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Solvent exchange is a process involving mixing between a good solvent with dissolved
solute and a poor solvent. The process creates local oversaturation which causes the
nucleation of minute solute droplets. Such ternary systems on a macro-scale have remained
unexplored in the turbulent regime. We experimentally study the solvent exchange process
by injecting mixtures of ethanol and trans-anethole into water, forming a turbulent
buoyant jet in the upward direction. Locally, turbulent mixing causes oversaturation of the
trans-anethole following turbulent entrainment. We optically measure the concentration
of the nucleated droplets using a light attenuation technique and find that the radial
concentration profile has a sub-Gaussian kurtosis. In contrast to the entrainment-based
models, the spatial evolution of the oversaturation reveals continuous droplet nucleation
downstream and radially across the jet, which we attribute to the limited mixing capacity
of the jet. Although we are far from a full quantitative understanding, this work extends
the knowledge on solvent exchange into the turbulent regime, and brings in a novel type
of flow, broadening the scope of multicomponent, multiphase turbulent jets with phase
transition.

Key words: multiphase flow, buoyant jets, microscale transport

1. Introduction

Solvent exchange can be employed to extract specific components from mixtures. The
process finds various industrial applications, such as liquid–liquid extraction (Lohse 2016),
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drug delivery (Lepeltier, Bourgaux & Couvreur 2014), resource recycling (Zimmermann
et al. 2014) and oil recovery (Sun et al. 2017). Such solvent exchange processes consist of
a ternary liquid system, where mixing between a good solvent and a poor one takes place,
leading to oversaturation of the solute originally dissolved in the good solvent. This in turn
triggers nucleation of the solute droplets. Such droplet nucleation is called spontaneous
emulsification, or is known by its popular name ‘ouzo effect’. In this process, metastable
droplets are formed in the liquid, creating a milky appearance due to Mie scattering, as
for the case of watered-down ouzo beverage. In recent decades, numerous efforts have
been made to understand such a complex multicomponent and multiphase flow; see the
review by Lohse & Zhang (2020). Vitale & Katz (2003) and Sitnikova et al. (2005) were
among the earliest studies of the ouzo effect, using divinylbenzene and trans-anethole as
the solute, respectively. They both located the position of the metastable region in the
ternary phase diagram, and experimentally revealed the diffusive growth process of the
droplets and their size distribution.

To quantitatively study the diffusion dynamics of the multicomponent droplets, Su &
Needham (2013) extended the classic work of Epstein & Plesset (1950) on the dissolution
and growth of a gas bubble in surrounding liquid to the case of a droplet. Chu &
Prosperetti (2016) further analytically investigated the droplet growth and dissolution
of multicomponent droplets, broadening the theoretical framework of droplet diffusion
dynamics, making it more applicable to real-world applications, such as liquid–liquid
extraction. Corresponding molecular dynamics simulation was done by Maheshwari et al.
(2017). Tan et al. (2019) studied the micro-droplet nucleation of the water–ethanol drop
in host anise oil. They combined the multicomponent diffusion model, thermodynamic
equilibrium and a scaling analysis of Marangoni and buoyancy forces. With this, they
could successfully predict the spontaneous emulsification by the convection-enhanced
diffusion process.

While the aforementioned cases are homogeneous nucleation in the bulk, the ouzo effect
has also been widely investigated on the surface of microfluidic channels, so-called surface
droplet formation via heterogeneous nucleation. Hajian & Hardt (2015) studied the droplet
nucleation and its radial migration in a micro-channel, measuring the concentration field
formed by the solvent exchange and the following diffusive mass transfer. For controlled
solvent exchange in microfluidic set-ups, Zhang et al. (2015) found that the volume of
the nucleated droplets scales as Pe3/4, with Péclet number Pe = Q/wD, where Q is the
volume flow rate, w the channel width and D the diffusion coefficient. Following this
finding, the universality of the phenomenon has been demonstrated, including the effect
of the solution composition (Lu et al. 2015; Lu, Peng & Zhang 2016), confining of the flow
geometry (Lu et al. 2017; Zeng et al. 2019) and formation (Li et al. 2018) and growth (Dyett
et al. 2018) of the surface nanodroplets. For related work, Li et al. (2021) implemented a
Hele-Shaw-like thin cell with a porous section to better collect the nucleated droplets. For
this geometry, they formulated a theoretical model based on the ternary diagram and the
diffusion equation, and found and explained the scaling of the volume of the nucleated
droplets in the oversaturation front to be proportional to Pe1/2.

While solvent exchange is thus reasonably and in part even quantitatively understood,
the scope of quantitative studies has up to now been limited to small scales and the laminar
flow regime. For industrial-scale applications such as liquid–liquid extraction, however,
processes on larger scales are generally less controlled than those in microfluidic devices
due to turbulence. It is therefore highly desirable to unveil the diffusion dynamics of the
ternary liquid system in turbulent environments, where intense mixing and nucleation
appear. The turbulent jet is one of the most fundamental and well-studied forms of
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turbulent shear flow (see e.g. Pope 2000), which makes it an ideal candidate to bridge
the fields of solvent exchange and turbulence.

Built upon the classic single phase studies for turbulent jets and plumes (Morton,
Taylor & Turner 1956; Fischer et al. 1979; List 1982; Turner 1986; Pope 2000), the
case of multiphase flow has drawn extensive interest due to its common occurrence
in environmental fluid mechanics (Woods 2010) and industrial applications such as
combustion (Raman & Fox 2016) and aerosol formation (Lesniewski & Friedlander
1998; Neuber et al. 2017). The Deepwater Horizon Oil Spill further triggered a series
of investigations into such types of multiphase flow (McNutt et al. 2012; Reddy et al.
2012; Ryerson et al. 2012). With turbulent entrainment, bubbles or droplets can grow and
dissolve in a jet, inducing significant buoyancy variation in the flow. Chu & Prosperetti
(2019) analytically identified key parameters for the multiphase plume dynamics, including
the droplet dissolution rate, the density change rate due to dissolution, the droplet velocity
and the plume velocity.

In addition to the dissolution, considerations of chemical reaction have advanced the
line of research further to tackle real-world complex problems. There are two major
perspectives of research on reactive jets and plumes. On the one hand, the ambient fluid
reacts with the dispersed phase in the jet or plume. This category serves as an extension
of the works on bubbles or droplets dissolution, focusing on the buoyancy variation
accompanying the reactions, see Cardoso & McHugh (2010) and Domingos & Cardoso
(2013). These authors also discussed the competition between stratification and reaction
as the dominant source of buoyancy variation.

On the other hand, the ambient fluid reacts with the carrier phase of the jet, or
simply with the single phase injected fluid. Studies on such a type of flow shed new
light on the interplay among entrainment, mixing and reactions as the flow develops,
enabling the disentanglement of these effects by comparing the corresponding length
and time scales. Ülpre, Eames & Greig (2013) injected a single phase acidic jet into an
alkaline environment, reporting a model combining chemistry and the fluid dynamics
of turbulent plumes to predict the neutralization distance. Domingos & Cardoso (2015)
studied single phase reacting thermals, distinguishing fast and slow reactions. Their
experimental findings show that the reactions only occurred preferentially in part of
the thermals for the instantaneous case, while for the slow reactions the thermals were
homogeneous in composition. Mingotti & Cardoso (2019) experimentally compared the
slow and instantaneous reactions in turbulent plumes, discovering preferential reaction
for the instantaneous case as well, which appeared on the edge of the eddies. They
formulated a theoretical prediction for the concentration evolution in reacting plumes
using scale analysis of entrainment, mixing and reactions. Solvent exchange in our case
is fundamentally different from a chemical reaction in terms of driving mechanism.
The product of solvent exchange, namely the nucleated droplets, is driven by the
degree of oversaturation, while the products of chemical reactions result from chemical
kinetics. Also, considering chemical reaction and mixing, Guilbert & Villermaux (2021)
experimentally studied the effect of reaction on the concentration distribution of the
product in a randomly stirred mixture, distinguishing between diffusion-controlled and
reaction-controlled regimes (Guilbert, Almarcha & Villermaux 2021), and showing a
compressed distribution profile for reactive mixtures (Guilbert & Villermaux 2021). In
spite of such a difference, the cases of instantaneous reactions in the aforementioned
studies are highly insightful for our attempt to understand the solvent exchange process
in a turbulent buoyant jet, not only because the time scales to generate the product are both
extremely small, but also because the turbulent entrainment and mixing might play key
roles in both processes.
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The present experimental study aims to investigate the solvent exchange process in
a multiphase turbulent buoyant jet in the upward direction, bridging the gap between
the ouzo effect and turbulent shear flow. We will employ trans-anethole and refer to
it as oil throughout the paper as it is the oil phase in the ternary liquids system. We
will use a vertical ethanol-oil jet being injected in a quiescent water bath, creating an
’ouzo’ mixture close to the needle. We utilize a novel method to construct the averaged
oversaturation (concentration) field for the ouzo solution using titration, a light attenuation
technique and minimization using an axisymmetric discretization. We compare the ouzo
case with the nucleation-free case of injecting only dyed ethanol, revealing the distinct
features of the ouzo case in the radial concentration profile, the centreline evolution and
the oversaturation flow rate. Adapting the mixing-limited arguments for the prolonged
depletion of the reacting plume of Mingotti & Cardoso (2019), the extended lifetime of
the droplet-laden respiratory puff of Chong et al. (2021) and of the evaporating spray
of de Rivas & Villermaux (2016) and Villermaux et al. (2017), we provide a qualitative
explanation for the continuous nucleation downstream and the widespread location of the
micro-droplet nucleation across the jet.

The paper is structured as follow: in § 2 we detail the experimental set-up and
the methods to measure the velocity field and the concentration field, and to resolve
the nucleated droplets. The concentration fields can be reconstructed by combining
the information from two cameras, as presented in § 3. The results extracted from the
concentration fields are presented in § 4, with supporting discussion and qualitative
analysis in § 5. Conclusions and future prospects are presented in § 6.

2. Experimental method

2.1. Set-up
We have conducted several experiments to study the solvent exchange process in a
turbulent buoyant jet (ouzo jet). The jet experiments were operated in a glass tank with
dimensions 25 cm × 25 cm × 50 cm (W × L × H) as in figure 1. The tank was filled
with decalcified water before each run of experiments. The injected fluid consisted of
mixtures of ethanol (Boom, 100 %) and trans-anethole (Sigma Aldrich, ≥99 %) with
varying weight ratios, and the fluid was injected by a Harvard 2000 syringe pump at
selected flow rates, forming an upwards turbulent buoyant jet through a round needle
with inner diameter 0.51 mm, outer diameter 0.82 mm and length 12.7 mm. Reference
cases were also conducted by injection of dyed ethanol, offering comparison between the
common passive scalar jet and the ouzo jet. The water and the injected liquid were kept
at room temperature (20 ◦C ± 1 K) for all the experiments to minimize the effect of the
temperature dependence of the solubility in the ternary liquids system. The experimental
conditions are listed in table 1.

To measure the local concentration we use a light attenuation technique. For this we
use an LED back lighting with diffuser and recorded using two Photron FASTCAM Mini
AX200 high speed cameras with 1024 × 1024 pixels resolution at 50 f.p.s., one from afar
with a Sigma 50 mm objective to capture the entire jet evolution, and the other with a Zeiss
100 mm objective placed closer to the tank and zoomed in to the region right above the
injection needle. The injection and the recording lasted for 40–50 s, providing 2000–2500
frames for each experiment. To obtain the velocity field of the turbulent buoyant jets,
we relied on particle image velocimetry (PIV) with laser activation and using different
cameras, which will be detailed in § 2.5.
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Figure 1. Experimental set-up. The inset shows the photo of the needle for injection with inner diameter (ID),
outer diameter (OD) and length (L). Note that the laser was only activated for PIV.

No. we/wo Cdye (p.p.m.) Q (m3 s−1) ×10−7 Lm (m) ×10−2 u0 (m s−1) Re0

1 100 — 3.33 2.48 1.63 555
2 100 — 8.33 6.19 4.08 1387
3 33 — 3.33 2.48 1.63 555
4 33 — 8.33 6.19 4.08 1387
5 — 4000 3.33 2.48 1.63 555
6 — 4000 8.33 6.19 4.08 1387

Table 1. Experimental conditions. Each experiment was repeated three times to confirm the repeatability of the
data. Experiments 1–4 correspond to the ouzo jets with empty Cdye column, and experiments 5–6 correspond
to the dyed ethanol jets with empty we/wo column: we/wo denotes the weight ratio between ethanol and the oil
in the injected fluid; Q is the volume flow rate regulated by the syringe pump, leading to different characteristic
lengths Lm, initial velocities u0 and initial Reynolds numbers Re0 = Qd/(πd2ν/4), where d = 0.51 mm is the
inner diameter of the needle. Here, Lm = M3/4/B1/2, where M = Q2/(πd2/4) is the initial momentum flux,
and B = Qg(ρjet − ρamb)/ρamb is the initial buoyancy flux. The value of B = 1.635 × 10−7 m4 s−3 is constant
throughout our experiments as the density of the oil is negligible, i.e. we consider the jet density ρjet to be
solely determined by the ethanol. The viscosity of the oil was also neglected, leading to a constant viscosity
ν = νe = 1.5 × 10−6 m2 s−1, which is used to calculate Re0.

2.2. Titration and oversaturation
To study the nucleation and the solvent exchange process quantitatively, knowledge of
oversaturation of the nucleated component is required (Li et al. 2018, 2021). This means
that the first step is to obtain the binodal curve, namely the saturation curve by titration.
Normally, the titration results of such a ternary system are determined visually by checking
the change of appearance. However, this is extremely difficult since we operated in the
regime with extremely small amounts of oil. We therefore opted for cameras for accurate
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Figure 2. (a) Camera-assisted titration to determine the saturation point for a specific we/wo. The black data
points are obtained by averaging the light intensity of the entire domain, and the error bar denotes the standard
deviation of the light intensity within the domain. The star marks the water concentration (Cwater) causing 1 %
drop of the light intensity. (b) A simplified ternary diagram to illustrate the titration process and the constructed
binodal curve. (c) Shows the binodal curve and the theoretical diffusion path for the case we/wo = 33. (d) The
relation between the water concentration and oil oversaturation can then be built from (c) for the following
calibration in § 2.3.

determination of the point of saturation. The camera-assisted titration was conducted by
stepwise adding water into the oil-ethanol solution, followed by one minute of thorough
mixing and then an idle time of around 15 minutes to ensure the temperature stabilized to
20 ◦C ± 1 K and the light intensity variation was less than 1 % . Note that ethanol-water
mixing is an exothermic process, which, due to the local heating, affects the solubility
and thus the oversaturation and the light intensity. We took 100 frames to obtain the
averaged light intensity of the mixture. The water-addition process lasted until the solution
turned opaque enough, after which we obtained the intensity-to-concentration graph; see
the black points in figure 2(a). Based on the data points we performed a second-order
polynomial curve fit to obtain the titration curve, from which we define the 1 % drop of
the light intensity as the point of saturation, as marked by the red star in figure 2(a). We
repeated such a titration procedure for 25 different initial compositions of the ethanol-oil
mixture, with weight ratios we : wo ranging from 10 : 1 to 300 : 1, forming the binodal
curve as shown in figure 2(b).

Together with the diffusion path, the acquired binodal curve as in figure 2(b) was
then used to quantify the amount of oversaturation, see figure 2(c). Ruschak & Miller
(1972) first formulated the diffusion path theory, which was later applied to the study of
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nanodroplet formation on surfaces (Lu et al. 2017; Li et al. 2021). The diffusion path
can be understood as the trajectory of the local fraction of all three phases during the
mixing process. As rigorously evaluated in Li et al. (2021), we assume the diffusion
coefficients of water and oil to be the same, meaning that the diffusion path becomes
a straight line in the ternary diagram; shown by the dashed arrows in figure 2(b). For
ease of interpretation, figure 2(c) can be obtained by coordinate transformation from the
water-rich side of figure 2(b) to a Cartesian coordinate system, mapping the binodal curve
and the diffusion path. With the straight-line assumption, the diffusion path depends solely
on the initial ethanol-oil ratio. While there is only one binodal curve for all the different
compositions, the diffusion path varies with the composition we/wo. For a specific water
fraction, its saturation concentration is first identified on the binodal curve in figure 2(c).
Then, we connect the saturation point on the binodal curve to the endpoint of the pure
oil phase (Li et al. 2021), at coordinate (0, 1), shown as the light green dashed line in
figure 2(c). The connection between the saturation point and the pure oil phase stems from
the consideration that the ethanol-to-water ratio in the mixture remains unchanged in a
fluid parcel during oil nucleation (Lu et al. 2016). From the light green dashed line we can
extract the length of the segment between the diffusion path and the binodal curve as the
oversaturation, displayed as the green solid segment in figure 2(c).

The oil oversaturation is related to the water concentration as in figure 2(d).
Figure 2(d) not only displays the significant dependence of the oversaturation on the
initial composition, we/wo, but also reveals the existence of an upper bound for the
oversaturation. The existence of the upper bound might seem counter-intuitive in the first
place, as one might expect a monotonic increase with more water introduction. This is,
however, not the case in such a ternary liquid system. Further mixing with water beyond
the critical fraction makes the nucleated oil re-dissolve into the solution, lowering the
oversaturation. While figure 2(c) already reveals that the segment length seems to decrease
at larger water fraction, figure 2(d) clearly displays this fact, which is also later confirmed
by the recorded intensity in the concentration calibration, as shown in figure 3. The water
concentration Cwater is the selected value used in the concentration calibration, which will
be described below.

2.3. Light attenuation technique and calibration
To characterize the concentration of the nucleated oil in the flow, we implemented a light
attenuation technique. Unlike passive scalar studies, the droplet nucleation makes the
flow almost opaque, rendering the commonly used laser induced fluorescence (LIF) not
feasible. We therefore use a light attenuation technique to measure the local concentration.
This technique has been widely adapted in turbulent jet and plume studies based on the
pioneering work of Cenedese & Dalziel (1998), from single phase cases with dye as in
Kikkert, Davidson & Nokes (2007), Allgayer & Hunt (2012), Van Sommeren, Caulfield
& Woods (2012) and Mingotti & Cardoso (2019), to multiphase ones as in Leppinen &
Dalziel (2001) and Mingotti & Woods (2015). The method is based on the Lambert–Beer
law, relating the recorded depth-integrated intensity to the concentration field, namely

log
(

I
Iref

)
= −2γ Cd, (2.1)

where I is the recorded intensity of the averaged images, Iref the reference intensity
of the background, γ the light absorption property of the dye determined from
calibration, d the depth of the substance in the line of sight and C the desired
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Figure 3. (a) Calibration cell. The red frame (x = 0 cm, z = 10 cm) denotes the selected 5 × 5 pixel working
unit whose calibration curves are shown in (b–e). (b) Calibration curve for the reference dye case. Here, Φ

denotes the degree of light attenuation per unit depth, log(Iref /I)/d, where d is the cell thickness. (c,d) The
calibration curve for the two ouzo cases. The abscissa Coil,sat is the oversaturation of the oil. For (b–d) the
black error bar represents the standard error of the mean Φ, which is small throughout the calibration. (e) The
rescaled calibration curves as in (c,d).

line-of-sight average concentration. The line-of-sight averaged concentration used in the
aforementioned papers, however, is not a solution for the nonlinear response we see here. In
a pioneering work, Sutherland, Lee & Ansong (2012) analysed the averaged image based
on the axisymmetric discretization, converting the depth-integrated recorded image to the
concentration field as a function of radius and height, which serves as a very good strategy
for our interests to obtain the oversaturation field as a function of radius and height in the
domain.

We performed our calibration in a 10 mm thick cell, as shown in figure 3(a). The
calibration cell is immersed in the tank, which is filled with water, and the illumination
and the camera magnification are exactly the same as in the jet experiments, ensuring an in
situ calibration. In spite of efforts to regulate the fluid temperature during the calibration
and before the real experiments, the exothermic nature of the mixing between water and
ethanol in the jet will raise the local temperature. Although the local temperature variation
might alter the oversaturation, leading to less accurate calibration, such a deviation is
simply beyond control or even monitoring during the experiments. With more than 35 l
of water in the ambient and less than 60 ml injected fluid, it is safe to assume that the
large volume of water at 20 ◦C ± 1 K is sufficient to mitigate the temperature increase
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quickly, and wait for future numerical efforts to validate our assumption. As the reference
case, the calibration curve for the dyed ethanol is shown in figure 3(b), which was used to
calculate the concentration field for the dyed ethanol jet. Red food dye (JO-LA) was added
step-by-step followed by taking 200 frames to obtain the averaged light intensity for every
5 × 5 pixel working window. Although the linear relation indeed holds within a certain
range of dye concentration, we fit a second-order polynomial to increase its applicability.
The nonlinear calibration curve does not appear for the first time. Van Sommeren et al.
(2012) also observed a nonlinear response in their experiment, which they fitted with
polynomials, confirming that in situ calibration also functions well with nonlinear optical
response.

On the other hand, for the ouzo cases, the cell was first filled with a mixture of ethanol
and oil at the specific we/wo ratio, and water was then added gradually. Averaging the
intensity over 200 frames for every 5 × 5 pixel working window, the calibration curves
as in figure 3(c) and figure 3(d) were built for every working window locally in the entire
domain, which, however, reveals a completely different calibration curve from the dye
case. The x-axes in these two figures, namely the oil oversaturation, were derived from
figure 2(d). The upper bounds for the ouzo calibration curve in figure 3(c) and figure 3(d)
are imposed by the theoretical maximum oversaturation shown in figure 2(d), namely
0.0023 for we/wo = 100, and 0.0087 for we/wo = 33. Such theoretical upper bounds are
only valid if the diffusion path does not deviate too much from the straight-line assumption
as in figure 2(c). In the calibration, we did observe that the light attenuation level and the
oversaturation decreased as more water was added; see the cluster of data points close to
the peak in figure 3(c,d).

For the case of ouzo, the combination of a logistic function and a linear function fits our
calibration data well, written as

Φ(C) =
log

(
Iref

I

)
d

= a0

1 + a1ea2(C−a3)
+ a4(C − a5)

1 + a1ea2(C−a3)
, (2.2)

where a0, a1, a2, a3, a4 and a5 are the fitting parameters, and C is the oil oversaturation,
equivalent to the Coil,sat in figure 3(c). Note that other fits are possible, but for our purpose
we simply need a good approximation of the experimental curve Φ(C). To compare the
calibration curve for the two we/wo ratios, the oversaturation and the attenuation were
both rescaled, showing a reasonable collapse, see figure 3(e). The abscissa C̃oil,sat in
figure 3(e) is the rescaled oversaturation, which is obtained from C̃oil,sat = (Coil,sat −
Cthresh)/(Cmax − Cthresh), where Cthresh is the oversaturation where the attenuation reaches
0.1 % of the highest attenuation, as indicated by the black star in (c,d), and Cmax is the
theoretical upper bound discussed earlier. The rescaled oversaturation also eliminates the
flat section of the logistic function for low oversaturation, creating a one-to-one injective
map for the calibration. Note that the reason behind such nonlinear optical response is
beyond the scope of this research and remains unclear. Figure 4(a) shows a snapshot of
the turbulent jet with oil droplet nucleation, while figure 4(b) shows the averaged image
over 2000–2500 frames of the instantaneous image as shown in figure 4(a). The intensity
field of a certain height is only included in the averaging operation after the jet has reached
that height. The averaged image contains the upstream section only with z ≤ 30 cm since
the low density dark layer accumulated on top of the tank grew and interfered with the
ascending jet, causing the intensity field above z = 30 cm to be averaged relatively poorly
(less than 20 s). Figure 4(c) shows a horizontal cross-section of the jet, illustrating the
discretization scheme similar to Sutherland et al. (2012), where dymn can be directly
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Figure 4. (a) The instantaneous image obtained by dividing the recorded frame by the background frame. (b)
The mean image derived by averaging the frames as in (a) over 30 s; Re0 = 1387 in the image. (c) A horizontal
cross-section of the axisymmetric discretization, similar to that in Sutherland et al. (2012). Here, we do not
impose symmetry for the left half (x < 0) and the right half (x > 0) of the jet. The averaged image in (b) can
be converted to a concentration field by the calibration curve in figure 3 for every 5 × 5 pixels, together with
the optimization algorithm constructed based on the scheme in (c).

obtained as a function of dr solely based on geometric relations, where m denotes x
position on the recorded images, and n the axisymmetric elements in the r direction. Note
that m ≤ n always holds, and we calculate the left half (x < 0) and right half (x > 0) of
the jet separately, that is, Cn /= C∗

n . While the concentrations Cn remain as unknowns,
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the recorded intensity Im at a specific location from figure 4(b) can then be expressed as
the integration of the converted intensity calculated from the calibration curve over every
discretization element on the light path. For the reference dye case with the second-order
polynomial calibration curve, the concentration can be obtained by minimization of m
equations with n variables, written as

log
(

Iref

Im

)
=

N−1∑
n=0

dymn

(
a0 + a1Cn + a2C2

n

)
, (2.3)

while for the ouzo cases with calibration curve as (2.2), the equations for minimization are
written as

log
(

Iref

Im

)
=

N−1∑
n=0

dymn

(
a0

1 + a1ea2(Cn−a3)
+ a4(Cn − a5)

1 + a1ea2(Cn−a3)

)
. (2.4)

The calculation procedure is repeated for every height, leading to the oversaturation fields,
as in figure 7. We detail the procedures of the optimization process and the evaluation of
the results in Appendix A.

We add a note of care: the superposition of attenuation level across the layers of
axisymmetric unit illustrated in figure 4(c) might be questionable for a scattering medium.
The summation in (2.4) is fully applicable if the level of attenuation is proportional to the
depth of the medium; however, such an algorithm does not hold when the light propagates
through a scattering medium. Despite the fact that our scattering is relatively low, the
proposed method and the obtained results in this paper should be further evaluated in the
future. We will discuss this issue in more detail in Appendix C.

2.4. Droplet size detection
Nucleated droplets through solvent exchange are generally referred to as micro- or even
nano-sized droplets. However, experimentally measured sizes are based on cases with no
flow (Tan et al. 2019) or laminar flow (Hajian & Hardt 2015; Lu et al. 2015). To measure
the sizes of the nucleated droplets in the case of a turbulent jet, we utilize a Navitar
12 × objective on a Photron FASTCAM Mini AX200 camera, achieving a resolution
of 3 μm pixel−1, see figure 5. Figure 5(a) clearly shows the nucleated droplets in the
plume after the injection stopped, which are similar to the laminar flow scenario in the
aforementioned literature. Comparing figures 5(b) and 5(c), we see that the droplets were
indeed micro-sized (O(10 μm)) for both turbulent cases. The droplets for we/wo = 33 are
larger and thus easier to identify, which is in line with the findings of Vitale & Katz (2003).

2.5. PIV
While the light attenuation technique resolved the mean oversaturation field, we relied on
PIV to measure the velocity field. Ethanol seeded with 20–50 μm fluorescent particles was
injected into the water-filled tank, which was also seeded with the same particles in order
to prevent measuring a velocity that is solely based on entrained or injected liquid. Note
that we used the obtained velocity field of the ethanol jet to represent that of the ouzo jet,
assuming that the micro-sized nucleated oil droplets can be considered as tracer particles
which barely affect the velocity field. The Photron cameras were replaced with LaVision
Imager sCMOS cameras with resolution 2560 × 2160 pixels, capturing the image pairs on
the 1 mm thick laser sheet created by a dual cavity laser (Quantel Evergreen 145 laser,
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Figure 5. Identification of nucleated droplets. For comparison, we show a droplet of 25 μm diameter in all
three cases. (a) The nucleated droplets for we/wo = 100 when the injection just stopped (i.e. uz approached 0).
(a) Serves as a reference laminar case where the droplet nucleation can be easily identified. (b) The nucleated
drops of a jet with we/wo = 100 in the turbulent regime for Re0 = 555. The black thin sheets are the fluid
interfaces due to refraction, while the black dots in the inset are the nucleated droplets with 17× magnification,
which are obviously smaller than 25 μm. (c) The nucleated droplets for Re0 = 555 and we/wo = 33, which are
larger and easier to identify.

532 nm). The velocity fields are calculated using the multi-pass method with a starting
window size 64 × 64 pixels to a final size 16 × 16 pixels with 25 % overlap.

Considering that the velocity decreases drastically as the jet travels downstream, the
experiments were performed with two different time intervals dt between image pairs to
resolve both the far field and the near field, followed by averaging over 1000 frames to
obtain the mean velocity fields. Note that the region below z = 3 cm cannot be resolved
because the jet is thinner than the 1 mm laser thickness.

Obtained from the velocity field, figure 6(a,c) shows the mean centreline evolution of
velocity in the z-direction, um. Theoretical models prediction for a pure jet and a pure
plume are also presented

um,jet = 4.2M1/2z−1,

um,plume = 3.2B1/3z−1/3,

}
(2.5)

where M = Q2/(πd2/4) is the initial momentum flux, and B = Qg(ρjet − ρamb)/ρamb is
the initial buoyancy flux, see the caption in table 1.

The coefficients obtained from our measurements are lower than the values in the fully
turbulent jet and plumes, which are 5–7.5 for the jet and 3.4–3.9 for the plume (Fischer
et al. 1979; List 1982). We attribute such difference to the relatively low Reynolds number
in this study, where the jet regime lies right after the laminar-to-turbulent transition.

Such comparison with the models reveals that the initial ethanol jet quickly transitioned
toward a plume under a strong buoyancy effect. Figure 6(b,d) shows the radial flow profiles
of the streamwise velocity uz, which are later used to calculate the oversaturation flow rate
as in figure 13.

3. Oversaturation field

Following the procedure detailed in § 2.3, the optimization problem was solved to
construct the oversaturation field, figure 7. As shown in figure 3(a–d), the calculated
C̃oil,oversat in most of the domain falls below 1. Such results suggest that the
aforementioned procedures in § 2 work appropriately, including titration, the straight
diffusion path assumption, calibration, and the optimization. As for the region very
close to the needle in the near field, the local oversaturation exceeds the theoretical
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Figure 6. The mean velocity field obtained by PIV measurements at (a,b) Re0 = 555, and (c,d) Re0 = 1387.
(a,c) The centreline velocity in the z-direction, um, from the theoretical model and the valid measurements of
both near and far fields. (b,d) The measured and fitted radial profile of the streamwise velocity uz. Kur in the
legend stands for kurtosis.

upper bound, leading to C̃oil,oversat > 1. While the actual cause of such results remains
uncertain, we believe that the most probable cause is the violation of the straight diffusion
path assumption in that region. Such a violation might have resulted from the intense
mixing and cross-component diffusion upon the onset of turbulence in the initial shear
layer.

As the far view results at the initial shear layer might be biased by the resolution
constraint, the results obtained from zoomed-in recordings are presented in figure 3(e–h),
corresponding to the regions marked by the black frame in figure 3(a–d). Although the
oversaturation might not be quantitatively correct in this region, the zoomed-in view
results further confirm the intense nucleation in the initial shear layer. In their study of
aerosol formation in turbulent gas jets, Lesniewski & Friedlander (1998) also pointed out
that the nucleation of the target substance is largely confined to the initial shear layer,
especially when the vapour mole fraction of the target substance is low. While the system
of the current work is different from that of the aerosol study, the two processes both
couple the variation of thermodynamic states and ambient turbulent shear flow, leading to
the nucleation of droplets or particles.

Considering the opaque nature of the ouzo jet flow, the calculated results cannot be
verified by other concentration detection methods such as LIF. Bearing this limitation in
mind, what we can do is to check the consistency of the results by repeatability tests
and comparing between the far view and the zoomed-in view results obtained from
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Figure 7. Calculated rescaled oversaturation fields for different Re0 and we/wo. Panels (a–d) show the results
derived from the far view camera, while (e–h) exhibit the results obtained from the zoomed-in camera, which
correspond to the black squares in (a–d), respectively, with the same colour scheme below C̃oil,oversat = 1. The
white spots in the contour map are caused by the local minima found during optimization, which have little
effect on the analysis in § 4 as we exclude those defects for curve fitting. Note that the abscissa is converted
from x to r using the axisymmetric transformation in figure 4(c).

two different cameras. While the repeatability will be demonstrated in § 4, figure 16
in Appendix B shows a quantitative comparison between the two recordings using the
centreline evolution and the radial profile. As detailed in Appendix B, for the region with
C̃oil,oversat ≤ 1, the proposed method delivers consistent results between the far view and
zoomed-in view recordings.

Note that the turbulence started to develop after a certain laminar length (Hassanzadeh,
Eslami & Taghavi 2021), which is subtracted to obtain the virtual origin in the z-direction
for the analysis in § 4. The concentration fields for the dyed ethanol injection were also
obtained by the same method, which are not shown here but will be exploited as reference
cases in the analysis in § 4.

4. Results

4.1. Generalized normal distribution
To better capture the radial profile of the oversaturation field in figure 7, we fitted the
results by a generalization of a normal distribution,

C(r) = Cm exp
(

− |r|κ
κσ κ

)
+ C0, (4.1)
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Figure 8. The radial oversaturation profiles for different Re0 and we/wo. The dots are the data points and the
dashed lines are curves fitted with (4.1). The table next to the figure gives the obtained fitting parameters σ/z
and κ for a variety of heights.

where Cm is the centreline oversaturation, where σ is the width of the jet, κ the parameter
to characterize the potential non-Gaussian profile and C0 the background offset of the
oversaturation, which is also very close to zero. When κ = 2 the profile becomes the
standard Gaussian case. Figure 8 showcases the quality of the fitting, where the centre
received less weight than the outer region based on the amount of information contained,
that is, the area of the corresponding discretized annulus region in figure 4(c). Also, we
exclude the data at any specific height with less than 5 data points to optimize the quality of
the fitting. The fitted variables and the fitted profile are then used in the following sections
to analyse the evolution of the centreline oversaturation and the jet profile.

As discussed, C̃oil,oversat > 1 in figure 7 suggests that the data there are less reliable.
We hope to obtain the profile and centreline value based only on reliable data points,
therefore, data points with C̃oil,oversat > 1 are also excluded from curve fitting, but larger
fitted C̃oil,oversat is allowed. Such a fitting strategy somehow affects the centreline value in
the near field, where C̃oil,oversat > 1. We present and discuss the difference in centreline
values between the minimization and the following curve fitting in Appendix B. The
current method cannot work properly in the initial shear layer; we would like to remind the
reader that the results in that region cannot be interpreted by our curve-fitting procedures
nor our minimization procedure, we therefore should keep this in mind when interpreting
the analysis in § 4.
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Figure 9. The radial oversaturation profile of the buoyant jets. The error bars represent the uncertainty of the
curve fitting discussed in § 4.1. Panels (a,b) show the spatial evolution of the jet width (bT (z)) divided by the
vertical distance z by probing the radial position where the concentration reaches 1/e of the fitted peak. For
each parameter set we show the results of two repeated experiments, denoted by subscripts a,b. (c,d) Display
the jet width ratio between the oversaturation (concentration) profile bT and the velocity profile bu.

4.2. Radial profile
In the classic jet and plume studies, the jet width of the concentration field bT(z) is usually
determined by the position where the value drops to 1/e of the centreline value. For
a self-similar flow, bT(z)/z is a constant at around 0.127 for a pure jet, and 0.12 for a
pure plume (Fischer et al. 1979). When the radial flow profile is Gaussian, the jet width
determined from the definition above, bT(z), and σ obtained from (4.1) are the same.
However, from figure 9, we can tell that the radial profile is non-Gaussian for the ouzo
cases, therefore, we implemented the traditional definition of bT(z) to characterize the jet
width and plot the evolution of bT(z)/z in figure 9(a,b). While the reference dye cases
match well with the constant value reported in the literature (Fischer et al. 1979), the
ouzo cases exhibit a continuously decreasing trend after the initial shear layer, starting
with twice the value of the reference case and approaching the reference value as the jet
evolved downstream. The larger jet width suggests a wider spread of the nucleation front,
following the turbulent entrainment and mixing at the meandering turbulent/non-turbulent
interface (TNTI) (Westerweel et al. 2009; Watanabe, Naito & Sakai 2015a). Neuber et al.
(2017) numerically investigated the nucleation and condensation of aerosol in gas turbulent

943 A11-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.422


Nucleation through solvent exchange in a turbulent jet

jets, showing that the largest supersaturation level and nucleation rate are both not located
in the centreline. While we do believe that the nucleation is most intense at the TNTI,
the radial dispersion of the droplets nucleated there and the streamwise dispersion of
the dense droplets nucleated in the initial shear layer contribute to the relatively higher
centreline value in the mean profile. As the oil, originally dissolved in the injected fluid,
nucleates and gradually gets consumed with increasing z, the ratio bT(z)/z also approaches
the reference dye case. Note that the spatial evolution of bT(z)/z is nearly independent of
Re0 and we/wo upstream, while the dependence appears downstream. Higher initial oil
fraction and higher Re0 can both extend the wider profile further downstream.

Figure 9(c,d) shows the jet width ratio between the oversaturation profile and the
velocity profile. The ratio for the reference cases reveals that the concentration spreads
slightly wider than the momentum, namely bT/bu is slightly larger than 1, which is
consistent with the literature value. For the ouzo jets, the jet width ratio is roughly two
times larger upstream, and gradually decreases as the flow evolves downstream.

As the ratio bT(z)/z for the ouzo jet is larger than the dye case, we wonder how the
nucleation changes the distribution of the radial profile. To characterize the radial profile,
we calculate the spatial evolution of the kurtosis from the fitted parameter κ of (4.1),
see figure 10(a,b) for the results. We can interpret the concentration profile in (4.1) as a
probability density function of the concentration p.d.f.(C) for which we find that Cm, σ and
κ are constraint in such a way that

∫ ∞
−∞ p.d.f.(C) dr = 1, as per the definition of the p.d.f.

From that, we can express Cm in terms of κ and σ . The kurtosis can then be calculated
from its definition in terms of the second and fourth central moments

p.d.f.(C) = κ−1/κ

2σΓ

(
1 + 1

κ

) exp
(

− |r|κ
κσ κ

)
, (4.2)

kurtosis =
∫ ∞
−∞ r4p.d.f.(C) dr(∫ ∞
−∞ r2p.d.f.(C) dr

)2 =
Γ

(
1
κ

)
Γ

(
5
κ

)

Γ

(
3
κ

)2 , (4.3)

where Γ (x) ≡ ∫ ∞
0 ηx−1e−η dη is the (complete) gamma function. While the kurtosis for

the dye cases is around 3, as expected for a Gaussian distribution, for the ouzo cases it
starts with a very high value below z = 3 cm, which corresponds to the initial shear layer
in figure 7 with C̃oil,oversat > 1, and thus we remain doubtful about claiming a regime
with super-Gaussian kurtosis. Then, the kurtosis sharply decreases to a value close to 2,
entering a regime with sub-Gaussian kurtosis, and only slightly increases and approaches
3 as the flow develops.

The spatial evolutions of the jet width and of the kurtosis in the far field both reveal
the radially spread nucleation front following the TNTI in the ouzo jets, whose effect
becomes weaker downstream with the consumption of the dissolved oil. Compared
with the reference case, the profile with sub-Gaussian kurtosis suggests a wider radial
distribution, leading to a more uniform concentration distribution in the domain. Such
distribution is in line with the finding of the reactive mixing study reported in Guilbert
& Villermaux (2021), where the reaction makes the gamma probability distribution of the
product narrower, expediting the mixing process toward uniformity.
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Figure 10. Kurtosis calculated from the fitted parameter κ for (a) Re0 = 555 and (b) Re0 = 1387.

4.3. Centreline scaling
The centreline evolution of the concentration has always been the focus of turbulent jet
and plume studies, as the scaling between the dilution and streamwise length is crucial
to the self-similarity of the flow. In figure 11, we present the centreline evolution for the
dyed ethanol jet and the ouzo jet for different Re0. As the dye concentration dropped
monotonically due to dilution, the oversaturation of the ouzo jets experienced several
stages, from increasing sharply right above the needle, tightly followed by a sudden
decrease and finally entering a mild dilution regime. In figure 11(a,b) we normalized the
height z with the characteristic length scale for the jet–plume transition, Lm = M3/4/B1/2,
where M = Q2/(πd2/4) is the initial momentum flux, and B = Qg(ρjet − ρamb)/ρamb is
the initial buoyancy flux; see the caption of table 1. For z/Lm < 1, the flow is characterized
as a momentum-dominated jet, followed by a gradual transition to the buoyancy-dominated
plume as the flow reaches z/Lm = 5. Figure 11(a,b) displays the centreline evolution for
Re0 = 555 and Re0 = 1387. For the ouzo cases, we can clearly identify three different
regimes: (I) a fast nucleation stage where the concentration climbs quickly; (II) a fast
dilution stage, which is only absent for the Re0 = 555, we/wo = 100 case and (III) a mild
dilution stage in the downstream location, where the nucleation is competing with the
dilution. A higher initial oil composition (smaller we/wo) induces more intense nucleation
in the near field, contributing to the sharper variation in stages (I) and (II) for both Re0. In
stage (III), however, the centreline evolution is nearly independent of we/wo.

The value of Re0 determines the momentum–buoyancy competition, and in turn, the
regimes where different stages occur, that is for Re0 = 555 the jet develops into a pure
plume regime quickly (z > 5Lm), while the initial momentum plays a major role for
Re0 = 1387. Despite the difference in the regimes where the three stages are located, the
evolution of the centreline oversaturation only depends weakly on Re0 if the abscissa is
not normalized, see figure 11(c). This figure reveals that the effects of Re0 and we/wo are
only visible in stages (I) and (II), while the data from various conditions nearly collapse
in stage (III), as Re0 determines the momentum–buoyancy competition which affects the
strength of turbulent entrainment, it seems that the centreline oversaturation cannot fully
characterize the turbulent entrainment effect on the nucleation. This is not surprising as we
believe that the nucleation front follows the TNTI, located at the rim of the jet. In § 4.4 we
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Figure 11. Normalized centreline evolution of the rescaled oversaturation for dyed ethanol, ouzo we/wo = 100
and ouzo we/wo = 33. (a,b) Show results for Re0 = 555 and Re0 = 1387, respectively, with normalized height
as abscissa. (c) Contains all the results in one plot with the original height as abscissa. Here, Cmax is the initial
dye concentration for the dye case and the theoretical peak for the ouzo cases. The error bars represent the
uncertainty of the curve fitting discussed in § 4.1.

will show that the effect of the turbulent entrainment on the nucleation is more prominent
in the evolution of the oversaturation flow rate which covers the entire domain.

To retrieve quantitative information from the centreline evolution, it is crucial to know
how the oversaturation scales with the height z. Therefore the curves with different
conditions in figure 11 are separated, while repeated experiments with the same control
parameters are ensemble averaged, leading to figure 12(a–f ). The curves in figure 12(a–f )
are then fitted locally using a moving window to derive the local scaling exponent β as
Cm(z)/Cmax ∝ (z/Lm)β . Figure 12(g,h) shows that the dye cases match the value in the
literature, starting with β = −1 for the pure jet and then gradually approaching the pure
plume value β = −1.66. For the ouzo jets, the multiple stages mentioned above are clearly
visible, with β > 0 in the stage (I) initial production stage, then in stage (II) a sharp drop
to β < −2 in a short range and in the end stage (III) reaching a mild dilution regime
with β slightly below 0. These transitions reveal the competition between the nucleation
and the dilution. Focusing on stage (III), the smaller magnitude of β for ouzo jets clearly
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demonstrates the ongoing and prolonged nucleation even at downstream locations. Such
a finding is similar to the studies in aerosol formation in a turbulent jet by Lesniewski &
Friedlander (1998). They attributed the less steep centreline decay to nucleation beyond
the initial shear layer. We note that the drastic change and the extreme values in stages (I)
and (II) might not be quantitatively accurate, as they are located in the intense nucleation
region shown in figure 7, indicating deviation from the straight diffusion path assumption.

4.4. Oversaturation flow rate
To make use of the oversaturation data in the entire domain (see figure 7), we calculated the
rescaled oversaturation flow rate by multiplying the oversaturation field, the velocity field
from figure 6 and the corresponding area within the discretized annulus region, namely
the rescaled oversaturation flow rate

Q̃oil(z) =
(n−1) dr∑

r=0

C̃oil,sat(r, z)uz(r, z)Aannu(r). (4.4)

Similarly, we can obtain the mass flow rate for the dye reference cases,

Qdye(z) =
(n−1) dr∑

r=0

Cdye(r, z)uz(r, z)Aannu(r). (4.5)

Here, C̃oil,sat is the rescaled oversaturation from figure 7 (dimensionless) for the ouzo cases
and Cdye is the concentration field for dye cases, uz(z) is the streamwise velocity measured
by PIV, as in figure 6, and Aannu(r) the area of the axisymmetric elements, as in figure 4(c).

For the standard scenario without any nucleation or depletion, the mass flow rate
should be conserved in the streamwise (z) direction, Q(z) = const, which is confirmed
in our reference dyed ethanol cases in figure 13(a). The mass flow rates also match well
with the expected values calculated by initial dye concentration (4000 p.p.m.) and the
volume flow rates, which are shown by the grey dashed lines. Figure 13(b), on the other
hand, shows the continuous increase of the oversaturation flow rate before reaching the
peak. This very nicely demonstrates and quantifies the nucleation. The repeatability of
the results across different trials is good, firmly indicating that the nucleation from the
solvent exchange process outperformed the dilution within the domain, as both effects
resulted from turbulent entrainment. Such finding contrasts the behaviour of the centreline
scaling exponent β(z) in figure 12, as β(z) did not become larger than 0 downstream.
The increasing oversaturation flow rate evolution is consistent with the findings in the
previous sections, namely the wider radial oversaturation profile and the reduced dilution
downstream. Also, the significant dependence of Q̃oil(z) on Re0 demonstrates the crucial
role of the entrainment in the solvent exchange process in the jet, which is not evident in the
centreline evolution. We can therefore infer that the oversaturation flow rate characterizes
the mean concentration field better than the centreline evolution for this study.

For z/Lm ≤ 2, that is, before the buoyancy dominates over the momentum, the
experimental data for the two employed compositions we/wo for both Re0 almost collapse,
suggesting a potentially universal evolution for the solvent exchange process in this regime.
Despite the collapse in the jet regime, the we/wo = 100 cases deviate from the we/wo =
33 ones with increasing buoyancy dominance, reaching a peak, and even start to decline
somewhere downstream for Re0 = 555. The peak signals the end of nucleation, and
the later decline of the curve reflects that the dissolution takes over from nucleation.
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Figure 12. Centreline evolution of the oversaturation. Panels (a–f ) present the centreline evolution in all cases
in figure 11. The curve in each plot is then locally fitted with a moving window to deliver the best fit results. The
length of the fitting window is defined as hfit, which starts with hfit = 0.1z/Lm in the fast nucleation regime,
changing to hfit = z/Lm between the peak and z = 5Lm and then ending with hfit = 3z/Lm for z > 5Lm. The
results of the fit are shown in (g,h). Here, β denotes the local scaling exponent of Cm/Cmax ∝ zβ . The ouzo
cases can be segmented into three stages, as detailed in the caption of figure 11. In the dilution stage, the
exponent β (β < 0 there, representing decay) is identical for both we/wo, and is significantly smaller (i.e. less
decay) than the reference dye case. The fluctuations at the end (large z) were probably caused by insufficient
averaged frames downstream, as described in § 2.3.

As discussed in § 2.2 and in figure 2(d), when a sufficient amount of water is entrained and
mixed with the jet fluid, the local water fraction exceeds the critical value corresponding
to the upper bound of oversaturation, leading to the dissolution of the nucleated droplets
back into the ternary liquid system.
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Figure 13. Mass flow rate evolution along the height. The error bars show the propagated uncertainty
originating from the concentration field. (a) Shows the mass flow rate Qdye(z) of reference dye case calculated
using (4.5), which is reasonably conserved within our domain. The grey dashed lines are the expected values
with the initial dye concentration and the volume flow rates. (b) Displays the rescaled oversaturation flow
rate for the ouzo cases with two different we/wo and two different Re0, calculated using (4.4). The height z
is normalized by Lm to show the variation with jet–plume transition. Each legend represents the case with 2
repeating experiments. The results are reproducible while the dependence on Re0 is significant. For z/Lm ≤ 5
we see the curves between the two compositions are very close, while the composition makes a difference
downstream, especially for Re0 = 555.

5. Discussion

With the experimental results above, we aim to build up a theoretical framework to
capture the observed features, or at least to enable a qualitative explanation of the findings.
In the buoyant jet, the turbulent entrainment of water into ethanol-oil mixture is a crucial
mechanism for the solvent exchange process, as the nucleation will be activated once the
entrained water starts to mix with the injected fluid, forming a ternary system consisting
of water, ethanol and trans-anethole. Incorporating the established turbulent entrainment
model, the z-direction evolution of the compositions of the elements in the ternary system
can easily be obtained. The volume flow rate for a jet (i = j) or a plume (i = p) is obtained
by

qi(z) = πum,i(z)(bw,i(z))2, (5.1)
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where bw,i = 0.115z is the jet width for the velocity field from the PIV measurements,
um,j(z) = 4.2M1/2z−1 for the jet and um,p(z) = 3.2B1/3z−1/3 for the plume from (2.5).
This results in the volume flow rates

qj(z) = 0.17M1/2z,

qp(z) = 0.13B1/3z5/3,

}
(5.2)

for the jet and plume, respectively. Here, M and B are the initial momentum flux and
buoyancy flux, respectively. Note that we directly combined the two models in the middle
of the transitional range, z/Lm = 3. This procedure is far from perfect but is sufficient
for a qualitative investigation. With the volume flow rate of the entrained water qi(z),
i = j, p and the volume flow rate of the injected ethanol-oil mixture q0, the oversaturation
Coil,sat(z) can be calculated as

Cw(z) = (qi(z) − q0)/(qi(z) − q0 + ρeq0),

Co(z) = 1 − Cw(z)
1 + we/wo

,

Coil,sat(z) = Co(z) − Co,binodal(z),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.3)

where Cw(z) is the weight fraction of water in the three phase mixture during the process,
Co(z) is the weight fraction of oil in the mixture and Co,binodal(z) denotes the saturation
concentration of the oil from the binodal curve shown in figure 2(c). Figure 14(a) shows
the spatial evolution of the oil oversaturation. Although the sharp variation upstream also
appeared in the experimental results in figure 11, the variation here is more pronounced.
Also, the oversaturation shows a continuous sharp decrease throughout the entire domain,
reflecting that the so-called mild dilution stage in the experimental data is absent in our
simplified model. Multiplying the results in figure 14(a) with the corresponding volume
flow rate, as per the procedure in (4.4), the overall oversaturation flow rate as in figure 13(b)
can be examined from a theoretical perspective, which is shown in figure 14. Unlike the
(nearly) monotonic increase in figure 13(b), the modelled cases here exhibit extremely
intense nucleation right above the needle, and the oversaturation flow rate is nearly
conserved for almost the entire domain, which indicates the absence of either nucleation
or dissolution. The modelled results are similar to findings of Lesniewski & Friedlander
(1998) regarding aerosol formation. They identified that the mass flow rate is conserved
after the initial shear layer if the nucleation is confined in that area, which is obviously
not the case in our study, where we find that nucleation continues to persist throughout the
flow.

As entrainment is the only mechanism we include in the model, the significant deviation
from the experimental results unveils that additional factors must contribute to the
observed phenomenon. Mingotti & Cardoso (2019) considered mixing as the bottleneck
for the fast reactive plume, which led to the prolonged depletion of the injected liquid
before reaching stoichiometric level. Mingotti & Cardoso (2019) pointed out that mixing
was constrained within the Batchelor scale located at the rim of the eddies in the reactive
plume, causing incomplete reaction for those entrained fluids. Despite the simplicity of
our model, which lacks the mixing effect for the solvent exchange process, we argue
that the weak dilution stage in figure 11 and the monotonic increase in figure 13(b) are
direct consequences of the mixing limitation, considering that the time scales for the fast
reaction in Mingotti & Cardoso (2019) and the micro-droplet nucleation in our study are
both extremely short (Tan et al. 2019). We note that mixing-limited phenomenon not only
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Figure 14. Analytical results obtained using the entrainment-only model; (a) is determined by the scale
analysis, while (b) is obtained by multiplying the results of (a) with the volume flow rate, thus sharing the
same plot legend. (a) Can be a reference case to the centreline evolution in figure 11. If the entrained water
mixed fully with the jet fluid, the nucleation would complete not far from the needle, which is not observed in
the experimental findings. Note that the sharp drop in the figure results from the direct bridging of the volume
flow rates for a jet and a plume, as mentioned earlier, see (5.2). On the other hand, (b) can be compared with
figure 13(b), showing the plateau instead of the monotonic increase using the entrainment-only model.

appear in a fast reactive plume, but also in other types of multiphase flow, for example the
evaporation of droplets in dense sprays (de Rivas & Villermaux 2016; Villermaux et al.
2017) and in a respiratory puff (Chong et al. 2021), where the lifetime of the droplets were
controlled by the mixing in the ambient humidity field. In our experiments, the limited
mixing prevented the oil in the injected fluid from completely nucleating in a short range
above the virtual origin, allowing the dissolved oil to be widely distributed by the eddies
before nucleation, leading to the widespread nucleation across the jet, which has been
identified and emphasized throughout our experimental results.

6. Conclusions and outlook

We have experimentally studied the solvent exchange process in a turbulent buoyant jet.
We calculate the oversaturation field from the recorded images using a light attenuation
technique, which consists of titration, calibration, axisymmetric discretization and an
optimization algorithm. These experimental procedures involve background knowledge of
the solvent exchange process and the turbulent buoyant jet. The fundamental assumption
we made is the straight diffusion path, which leads to the evaluation of the oversaturation,
and in turn the nonlinear calibration curve. Except for the region right above the needle,
the constructed oversaturation fields gave values below the theoretical upper bound for
the oversaturation, consistent with the diffusion path assumption. In addition, the very
similar results between the two cameras further support the validity of the assumption, the
implemented methods and hence the calculated oversaturation fields.

Analysing the rescaled oversaturation fields, the ouzo jets exhibited wider jet spreading
bT(z)/z and a radial profile with sub-Gaussian kurtosis, reflecting enhanced nucleation
in the entrainment region. In the streamwise direction, the centreline oversaturation
demonstrated a three stage evolution, consisting of fast nucleation, sharp dilution and
finally mild dilution, with the scaling exponent β of the centreline oversaturation being
almost independent of Re0 and the initial composition of the ethanol-oil mixture, we/wo,
in the final stage. In contrast, integrating the velocity field, the oversaturation flow rates
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in the entire domain show monotonic increase before reaching the peak, again reflecting
widespread nucleation of the oil droplets across the jet in the entrainment region.

In addition to the experimental findings, we have formulated a simplified model, only
considering the turbulent entrainment. It serves as the first step to building the theoretical
framework for the ouzo jet. The differences between the experimental results and the
model suggest the existence of other mechanisms, which we attributed mainly to the
rate-limiting mixing constraint within the Batchelor scale. The entrainment rate exceeded
the mixing rate, leading to the prolonged nucleation downstream and across the jet.

To the authors’ knowledge, this work is the first attempt to experimentally and
theoretically tackle the ouzo jet, a complex fluid mechanics problem combining solvent
exchange and turbulent shear flow. The approach to quantifying the concentration of the
nucleated droplets, namely the oversaturation, seems a promising way for future efforts
in this line of research. However, we are aware of the limitation of the proposed method,
which is a lack of direct measurements for droplet size distributions and for the local
concentration. To the authors’ knowledge, estimation of nucleated droplet size and number
distribution in the early studies is limited to small-scale systems, allowing the use of
microscopic instruments, and thus free from difficulties such as struggling between depth
of field and resolution. With the limitations of large-scale and turbulent flow, we have no
choice but to focus on temporally averaged and depth-integrated images first before diving
into local and fluctuating micro-scale characteristics.

Attempting to see through the opaque flow induced by solvent exchange, we plan to
conduct future research in a laterally confined quasi two-dimensional jet, hoping to reveal
the time-dependent process and the local characteristics missing in the current study. Also,
as TNTI is mentioned several times, we hope to visualize the phenomenon by reducing the
opaqueness of the flow in the quasi two-dimensional jet (Giger, Dracos & Jirka 1991;
Rocco & Woods 2015; Watanabe et al. 2015b). Last but not least, an analytical framework
including the mixing rate would be highly valuable towards a thorough understanding of
the topic.
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Appendix A. Details of the optimization process

In the optimization process, the loss function is set to the square of the difference of
the left-hand side and right-hand side of (2.3) and (2.4). A basinhopping algorithm is
used to search for global minimum. We gradually increase the resolution, namely we
decrease the size of the discretization unit dr as in figure 4(c), and finally obtain the
results with dr = 2 pixels. In this way we get a rough, low-order, low-resolution estimation
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for the oversaturation, which we then refine by decreasing dr, where we upscale the
low-resolution oversaturation profile to a higher resolution, which is our new starting point
for the minimization. This incremental procedure allows us to find global minima for our
high-dimensional system in an efficient manner. The calculation procedure is repeated for
every height independently, leading to the oversaturation fields as in figure 7.

To check the validity of the results, the final oversaturation field is fed back into
(2.2) to reconstruct the intensity field, see figure 15(a,e). The difference between such a
reconstructed field and the original intensity field (figure 15b, f ) can then be used to check
the deviation, see figure 15(c,d,g,h). Note that, for direct comparison, the original intensity
field is down sampled to match that of the reconstructed field. Figure 15 clearly shows that
the results are not perfect, with most deviation located in the near field. We believe that
there are multiple factors contributing to the deviation, including the down sampling of
the original intensity field, the resolution limit in the near field and in the vicinity of the
region with C̃oil,oversat > 1. Considering the aforementioned factors, and the low deviation
in most of the domain, we believe the results obtained by the optimization process are valid
for the semi-quantitative analysis in this study.

Appendix B. Comparison between far and zoomed-in recordings

Figure 16 compares the profiles obtained from far view and zoomed-in recordings in the
streamwise and radial directions. Figure 16(a,b) presents the centreline evolution of the
results in figure 7, showing nice collapse between the two fields except for the region
with C̃oil,oversat > 1. We also compare the centreline evolution obtained from the curve
fitting in figure 16(c,d), with similar features to those in figure 16(a,b). Note that, for
the intense nucleation region, the error bar is extremely large because the data points
for fitting are scarce, demonstrating the uncertainty of our results in this area. Also, one
might notice the fluctuation for each case in the ramping-up stage, which can be attributed
to the fluctuating position of laminar/turbulent transition, causing the nucleation there to
be not very smooth. To complete the comparison, the jet width evolutions are presented
in figure 16(e, f ), showing consistent radial profiles between the two recordings. Note that
we do not subtract the height (z) with laminar length here (Hassanzadeh et al. 2021),
unlike the analysis in § 4, so that the height z here is aligned with that in figure 7. By the
rigorous comparison between the two recordings, the consistency of our method is further
demonstrated for the domain out of the initial shear layer.

Appendix C. Light attenuation in a scattering medium

As briefly mentioned in § 2.3, the superposition of the level of light attenuation is
questionable in a scattering medium. Dahm (2013) and Dahm & Dahm (2013) discuss
the way to theoretically address the light propagation in such a medium. The light
attenuation technique we implemented is based on the Lambert–Beer law, see (2.1). For a
non-scattering medium, the fraction of light propagating through a medium is called the
transmittance, while the remaining fraction of light not going through is the absorbance.
However, with oil droplets induced by solvent exchange, the solution becomes a scattering
medium, which introduces an extra factor called remittance in Dahm (2013) and Dahm &
Dahm (2013), that is,

T + A + R = 1, (C1)

where T = I/Iref is transmittance, A is absorbance and R is remittance. The remittance
represents the part of light that neither penetrates through the medium nor is absorbed
943 A11-26
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Figure 15. Evaluation of the oversaturation fields calculated by optimization procedures; (a–d) Re0=555,
we/wo=100, (e–h) Re0=1387, 2e/wo=100. (a,e) Show the reconstructed intensity fields by the oversaturation
fields. (b, f ) Show the original intensity fields recorded by the camera. (c,g) Present the absolute difference
between the reconstructed and original intensity fields. (d,h) Show the intensity difference in fraction, namely
the results in (c,g) divided by those in (b, f ). Note that the colour bars for (c,g) are inverted.

by the medium, which results from its scattering nature. Instead of using a linear
superposition, Dahm & Dahm (2013) introduces the so-called equations of Benford to
deal with the overall transmittance, absorbance and remittance through layers of the
scattering medium. These equations are written as

Tx+y = TxTy

1 − RxTy
,

Rx+y = Rx + T2
x Ry

1 − RxRy
,

Ax+y = 1 − Tx+y − Rx+y,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C2)
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Figure 16. Comparison of oversaturation profiles between far view and zoomed-in recordings. (a,b) Show the
streamwise profiles, namely the centreline evolution directly derived from the calculated fields in figure 7 and
(c,d) show the centreline evolution obtained by curve fitting. (e, f ) Display the radial profile, namely the the jet
width evolution, obtained by curve fitting.

where x, y denote the two adjacent layers of the scattering medium with their own
thickness and concentration.

While the remittance R is not possible to measure in our setting, we measure the
transmittance T as a function of oil oversaturation with two calibration cells of different
thicknesses (10 and 2 mm), namely Tx(C) and Ty(C). And from Tx(C) and Ty(C) we
can obtain Rx(C) and Ry(C) from the equations of Benford. At this point we have the
transmittance and remittance curves as functions of oil oversaturation at the thicknesses
of 2 and 10 mm. Using either of these two curve sets and the equations of Benford, we can
obtain the transmittance and remittance curves T(C) and R(C) for a very thin layer of the
medium for further calculation. Here, we choose 1 pixel as the thickness for such a base
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layer. Applying the thickness matrix dymn in (2.4), we can estimate the number of the base
layers in each item of dymn, from which we can construct the overall transmittance Tsum
and remittance Rsum using the equations of Benford; Tsum needs to match the value from
the averaged jet in figure 4(b). Note that the order/trajectory of light propagation matters
when applying the equations of Benford, which is not the case for the Lambert–Beer law.
To elaborate the procedure further, we now take a look at figure 4(c). To estimate Tsum, we
have to start from the discretization unit closest to the light source. Knowing the amount
of base layers (1 px) in this unit, the overall transmittance until the end of this unit can
be obtained, and then we enter the next unit. When applying the equations of Benford,
the value Tx gets updated with the results obtained from the previous step, while Ty is the
value of the following base layer, which could be in the same or the next unit. We repeat
such an algorithm following the direction of light propagation, reaching Tsum right in front
of the camera.

We then implement such a theoretical optical framework into the optimization
procedures in Appendix A, replacing the superposition described by (2.4). Unfortunately,
with the extra complexity, the optimization procedure is unable to converge to a sensible
concentration field.

Considering the discussion in this appendix, we must remind the readers that the
preliminary analysis and results in this work are not on firm and waterproof footing, and
will require further examination once the updated algorithm can successfully capture the
optics involved in this complex phenomenon.
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