $ x and @Y be the SR-families
associated with X and Y respectively. Then %x is the core of &{X), ^ is the core of 0>(Y)
and St {X, Y) consists of all constant functions < y}, where y e Y, together with all those functions
which map X onto X and Y onto Y. The semigroup St(F) consists of all constant functions on
Y together with all those functions which map Y onto Y. One easily verifies that the res-
triction of each function in St(Ar, F)to Y is an isomorphism from S t ^ , Y) onto St(7).
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4. Semigroups of closed functions. It will be convenient to assume that all topological
spaces discussed in the remainder of this paper are 7\ spaces. We shall apply some of the
previous results to semigroups of closed functions on such spaces. By a closed function, we
mean a function with the property that the image of every closed subset is closed.

Let Y be any nonempty subspace of a topological space X. By Corollary (1.6), X, together
with its closed subsets, and Y, together with its closed subsets, are 9t-spaces. Moreover, it
follows from Theorem (2.5) that Y is a dependant of A'and it follows from Theorem (3.2) that
St {X, Y) is doubly transitive on Y. The semigroup St (X, Y) in this particular case is the semi-
group of all closed selfmaps of X whose restriction to Y is a closed selfmap of Y. We shall
denote this particular semigroup by F*(Ar, Y). If X = Y, we have the semigroup of all closed
selfmaps of Y. We shall denote this semigroup by F(7) in keeping with our notation in previous
papers. The symbol F(Ar, Y) has been used in [6] to denote a semigroup which, although
related to F*(Ar, Y), may well differ from it. We shall later pursue this further.

It is immediate that, when the J?-families under consideration are the closed subsets of
topological spaces, the 5R-bijections are simply homeomorphisms. Theorem (3.8) then trans-
lates into

THEOREM (4.1). F * ^ , Y) is isomorphic to F(Z) if and only if'Z is homeomorphic to Y and
Y = X.

It follows from Theorem (3.7) that, for a space Z with more than one point, F(Z) is a
homomorphic image of T*(X, Y) if and only if Z is homeomorphic to Y and Y conforms to X.
In this case, to say that Yconforms to A'means that every closed selfmap of Yean be extended
to a closed selfmap of X. The problem now, of course, is to determine precisely when a
subspace Y conforms to Xin this manner. The next result determines this completely for first
countable Hausdorff spaces; so for such spaces we get a satisfactory solution to the problem
of determining when F(Z) is a homomorphic image of T*(X, Y). We recall that a space is
said to be first countable if each point has a countable basis.

THEOREM (4.2). Let X be a first countable Hausdorff space and let Y be any subspace of X.
Then each closed selfmap of Y can be extended to a closed selfmap ofX if and only if Y satisfies
at least one of the two following conditions:

(4.2.1) Y is a closed subset of X,

(4.2.2) Y is discrete and Yu{t} is compact for some teX.

This latter result, together with Theorem (3.7), yields at once the following

THEOREM (4.3). Let Y be a subspace of a first countable Hausdorff space X and let Z be a
topological space with more than one point. Then F(Z) is a homomorphic image of T*(X, Y)
if and only ifZ is homeomorphic to Yand Y satisfies at least one of the two following conditions:

(4.3.1) Yisa closed subset of X,

(4.3.2) Y is discrete and Yv{t} is compact for some teX.
El
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Proof of Theorem (4.2). We first prove necessity. We show that the assumption that Y
is not closed leads to the conclusion that Y is discrete and that Yu{t} is compact for some
teX.

Let us assume that Y is not discrete. Then, since Y is first countable, there exists a
sequence {yn}%L i of distinct points of Y converging to some point q e Y. Since Y is not closed,
there exists a sequence of distinct points {*„}"=, of Y converging to some point tec\xY— Y
(clx Y denotes the closure of Y in X). Define a function / mapping Y into Y by

and
/(y) = *i for yeY-{ya}?ml.

Let A = {q}u{yn}"=1 and B = {*„}"=,. Since every subset of B is closed in Y, the function/
mapping Y into Y is a closed function. Let k be any extension of/ which maps Z into X.
Now ^ is a closed subset of X since S is Hausdorff, but k[A] = h[A] = B is not closed in A"
since ? e c l x 5 - 5 , i .e.,/has no extension to a closed function which maps X into X. This
contradicts the fact that every closed selfmap of Y can be extended to a closed selfmap of X;
so we must conclude that Y is discrete. We make the observation that, because Y is discrete,
every function which maps Y into Y is a closed function.

Now suppose that, in addition to /, clx Y— Y contains at least one other point r. Then
there exists a sequence {yn}™= i of distinct points of Y converging to r. Define a function /
mapping / in to Yby

f(x2n-l) — X2n-1>

/(*2n) = yin

and

Xi for yeY-ix.fet.
The function / is closed since, as we noted previously, any function mapping Y into Y is a
closed function. Let A = {f}u{*n}™=i anc* let ^ ^e a n v extension of/which maps X into X.
Then A is a closed subset of X, but &[/!] is not a closed subset of X since both t and r belong
to cl̂ A:[/4] but at most one of the points can belong to k[A]. Specifically, r$k[A] if k(t) = /,
t$k[A] if A:(?) = r and neither of the points belong to k[A] if t / &(/) # r. Thus, /cannot be
extended to a closed function mapping X into X. Again we have a contradiction and we
conclude that c\xY-Y= {t}.

Now let H be any subset of Y which is closed in X. Assume that H is infinite. Then H
contains a countable subset {yn}™= i of distinct points which must necessarily be discrete and
closed in X. Again let {xn}™=1 be an infinite sequence of distinct points of Y which converges
to t. Define a function /mapping Yinto Yby

xB for each n,

Xl for y e y - W " , .

Again, / is a closed function since Y is discrete. Let k be any extension of/ which maps A'
into X. Although H is a closed subset of X, /c[H] = / [ H ] = {*„}"= 1 is not a closed subset of
X. This is another contradiction. Consequently, any subset of Y which is closed in X is finite.
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Now we are in a position to show that Yu{t} is compact. Let J5" be any family of closed
subsets of Y\j{t} which has the finite intersection property. If tef)!F, we have the desired
conclusion. The remaining case is where t$F0 for some Foe &F. Since Yu{t} is closed in X,
Fo is closed in X and, by a previous observation, must be finite. Let Fo = {ylt y2,... ,yN}.
If, for each j j 6 F 0 , there exists a set F,e J*" such that yt$Ft, we obtain the contradiction
that fK^ih^o = 0- Consequently y,£{\!F for some j>,e.F0, which proves that Y\j{t) is
compact.

Now we prove sufficiency. Suppose that Y is a closed subset of X and / is a closed
function mapping Y into Y. Choose any point qeY and define a function k mapping X
into X by

k(x)=f(x) for xeY,

k{x) = q for xeX-Y.

Then, for any closed subset H of X,

k[H] = k[[HnY]u[H- Y]]=f[HnY\vk[H- Y}.

Now Hr\ Y is a closed subset of F and therefore f[Hn Y] is a closed subset of y. The set
k[H— Y] is either empty or consists of the point q. In either event, k[H] is a closed subset of
Y. Since y is closed in X, k[H] is also closed in X. Thus any closed selfmap of a closed subset
Y of X can be extended to a closed selfmap of X.

Now suppose that Y is discrete and Yv{t} is compact for some teX. We may assume
that t$ Y, since otherwise the conclusion follows from the previous case. Let/be any function
which maps Y into Y. Extend/to a function k which maps Yv{t} into YKJ {t} by defining

k(y)=f(y) for yeY
and

*(«) = t.

Let / / be any closed subset of Yu{t). If H is finite, it is evident that k[H] is closed. If H is
infinite, teH and it follows that tek[H]. Therefore k[H] is closed since t is the only limit
point of Y<j{t}. This shows that k is a closed selfmap of Yu{t} and the conclusion now
follows from the last statement of the preceding paragraph.

5. Some further results and concluding remarks. In [5] we proved some results about the
semigroup T(X, Y), which is the semigroup, under composition, of all closed selfmaps of X
which also map Y into Y. The semigroup T*(Ar, Y) is a subsemigroup of F(X, Y) and may
well be a proper subsemigroup since a closed selfmap of X can map Y into Y without its
restriction to Y being a closed selfmap of Y. The following result tells us precisely when this
happens for first countable Hausdorff spaces.

THEOREM (5.1). Let X be a first countable Hausdorff space. Then T*{X, Y) = Y(X, Y) if
and only if Y is either discrete or closed.

Proof. One easily verifies that, if Y is either discrete or a closed subset of X, then
T*{X, Y) = T(X, Y). Let I b e a first countable Hausdorff space. If r*(X, Y) = T(X, Y),
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then Y must be either discrete or closed; for suppose that Y is neither. Then there exists a
sequence {xn}"=1 =A of distinct points of Y which converges to a point peX—Y and a
sequence {yn}™= i of distinct points of Y which converges to a point qe Y. Choose any
point re Y distinct from q and define a function/mapping X into Y by

f(p) = 9,

/(*,.) = ;>,, for each «,

r for

In order to see that/e FXA', K), let / / be any closed subset of X. If Hr\A is finite, then/[W]
is finite and, consequently, is closed. If HnA isinflnite,t hen p e H and f[H] = {q}\jB, where
B<={r}\j {yn}? = i • In this case also, f[H] is closed. Thus fe T(X, Y). However, the re-
striction o f / t o Y is not a closed function from Y into 7, because A is a closed subset of Y
but/[,4] is not. This completes the proof.

It follows from this latter result and Theorem (4.3) that, if A'is a first countable Hausdorff
space and T*(X, Y) is a proper subsemigroup of T{X, Y), then the only homomorphic image
of r*(A", Y) of the form T(Z) is the one-element semigroup, that is, the case where Z consists
of one point.

The main result of [6] is that, if Y contains more than one point and <p is any bijection
from T{X, Y) onto !"(£/, V), then (p is an isomorphism if and only if there exists a homeo-
morphism from Xonto U which also carries Y onto V, such that cp(f) = hofoh'' for each/
in F(X, Y). The techniques used in proving that result will not carry over to semigroups of
the form St(Z, Y), where A îs any 9?-space and Y is a dependant of A'. The reason for this is
that in [6] we repeatedly used the fact that certain nonconstant functions with finite ranges
belonged to the semigroups under consideration. This certainly need not be the case for
arbitrary St(JT, Y). However, the arguments of [6] will carry over in their entirety to semi-
groups of the form Stf̂ f, Y) when (X, $FX) is a principal 5R-space and &y consists of all
intersections of Y with members of 3Fx. We state this result formally, without proof:

THEOREM (5.2). Let (X, &x) and (U, ^y) be principal ̂ -spaces and, for Y c X and
VcU, let Jfy = {Yr\H:He^x} and Fv = {Vr\H:Hs^v} be the ^-families associated
with Y and V respectively. Assume further that Y and V have more than one point. Then a
bijection q> from St(Z, Y) onto St(f/, V) is an isomorphism if and only if there exists an
yi-bijection hfrom X onto U whose restriction to Y is an 'HH-bijection from Y onto V, such that
(p(f) = hojo^1 for each fin St(Z, Y).

The following corollary is a special case of Theorem (5.2).

COROLLARY (5.3). Let Y and V be subspaces (with more than one point) of the topological
spaces X and U respectively. Then a bijection cpfrom T*(X, Y) onto T*(U, V) is an isomorphism
if and only if there exists a homeomorphism hfrom X onto U which carries Y onto V, such that
(p(f) = hofoh~lfor each fin T\X, Y).

We conclude by mentioning that it would be interesting to characterize those dependants
(Y, <FJ-)of(A', ̂ x) which conform to (X, !FX) for classes of 5R-spaces in addition to the 9?-spaces
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of closed subsets of first countable Hausdorff spaces. In particular, it would be interesting
to know precisely when (Y, $y) conforms to (X, $x), that is, for what subsets Y of X can all
connected selfmaps of Y with connected range be extended to a connected selfmap of X
with connected range (a connected function is one which takes connected sets into connected
sets). The answer would result in the counterpart for semigroups of connected functions of
Theorem (4.3).
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