
COLLINEATIONS, CORRELATIONS, POLARITIES, 
AND CONICS 

J. F. RIGBY 

To Professor H. S. M. Coxeter on his sixtieth birthday 

1. Introduction: Polarities and conies. It is well known that planes of 
characteristic 2 behave differently from other Pappian projective planes. For 
this reason their detailed properties are usually ignored in books on synthetic 
projective geometry, especially when conies are being discussed. This can give 
rise to the misleading impression that planes of characteristic 2 are more 
difficult to deal with, while a cursory introduction to conies in such planes (e.g. 
Theorem 4.3) may suggest that the notion of "pole and polar" no longer exists. 

In order to produce a theory in which as many results as possible remain 
true in planes of characteristic 2, we must consider the two projective definitions 
of a conic due to Steiner (1832) and von Staudt (1847). The Steiner definition 
(see Definitions 5 and 6 below) is the more commonly used and is valid in every 
Pappian plane. The von Staudt definition of a conic (7, p. 137) as the sets of 
self-conjugate points and lines of a hyperbolic polarity (see Définitions 3 and 4) 
is used by Coxeter (2, p. 252; 3, 8.1). This self-dual définition has great advan­
tages, especially for the proofs of properties involving the concepts of pole and 
polar (as might be expected). The two definitions are equivalent in planes of 
characteristic other than 2 (3, 8.32, 8.51). However, in planes of characteristic 
2, the von Staudt definition is of no value, because of Theorem 4.2 (hi); 
Theorems 4.2 and 4.3 both show that there is no longer such a close connection 
between conies and polarities in these planes. 

The above suggests the fruitful idea that the notions of polarity and conic 
should be kept separate. Many theorems are then true in every Pappian plane, 
and it becomes clear that some theorems (such as Pascal's theorem) concern 
conies, some (such as 3.1-3.5) concern polarities, and some concern both. 
Consider for example the statement 

If two triangles are self-polar with respect to a conic, no three vertices being 
collinear, then the six vertices lie on a conic. 

This statement is true in planes of characteristic other than 2, but its converse 
is true only if every polarity determines a conic (not in the real projective 
plane, for instance) ; the statement is meaningless in planes of characteristic 2. 
However, if we replace the first occurrence of conic by polarity, then both the 
theorem and its converse are true in every Pappian plane. 
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There is neither the need nor the space to present here a complete theory of 
polarities and conies; most of the required proofs can be found elsewhere. I 
shall simply give a few proofs that have occurred to me during the preparation 
of undergraduate courses in projective geometry. The existence of projective 
collineations and polarities is considered in §2, while §3 consists of a new proof 
that every projective collineation can be expressed as the product of two polar­
ities. The investigation in §4 of polarities and conies in planes of characteristic 
2 is based on a simple lemma, but I have not come across a similar investigation 
by synthetic methods elsewhere. 

Some basic definitions are given below. Note that, in Definition 1, a pro­
jective collineation is not defined as a product of perspective collineations 
(as in 5, p. 65, for instance). 

1. A projective collineation in any projective plane is a collineation that 
induces a projectivity from every range of points onto its image range and from 
every pencil of lines onto its image pencil (8, p. 71). 

2. A projective correlation is a correlation (or duality, or reciprocity) that 
induces a projectivity from every range onto its image pencil and from every 
pencil onto its image range (8, p. 262). 

3. A polarity is a projective correlation of period 2. 
4. A s elf-conjugate point {line) of a polarity is a point (line) incident with 

its image line (point). A polarity is hyperbolic if it contains a self-conjugate 
point (and therefore a self-conjugate line). 

5. A point-conic in a Pappian plane is the set of intersections of corresponding 
lines in a non-perspective projectivity between two distinct pencils. 

6. A line-conic in a Pappian plane is the dual of a point-conic. 

All the results in this paper, unless otherwise stated, concern Pappian planes. 

2. Projective collineations and polarities. We shall discuss Theorems 
2.1-2.7 before giving the proofs. 

2.1. Let ABCD, A'B'CD' be quadrangles in a Desarguesian plane; let 
AB Pi CD = E, A'B' C\ CD' = E', and let a be any projectivity mapping 
A, B, E onto Af, B', E''. Then there exists a unique projective collineation mapping 
ABCD onto A'B'CD' {where the notation is meant to imply that A is mapped onto 
A', etc.) and inducing the projectivity a from range AB to range A'B'. 

COROLLARY. In a Pappian plane, there exists a unique projective collineation 
mapping a given quadrangle onto a given quadrangle. 

2.2. (i) In a Moufang plane, every projective collineation can be expressed as a 
product of perspective collineations, at most one of which is a homology. 

(ii) In a Desarguesian plane, every projective collineation can be expressed 
as the product of at most three perspective collineations, at most one of which is a 
homology. 
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(iii) In a Pappian plane, every projective collineation with a fixed point can be 
expressed as the product of at most two perspective collineations, at most one of 
which is a homology, and conversely every product of two perspective collineations 
has a fixed point. 

2.3. In a Moufang plane, if one quadrangle has non-collinear diagonal points, 
then the same is true of every quadrangle. 

COROLLARY. In a Moufang plane, if one quadrangle has collinear diagonal 
points, then the same is true of every quadrangle. 

2.4. There exists at most one projective correlation mapping a given quadrangle 
onto a given quadrilateral. 

2.5. There exists a polarity {unique by 2.4) mapping each vertex of a given 
triangle onto its opposite side and mapping a given point not on a side of the 
triangle onto a given line not through a vertex. 

2.6. There exists a unique projective correlation mapping a given quadrangle 
onto a given quadrilateral. 

2.7. Any projective correlation that maps each vertex of a triangle onto its 
opposite side is a polarity. 

The converse of 2.2 (i), which states that every product of perspective 
collineations is a projective collineation in our sense of the term, is true in every 
projective plane (5, p. 67). It would be interesting to know whether 2.2 (i) 
itself is true in every projective plane. 

Theorem 2.3 and its proof are no doubt well known, but I have not been 
able to find a reference to a simple proof such as that given below. We need 
the result here for Pappian planes only. 

Von Staudt's proof of 2.6 is similar to his proof of the corollary to 2.1 (7, 
pp. 64, 65). (Coxeter's account of von Staudt's proof in the first edition of 
Projective geometry (3, 6.13, 6.42) is incomplete.) Using 2.6 one can prove 2.7 
and 2.5 (7, pp. 131, 133; 3, 7.21). We shall adapt von Staudt's proof of 2.7 
to prove 2.5 directly, before proving 2.6. 

WTe shall need four preliminary lemmas. 

LEMMA 1. In a Moufang plane, any perspectivity can be embedded in an 
elation (5, p. 67). 

COROLLARY. In a Moufang plane, any projectivity can be embedded in a 
product of dations {or, otherwise expressed, if a is a projectivity, then there exists 
a product of dations that induces a). 

LEMMA 2. In a Desarguesian plane, any projectivity from a range onto a 
distinct range can be expressed as the product of at most two perspectivities (4, 
p. 46). 
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COROLLARY (using Lemma 1 also). In a Desarguesian plane, if a is a pro-
jectivity from a range onto a distinct range, then there exists a product of at most 
two elations that induces a. 

LEMMA 3. If a collineation {correlation) induces a pro jectivity from one range 
onto its image range, or from one pencil onto its image pencil (from one range onto 
its image pencil, or from one pencil onto its image range), then it is projective 
(3,6.11,6.41). 

LEMMA 4 (Figs, la, lb) . In a Desarguesian plane, let C', D', C", D" be four 
points not on a line V, C ^ D', C" ^ D", CD' C\ V = CD" C\ V. Then there 
exists a perspective collineation a, with axis V, such that C'a — C, D" a = D''. 

(b) 
FIGURE 1 

Proof. If the lines CD', CD" are distinct, then CC C\ D'D" is the centre 
of a, and a is defined by C'a = C. 

If the lines coincide, choose distinct points C\, D\ not on CD' and not on 
/', such that CD' C\ V = C\D\ C\ V. Then there exist perspective collineations 
6, 4>, with axis V, such t h a t C"d = d, D"d = Dly d <t> = C, Dx<$> = D'; 
then a = 0$. 

Proof of 2.1. Denote the lines AB, A'B' by /, I'. If 6, <j> are two collineations 
mapping ABCD onto A'B'CD' and inducing a from range AB to range A'B', 
then 0<£-1 fixes C, D and every point of /; hence 00_1 is the identical collineation 
(4, p. 99). Thus the required projective collineation, if it exists, is unique. 

There exists a product p of elations that induces a (Lemma 1, cor.); then 
Ap = A', Bp = B', Ep = E'. Let Cp = C", Dp = D"; then C", D", E' are 
collinear, so CD' C\l' = CD" CM' = E'. Hence by Lemma 4 there exists a 
perspective collineation a, with axis I', such that C'a = C, D"a = D'; pa is 
the projective collineation mapping ABCD onto A'B'CD' and inducing a from 
range AB to range A'B'. 

Proof of 2.2. (i) Let r be a projective collineation. If r = 1, there is nothing 
more to prove. If not, let / be a non-fixed line of r, and let a be the projectivity 
induced by r from the range of points on / onto its image range. There exists a 

https://doi.org/10.4153/CJM-1967-094-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-094-x


COLLINEATIONS, ETC. 1031 

product p of dations that induces a (Lemma 1, cor.). Then rp~l leaves / 
pointwise fixed; hence it is a perspective collineation a with axis I (4, p. 100); 
rp~l = a. Hence r = ap, as required. 

(ii) The proof is as before, but p is now the product of at most two elations 
(Lemma 2, cor.). 

(iii) Let A be a fixed point of r. If every line through A is fixed, then r is a 
perspective collineation (4, p. 102). If not, let / be a non-fixed line through A. 
Then a, defined as before, fixes A and is therefore a perspectivity. Hence p 
is an elation (Lemma 1); r = ap as before. Conversely, if r is the product 
of two perspective collineations, then the intersection of their axes is a fixed 
point. 

Proof of 2.3 (Fig. 2). Let ABCD be a quadrangle with non-collinear diagonal 
points E, F, G as shown, and let FG C\ AB = H, so that H is distinct from E. 
Let A'B'CD' be another quadrangle with diagonal points E\ F', G'. 

There exists a projectivity a such that (̂ 4, B, E)a = (A', B', Ef). There 
exists a product p of elations that induces a (Lemma 1, cor.). Let Fp = F\. 
There exists an elation a with axis A'B' such that F\ a = Fr. Then 

(A,B,E, F)pa = (Af,B\Ef, Ff). 

Let (C, D, G, H)pa = (C", D", G", Hf). Then D" lies on A'Ff, etc., as in the 
figure, and Hf is distinct from E'. Let r be the elation with axis A'F' such that 
C"T = G". Then E'r = B', Cr = G. Hence F , G", G' are collinear, so G' 
lies on F'H'. Hence £ ' , F', G' are non-collinear. 

A similar method can be used to prove the uniqueness of harmonic conjugates 
in a Moufang plane. 

Proof of 2 A. If p, a are two projective correlations mapping a given quadrangle 
onto a given quadrilateral, then pa~l fixes each point of the quadrangle, so 
p(T~l is the identical collineation (3, 6.12). 
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Proof of 2.5. Let ABC be a triangle, with sides BC = a, CA = b, AB = c 
(Fig. 3a). Let D b e a given point not on a side of the triangle, and let d be a 
given line not through a vertex. Let DA C\ a = Da, DB C\ b = Db, DC H c 
= Dc, d C\ a = Ad, d C\b = Bd, d C\ c = Cd. Let J a denote the unique 
involution on a having B, Cand Daj Adas pairs of mates. Define 3b, 3C similarly. 

FIGURE 3 

Let P be any point distinct from A, B, C, and let PA C\ a = Pa, etc. If 
there exists a polarity mapping A, B, C, D onto a, 6, £, d, and P onto £, say, 
then the involution of conjugate points on a (3, 7.13; see also 4.2(i) and 4.2(ii) 
in the present paper) has B, C\ Da, Ad\ Paj p Pi a as pairs of mates; hence 
this involution is Ja . 

We shall therefore denote Pa ia (the mate of Pa in the involution J a) by Av, 
and define Bp, Cv similarly. We shall prove that Ap, Bv, Cv are collinear, and 
denote this line by p. Then we shall show that the mapping P —» p, p —> P , 
A •—> a, a —> A, etc. is a polarity. 

(i) IfP lies on a side of ABC, then Ap, Bp, Cv are collinear. This is easily proved. 
(ii) If AXJ BXJ Cx are collinear, and if X Y passes through a vertex of ABC, X, Y 

not lying on a side of ABC, then Ay, By, Cy are collinear. Suppose without loss 
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of generality that X Y passes through A. Then Xa = Ya (Fig. 3b), so Ax = Ay 

and 
T C 73 T 

ABCxCy -c BAXCYC T XaAXY ^ CAXbYb -* ACBxBy. 
Hence 

ABCxCy x ACBxBy. 

Hence BC, Cx Bx, Cy By are concurrent, so Cy, By, Ay are collinear. 
(iii) If P is any point not on a side of ABC, then APJ Bp, Cp are collinear. 

Let AD C\ BP = Q. Then Ad, Bd, Cd are collinear, and DQ passes through the 
vertex A ; hence by (ii) Aq, BQJ Cq are collinear. QP passes through the vertex B; 
hence by (ii) Ap, Bp, Cp are collinear. 

(iv) The mapping P —> p is one-one, and any line that is not a side of ABC 
is the image of some point that is not a vertex. This is easily proved. 

(v) The mapping P —* p, p —> P, A —> a, a —> A, etc. is a polarity. We need 
only show that this mapping preserves incidence; it is then a polarity since it 
has period 2, and since the induced mapping from range a to pencil A is a 
projectivity (Lemma 3). Suppose P £ a. If either P or Q lies on a side of ABC, 
then it is easily shown that Q G p. If neither P nor Q lies on a side of ABC, 
then (Fig. 3c) A, B, Pcy Cq are distinct, and 

ABQCCP
 J-c BACQPC = PbABqC ~ BpCQbA - AQbCBp. 

Hence 
ABQCCP x AQbCBp. 

Hence BQb, QCC, CPBP are concurrent; so Q G Bv Cp, i.e. Q (z p. 

We shall denote the above polarity, which has ABC as a self-polar triangle, 
by (ABC) (Dd). 

Proof of 2.6. Denote the quadrangle and quadrilateral by ABCD, a'b'c'd'. 
Let V C\ c' = A', cf r\a' = B', a' C\b' = C, and let D' be any point not on a 
side of triangle A'B'C. Then there exist a projective collineation p mapping 
,45C£> onto A'B'C'D' (2.1) and a polarity a mapping A'B'C'D' onto a ' 6 W 
(2.5) ; pa is the required projective correlation and it is unique by 2.4. 

Proof of 2.7. This is an immediate corollary of 2.4 and 2.5. 

It is easy to adapt the proof of 2.6 if we know only that there exists one 
projective correlation. Veblen and Young make use of the polarity defined by a 
conic (8, p. 264) but this method is not valid in planes of characteristic 2. 

3. The product of two polarities. The first four results of this section 
represent various stages in the proof of the result that every projective collineation 
can be expressed as the product of two polarities. 

3.1. If a projective collineation has three fixed points forming a triangle, then it 
can be expressed as the product of two polarities, each of which has the triangle as a 
self-polar triangle. 
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3.2. Every perspective collineation can be expressed as the product of two 
polarities. 

3.3. In a projective plane containing more than three points on each line, every 
projective collineation that is not perspective, and that does not have a triangle of 
fixed points, can be expressed as the product of two polarities. 

3.4. In the projective plane having three points on each line, every projective 
collineation can be expressed as the product of two polarities. 

The proof of 3.1 is easy, using 2.5. Homologies are included in 3.1, but we 
give a proof of 3.2 that is valid for both elations and homologies. 

The proof of 3.3 given by Veblen and Young (8, p. 265) and Coxeter (3, 
7.71) appears at first sight to require at least seven points on each line. Only 
by an investigation of the possible projective collineations in PG(2, 5) can we 
show that the proof is valid in this plane. The proof fails for PG(2, 3). I have 
not investigated the situation in PG(2, 4) or PG(2, 2). The proof given below 
fails only for PG(2, 2), which is easily investigated separately in 3.4. 

Proof of 3.2 (Fig. 4). For the purposes of this proof, the identical collineation 
(which is covered by 3.1) will not count as a perspective collineation. Suppose 
the perspective collineation p, with centre 0 and axis /, maps A onto B, where 
A £ I, A 9^ 0. (If there exist only three points on each line, then there are no 
homologies, so p is an elation with 0 G /, and AB contains just the three points 
0,A,B.) 

FIGURE 4 

Let Cbe a point not on AB and not on I. Let AC HI = X, OC C\ BX = D, 
BCCM = Y. Then Cp = D. Denote OA, OC by m, n. 

The product of the polarities (ABX)(Yn) and (DCY)(Xm) maps OYAC 
onto 0 YBD, and hence equals p (2.1, cor.). 

LEMMA 5. If the collineation p has at most two fixed points and two fixed lines, 
then 
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(i) its fixed points and lines form one of the configurations shown in Figure 5, 
and 

no 
• fixed 

elements 
(g) (A) 

(ii) if each line of the plane contains at least four points, there exist two points 
A, B that, together with their images A' = Ap, B' = Bp, form a quadrangle such 
that neither A A' nor BB! is a fixed line. 

Proof, (i) This is obvious, since the join of two fixed points is a fixed line, 
and dually. 

(ii) In all cases except (f) and (h), let I be any non-fixed line through a fixed 
point P, and let A, B be any two distinct points on /, other than P, and not on 
a fixed line ; the required conditions are then satisfied. 

In case (f), let / be any non-fixed line; lp~l and lp meet I in distinct points. 
The fixed line meets I in a third point. Unless there exist only four points on 
each line. There are at least two more points on I, from which we choose A 
and B. The required conditions are then satisfied. However, if a collineation in a 
finite plane contains one fixed line, then it contains one fixed point (1, p. 655, 
4, p. 114), so (f) cannot occur if there are only four points on each line. Alter­
natively, we easily deduce from 2.2 (iii) and its dual that, in any Pappian plane, 
a projective collineation with one fixed point must have one fixed line, so that 
neither (f ) nor (g) can occur anyway. 

In case (h) we proceed as in case (f). Since there is now no fixed line, the 
method will work in all cases. 

If a projective collineation has three fixed points on a line /, then the induced 
projectivity on / is the identity, so / is pointwise fixed. Hence, if a projective 
collineation is not perspective and does not have a triangle of fixed points, 
then it has at most two fixed points and two fixed lines. Hence we can apply 
Lemma 5 to the proof of 3.3. 

Proof of 3.3. Denote the collineation by p, and choose A, B as in Lemma 5. 
Let A A' C\ BB' = C (Fig. 6), and let Cp~l = P, Cp = Q. Label the lines as 
shown. Then P does not lie on any side of triangle ABC, and Q does not lie on 
any side of triangle A'B'C (since A A'', BB' are not fixed lines). The product of 
(ABC)(Pp) and (A'B'C)(Qc) maps ABCP onto A'B'QC, and hence equals 
p (2.1, cor.). 

The above proof emerges quite naturally if we consider the simplest non-
trivial type of product of two polarities (apart from that used in 3.1) as follows. 
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FIGURE 6 

The polarity a = (ABC)(Pp) in Figure 6 maps ABCP onto abcp. We now 
consider a polarity r, with abp as a self-polar triangle, mapping c onto some 
point Q. Then OT maps ABCP onto A'B'QC. How general is or? Since ^4.4', 
5 5 ' are easily seen to be non-fixed lines, <TT cannot be a perspective collineation. 
If we then investigate under what circumstances a quadrangle such as AA'BB' 
can be found, we arrive at Lemma 5. 

We can avoid using, in the proof of Lemma 5, either Baer's theorem on fixed 
points of collineations in finite projective planes or Theorem 2.2 (iii), if we 
exclude configuration (f) from the statement of Lemma 5(ii). In the proof of 
3.3, we then observe that, since the result is true for collineations of type (g), 
it is true for collineations of type (f ) by duality. 

We can easily extend 3.3 and Lemma 5 to include the case when the fixed 
elements of p consist only of a triangle of fixed points and the lines joining them ; 
3.1 is then superfluous, since homologies are included in 3.2. However, 3.1 
(in the cases that it covers) gives a more elegant expression for p as the product 
of two polarities. 

Proof of 3.4. The plane of seven points and lines can be represented as in 
Figure 7. The identical collineation, and all dations, are covered by 3.1 and 3.2. 
Any other collineation is easily seen to be conjugate (in the group of all 
collineations) to one of four collineations, namely 

(A)(BCD)(FEG), (A)(BF)(CGED), (ABCEGFD), (ADFGECB), 

B D a C A C B D 

FIGURE 7 FIGURE 8 
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the permutations of the points being expressed in cycle notation. Hence it 
suffices to express these four collineations as products of two polarities, as 
follows: 

(A)(BCD)(FEG) is the product of (ABC)(Gg) and (ABD)(Ef), 

(A ) (BF) (CGED) is the product of (BCE) (Fd) and (CEF) (Bd), 

(ABCEGFD) is the product of (ACD)(Fe) and (DEG)(Cc), 

(ADFGECB) is the product of (DEG) (Cc) and (A CD) (Fe). 

As a consequence of 3.1-3.4 we have 3.5 and its corollary. These results and 
their proofs are not new, but are worth mentioning here. 

3.5 (cf. 3, 7.72). There exist at least two polarities mapping the set of fixed 
points of a given projective collineation onto the set of fixed lines. 

Proof. Let p denote the given projective collineation. If p = 1, the result 
is obvious. If not, write p = cr, where a, r are distinct polarities, as in 3.1-3.4. 
It is easily shown that c, r have the properties required in the theorem. 

COROLLARY. If a projective collineation has only a finite number of fixed points, 
then it has the same number of fixed lines. In particular, the fixed points and lines 
cannot form any of the configurations (b), (c), (f), (g) of Lemma 5. 

4. Polarities and conies in planes of characteristic 2. We are concerned 
here with Pappian planes, but the definition of the characteristic of a plane is 
not confined to Pappian planes. Theorem 2.3 and its corollary show that 
Moufang planes can be divided into two types. A Moufang plane has character­
istic 2 if every quadrangle in the plane has collinear diagonal points, and has 
characteristic other than 2 if no quadrangle has collinear diagonal points. (For a 
synthetic definition of the characteristic of a translation plane, see (6, pp. 417, 
427).) In the second type of Moufang plane, we have the usual theory of har­
monic sets. 

In several of the results of this section we shall compare the situation in 
planes of characteristic 2 with the situation in other planes. Some of the results 
have important duals, which we shall not state here. 

LEMMA 6. If A, B, C, D are distinct collinear points in a plane of characteristic 
2, then it is impossible to have ABCD -^ ABCD. 

Proof. Suppose if possible that ABCD — ABDC, where A, B, C, D are 
distinct and collinear. Let /' be any line through A distinct from AB (Fig. 8), 
and let 0 be any point not on AB or /'. Let OB CW = B', etc. Then 

0 
ABCD T ABDC j= AB'D'C. 

Hence BB1, CD'', DC are concurrent at P , say, and the quadrangle CDD'C 
has non-collinear diagonal points A, P , 0, a contradiction. 
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4.1. (i) In a plane of characteristic other than 2, an involution has either no 
fixed point or two fixed points. 

(ii) In a plane of characteristic 2, an involution has either no fixed point or one 
fixed point. 

(iii) In a finite plane of characteristic 2, every involution has just one fixed 
point. 

Proof. (i)Coxeter(3,5.41). 
(ii) No non-identical projectivity can have more than two fixed points. 

Suppose if possible that an involution has two fixed points L, M. Let C, D be 
a pair of mates, C 9e D. Then LMCD — LMDC, which is impossible by 
Lemma 6. 

(iii) A finite plane of characteristic 2 must be PG(2, 2T) for some integer 
r > 0, so the number of points on each line is odd. When distinct mates in an 
involution are paired off, we are left with one point that must be its own mate. 
This is the fixed point. 

We can also show that the number of points on each line (in (iii) above) 
is odd, without appealing to algebraic results. Let the distinct lines a, b meet in 
O, and let P, Q be distinct points collinear with O, not on a or b. Then the 
product of the perspectivities from a to b and from b to a with centres P, Q 
respectively is easily shown to be an involution with one fixed point, namely 0. 
Hence the number of points on a is odd. 

4.2. Let I be a non-self-conjugate line of a polarity in a plane w. 
(i) If 7T has characteristic other than 2, then we have an involution of conjugate 

points on I; so I contains two self-conjugate points or none. 
(ii) / / 7T has characteristic 2, then either we have an involution of conjugate 

points on I, so that I contains one self-conjugate point or none, or every point of I is 
s elf-conjugate. 

(iii) / / ir has characteristic 2, then any polarity has either no s elf-conjugate 
point, or one self-conjugate point, or a line all of whose points are s elf-conjugate. 

(iv) If ir has characteristic 2, and if every involution on every line of -w has one 
fixed point (in particular if T is finite), then every polarity has a line of self-
conjugate points. 

Proof, (i) Coxeter (3, 7.12, 7.13). 
(ii) We can still use the proof of (3, 7.13), but the possibility that every 

point of / is self-con jugate cannot now be ruled out as in (3, 7.12). 
(iii) If a polarity has two self-conjugate points, then their join is a non-self-

conjugate line (3, 7.11) all of whose points must be self-conjugate by (ii). 
If there exists another self-conjugate point, then we easily see that every point 
of 7T is self-conjugate while every line of ir is non-self-conjugate, a contradiction. 

(iv) Let / be a non-self-con jugate line. (Not every line can be self-conjugate.) 
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Then / contains a self-conjugate point A, say. Let m be a non-self-conjugate line 
not through A. (Such a line is easily seen to exist.) Then m contains a self-
conjugate point B, say, B ?£ A. As in (iii), AB is a line of self-con jugate points. 

4.3. In a plane of characteristic 2, all the tangents to a point-conic are concurrent. 

Proof (Fig. 9). Let A, B be distinct points, and let a: be a non-perspective 
projectivity from pencil A to pencil B. The set 

S = {x C\xa\x passes through A) 

is a point-conic, and every point-conic is obtained in this way (by Definition 5) 
for suitable choice of A, B, a. 

FIGURE 9 FIGURE 10 

If aa = BA and ABa = 6, then a, b are the tangents to S at A, B. No three 
points of S are collinear. Let a C\b = 0, and let X be any point of S distinct 
from a, b. Suppose OX contains a point F of S, Y =̂  X. Then 

A(0BXY) x B(AOXY). 
Hence 

OCXY T COXY, 

which is impossible by Lemma 6. Hence OX contains only one point of S, so 
OX is the tangent at X. Hence all tangents to S pass through 0. 

The point of concurrency of the tangents to a point-conic in a plane of 
characteristic 2 is called the centre of the conic. 

4.4. In a finite plane of characteristic 2, every line through the centre of a conic is 
a tangent to the conic. 

Proof. Let n denote the order of the plane. There are n + 1 distinct tangents 
through the n + 1 points of a conic, all passing through the centre of the conic, 
These exhaust the n + 1 lines through the centre. 
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It can easily be shown algebraically that in a plane of characteristic 2 every 
line through the centre of a conic is a quasi-tangent (i.e., the line touches the 
conic in some suitable extension plane) and every quasi-tangent passes through 
the centre. These facts are not essential to the statements of 4.5 and 4.6, but 
they make the results more interesting; 4.4 states that, in a finite plane, every 
quasi-tangent is a tangent. 

4.5. Let ABCD be a quadrangle inscribed in a conic in a plane w, and let 
P = AB H CD, Q = ACC\BD, R = AD C\BC be the diagonal points of 
ABCD as shown in Figure 10. Then 

(i) the tangents at A, B meet on QR, the tangents at C, D meet on QR, the 
tangents at A, Cmeet on PR, etc., from which we deduce 

(ii) if w has characteristic other than 2, then the diagonal triangle PQR of 
ABCD is self-polar with respect to the conic, and 

(iii) if T has characteristic 2, then the diagonal line PQR of ABCD passes 
through the centre of the conic and hence quasi-touches the conic. 

Proof, (i) Let the tangents dXA,B meet QR at S, T, and let AB H QR = P' 
(so that P' = P if T has characteristic 2). Then 

A B 
SP'QR ^ ABCD jç P'TRQ T TP'QR. 

Hence S = T, since P', Q, R are distinct. Hence the tangents at A, B meet at 
5 on QR. Similarly the tangents at C, D meet on QR, etc. 

(ii) If T has characteristic other than 2, then P £ AB, the polar of S, so the 
polar of P passes through 5. Similarly, if the tangents at C, D meet at S' on 
QR, then S T6- S' and the polar of P passes through S'. Hence the polar of P 
is SS', i.e. QR. Similarly, the polars of Q, R are RP, PQ. Hence PQR is self-
polar. (This proof shows the connection between (ii) and (iii), but see (3, 
8.21) for a simpler proof.) 

(iii) The centre of the conic is S, the meet of two tangents, so PQR passes 
through the centre. 

4.6 (Desargues' Conic Theorem), (i) If a line I does not pass through any 
vertex of the quadrangle ABCD, and is not the diagonal line of the quadrangle 
{if the plane has characteristic 2), then opposite sides of the quadrangle meet I in 
pairs of mates of an involution, and if a point-conic through A, B, C, D meets I, 
then it either meets I at a pair of distinct points of the same involution or touches I 
at a fixed point of the involution. 

(ii) If the plane has characteristic 2, and if I is the diagonal line of ABCD, then 
the above involution is replaced by the identical projectivity, so that if a conic 
through A, B, C, D meets I, then it touches I. Moreover, every conic through A, B, C, 
D quasi-touches I. 

Proof, (i) (Fig. 11) The proof that is often given breaks down if the conic 
touches /. 
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Since / does not pass through all three diagonal points, we may assume 
without loss of generality that Q ^ Q'. Then 

PQRQ' T BXDQ' T R'QP'Q T P'Q'R'Q. 

The projectivity PQRQ' - P'Q'R'Q interchanges the distinct points Q, Q' 
and is therefore an involution J, say, having P , P ' ; Q, Q' ; R, R' as pairs of 
mates. 

Let a conic through A, B, C, D meet I at L, M. (If / touches the conic, then 
the line LM must be interpreted as the tangent at L, namely I.) Then 

B L D 
QPLR' = QAYC ^ MABC ^ MRQP' - Q'P'MR. 

FIGURE 11 

The projectivity QPLR' x QP'MR maps P, Q} R' onto P\ Qf, R, and hence 
must be J. Thus L, M are mates in J. 

(ii) This is just a restatement of 4.5. 
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