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Abstract
A finite set of integers A tiles the integers by translations if Z can be covered by pairwise disjoint translated copies
of A. Restricting attention to one tiling period, we have 𝐴 ⊕ 𝐵 = Z𝑀 for some 𝑀 ∈ N and 𝐵 ⊂ Z. This can also be
stated in terms of cyclotomic divisibility of the mask polynomials 𝐴(𝑋) and 𝐵(𝑋) associated with A and B.

In this article, we introduce a new approach to a systematic study of such tilings. Our main new tools are the
box product, multiscale cuboids and saturating sets, developed through a combination of harmonic-analytic and
combinatorial methods. We provide new criteria for tiling and cyclotomic divisibility in terms of these concepts.
As an application, we can determine whether a set A containing certain configurations can tile a cyclic group Z𝑀 ,
or recover a tiling set based on partial information about it. We also develop tiling reductions where a given tiling
can be replaced by one or more tilings with a simpler structure. The tools introduced here are crucial in our proof
in [24] that all tilings of period (𝑝𝑞𝑟)2, where 𝑝, 𝑞, 𝑟 are distinct odd primes, satisfy a tiling condition proposed by
Coven and Meyerowitz [2].
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1. Introduction

A set 𝐴 ⊂ Z tiles the integers by translations if Z can be covered by pairwise disjoint translates of A.
Equivalently, there exists a set 𝑇 ⊂ Z (the set of translations) such that every integer 𝑛 ∈ Z can be
represented uniquely as 𝑛 = 𝑎 + 𝑡 with 𝑎 ∈ 𝐴 and 𝑡 ∈ 𝑇 . Throughout this article, we assume that A is
finite and nonempty, and call it a finite tile if it tiles the integers. Newman [34] proved that any tiling of
Z by a finite set A must be periodic – that is, 𝑇 = 𝐵⊕𝑀Z for some finite set 𝐵 ⊂ Z such that |𝐴| |𝐵 | = 𝑀.
Equivalently, 𝐴 ⊕ 𝐵 is a factorisation of the cyclic group Z𝑀 , with B as the tiling complement.

We are interested in investigating the properties of finite tiles. While this is a natural and attractive
question, surprisingly little is known on this subject.

Newman’s proof provides a bound on the tiling period, 𝑀 ≤ 2max(𝐴)−min(𝐴) . Thus, given a finite set
𝐴 ⊂ Z, the question of whether A is a tile is at least in principle computationally decidable. However,
Newman’s bound is exponential in diameter, and can therefore be very large even if A has only a few
elements. A more effective bound was proved recently by Greenfeld and Tao [13].

Further important reductions and observations were made by Sands [37], Tijdeman [47] and Coven
and Meyerowitz [2]. Sands’ theorem on replacement of factors [37] states that if 𝐴⊕ 𝐵 = Z𝑀 and M has
at most two distinct prime divisors, then at least one of A and B must be contained in a proper subgroup
of Z𝑀 . The proof of this is based on a characterisation of tiling pairs, also due to Sands, which we
state here as Theorem 2.5. Tijdeman [47] proved that if a finite set A tiles the integers, and if 𝑟 ∈ N is
relatively prime to |𝐴|, then 𝑟 𝐴 := {𝑟𝑎 : 𝑎 ∈ 𝐴} also tiles Z with the same tiling complement. Coven
and Meyerowitz [2, Lemma 2.3] used this to prove that if a finite set A tiles the integers, then it also tiles
Z𝑀 for some M which has the same prime factors as |𝐴|.

For the last two decades, the state-of-the-art work on the subject was due to Coven and Meyerowitz [2].
In order to describe their main result, we need to introduce some notation, which we will also use
throughout this article. By translational invariance, we may assume that 𝐴, 𝐵 ⊂ {0, 1, . . . } and that
0 ∈ 𝐴 ∩ 𝐵. The characteristic polynomials (also known as mask polynomials) of A and B are

𝐴(𝑋) =
∑
𝑎∈𝐴

𝑋𝑎, 𝐵(𝑋) =
∑
𝑏∈𝐵

𝑋𝑏 .
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Then 𝐴 ⊕ 𝐵 = Z𝑀 is equivalent to

𝐴(𝑋)𝐵(𝑋) = 1 + 𝑋 + · · · + 𝑋𝑀−1mod
(
𝑋𝑀 − 1

)
. (1.1)

Let Φ𝑠 (𝑋) be the sth cyclotomic polynomial – that is, the unique monic, irreducible polynomial
whose roots are the primitive sth roots of unity. Alternatively, Φ𝑠 can be defined inductively via the
identity

𝑋𝑛 − 1 =
∏
𝑠 |𝑛

Φ𝑠 (𝑋). (1.2)

In particular, equation (1.1) is equivalent to

|𝐴| |𝐵 | = 𝑀 and Φ𝑠 (𝑋) | 𝐴(𝑋)𝐵(𝑋) for all 𝑠 | 𝑀, 𝑠 ≠ 1. (1.3)

Since Φ𝑠 are irreducible, each Φ𝑠 (𝑋) with 𝑠 | 𝑀 must divide at least one of 𝐴(𝑋) and 𝐵(𝑋).
Coven and Meyerowitz [2] proved the following theorem:

Theorem 1.1 ([2]). Let 𝑆𝐴 be the set of prime powers 𝑝𝛼 such that Φ𝑝𝛼 (𝑋) divides 𝐴(𝑋). Consider
the following conditions:

(T1) 𝐴(1) =
∏

𝑠∈𝑆𝐴 Φ𝑠 (1).
(T2) If 𝑠1, . . . , 𝑠𝑘 ∈ 𝑆𝐴 are powers of different primes, then Φ𝑠1 · · ·𝑠𝑘 (𝑋) divides 𝐴(𝑋).

Then we have the following:

◦ If A satisfies (T1) and (T2), then A tiles Z.
◦ If A tiles Z, then (T1) holds.
◦ If A tiles Z and |𝐴| has at most two distinct prime factors, then (T2) holds.

Condition (T1) is, essentially, a counting condition, and is relatively easy to prove. For sets 𝐴 ⊂ Z
such that |𝐴| is a prime power, (T1) is a necessary and sufficient condition for A to be a tile [34]. (In this
case, (T2) is vacuous.)

Condition (T2) is much deeper. Coven and Meyerowitz [2] proved that if (T2) holds, then 𝐴⊕𝐵♭ = Z𝑀
is a tiling, where 𝑀 = lcm(𝑆𝐴) and 𝐵♭ is an explicitly constructed and highly structured ‘standard’ tiling
complement depending only on the prime-power cyclotomic divisors of 𝐴(𝑋). We prove in Section 3
that having a tiling complement of this type is in fact equivalent to (T2). While this equivalence was not
stated explicitly in [2], it follows readily from the methods developed there.

The Coven–Meyerowitz proof of (T2) for all finite tiles with two distinct prime factors relies on the
aforementioned structure and replacement theorems of Sands [37] and Tijdeman [47]. In [2, Lemma
2.3], the authors deduce from Tijdeman’s theorem that if A tiles the integers and |𝐴| has at most two
distinct prime factors, then A admits a tiling 𝐴 ⊕ 𝐵 = Z𝑀 , where M has at most two distinct prime
factors. By Sands’ theorem, one of A and B must then be contained in a proper subgroup of Z𝑀 . Coven
and Meyerowitz use this to set up an inductive argument.

A closer analysis of the Coven–Meyerowitz argument yields the same result in the case when
𝑀 = 𝑝𝑛1

1 · · · 𝑝𝑛𝐾𝐾 , where 𝑝1, . . . , 𝑝𝐾 are distinct primes, 𝑛1, . . . , 𝑛𝐾 ∈ N are arbitrary and at most two
of 𝑝1, . . . , 𝑝𝐾 divide both |𝐴| and |𝐵 |. Essentially, any such case can be reduced to the two-prime case
via Tijdeman’s theorem and [2, Lemma 2.3], whereupon Theorem 1.1 may be applied. We provide the
details in Corollary 6.2. (See also [4, 39, 46].)

The goal of the present article is to develop methods that can be used in the study of tilings 𝐴⊕𝐵 = Z𝑀 ,
where M is permitted to have three or more prime factors dividing both |𝐴| and |𝐵 |. Sands’ factorisation
theorem does not hold in this case, with counterexamples in [25, 43]. For the same reason, the Coven–
Meyerowitz proof does not extend to such tilings. We emphasise that this is not just a technical issue.
Tilings with three or more distinct prime factors dividing both |𝐴| and |𝐵 | are genuinely different, and
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any comprehensive analysis of them must account for new phenomena that have no counterparts for two
prime factors, such as Szabó’s examples [43].

The simplest tilings that cannot be reduced to the two-prime case using the methods of [2] are of the
form 𝐴 ⊕ 𝐵 = Z𝑀 , where |𝐴| = |𝐵 | = 𝑝1𝑝2𝑝3 and 𝑝1, 𝑝2, 𝑝3 are distinct primes. In our follow-up paper
[24], we use the methods developed here to resolve this case when 𝑝1, 𝑝2, 𝑝3 are odd.

Theorem 1.2 ([24]). Let 𝑀 = 𝑝2
𝑖 𝑝

2
𝑗 𝑝

2
𝑘 , where 𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 are distinct odd primes. Assume that

𝐴 ⊕ 𝐵 = Z𝑀 , with |𝐴| = |𝐵 | = 𝑝𝑖 𝑝 𝑗 𝑝𝑘 . Then both A and B satisfy (T2).

While our complete proof of Theorem 1.2 works only under the assumptions indicated, many of our
tools, methods and intermediate results apply to general tilings 𝐴 ⊕ 𝐵 = Z𝑀 , raising the possibility
of further extensions and improvements. We therefore chose to present them here in more generality,
deferring the actual proof of Theorem 1.2 to [24], which is restricted to the three-prime setting.

We begin with the notation and preliminaries in Section 2. We identify Z𝑀 = Z𝑝𝑛1
1 · · ·𝑝

𝑛𝐾
𝐾

with
Z𝑝

𝑛1
1

⊕ · · · ⊕ Z𝑝𝑛𝐾𝐾
, and use the induced coordinate system to identify the given tiling with a tiling of

a multidimensional lattice. This allows a geometric viewpoint, whereby we can describe the tiling in
terms of objects such as lines, planes or fibers (arithmetic progressions of maximal length on certain
scales). We emphasise, however, that the problem under consideration is much more specific than the
study of tilings of multidimensional lattices in general. It is important in our work that the different
coordinate directions correspond to distinct primes.

In Section 3, we present an alternative formulation of (T2) in terms of standard tiling complements.
Roughly speaking, if 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling, then B satisfies (T2) if and only if its tiling complement A
can be replaced by a highly structured ‘standard set’ 𝐴♭ with the same prime-power cyclotomic divisors
as A. Such standard sets were already used in [2] to prove that (T1) and (T2) imply tiling. Here, we
state the formal implication in the other direction. In this formulation, condition (T2) can be viewed as
a distant cousin of questions on replacement of factors in factorisation of finite abelian groups (see [44]
for an overview).

In Section 4, we introduce one of our main tools, the box product. The idea comes from an unpublished
paper [11], and our main harmonic-analytic identity, Theorem 4.7, is in fact a reprise of [11, Theorem 1]
with relatively minor modifications. We are, however, able to use it much more effectively. (We caution
the reader that, while [11, Theorem 1] is correct, the proof of the main tiling result in [11] contains an
error that cannot be readily fixed with the methods of that paper.)

Our goal is to be able to start with an arbitrary tiling 𝐴⊕ 𝐵 = Z𝑀 , and prove that either at least one of
the sets A or B can be replaced directly by the corresponding standard tiling complement (which proves
(T2), as already indicated) or else we can pass to tilings with a smaller period 𝑁 | 𝑀 and apply an
inductive argument. The machinery to do this is developed in Sections 5–8, and includes the following
main ingredients.

Cuboids (Section 5) and fibering (Section 8) are our main tools in determining cyclotomic divisibility
and proving structural properties. Cuboids have been used previously in the literature in the context of
vanishing sums of roots of unity [42] and Fuglede’s spectral set conjecture [16]. We often have to use
both cuboids and fibering at several scales at the same time. In particular, we introduce ‘multiscale’
cuboids that correspond to divisibility by combinations of several cyclotomic polynomials.

In Section 6, we discuss two reductions that allow us to pass to tilings with a smaller period, with
the (T2) property preserved under the decomposition. We first review the subgroup reduction from [2].
Then we introduce a ‘slab reduction’, which we believe to be new and which covers many cases of
interest that are not covered by the subgroup reduction. We also develop a criterion for this reduction to
apply. A concrete example of this is provided in Corollary 6.8.

While the subgroup reduction is sufficient to prove Theorem 1.1, tilings with three or more distinct
prime factors include cases where such inductive arguments do not appear to be easily applicable. One
well-known obstruction to an inductive approach is provided by Szabó-type examples [43]. However,
Szabó’s examples are known to satisfy (T2). This was observed already by Coven and Meyerowitz [2];
see also [4] for an explicit analysis of a class of examples based on Szabó’s idea.

https://doi.org/10.1017/fmp.2022.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.3


Forum of Mathematics, Pi 5

We do not know whether Szabó-type constructions are the only obstacle to an inductive proof of (T2)
for all finite tiles. In [24], we prove that this is indeed true for classes of tilings that are broad enough
to include all tilings of Z𝑀 with 𝑀 = (𝑝1𝑝2𝑝3)

2. The key new concept turns out to be saturating sets
– subsets of A and B that saturate appropriately chosen box products (Section 7). Informally, if a tile A
contains geometric configurations that indicate a lack of structure on a certain scale, we are able to use
it to our advantage and locate highly structured configurations elsewhere in both A and B. In particular,
the less structure we have in one of the tiles, the more structured the other one is expected to be. In
the case 𝑀 = (𝑝1𝑝2𝑝3)

2, we use this to prove that all tilings with ‘unfibered grids’ (see [24] for the
definition) must in fact come from Szabó-type constructions. With this established, we can prove (T2)
for such tilings by reduction to standard tiling complements. The full argument is carried out in [24],
but we also provide examples of this procedure here in Section 8.5.

In addition to applications to proving structural conditions such as (T2), we are able to use saturating
sets to identify sets 𝐴 ⊂ Z𝑀 that do not tile Z𝑀 based on the presence of certain configurations. Results
of this type include Lemma 7.10 and Proposition 7.11.

In Section 9 we discuss open questions and possible directions of study arising from our research
so far.

Since the work of Coven and Meyerowitz, there has been essentially no progress in proving (T2),
except for a few special cases of limited importance (such as [22]) and cases covered by Corollary 6.2
[4, 39, 46]. However, there have been significant recent developments on other questions related to tiling
and cyclotomic divisibility. Notably, Bhattacharya [1] has established the periodic tiling conjecture
in Z2, with a quantitative version due to Greenfeld and Tao [13]. In a continuous setting, there has been
recent work on tilings of the real line by a function [19].

There is an important connection between the Coven–Meyerowitz tiling conditions and Fuglede’s
spectral set conjecture [10]. The conjecture, dating back to the 1970s, states that a set Ω ⊂ R𝑛 of
positive n-dimensional Lebesgue measure tiles R𝑛 by translations if and only if the space 𝐿2 (Ω) admits
an orthogonal basis of exponential functions. A set with the latter property is called a spectral set.
While the question originated in functional analysis, it has intriguing connections to many other areas of
mathematics, from convex geometry to wavelets, oscillatory integral estimates and number theory. The
conjecture is now known to be false in dimensions 3 and higher [8, 9, 20, 21, 33, 45]. Nonetheless, many
important cases remain open and continue to attract attention. Iosevich, Katz and Tao [14] proved in
2003 that Fuglede’s conjecture holds for convex sets inR2; an analogous result in higher dimensions was
proved only recently, by Greenfeld and Lev [12] for 𝑛 = 3 and by Lev and Matolcsi [29] for general n.
There has also been extensive work on the finite abelian group analogue of the conjecture [7, 6, 15, 16,
17, 18, 30, 31, 39, 40, 41, 48].

Combined with a sequence of results in [23, 26, 27], proving (T2) for all finite integer tiles would
resolve the ‘tiling implies spectrum’ part of Fuglede’s spectral set conjecture for all compact tiles of
the real line in dimension 1. Additionally, Dutkay and Lai [5] proved that if a similar property could be
established for spectral sets, this would also resolve the converse part of the conjecture for compact sets
in R. While proving (T2) for a more narrow class of integer tiles does not have that implication, it still
establishes one direction of Fuglede’s conjecture for that class of tiles in the finite group setting, as well
as for sets 𝐸 =

⋃
𝑎∈𝐴[𝑎, 𝑎 + 1] ⊂ R, where 𝐴 ⊂ Z is an integer tile in the permitted class [23].

2. Notation and preliminaries

2.1. Multisets and mask polynomials

Let 𝑀 ≥ 2 be a fixed integer. Usually, we will work in either Z𝑀 or Z𝑁 for some 𝑁 | 𝑀 . In the context
of the tiling problem, we reserve M for the tiling period and N for its divisors. We also reserve K for the
number of the distinct prime divisors of M, and use 𝑝1, . . . , 𝑝𝐾 to denote those divisors, so that

𝑀 =
𝐾∏
𝑖=1

𝑝𝑛𝑖𝑖 ,
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where 𝑝1, . . . , 𝑝𝐾 are distinct primes and 𝑛1, . . . , 𝑛𝐾 ∈ N. We fix this notation and use it throughout
the rest of the article. For a prime p, an integer m and a nonnegative integer 𝛼, we will say that 𝑝𝛼 ‖ 𝑚
if 𝑝𝛼 | 𝑚 but 𝑝𝛼+1 � 𝑚.

We use 𝐴(𝑋), 𝐵(𝑋), etc., to denote polynomials modulo 𝑋𝑀 − 1 with integer coefficients. If 𝐴(𝑋)
is such a polynomial, we define its weight function 𝑤𝐴 : Z𝑀 → Z so that 𝑤𝐴(𝑎) is the coefficient of
𝑋𝑎 in 𝐴(𝑋). Thus 𝐴(𝑋) =

∑
𝑎∈Z𝑀 𝑤𝐴(𝑎)𝑋

𝑎. If A has 0 or 1 coefficients, then 𝑤𝐴 is the characteristic
function of a set 𝐴 ⊂ Z𝑀 . However, we will also consider polynomials with integer coefficients not
necessarily equal to 0 or 1. In that case, 𝐴(𝑋) will correspond to a weighted multiset in Z𝑀 , which we
will also denote by A, with weights 𝑤𝐴(𝑎) assigned to each 𝑎 ∈ Z𝑀 . We will use M(Z𝑀 ) to denote
the family of all such weighted multisets in Z𝑀 , and reserve the notation 𝐴 ⊂ Z𝑀 for sets (with 0 and
1 weights). If 𝐴 ∈ M(Z𝑀 ), the polynomial 𝐴(𝑋) is sometimes called the mask polynomial of A. It
will usually be clear from the context whether A refers to the weighted multiset or the corresponding
polynomial; whenever there is any possibility of confusion, we will use A for the multiset and 𝐴(𝑋) for
the polynomial.

If 𝑁 | 𝑀 , then any 𝐴 ∈ M(Z𝑀 ) induces a weighted multiset 𝐴 mod 𝑁 inZ𝑁 , with the corresponding
mask polynomial 𝐴(𝑋) mod

(
𝑋𝑁 − 1

)
, and induced weights

𝑤𝑁
𝐴 (𝑥) =

∑
𝑥′ ∈Z𝑀 :𝑥′≡𝑥 mod 𝑁

𝑤𝐴(𝑥
′), 𝑥 ∈ Z𝑁 . (2.1)

For brevity, we will continue to write A and 𝐴(𝑋) for 𝐴 mod 𝑁 and 𝐴(𝑋) mod
(
𝑋𝑁 − 1

)
, respectively,

while working in Z𝑁 .
If 𝐴, 𝐵 ∈ M(Z𝑀 ), we will use 𝐴 + 𝐵 to indicate the weighted multiset corresponding to the sum of

mask polynomials, or, equivalently, the sum of weight functions:

𝑤𝐴+𝐵 (𝑥) = 𝑤𝐴(𝑥) + 𝑤𝐵 (𝑥), (𝐴 + 𝐵) (𝑋) = 𝐴(𝑋) + 𝐵(𝑋).

We will use the convolution notation 𝐴 ∗ 𝐵 to denote the weighted sumset of A and B, so that
(𝐴 ∗ 𝐵) (𝑋) = 𝐴(𝑋)𝐵(𝑋) and

𝑤𝐴∗𝐵 (𝑥) = (𝑤𝐴 ∗ 𝑤𝐵) (𝑥) =
∑
𝑦∈Z𝑀

𝑤𝐴(𝑥 − 𝑦)𝑤𝐵 (𝑦).

If one of the sets is a singleton, say 𝐴 = {𝑥}, we will simplify the notation and write 𝑥 ∗ 𝐵 = {𝑥} ∗ 𝐵.
The direct sum notation 𝐴 ⊕ 𝐵 is reserved for tilings – that is, 𝐴 ⊕ 𝐵 = Z𝑀 means that 𝐴, 𝐵 ⊂ Z𝑀 are
both sets and 𝐴(𝑋)𝐵(𝑋) = 𝑋𝑀−1

𝑋−1 mod
(
𝑋𝑀 − 1

)
.

Since we will not need to use derivatives of polynomials in this article, we will use notation such as
𝐴′, 𝐴′′, etc., to denote multisets and polynomials that need not have anything to do with the derivatives
𝑑
𝑑𝑋 𝐴(𝑋),

𝑑2

𝑑𝑋2 𝐴(𝑋) and so on.

2.2. Array coordinates

Suppose that 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 , where 𝑝1, . . . , 𝑝𝐾 are distinct primes and 𝑛𝑖 ∈ N. By the Chinese remainder

theorem, we have

Z𝑀 =
𝐾⊕
𝑖=1
Z𝑝𝑛𝑖𝑖

,

which we represent geometrically as a K-dimensional lattice. The tiling 𝐴 ⊕ 𝐵 = Z𝑀 can then be
interpreted as a tiling of that lattice.
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It will be useful to have an explicit coordinate system on Z𝑀 . We fix one as follows. Let 𝑀𝑖 =
𝑀/𝑝𝑛𝑖𝑖 =

∏
𝑗≠𝑖 𝑝

𝑛 𝑗
𝑗 ; then each 𝑥 ∈ Z𝑀 can be written uniquely as

𝑥 =
𝐾∑
𝑖=1

𝜋𝑖 (𝑥)𝑀𝑖 , 𝜋𝑖 (𝑥) ∈ Z𝑝𝑛𝑖𝑖
.

The mapping 𝑥 → (𝜋1 (𝑥), . . . , 𝜋𝑘 (𝑥)) identifies x with an element of Z𝑝𝑛1
1

× · · · × Z𝑝𝑛𝐾𝐾
. We will refer

to the K-tuple (𝜋1 (𝑥), . . . , 𝜋𝐾 (𝑥)) as the M-array coordinates of x.
We state a few easy properties for future reference.

Lemma 2.1.

(i) 𝑥 ≡ 𝜋𝑖 (𝑥)𝑀𝑖 mod 𝑝𝑛𝑖𝑖 .
(ii) (𝑥, 𝑀) =

∏𝐾
𝑖=1 𝑝

𝛾𝑖
𝑖 if and only if 𝑝𝛾𝑖𝑖 ‖ 𝜋𝑖 (𝑥) for each 𝑖 = 1, . . . , 𝐾 .

(iii) In particular, 𝑥 = 0 in Z𝑀 if and only if 𝜋𝑖 (𝑥) = 0 for each 𝑖 = 1, . . . , 𝐾 .
(iv) If 𝑥 =

∑
𝜋𝑖 (𝑥)𝑀𝑖 , 𝑦 =

∑
𝜋𝑖 (𝑦)𝑀𝑖 and 𝑥 + 𝑦 = 𝑧 =

∑
𝜋𝑖 (𝑧)𝑀𝑖 are the respective coordinate

representations, then 𝜋𝑖 (𝑧) ≡ 𝜋𝑖 (𝑥) + 𝜋𝑖 (𝑦) mod 𝑝𝑛𝑖𝑖 for each 𝑖 = 1, . . . , 𝑘 .

Each coordinate 𝜋𝑖 (𝑥) of 𝑥 ∈ Z𝑀 can be subdivided further into digits as follows. With Z𝑝𝑛𝑖𝑖
represented as

{
0, 1, . . . , 𝑝𝑛𝑖𝑖 − 1

}
with addition and multiplication modulo 𝑝𝑛𝑖𝑖 , we can write uniquely

𝜋𝑖 (𝑥) =
𝑛𝑖−1∑
𝑗=0

𝜋𝑖, 𝑗 (𝑥)𝑝
𝑗
𝑖 , 𝜋𝑖, 𝑗 (𝑥) ∈ {0, 1, . . . , 𝑝𝑖 − 1}.

Observe that (𝑥 − 𝑥 ′, 𝑀) =
∏𝐾

𝑗=1 𝑝
𝛾𝑖
𝑖 if and only if for each 𝑖 = 1, . . . , 𝐾 ,

𝛾𝑖 =

{
min

{
𝑗 : 𝜋𝑖, 𝑗 (𝑥) ≠ 𝜋𝑖, 𝑗 (𝑥

′)
}

if 𝜋𝑖 (𝑥) ≠ 𝜋𝑖 (𝑥
′),

𝑛𝑖 if 𝜋𝑖 (𝑥) = 𝜋𝑖 (𝑥
′).

(2.2)

2.3. Grids, planes, lines, fibers

Definition 2.2. Let 𝐷 | 𝑀 . A D-grid in Z𝑀 is a set of the form

Λ(𝑥, 𝐷) := 𝑥 + 𝐷Z𝑀 = {𝑥 ′ ∈ Z𝑀 : 𝐷 | (𝑥 − 𝑥 ′)}

for some 𝑥 ∈ Z𝑀 .

An important case of interest is as follows. Let 𝑁 | 𝑀 . If 𝑁 = 𝑝𝛼1
1 · · · 𝑝𝛼𝐾

𝐾 , with 𝛼1, . . . , 𝛼𝐾 ≥ 0, we
define

𝐷 (𝑁) := 𝑝
𝛾1
1 · · · 𝑝

𝛾𝐾
𝐾 ,

where 𝛾𝑖 = max(0, 𝛼𝑖 − 1) for 𝑖 = 1, . . . , 𝐾 . Then a 𝐷 (𝑁)-grid is a ‘top-level’ grid on the scale N, and
a natural setting to work on that scale.

While a grid Λ is always an arithmetic progression in Z𝑀 , it is often helpful to represent Z𝑀 by
a K-dimensional coordinate array as in Section 2.2 and, accordingly, assign a geometric interpretation
to Λ. We point out several useful special cases.

A line through 𝑥 ∈ Z𝑀 in the 𝑝𝑖 direction is the set

ℓ𝑖 (𝑥) := Λ(𝑥, 𝑀𝑖),
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and a (𝐾 − 1)-dimensional plane through 𝑥 ∈ Z𝑀 perpendicular to the 𝑝𝑖 direction is a set of the form

Π
(
𝑥, 𝑝𝛼𝑖

𝑖

)
:= Λ

(
𝑥, 𝑝𝛼𝑖

𝑖

)
. (2.3)

Note that formula (2.3) defines a plane on the scale 𝑀𝑖 𝑝
𝛼𝑖
𝑖 , which may be different from M.

An M-fiber in the 𝑝𝑖 direction is a set of the form 𝑥 ∗ 𝐹𝑖 , where 𝑥 ∈ Z𝑀 and

𝐹𝑖 = {0, 𝑀/𝑝𝑖 , 2𝑀/𝑝𝑖 , . . . , (𝑝𝑖 − 1)𝑀/𝑝𝑖}. (2.4)

Thus 𝑥 ∗ 𝐹𝑖 = Λ(𝑥, 𝑀/𝑝𝑖). (More complicated multiscale fiber chains will be defined later.) A set
𝐴 ⊂ Z𝑀 is M-fibered in the 𝑝𝑖 direction if there is a subset 𝐴′ ⊂ 𝐴 such that 𝐴 = 𝐴′ ∗ 𝐹𝑖 .

2.4. Cyclotomic polynomials and cyclotomic divisibility

We state a few basic facts about cyclotomic polynomials for future reference. By equation (1.2), we have

1 + 𝑋 + 𝑋2 + · · · + 𝑋𝑛−1 =
∏

𝑠 |𝑛,𝑠≠1
Φ𝑠 (𝑋). (2.5)

In particular, if p is a prime number, then Φ𝑝 (𝑋) = 1+𝑋 + · · · +𝑋 𝑝−1 and, more generally, by induction,

Φ𝑝𝛼 (𝑋) = Φ𝑝

(
𝑋 𝑝𝛼−1

)
= 1 + 𝑋 𝑝𝛼−1

+ 𝑋2𝑝𝛼−1
+ · · · + 𝑋 (𝑝−1) 𝑝𝛼−1

, 𝛼 ≥ 1.

Thus Φ𝑝𝛼 (1) = 𝑝, and this together with equation (2.5) implies that Φ𝑠 (1) = 1 for all s that are not
prime powers.

Suppose that 𝐴 ⊕ 𝐵 = Z𝑀 , with 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 as before. By equation (1.1), we have 𝐴(𝑋)𝐵(𝑋) =

1+𝑋+· · ·+𝑋𝑀−1 mod
(
𝑋𝑀 − 1

)
. For every prime power 𝑠 = 𝑝𝛼 | 𝑀 , we must haveΦ𝑠 (𝑋) | 𝐴(𝑋)𝐵(𝑋),

so that

𝑀 =
𝐾∏
𝑖=1

𝑛𝑖∏
𝛼𝑖=1

Φ𝑝
𝛼𝑖
𝑖
(1) | 𝐴(1)𝐵(1) = |𝐴| |𝐵 | = 𝑀.

It follows that

|𝐴| =
∏
𝑠∈𝑆𝐴

Φ𝑠 (1)

and similarly for B, with 𝑆𝐴, 𝑆𝐵 defined as in Theorem 1.1; this is the proof of the tiling condition (T1)
given in [2]. Moreover, for any prime power 𝑠 = 𝑝𝛼𝑖 | 𝑀 , we have that Φ𝑠 (𝑋) divides exactly one of
𝐴(𝑋) and 𝐵(𝑋). (This is not true for 𝑠 | 𝑀 with two or more distinct prime factors. For such s, the
corresponding cyclotomic polynomial Φ𝑠 (𝑋) may divide either one or both of 𝐴(𝑋) and 𝐵(𝑋).)

Divisibility by prime-power cyclotomics has the following combinatorial interpretation. For 𝐴 ⊂ Z𝑀 ,
the condition Φ𝑝𝑖 | 𝐴 means that the elements of A are uniformly distributed modulo 𝑝𝑖 , so that

|𝐴 ∩ Π(𝑥, 𝑝𝑖) | = |𝐴|/𝑝𝑖 ∀𝑥 ∈ Z𝑀 .

More generally, for 1 ≤ 𝛼 ≤ 𝑛𝑖 , we have Φ𝑝𝛼𝑖
(𝑋) | 𝐴(𝑋) if and only if��𝐴 ∩ Π

(
𝑥, 𝑝𝛼

𝑖

) �� = 1
𝑝𝑖

���𝐴 ∩ Π
(
𝑥, 𝑝𝛼−1

𝑖

)��� ∀𝑥 ∈ Z𝑀 , (2.6)
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so that the elements of A are uniformly distributed mod 𝑝𝛼
𝑖 within each residue class mod 𝑝𝛼−1

𝑖 . In
particular, this implies the following bound on the number of points of a tile in a plane on a scale
𝑀𝑖 𝑝

𝑛𝑖−𝛼𝑖
𝑖 or, equivalently, in an arithmetic progression of step 𝑝𝑛𝑖−𝛼𝑖𝑖 :

Lemma 2.3 (Plane bound). Let 𝐴 ⊕ 𝐵 = Z𝑀 , where 𝑀 =
∏

𝑗 𝑝
𝑛 𝑗
𝑗 and |𝐴| =

∏
𝑗 𝑝

𝛽 𝑗
𝑗 . Then for every

𝑥 ∈ Z𝑀 and 0 ≤ 𝛼𝑖 ≤ 𝑛𝑖 we have ��𝐴 ∩ Π
(
𝑥, 𝑝𝑛𝑖−𝛼𝑖𝑖

) �� ≤ 𝑝𝛼𝑖
𝑖

∏
𝜈≠𝑖

𝑝
𝛽𝜈
𝜈 . (2.7)

This bound is, in general, sharp. For example, if 𝐴 ⊂ 𝑝𝑛𝑖−1
𝑖 Z𝑀 and Φ𝑝

𝑛𝑖
𝑖

| 𝐴, then
��𝐴 ∩ Π

(
𝑥, 𝑝𝑛𝑖𝑖

) �� =
|𝐴|/𝑝𝑖 , so that estimate (2.7) holds with equality for 𝛼𝑖 = 0. Examples of sets 𝐴 ⊂ Z𝑀 with the
foregoing properties are easy to construct using the standard tiling sets defined in Section 3.

We also note the following. Let 𝑁 | 𝑀 . Then the condition

Φ𝑠 | 𝐴 ∀𝑠 | 𝑁, 𝑠 ≠ 1,

means that 1 + 𝑋 + · · · + 𝑋𝑁−1 divides 𝐴(𝑋) or, equivalently, that the elements of A are uniformly
distributed mod N. For example, let 𝑁 = 𝑝1𝑝2 · · · 𝑝𝐾 . Suppose that |𝐴| = 𝑁 and that Φ𝑝𝑖 | 𝐴 for all
𝑖 = 1, . . . , 𝐾 . Then A satisfies (T2) if and only if Φ𝑠 | 𝐴 for all 𝑠 | 𝑁 with 𝑠 ≠ 1 or, equivalently, if and
only if each residue class mod N contains exactly one element of A.

2.5. Divisor set and divisor exclusion

Definition 2.4 (Divisor set). For a set 𝐴 ⊂ Z𝑀 , define

Div(𝐴) = Div𝑀 (𝐴) := {(𝑎 − 𝑎′, 𝑀) : 𝑎, 𝑎′ ∈ 𝐴}. (2.8)

Informally, we will refer to the elements of Div(𝐴) as the divisors of A or differences in A. We also define

Div𝑁 (𝐴) := {(𝑎 − 𝑎′, 𝑁) : 𝑎, 𝑎′ ∈ 𝐴}

for 𝐴 ⊂ Z𝑀 and 𝑁 | 𝑀 .

Divisor sets will be a key concept in our analysis, thanks to the following theorem due to Sands [37]:

Theorem 2.5 (Divisor exclusion [37]). If 𝐴, 𝐵 ⊂ Z𝑀 are sets, then 𝐴⊕𝐵 = Z𝑀 if and only if |𝐴| |𝐵 | = 𝑀
and

Div(𝐴) ∩ Div(𝐵) = {𝑀}. (2.9)

An alternative proof of Sands’ theorem, based on Theorem 4.7 and due to [11], is included in
Remark 4.10.

3. A reformulation of (T2)

3.1. Standard tiling complements

We continue to assume that 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 , where 𝑝1, . . . , 𝑝𝐾 are distinct primes and 𝑛𝑖 > 0. We equip

Z𝑀 with the array coordinate system from Section 2.2 and use the notation of that section. Recall also
that the divisor set Div(𝐴) for a set 𝐴 ⊂ Z𝑀 was defined in definition (2.8) which is a little bit circular.

Definition 3.1. Let 𝐴, 𝐵 be sets in Z𝑀 such that 𝐴 ⊕ 𝐵 = Z𝑀 . Let

𝔄𝑖 (𝐴) =
{
𝛼𝑖 ∈ {1, 2, . . . , 𝑛𝑖} : Φ𝑝

𝛼𝑖
𝑖
(𝑋) | 𝐴(𝑋)

}
.
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The standard tiling set 𝐴♭ is defined via its mask polynomial

𝐴♭ (𝑋) =
𝐾∏
𝑖=1

∏
𝛼𝑖 ∈𝔄𝑖 (𝐴)

Φ𝑝𝑖

(
𝑋𝑀𝑖 𝑝

𝛼𝑖−1
𝑖

)
=

𝐾∏
𝑖=1

∏
𝛼𝑖 ∈𝔄𝑖 (𝐴)

(
1 + 𝑋𝑀𝑖 𝑝

𝛼𝑖−1
𝑖 + · · · + 𝑋 (𝑝𝑖−1)𝑀𝑖 𝑝

𝛼𝑖−1
𝑖

)
. (3.1)

Figure 1. The standard sets 𝐴♭, 𝐵♭ ⊂ Z𝑝2
𝑖 𝑝

2
𝑗

with 𝑝𝑖 = 3, 𝑝 𝑗 = 5 and Φ𝑝2
𝑖
Φ𝑝2

𝑗
| 𝐴,Φ𝑝𝑖Φ𝑝 𝑗 | 𝐵.

Lemma 3.2. Define 𝐴♭ as before. Then 𝐴♭ (𝑋) satisfies (T2) and has the same prime-power cyclotomic
divisors as 𝐴(𝑋).

Proof. Set 𝛼 ∈ {1, 2, . . . , 𝑛𝑖}. Then Φ𝑝𝛼𝑖
(𝑋) | 𝐴♭ (𝑋) if and only if it divides one of the factors

Φ𝑝𝑖 (𝑋
𝑀𝑖 𝑝

𝛼𝑖−1
𝑖 ) with 𝛼𝑖 ∈ 𝔄𝑖 (𝐴). By Lemma 3.3, this happens if and only if 𝛼 = 𝛼𝑖 . Furthermore, in

that case we also have Φ𝑑𝑝
𝛼𝑖
𝑖
(𝑋) | 𝐴♭ (𝑋) for all 𝑑 | 𝑀𝑖 , so that in particular (T2) holds for 𝐴♭. �

Lemma 3.3. Let

Ψ(𝑋) = 1 + 𝑋𝑁 𝑝𝛼−1
+ 𝑋2𝑁 𝑝𝛼−1

+ · · · + 𝑋 (𝑝−1)𝑁 𝑝𝛼−1
= Φ𝑝

(
𝑋𝑁 𝑝𝛼−1

)
,

where (𝑁, 𝑝) = 1. Then Φ𝑠 (𝑋) | Ψ(𝑋) if and only if 𝑠 = 𝑑𝑝𝛼 for some 𝑑 | 𝑁 .

Proof. We have Φ𝑠 (𝑋) | Ψ(𝑋) if and only if Ψ
(
𝑒2𝜋𝑖/𝑠 ) = 0 – that is,

(
𝑒2𝜋𝑖/𝑠 )𝑁 𝑝𝛼−1

is a root of Φ𝑝 . This
happens if and only if

(
𝑁𝑝𝛼−1) /𝑠 = 𝑘/𝑝 for some integer k such that (𝑘, 𝑝) = 1. Equivalently, 𝑁𝑝𝛼 = 𝑘𝑠

with (𝑘, 𝑝) = 1. This means that 𝑘 | 𝑁 and 𝑠 = 𝑁
𝑘 𝑝

𝛼 = 𝑑𝑝𝛼, where 𝑑 = 𝑁/𝑘 is a divisor of N. �

Observe that the standard set 𝐴♭, while not necessarily a grid, is highly structured. In terms of array
coordinates, we have

𝐴♭ =

⎧⎪⎪⎨⎪⎪⎩𝑥 ∈ Z𝑀 : 𝜋𝑖 (𝑥) =
∑

𝛼𝑖 ∈𝔄𝑖 (𝐴)

𝜋𝑖,𝛼𝑖−1 (𝑥)𝑝
𝛼𝑖−1
𝑖 , 𝜋𝑖,𝛼𝑖−1(𝑥) ∈ {0, 1, . . . , 𝑝𝑖 − 1}

⎫⎪⎪⎬⎪⎪⎭
=

{
𝑥 ∈ Z𝑀 : 𝜋𝑖,𝛼𝑖−1(𝑥) = 0 for all 𝑖, 𝛼𝑖 such that 𝛼𝑖 ∉ 𝔄𝑖 (𝐴)

}
. (3.2)

The standard divisor set for A is

Div
(
𝐴♭

)
=

{
𝐾∏
𝑖=1

𝑝𝛼𝑖−1
𝑖 : 𝛼𝑖 ∈ 𝔄𝑖 (𝐴) ∪ {𝑛𝑖 + 1}, 𝑖 = 1, . . . , 𝐾

}
. (3.3)

We will refer to the elements of Div(𝐴♭) as standard divisors of A. The set 𝐵♭ is defined similarly.
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With these definitions, we have the following alternative formulations of (T2):

Proposition 3.4. Suppose that 𝐴 ⊕ 𝐵 = Z𝑀 . Then the following are equivalent:

(i) Div(𝐴♭) ∩ Div(𝐵) = {𝑀}.
(ii) 𝐴♭ ⊕ 𝐵 = Z𝑀 .

(iii) B satisfies (T2).
(iv)

��𝐵 ∩ (𝑥 ∗ 𝐴♭)
�� = 1 for every 𝑥 ∈ Z𝑀 .

Proof. The equivalence between (i) and (ii) is a special case of Theorem 2.5. The implication (iii) ⇒ (ii)
follows from the construction in the proof of [2, Theorem A]; the converse implication (ii) ⇒ (iii) was
not pointed out there, but it also follows from the same construction. Specifically, by Lemma 3.3, 𝐴♭ (𝑋)
is divisible by every cyclotomic polynomial Φ𝑠 such that 𝑝𝛼

𝑖 ‖ 𝑠 for some 𝑖 ∈ {1, . . . , 𝐾} and 𝛼 ≥ 1
such that Φ𝑝𝛼𝑖

| 𝐴. In other words, the only s such that 𝑠 | 𝑀 but Φ𝑠 does not divide 𝐴(𝑋) are those with
𝑠 =

∏𝑘
𝑖=1 𝑝

𝛽𝑖
𝑖 , where for each i we have either 𝛽𝑖 = 0 or Φ

𝑝
𝛽𝑖
𝑖
(𝑋) | 𝐵(𝑋). Let S𝐵 be the set of such s.

If B satisfies (T2), then all Φ𝑠 with 𝑠 ∈ S𝐵 divide 𝐵(𝑋), which implies (ii). Conversely, suppose that
(ii) holds. Then each Φ𝑠 with 𝑠 | 𝑀 has to divide 𝐴(𝑋)𝐵(𝑋). By Lemma 3.3 again, if 𝑠 ∈ S𝐵, then Φ𝑠

does not divide 𝐴(𝑋), so it must divide 𝐵(𝑋). Therefore (T2) holds for B.
For (iv), we shall prove that (ii) implies (iv) and (iv) implies (i). Suppose that (ii) holds. We first

claim that ���𝐵 ∩
(
𝑥 ∗ 𝐴♭

)��� ≤ 1 ∀𝑥 ∈ Z𝑀 . (3.4)

Indeed, if 𝑏, 𝑏′ ∈ 𝐵∩ (𝑥 ∗ 𝐴♭), then 𝑏 = 𝑥 +𝑎 and 𝑏′ = 𝑥 +𝑎′ for some 𝑎, 𝑎′ ∈ 𝐴♭, so that 𝑏−𝑎 = 𝑏′ −𝑎′,
contradicting (ii) unless 𝑏 = 𝑏′ and 𝑎 = 𝑎′.

It remains to prove that (𝑥0 ∗ 𝐴
♭) ∩ 𝐵 ≠ ∅ for each 𝑥0 ∈ Z𝑀 . Set 𝑥0 ∈ Z𝑀 . Since Div(𝐵) = Div(−𝐵),

we have 𝐴♭ ⊕ (−𝐵) = Z𝑀 by Theorem 2.5. It follows that there must exist 𝑎0 ∈ 𝐴♭ and −𝑏0 ∈ (−𝐵)
such that 𝑎0 − 𝑏0 = −𝑥0. The latter means 𝑎0 + 𝑥0 = 𝑏0, implying (𝑥0 ∗ 𝐴

♭) ∩ 𝐵 ≠ ∅, as claimed. Hence
(iv) follows.

Finally, suppose that (i) fails. Then there exist 𝑏, 𝑏′ ∈ 𝐵 and 𝑚 ∈ Div(𝐴♭) \ {𝑀} such that
(𝑏 − 𝑏′, 𝑀) = 𝑚. But then 𝑏, 𝑏′ ∈ 𝐵 ∩ (𝑏 ∗ 𝐴♭) with 𝑏 ≠ 𝑏′, contradicting (iv). �

Remark 3.5. If 𝐴 ⊕ 𝐵 tiles Z𝑀 , where 𝑀 = 𝑝𝑛 is a prime power, then (T2) holds vacuously for both
sets. Hence we have both 𝐴 ⊕ 𝐵♭ = Z𝑀 and 𝐴♭ ⊕ 𝐵 = Z𝑀 .

It is tempting to try to prove that if 𝐴 ⊕ 𝐵 = Z𝑀 , then we should have Div(𝐴♭) ⊆ Div(𝐴). By
Proposition 3.4, this would imply that B satisfies (T2). However, the following example shows that
Div(𝐴) does not in fact have to contain Div(𝐴♭):

Example 3.6. Let 𝑀 = 𝑝2𝑞, where 𝑝, 𝑞 are distinct primes with 𝑝 > 𝑞, and let A be the set of numbers
whose array coordinates in Z𝑀 are (𝑖 + 𝑗 𝑝, 𝑖), 𝑖 = 0, 1, . . . , 𝑞 − 1, 𝑗 = 0, 1, . . . , 𝑝 − 1. Then 𝐴 ⊕ 𝐵 = Z𝑀
with 𝐵 = {( 𝑗 , 0) : 𝑗 = 0, 1, . . . , 𝑝 − 1}, and both sets satisfy (T2). Since Φ𝑝2 and Φ𝑞 divide 𝐴(𝑋), we
have 𝐴♭ = {( 𝑗 𝑝, 𝑖) : 𝑖 = 0, 1, . . . , 𝑞 − 1, 𝑗 = 0, 1, . . . , 𝑝 − 1}, and in particular 𝑝 ∈ Div(𝐴♭). However,
𝑝 ∉ Div(𝐴). To see this, consider 𝑎, 𝑎′ ∈ 𝐴 with coordinates (𝑖 + 𝑗 𝑝, 𝑖) and (𝑖′ + 𝑗 ′𝑝, 𝑖′). If 𝑖 ≠ 𝑖′, then
(𝑎 − 𝑎′, 𝑀) = 1. If, on the other hand, 𝑖 = 𝑖′ but 𝑎 ≠ 𝑎′, then (𝑎 − 𝑎′, 𝑀) = 𝑝𝑞.

This shows that the condition Div(𝐴♭) ⊆ Div(𝐴) is not necessary for a tiling, nor is it simply a
consequence of 𝐴(𝑋) having the requisite prime-power cyclotomic divisors. Note, however, that in this
example we still have 𝑝 ∉ Div(𝐵).

3.2. (T2)-equivalence

Definition 3.7. We say that the tilings 𝐴 ⊕ 𝐵 = Z𝑀 and 𝐴′ ⊕ 𝐵 = Z𝑀 are (T2)-equivalent if

𝐴 satisfies (T2) ⇔ 𝐴′ satisfies (T2). (3.5)
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Since the sets A and 𝐴′ tile the same group Z𝑀 with the same tiling complement B, they must have the
same cardinality and the same prime-power cyclotomic divisors, as discussed in Section 2.4. For brevity,
we will sometimes say simply that A is (T2)-equivalent to 𝐴′ if both M and B are clear from context.

In practice, 𝐴′ will be a set obtained from A using certain permitted manipulations such as fiber
shifts. We will use (T2)-equivalence to reduce proving (T2) for the initial tiling to proving (T2) for
related tilings that are increasingly more structured. In particular, the following reduction is sufficient
to prove (T2) for both sets in the given tiling:

Corollary 3.8. Suppose that the tiling 𝐴 ⊕ 𝐵 = Z𝑀 is (T2)-equivalent to the tiling 𝐴♭ ⊕ 𝐵 = Z𝑀 . Then
A and B satisfy (T2).

Proof. Since 𝐴♭ satisfies (T2), A does also by equivalence (3.5). By Proposition 3.4, B satisfies (T2) as
well. �

4. Box product

4.1. Box-product characterisation of tiling

We continue to assume that 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 , where 𝑝1, . . . , 𝑝𝐾 are distinct primes. We will use 𝜙 and

𝜇 to denote, respectively, the Euler totient function and the Möbius function: if 𝑛 =
∏𝐿

𝑗=1 𝑞
𝑟 𝑗
𝑗 , where

𝑞1, . . . , 𝑞𝐿 are distinct primes, then

𝜙(𝑛) = 𝑛
𝐿∏
𝑗=1

𝑞 𝑗 − 1
𝑞 𝑗

=
𝐿∏
𝑗=1

(
𝑞 𝑗 − 1

)
𝑞
𝑟 𝑗−1
𝑗 ,

𝜇(𝑛) =

{
(−1)𝐿 if 𝑟1 = 𝑟2 = · · · = 𝑟𝐿 = 1,
0 if ∃ 𝑗 ∈ {1, . . . , 𝐿} such that 𝑟 𝑗 ≥ 2.

Let 𝑁 | 𝑀 . Reordering the primes if necessary, we may assume that 𝑁 = 𝑝𝛼1
1 · · · 𝑝𝛼𝑘

𝑘 , with 1 ≤ 𝑘 ≤ 𝐾
and 𝛼1, . . . , 𝛼𝑘 ≥ 1.

Definition 4.1 (N-boxes). An N-box is a k-dimensional matrix

A =
(
A(𝛾1 ,...,𝛾𝑘 )

)
0≤𝛾 𝑗 ≤𝛼𝑗 , 𝑗=1,...,𝑘

of size (𝛼1 + 1) × · · · × (𝛼𝑘 + 1), with entries A(𝛾1 ,...,𝛾𝑘 ) ∈ R. Since each multi-index (𝛾1, . . . , 𝛾𝑘 ) with
0 ≤ 𝛾 𝑗 ≤ 𝛼 𝑗 can be uniquely associated with a divisor m of N given by 𝑚 = 𝑝

𝛾1
1 · · · 𝑝

𝛾𝑘
𝑘 , we will use

such divisors to index the entries of A, so that

A = (A𝑚)𝑚 |𝑁 , A𝑚 = A(𝛾1 ,...,𝛾𝑘 ) for 𝑚 = 𝑝
𝛾1
1 · · · 𝑝

𝛾𝑘
𝑘 .

For any 𝑁 | 𝑀 , N-boxes form a vector space over R, with addition of boxes and multiplication of a
box by a scalar defined in the obvious way. We also equip this space with an inner product structure as
follows:

Definition 4.2 (Box product). If A and B are N-boxes, define

〈A,B〉 =
∑
𝑚 |𝑁

1
𝜙(𝑁/𝑚)

A𝑚B𝑚. (4.1)

Of course, this equation depends on N, but since N is determined by the fact of A and B being
N-boxes, we will not use additional subscripts or superscripts to indicate that.
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The N-boxes associated with multisets in Z𝑁 are as follows:

Definition 4.3 (Boxes associated with multisets). Set 𝐴 ∈ M(Z𝑀 ) and let 𝑁 | 𝑀 . Consider the induced
multiset 𝐴 ∈ M(Z𝑁 ), with the weight function mod N defined in equation (2.1). For 𝑥 ∈ Z𝑁 , define
A𝑁 [𝑥] =

(
A𝑁

𝑚 [𝑥]
)
𝑚 |𝑁 , where

A𝑁
𝑚 [𝑥] =

∑
𝑎∈Z𝑁 :(𝑥−𝑎,𝑁 )=𝑚

𝑤𝑁
𝐴 (𝑎).

In particular, if 𝐴 ⊂ Z𝑁 is a set, we have

A𝑁
𝑚 [𝑥] = #{𝑎 ∈ 𝐴 : (𝑥 − 𝑎, 𝑁) = 𝑚}.

If 𝑁 = 𝑀 , we will skip the superscript and write A𝑚 [𝑥] = A𝑀
𝑚 [𝑥] whenever there is no possibility of

confusion.

Theorem 4.4 explains the reason for Definition 4.2. The theorem is based on [11, Theorem 1] (see
Sections 4.2 and 4.3 for details). The equivalence between 𝐴⊕𝐵 = Z𝑀 and the condition in (ii) provides
an alternative proof of Theorem 2.5; however, Sands’ proof is easier and does not require Theorem 4.4.
The point of Theorem 4.4 is that tiling also implies the formally stronger condition (4.2) for all 𝑁 | 𝑀
and 𝑥, 𝑦 ∈ Z𝑀 .

Theorem 4.4 (Box-product characterisation of tiling).

(i) Suppose that 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling. Then for any 𝑁 | 𝑀 and any 𝑥, 𝑦 ∈ Z𝑀 , we have〈
A𝑁 [𝑥],B𝑁 [𝑦]

〉
=

|𝐴| |𝐵 |

𝑁
=
𝑀

𝑁
. (4.2)

In particular, 〈
A𝑀 [𝑥],B𝑀 [𝑦]

〉
= 1 ∀𝑥, 𝑦 ∈ Z𝑀 . (4.3)

(ii) Conversely, suppose that 𝐴, 𝐵 ⊂ Z𝑀 are sets such that |𝐴| |𝐵 | = 𝑀 and
〈
A𝑀 [𝑎],B𝑀 [𝑏]

〉
= 1 for

all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Then 𝐴 ⊕ 𝐵 = Z𝑀 .

Corollary 4.5. Under the assumptions of Theorem 4.4, let L𝑁 (𝐴) be the linear space spanned by the
boxes A𝑁 [𝑥] – that is,

L𝑁 (𝐴) =

{ ∑
𝑥∈Z𝑁

𝑐𝑥A
𝑁 [𝑥] : 𝑐𝑥 ∈ R

}
,

and similarly for B. Then for any N-boxes A ∈ L𝑁 (𝐴) and B ∈ L𝑁 (𝐵), we have

〈A,B〉 =
1
𝑁
Σ(A)Σ(B), (4.4)

where Σ(A) =
∑

𝑚 |𝑁 A𝑚.

N-boxes A𝑁 [𝑥], 𝑥 ∈ Z𝑀 , are a convenient way of encoding structural information about A.
Theorem 4.4 provides a tiling criterion for 𝐴 ⊕ 𝐵 = Z𝑀 in terms of the box product, and it is also possi-
ble to express cyclotomic divisibility in terms of N-boxes. However, this convenience comes with some
loss of information. In [24], we have to work with the actual sets A and B, not just with the N-boxes
representing them. We do not know whether it is possible to give a proof of properties such as (T2)
purely in terms of the N-boxes associated with the sets.
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Remark 4.6. The equivalence between Proposition 3.4(iii) and (iv) can be stated in terms of M-boxes.
Suppose that 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling. Then the following are equivalent:

(i) B satisfies (T2).
(ii)

∑
𝑚∈Div(𝐴♭) B𝑚 [𝑦] = 1 for all 𝑦 ∈ Z𝑀 .

Indeed, Proposition 3.4(iv) can be rewritten as follows: For any 𝑦 ∈ Z𝑀 , there exist unique 𝑏 ∈ 𝐵 and
𝑎 ∈ 𝐴♭ such that 𝑏 = 𝑦 + 𝑎, or equivalently, 𝑦 − 𝑏 = −𝑎. Since {𝑎 ∈ Z𝑀 : (−𝑎, 𝑀) ∈ Div(𝐴♭)} = 𝐴♭,
this implies the claim.

4.2. A Fourier-analytic identity

Fix 𝑁 = 𝑝𝛼1
1 · · · 𝑝𝛼𝑘

𝑘 , where 𝑝1, . . . , 𝑝𝑘 are distinct primes and 𝛼1, . . . , 𝛼𝑘 ∈ N. Set 𝐴, 𝐵, 𝐶, 𝐷 ∈
M(Z𝑁 ). For 𝑚 | 𝑁 , we define

A𝑁
𝑚 [𝐶] :=

∑
𝑐∈𝐶

A𝑁
𝑚 [𝑐]𝑤𝐶 (𝑐) =

∑
𝑎,𝑐∈Z𝑁

𝑤𝐴(𝑎)𝑤𝐶 (𝑐)1(𝑎−𝑐,𝑁 )=𝑚.

In particular, if 𝐴(𝑋) is a polynomial with 0 or 1 coefficients corresponding to a set 𝐴 ⊂ Z𝑁 , then

A𝑁
𝑚 [𝐴] = #{(𝑎, 𝑎′) ∈ 𝐴 × 𝐴 : (𝑎 − 𝑎′, 𝑁) = 𝑚}.

This defines N-boxes in the sense of Definition 4.3, and in particular we may consider the box product〈
A𝑁 [𝐶],B𝑁 [𝐷]

〉
=

∑
𝑚 |𝑁

1
𝜙(𝑁/𝑚)

A𝑁
𝑚 [𝐶]B𝑁

𝑚 [𝐷] .

The following theorem is a slight generalisation of the main identity from [11]. Specifically, [11,
Theorem 1] states that equation (4.6) holds when 𝐴(𝑋) and 𝐵(𝑋) are polynomials corresponding
to multisets 𝐴, 𝐵 ⊂ Z𝑁 . We will need an extension of it to four polynomials, not necessarily with
nonnegative coefficients. The proof is essentially the same, but since [11] remains unpublished, we
include it here for completeness.

Theorem 4.7. Let 𝐴(𝑋), 𝐵(𝑋), 𝐶 (𝑋), 𝐷 (𝑋) be polynomials modulo 𝑋𝑁 − 1 with integer coefficients.
Then

〈
A𝑁 [𝐶],B𝑁 [𝐷]

〉
=

∑
𝑑 |𝑁

1
𝑁𝜙(𝑑)

⎡⎢⎢⎢⎢⎣
∑

𝜁 :Φ𝑑 (𝜁 )=0
𝐴(𝜁)𝐶 (𝜁)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∑
𝜁 :Φ𝑑 (𝜁 )=0

𝐵(𝜁)𝐷 (𝜁)

⎤⎥⎥⎥⎥⎦ . (4.5)

In particular, 〈
A𝑁 [𝐴],B𝑁 [𝐵]

〉
=

∑
𝑑 |𝑁

1
𝑁𝜙(𝑑)

E𝑑 (𝐴)E𝑑 (𝐵), (4.6)

where

E𝑑 (𝐴) =
∑

𝜁 :Φ𝑑 (𝜁 )=0
|𝐴(𝜁) |2.

The rest of this section is devoted to the proof of Theorem 4.7. We will use the discrete Fourier
transform in Z𝑁 : If 𝑓 : Z𝑁 → C is a function, then

𝑓̂ (𝜉) =
∑
𝑥∈Z𝑁

𝑓 (𝑥)𝑒2𝜋𝑖𝑥 𝜉/𝑁 , 𝜉 ∈ Z𝑁 .
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Lemma 4.8. Define

Λ𝑚 := {𝑥 ∈ Z𝑁 : 𝑚 | 𝑥},

𝐻𝑚 := {𝑥 ∈ Z𝑁 : (𝑥, 𝑁) = 𝑚} = Λ𝑚 \
⋃

𝑚′:𝑚 |𝑚′ |𝑁 ,𝑚′≠𝑚

Λ𝑚′ .

Then 1̂𝐻𝑚 (𝜉) = 𝐺 𝜉 (𝑁/𝑚), where

𝐺 𝜉 (𝑣) =
∑

𝑑 | (𝑣, 𝜉 )

𝜇(𝑣/𝑑)𝑑. (4.7)

Proof. Using the fact that

1̂Λ𝑚 (𝜉) =
𝑁

𝑚
1Λ𝑁 /𝑚

(𝜉),

we get by inclusion-exclusion

1̂𝐻𝑚 (𝜉) =
∑
𝑑 | 𝑁𝑚

𝜇(𝑑)%1Λ𝑚𝑑 (𝜉)
=

∑
𝑑 | 𝑁𝑚

𝜇(𝑑)
𝑁

𝑚𝑑
1Λ𝑁 /𝑚𝑑

(𝜉)

=
∑
𝑑′ | 𝑁𝑚

𝜇

(
𝑁

𝑚𝑑 ′

)
𝑑 ′1Λ𝑑 (𝜉)

=
∑

𝑑′ | ( 𝑁𝑚 , 𝜉)

𝜇

(
𝑁

𝑚𝑑 ′

)
𝑑 ′

= 𝐺 𝜉 (𝑁/𝑚).

�

Proposition 4.9. We have∑
𝑣 |𝑁

1
𝜙(𝑣)

𝐺 𝜉 (𝑣)𝐺 𝜉 ′ (𝑣) =

{
𝑁

𝜙 (𝑁 /𝑑) if (𝜉, 𝑁) = (𝜉 ′, 𝑁) = 𝑑,

0 if (𝜉, 𝑁) ≠ (𝜉 ′, 𝑁).
(4.8)

Proof. We first claim that for every 𝜉, the function 𝐺 𝜉 (𝑣) is multiplicative in v. Indeed, let (𝑥, 𝑦) = 1,
(𝑥, 𝜉) = 𝑡 and (𝑦, 𝜉) = 𝑠. Then (𝑡, 𝑠) = 1 and (𝑥𝑦, 𝜉) = 𝑡𝑠. Writing 𝑢 = 𝑢′ · 𝑢′′, 𝑢′ | 𝑥 and 𝑢′′ | 𝑦, we get

𝐺 𝜉 (𝑥𝑦) =
∑

𝑢 | (𝑥𝑦, 𝜉 )

𝜇
( 𝑥𝑦
𝑢

)
𝑢 =

∑
𝑢′ | (𝑥, 𝜉 ) ,𝑢′′ | (𝑦, 𝜉 )

𝜇
( 𝑥
𝑢′

)
𝜇

( 𝑦
𝑢′′

)
𝑢′𝑢′′ = 𝐺 𝜉 (𝑥)𝐺 𝜉 (𝑦).

Therefore, 𝐺 𝜉 (𝑣) is entirely determined by its values 𝐺 𝜉 (𝑣) on prime powers 𝑝 𝑗
𝑖 , 𝑗 = 0, 1, . . . , 𝛼𝑖 ,

𝑖 = 1, . . . , 𝑘 . Let 𝜉 = 𝑝𝜈1
1 · · · 𝑝𝜈𝑘𝑘 . Then 𝑝𝜅𝑖 ‖

(
𝑝
𝑗
𝑖 , 𝜉

)
for 𝜅 = min( 𝑗 , 𝜈𝑖). If 𝑗 = 0, we have 𝜅 = 0 and

𝐺 𝜉
(
𝑝0
𝑖

)
= 𝐺 𝜉 (1) = 1. If 𝑗 ≥ 1, we have

𝐺 𝜉

(
𝑝
𝑗
𝑖

)
=

∑
𝑢 |𝑝𝜅𝑖

𝜇

(
𝑝
𝑗
𝑖

𝑢

)
𝑢 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝
𝑗
𝑖 − 𝑝

𝑗−1
𝑖 if 𝜅 = 𝑗 ,

−𝑝
𝑗−1
𝑖 if 𝜅 = 𝑗 − 1,

0 if 𝜅 < 𝑗,
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which is equivalent to

𝐺 𝜉

(
𝑝
𝑗
𝑖

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝
𝑗
𝑖 − 𝑝

𝑗−1
𝑖 = 𝜙

(
𝑝
𝑗
𝑖

)
if 𝑗 ≤ 𝜈𝑖 ,

−𝑝𝜈𝑖𝑖 if 𝑗 = 𝜈𝑖 + 1,
0 if 𝑗 > 𝜈𝑖 + 1.

(4.9)

Next, if F is a multiplicative function, then

∑
𝑣 |𝑁

𝐹 (𝑣) =
∑

0≤ 𝑗1≤𝛼1 ,...,0≤ 𝑗𝑘 ≤𝛼𝑘

𝐹
(
𝑝
𝑗1
1 · · · 𝑝

𝑗𝑘
𝑘

)
=

𝑘∏
𝑖=1

*+,
𝛼𝑖∑
𝑗𝑖=0

𝐹
(
𝑝
𝑗𝑖
𝑖

)-./ .
Applying this with 𝐹 (𝑣) = 𝐺 𝜉 (𝑣)𝐺 𝜉 ′ (𝑣) for fixed 𝜉, 𝜉 ′, we get

∑
𝑣 |𝑁

1
𝜙(𝑣)

𝐺 𝜉 (𝑣)𝐺 𝜉 ′ (𝑣) =
𝑘∏
𝑖=1

*++,
𝛼𝑖∑
𝑗𝑖=0

1

𝜙
(
𝑝
𝑗𝑖
𝑖

)𝐺 𝜉

(
𝑝
𝑗𝑖
𝑖

)
𝐺 𝜉 ′

(
𝑝
𝑗𝑖
𝑖

)-../ . (4.10)

Fix a prime divisor 𝑝𝑖 | 𝑁 , and consider the corresponding factor in equation (4.10). Suppose that
0 ≤ 𝜈, 𝜈′ ≤ 𝛼𝑖 are such that 𝑝𝜈𝑖 ‖ 𝜉, 𝑝𝜈

′

𝑖 ‖ 𝜉 ′. Without loss of generality, we may assume that 𝜈 ≤ 𝜈′. In
accordance with equation (4.9), we have three cases.

◦ If 𝜈 < 𝜈′ ≤ 𝛼𝑖 , then 𝜈 + 1 ≤ 𝛼𝑖 and

𝛼𝑖∑
𝑗=0

1

𝜙
(
𝑝
𝑗
𝑖

)𝐺 𝜉

(
𝑝
𝑗
𝑖

)
𝐺 𝜉 ′

(
𝑝
𝑗
𝑖

)
= 1 +

𝜈∑
𝑗=1

1

𝜙
(
𝑝
𝑗
𝑖

) 𝜙 (
𝑝
𝑗
𝑖

) (
𝑝
𝑗
𝑖 − 𝑝

𝑗−1
𝑖

)
+

1
𝜙

(
𝑝𝜈+1
𝑖

) 𝜙 (
𝑝𝜈+1
𝑖

) (
−𝑝𝑛𝑖

)
= 1 +

𝜈∑
𝑗=1

(
𝑝
𝑗
𝑖 − 𝑝

𝑗−1
𝑖

)
− 𝑝𝜈 = 0.

◦ If 𝜈 = 𝜈′ < 𝛼𝑖 , then 𝜈 + 1 = 𝜈′ + 1 ≤ 𝛼𝑖 and

𝛼𝑖∑
𝑗=0

1

𝜙
(
𝑝
𝑗
𝑖

)𝐺 𝜉

(
𝑝
𝑗
𝑖

)
𝐺 𝜉 ′

(
𝑝
𝑗
𝑖

)
= 1 +

𝜈∑
𝑗=1

(
𝑝
𝑗
𝑖 − 𝑝

𝑗−1
𝑖

)
+

1
𝑝𝜈+1
𝑖 − 𝑝𝜈𝑖

(
−𝑝𝜈𝑖

)2 =
𝑝𝜈+1
𝑖

𝑝𝑖 − 1
.

◦ If 𝜈 = 𝜈′ = 𝛼𝑖 , then

𝛼𝑖∑
𝑗=0

1

𝜙
(
𝑝
𝑗
𝑖

)𝐺 𝜉

(
𝑝
𝑗
𝑖

)
𝐺 𝜉 ′

(
𝑝
𝑗
𝑖

)
= 1 +

𝛼𝑖∑
𝑗=1

(
𝑝
𝑗
𝑖 − 𝑝

𝑗−1
𝑖

)
= 𝑝𝛼𝑖

𝑖 .

Since

𝑝𝛼𝑖
𝑖

𝜙
(
𝑝𝛼𝑖−𝜈
𝑖

) =

⎧⎪⎪⎨⎪⎪⎩
𝑝𝛼𝑖 if 𝜈 = 𝛼𝑖 ,

𝑝𝛼𝑖

(𝑝𝑖−1) 𝑝𝛼𝑖−𝜈−1
𝑖

=
𝑝𝜈+1
𝑖

𝑝𝑖−1 if 𝜈 < 𝛼𝑖 ,

we conclude that

𝛼𝑖∑
𝑗=0

1

𝜙
(
𝑝
𝑗
𝑖

)𝐺 𝜉

(
𝑝
𝑗
𝑖

)
𝐺 𝜉 ′

(
𝑝
𝑗
𝑖

)
=

⎧⎪⎪⎨⎪⎪⎩
0 if 𝜈 ≠ 𝜈′,

𝑝
𝛼𝑖
𝑖

𝜙(𝑝
𝛼𝑖−𝜈
𝑖 )

if 𝜈 = 𝜈′.
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We now plug this into equation (4.10), and since 𝑝𝑖 is no longer fixed, we write 𝜈𝑖 and 𝜈′𝑖 instead of 𝜈
and 𝜈′. If (𝜉, 𝑁) ≠ (𝜉 ′, 𝑁), then 𝜈𝑖 ≠ 𝜈′𝑖 for at least one 𝑝𝑖 , so that∑

𝑣 |𝑁

1
𝜙(𝑣)

𝐺 𝜉 (𝑣)𝐺 𝜉 ′ (𝑣) = 0.

If, on the other hand, (𝜉, 𝑁) = (𝜉 ′, 𝑁), we get∑
𝑣 |𝑁

1
𝜙(𝑣)

𝐺 𝜉 (𝑣)𝐺 𝜉 ′ (𝑣) =
𝑘∏
𝑖=1

𝑝𝛼𝑖
𝑖

𝜙
(
𝑝𝛼𝑖−𝜈𝑖
𝑖

) =
𝑁

𝜙(𝑁/(𝜉, 𝑁))
,

which proves the proposition. �

In order to finish the proof of Theorem 4.7, we write

A𝑁
𝑚 [𝐶] =

∑
𝑥,𝑦,𝑧∈Z𝑁

𝑤𝐴(𝑥)𝑤𝐶 (𝑦)1𝐻𝑚 (𝑧)1𝑥−𝑦=𝑧

=
1
𝑁

∑
𝑥,𝑦,𝑧∈Z𝑁

𝑤𝐴(𝑥)𝑤𝐶 (𝑦)1𝐻𝑚 (𝑧)
∑
𝜉 ∈Z𝑁

𝑒−2𝜋𝑖 𝜉 (𝑥−𝑦+𝑧)/𝑁

=
1
𝑁

∑
𝜉 ∈Z𝑁

𝑤𝐴(𝜉)𝑤𝐶 (𝜉)1̂𝐻𝑚 (𝜉)

=
1
𝑁

∑
𝜉 ∈Z𝑁

𝑤𝐴(𝜉)𝑤𝐶 (𝜉)𝐺 𝜉 (𝑁/𝑚).

Therefore〈
A𝑁 [𝐶],B𝑁 [𝐷]

〉
=

1
𝑁2

∑
𝑣 |𝑁

1
𝜙(𝑣)

( ∑
𝜉 ∈Z𝑁

𝑤𝐴(𝜉)𝑤𝐶 (𝜉)𝐺 𝜉 (𝑣)

) ( ∑
𝜉 ′ ∈Z𝑁

𝑤𝐵 (𝜉
′)𝑤𝐷 (𝜉 ′)𝐺 𝜉 ′ (𝑣)

)

=
1
𝑁2

∑
𝜉 , 𝜉 ′ ∈Z𝑁

𝑤𝐴(𝜉)𝑤𝐶 (𝜉)𝑤𝐵 (𝜉
′)𝑤𝐷 (𝜉 ′)

⎡⎢⎢⎢⎢⎣
∑
𝑣 |𝑁

1
𝜙(𝑣)

𝐺 𝜉 (𝑣)𝐺 𝜉 ′ (𝑣)

⎤⎥⎥⎥⎥⎦ .
By Proposition 4.9,

〈
A𝑁 [𝐶],B𝑁 [𝐷]

〉
=

1
𝑁2

∑
𝑑 |𝑁

𝑁

𝜙(𝑁/𝑑)

*+,
∑

𝜉 :( 𝜉 ,𝑁 )=𝑑

𝑤𝐴(𝜉)𝑤𝐶 (𝜉)
-./ *+,

∑
𝜉 ′:( 𝜉 ′,𝑁 )=𝑑

𝑤𝐵 (𝜉
′)𝑤𝐷 (𝜉 ′)

-./ ,
which is equation (4.6), since 𝑤𝐴(𝜉) = 𝐴

(
𝑒−2𝜋𝑖 𝜉/𝑁 )

and 𝜁 = 𝑒−2𝜋𝑖 𝜉/𝑁 is a root of Φ𝑑 (𝑋) if and only
if (𝜉, 𝑁) = 𝑁/𝑑.

4.3. Proof of Theorem 4.4

(i) Assume that 𝐴 ⊕ 𝐵 = Z𝑀 . Let 𝑁 | 𝑀 , and let 𝐶 = {𝑥} and 𝐷 = {𝑦} for 𝑥, 𝑦 ∈ Z𝑁 . By equation
(4.5), we have

〈
A𝑁 [𝑥],B𝑁 [𝑦]

〉
=

∑
𝑑 |𝑁

1
𝑁𝜙(𝑑)

⎡⎢⎢⎢⎢⎣
∑

𝜁 :Φ𝑑 (𝜁 )=0
𝐴(𝜁)𝐶 (𝜁)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∑
𝜁 :Φ𝑑 (𝜁 )=0

𝐵(𝜁)𝐷 (𝜁)

⎤⎥⎥⎥⎥⎦ .
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If 𝑑 ≠ 1, then Φ𝑑 (𝑋) divides at least one of 𝐴(𝑋) and 𝐵(𝑋). Hence the only nonzero contribution
is from 𝑑 = 1, which yields〈

A𝑁 [𝑥],B𝑁 [𝑦]
〉
=

1
𝑁
𝐴(1)𝐶 (1)𝐵(1)𝐷 (1) =

|𝐴| |𝐵 |

𝑁
.

This proves equation (4.2).
(ii) Suppose that 𝐴, 𝐵 ⊂ Z𝑀 satisfy

〈
A𝑀 [𝑎],B𝑀 [𝑏]

〉
= 1 for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Then〈

A𝑀 [𝐴],B𝑀 [𝐵]
〉
=

∑
𝑎∈𝐴,𝑏∈𝐵

〈
A𝑀 [𝑎],B𝑀 [𝑏]

〉
=

∑
𝑎∈𝐴,𝑏∈𝐵

1 = |𝐴| |𝐵 | = 𝑀.

By equation (4.6), this implies that∑
𝑑 |𝑀

1
𝜙(𝑑)

E𝑑 (𝐴)E𝑑 (𝐵) = 𝑀2.

However, we are also assuming that E1(𝐴)E1 (𝐵) = |𝐴|2 |𝐵 |2 = 𝑀2. Hence E𝑑 (𝐴)E𝑑 (𝐵) = 0 for all
𝑑 | 𝑀 , 𝑑 ≠ 1, so that 𝐴 ⊕ 𝐵 = Z𝑀 as claimed.

Remark 4.10. We indicate a proof of Theorem 2.5 based on equation (4.6). Suppose that 𝐴 ⊕ 𝐵 = Z𝑀
is a tiling, and apply equation (4.6) with 𝑁 = 𝑀 . Since Φ𝑑 (𝑋) | 𝐴(𝑋)𝐵(𝑋) for all 𝑑 | 𝑀 , 𝑑 ≠ 1, we get∑

𝑚 |𝑀

1
𝜙(𝑀/𝑚)

A𝑀
𝑚 [𝐴]B𝑀

𝑚 [𝐵] =
|𝐴(1) |2 |𝐵(1) |2

𝑀
= 𝑀.

But we also have A𝑀
𝑀 [𝐴]B𝑀

𝑀 [𝐵] = |𝐴| |𝐵 | = 𝑀 . Hence all other terms A𝑀
𝑚 [𝐴]B𝑀

𝑚 [𝐵] with 𝑚 ≠ 𝑀
must vanish. This proves Theorem 2.5.

5. Cuboids

5.1. Definitions

Definition 5.1. Let 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 .

(i) A cuboid type T on Z𝑁 is an ordered triple T = (𝑁, �𝛿, 𝑇), where
◦ 𝑁 =

∏𝐾
𝑖=1 𝑝

𝑛𝑖−𝛼𝑖
𝑖 is a divisor of M, with 0 ≤ 𝛼𝑖 ≤ 𝑛𝑖 for each 𝑖 = 1, . . . , 𝐾;

◦ �𝛿 = (𝛿1, . . . , 𝛿𝐾 ), with 0 ≤ 𝛿𝑖 ≤ 𝑛𝑖 − 𝛼𝑖 for 𝑖 = 1, . . . , 𝐾;
◦ 𝑇 ⊂ Z𝑁 is a nonempty set.
We will refer to N as the scale of T, and to T as its template. We also define 𝔍 = 𝔍 �𝛿 := { 𝑗 : 𝛿 𝑗 ≠ 0}.

(ii) Let T = (𝑁, �𝛿, 𝑇) be a cuboid type as described. A cuboid Δ of type T is a weighted multiset
corresponding to a mask polynomial of the form

Δ (𝑋) = 𝑋𝑐
∏
𝑗∈𝔍

(
1 − 𝑋𝑑 𝑗

)
, (5.1)

where 𝑐, 𝑑 𝑗 are elements of Z𝑀 such that
(
𝑑 𝑗 , 𝑁

)
= 𝑁/𝑝

𝛿 𝑗
𝑗 . The vertices of Δ are the points

𝑥 �𝜖 = 𝑐 +
∑
𝑗∈𝔍

𝜖 𝑗𝑑 𝑗 : �𝜖 =
(
𝜖 𝑗

)
𝑗∈𝔍 ∈ {0, 1} |𝔍 | , (5.2)

with weights 𝑤Δ (𝑥 �𝜖 ) = (−1)
∑
𝑗∈𝔍 𝜖 𝑗 .
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Figure 2. An N-cuboid with N having three prime factors.

(iii) Set 𝐴 ∈ M(Z𝑁 ), and let Δ be a cuboid of type T. Then the (Δ , 𝑇)-evaluation of A is

AT [Δ] = A𝑁
𝑁 [Δ ∗ 𝑇] =

∑
�𝜖 ∈{0,1}𝑘

𝑤Δ (𝑥 �𝜖 )A
𝑁
𝑁 [𝑥 �𝜖 ∗ 𝑇] ,

where we recall that 𝑥 ∗ 𝑇 = {𝑥 + 𝑡 : 𝑡 ∈ 𝑇}, so that

A𝑁
𝑁 [𝑥 �𝜖 ∗ 𝑇] :=

∑
𝑡 ∈𝑇

A𝑁
𝑁 [𝑥 �𝜖 + 𝑡] .

For consistency, we will also write

AT [𝑥] = A𝑁
𝑁 [𝑥 ∗ 𝑇], 𝑥 ∈ Z𝑀 .

In some situations, it will be easier to write out Δ in its polynomial form. We will then identify the
polynomial Δ (𝑋) with the corresponding weighted multiset Δ , and write AT [Δ (𝑋)] instead of AT [Δ].

Definition 5.2. Set 𝐴 ∈ M(Z𝑀 ), and let T = (𝑁, �𝛿, 𝑇) be a cuboid type as before. We will say that A is
T-null if for every cuboid Δ of type T,

AT [Δ] = 0. (5.3)

Lemma 5.3. Set 𝐴 ∈ M(Z𝑀 ), and let T = (𝑁, �𝛿, 𝑇) be a cuboid type. Suppose that for all 𝑚 | 𝑁 , the

cyclotomic polynomial Φ𝑚(𝑋) divides at least one of 𝐴(𝑋), 𝑇 (𝑋), or 1 − 𝑋𝑁 /𝑝
𝛿 𝑗
𝑗 for some 𝑗 ∈ 𝔍( �𝛿).

Then A is T-null.

Proof. This follows, for example, from Theorem 4.7 applied to 𝐴(𝑋) and 𝐶 (𝑋) = Δ (𝑋)𝑇 (𝑋), with
𝐵 = 𝐷 = {0}. �

5.2. Classic cuboids

Definition 5.4. An N-cuboid is a cuboid of type T = (𝑁, �𝛿, 𝑇), where 𝑁 | 𝑀 , 𝑇 (𝑋) = 1 and 𝛿 𝑗 = 1 for
all j such that 𝑝 𝑗 | 𝑁 . Thus, N-cuboids have the form

Δ (𝑋) = 𝑋𝑐
∏
𝑝 𝑗 |𝑁

(
1 − 𝑋𝜌 𝑗𝑁 /𝑝 𝑗

)
with (𝜌 𝑗 , 𝑝 𝑗 ) = 1 for all j, and the associated Δ-evaluation of a multiset 𝐴 ∈ M(Z𝑁 ) is

A𝑁
𝑁 [Δ] =

∑
�𝜖 ∈{0,1}|𝔍|

𝑤Δ (𝑥 �𝜖 )A
𝑁
𝑁 [𝑥 �𝜖 ] ,

where 𝔍 = { 𝑗 : 𝑝 𝑗 | 𝑁} and the cuboid vertices 𝑥 �𝜖 are defined in equation (5.2). If T is as before and
𝐴 ∈ M(Z𝑁 ) is T-null, we will also say for short that A is N-null.

The geometric interpretation of N-cuboids Δ is as follows. With notation as in Definition 5.4, recall
that 𝐷 (𝑁) = 𝑁/

∏
𝑗∈𝔍 𝑝 𝑗 . Then the vertices 𝑥 �𝜖 of Δ form a full-dimensional rectangular box in the grid
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Λ(𝑐, 𝐷 (𝑁)), with one vertex at c and alternating ±1 weights. We reserve the term ‘N-cuboid’, without
cuboid type explicitly indicated, to refer to cuboids as in Definition 5.4; for cuboids of any other type,
we will always specify T.

The following cyclotomic divisibility test has been known and used previously in the literature (see,
for example, [42, Section 3] in the context of vanishing sums of roots of unity, or [16, Section 3] and
[17] with applications to the ‘spectral implies tiling’ direction of Fuglede’s conjecture.

Proposition 5.5. Set 𝐴 ∈ M(Z𝑁 ). Then the following are equivalent:

(i) Φ𝑁 (𝑋) |𝐴(𝑋).
(ii) For all N-cuboids Δ , we have

A𝑁
𝑁 [Δ] = 0. (5.4)

Proof. Let𝑚 | 𝑁 satisfy𝑚 ≠ 𝑁 . Then𝑚 | (𝑁/𝑝𝑖) for some i such that 𝑝𝑖 | 𝑁 , so that Φ𝑚 | (1−𝑋𝑁 /𝑝𝑖 ).
The implication (i) ⇒ (ii) now follows from Lemma 5.3.

An alternative proof that (i) implies (ii) (without using Theorem 4.7; compare [16, 42]) is as follows.
By classic results on vanishing sums of roots of unity [3, 28, 32, 35, 36, 38], Φ𝑁 (𝑋) | 𝐴(𝑋) if and only
if 𝐴(𝑋) is a linear combination of the polynomials Φ𝑝 (𝑋

𝑁 /𝑝), where p runs over all prime divisors
of N, with integer (but not necessarily nonnegative) coefficients. Equivalently, Φ𝑁 (𝑋) | 𝐴(𝑋) if and
only if A can be represented as a linear combination of N-fibers. It is very easy to see that equation
(5.4) holds for all N-cuboids Δ if 𝐴 mod 𝑁 is an N-fiber; therefore it also holds if 𝐴 mod 𝑁 is a linear
combination of such fibers.

The proof that (ii) implies (i) is by induction on the number of prime divisors of N (this argument
was also known previously in the literature; see, for example, [42, Proposition 2.4]). We present it here
for completeness.

If 𝑁 = 𝑝𝛼 is a prime power, the claim follows from equation (2.6). Suppose that the claim is true for
all 𝑁 ′ with at most k prime divisors. Suppose that N has 𝑘 + 1 prime divisors, and that 𝐴 ∈ M(Z𝑁 )
obeys equation (5.4) for all N-cuboids Δ in Z𝑁 . Let p be a prime divisor of N, and let 𝑁 ′ = 𝑁/𝑝𝛼,
where (𝑁 ′, 𝑝) = 1.

Assume first that

𝐴 ∈ M
(
𝑝𝛼−1Z𝑁

)
. (5.5)

Write 𝐴(𝑋) =
∑𝑝−1

𝑗=0 𝑋
𝑗𝑁 /𝑝𝐴 𝑗 (𝑋), where 𝐴 𝑗 ∈ M(𝑝𝛼Z𝑁 ). Each ‘layer’ 𝐴 𝑗 can be identified in the

obvious manner with a multiset in Z𝑁 ′ .
For 𝑗 = 0, 1, . . . , 𝑝 − 1, let 𝐴 𝑗 ,0 be the weighted multiset defined via 𝐴 𝑗 ,0 (𝑋) = 𝐴 𝑗 (𝑋) − 𝐴0(𝑋).

The condition (5.4) implies that, with the obvious notation,(
A 𝑗 ,0

)𝑁 ′

[Δ ′] = 0

for every full-dimensional cuboid Δ ′ in Z𝑁 ′ . By the inductive assumption, Φ𝑁 ′ (𝑋) | 𝐴 𝑗 ,0 (𝑋). By the
structure theorem for vanishing sums of roots of unity, 𝐴 𝑗 ,0 is a linear combination of 𝑁 ′-fibers in Z𝑁 ′ .
Returning to Z𝑁 now, and summing in j, we get that 𝐴(𝑋) = 𝐴′(𝑋) + 𝐴′′(𝑋), where the following are
true:

◦ 𝐴′(𝑋) =
∑𝑝−1

𝑗=0 𝑋
𝑗𝑁 /𝑝𝐴 𝑗 ,0 (𝑋). By the foregoing argument, 𝐴′ is a linear combination of fibers in

directions perpendicular to p.
◦ 𝐴′′ =

∑𝑝−1
𝑗=0 𝑋

𝑗𝑁 /𝑝𝐴0(𝑋). This is a linear combination of fibers in the p direction.

Thus 𝐴 is a linear combination of fibers, and therefore Φ𝑁 (𝑋) | 𝐴(𝑋).
Finally, in the general case without assumption (5.5), we can write A as a union of multisets 𝐴(𝑖) ,

𝑖 = 0, 1, . . . , 𝑝𝛼−1−1, where each 𝐴(𝑖) is a translate of a multiset satisfying assumption (5.5). If equation
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(5.4) holds for A, then it also holds for each 𝐴(𝑖) . By the previous argument, we get thatΦ𝑁 (𝑋) | 𝐴(𝑖) (𝑋)
for each i, and therefore it divides 𝐴(𝑋). This completes the proof that (ii) implies (i). �

Remark 5.6. Proposition 5.5 implies in particular that for any 𝑁 | 𝑀 , Φ𝑁 divides A if and only if it
divides the mask polynomial of 𝐴∩Λ(𝑥, 𝐷 (𝑁)) for every 𝑥 ∈ Z𝑀 . Indeed, the vertices of any N-cuboid
Δ are all contained in the same 𝐷 (𝑁)-grid. Hence the divisibility of A by Φ𝑀 is associated with the
structure of A on such grids.

5.3. Multiscale cuboids

In many situations, we need to work with cuboids on several scales simultaneously. This happens, for
example, when we investigate the divisibility of a polynomial 𝐴(𝑋) by combinations of cyclotomic
polynomials, or when we try to reduce a tiling of Z𝑀 to tilings of cosets of a subgroup. We will use
cuboids with nontrivial templates to facilitate such multiscale cuboid analysis.

Definition 5.7 (Folding templates). Let 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 and 𝑁 =

∏𝐾
𝑖=1 𝑝

𝑛𝑖−𝛼𝑖
𝑖 , with 0 ≤ 𝛼𝑖 ≤ 𝑛𝑖 for

𝑖 = 1, . . . , 𝐾 . The folding template 𝑇𝑀
𝑁 is given by

𝑇𝑀
𝑁 (𝑋) =

∏
𝑖:𝑝𝑖 | 𝑀𝑁

𝛼𝑖∏
𝜈𝑖=1

Ψ𝑀/𝑝
𝜈𝑖
𝑖
(𝑋) ≡

𝑋𝑀 − 1
𝑋𝑁 − 1

mod
(
𝑋𝑀 − 1

)
,

where

Ψ𝑀/𝑝𝛿𝑖
(𝑋) = Φ𝑝𝑖

(
𝑋𝑀/𝑝𝛿𝑖

)
= 1 + 𝑋𝑀/𝑝𝛿𝑖 + 𝑋2𝑀/𝑝𝛿𝑖 + · · · + 𝑋 (𝑝𝑖−1)𝑀/𝑝𝛿𝑖 . (5.6)

When M is fixed, we will sometimes write 𝑇𝑁 instead of 𝑇𝑀
𝑁 , for simplicity.

Strictly speaking, Ψ𝑀/𝑝𝛿𝑖
depends on both M and 𝑝 𝛿

𝑖 , not just on their quotient; however, both
numbers will always be clear from the context. We also note that Ψ𝑀/𝑝𝑖 = 𝐹𝑖 .

Definition 5.7 allow us to consider N-cuboids as cuboids with templates in Z𝑀 . Specifically, let
𝑁 | 𝑀 be as in Definition 5.7. Then for any 𝐴 ∈ M(Z𝑀 ) and 𝑥 ∈ Z𝑀 ,

A𝑁
𝑁 [𝑥] = A𝑀

𝑀

[
𝑥 ∗ 𝑇𝑀

𝑁

]
. (5.7)

Consequently, we have the following:

Lemma 5.8. With M and N as in Definition 5.7, let T = (𝑀, �𝛿, 𝑇𝑀
𝑁 ), where

𝛿𝑖 =

{
𝛼𝑖 + 1 if 𝛼𝑖 < 𝑛𝑖 ,

0 if 𝛼𝑖 = 𝑛𝑖 ,
𝑖 ∈ {1, . . . , 𝐾}. (5.8)

We will sometimes write �𝛿 = �𝛿𝑀𝑁 to indicate the dependence on M and N. Let 𝐴 ∈ M(Z𝑀 ) be a multiset.
Then the following are equivalent:

◦ Φ𝑁 | 𝐴;
◦ A is T-null in Z𝑀 ;
◦ the multiset induced by A in Z𝑁 is N-null (see Definition 5.4).

Let

Δ = 𝑋𝑐
∏

𝑖:𝑝𝑖 |𝑁

(
1 − 𝑋𝑑𝑖

)
, 𝑐 ∈ Z𝑀 , (𝑀, 𝑑𝑖) = 𝑀/𝑝𝛼𝑖+1

𝑖 , (5.9)
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Figure 3. A classic M-cuboid (green) vs. a multiscale cuboid (red) corresponding to the product
Φ𝑀Φ𝑀/𝑝𝑖 .

be a cuboid of type T as in Lemma 5.8. Then the cuboid Δ mod 𝑁 , induced by Δ in Z𝑁 , is an N-cuboid.
Conversely, any N-cuboid Δ ′ in Z𝑁 can be written (not necessarily uniquely) as Δ (mod 𝑁), where Δ is
a cuboid of the form (5.9) in Z𝑀 . Therefore, whenever working on scales N and M simultaneously, we
will represent N-cuboids as cuboids of the form (5.9) in Z𝑀 . In this notation, a multiset 𝐴 ∈ M(Z𝑀 )
satisfies any one (therefore all) of the conditions in Lemma 5.8 if and only if

A𝑁
𝑁 [Δ] = AT [Δ] = A𝑀

𝑀

[
Δ ∗ 𝑇𝑀

𝑁

]
= 0

for all Δ as in equation (5.9). Transitions between several intermediate scales 𝑁1, 𝑁2, . . . | 𝑀 will be
handled similarly, with Z𝑀 as the default ambient space.

Cuboids with more general templates can be used to indicate divisibility by combinations of several
cyclotomic polynomials. We will be particularly interested in implications of the form ‘if Φ𝑠1 , . . . ,Φ𝑠𝑙

divide 𝐴(𝑋), then A is T-null for a given cuboid type T’. It will not be necessary to aim for ‘if and only
if’ conditions such as those in Lemma 5.8.

Example 5.9. Let 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 .

(1) Assume that 𝑛𝑖 ≥ 2 for some 𝑖 ∈ {1, . . . , 𝐾}. Let T = (𝑀, �𝛿, 1) and T′ = (𝑀, �𝛿, 𝑇𝑀
𝑀/𝑝𝑖

), with 𝛿𝑖 = 2
and 𝛿 𝑗 = 1 for 𝑗 ≠ 𝑖. Then

Φ𝑀/𝑝𝑖 | 𝐴 ⇔ 𝐴 is T′-null,
Φ𝑀Φ𝑀/𝑝𝑖 | 𝐴 ⇔ 𝐴 is T-null.

The first equivalence follows from Lemma 5.8. The second one is easy to check directly. Specifically,
if Δ is a cuboid of type T, then Φ𝑚 | Δ for all 𝑚 | 𝑀 except for 𝑚 ∈ {𝑀/𝑝𝑖 , 𝑀}; conversely, both
M-cuboids and 𝑀/𝑝𝑖-cuboids can be expressed as linear combinations of cuboids of type T.
(A similar result appears in [17, Lemma 2.13], where it is stated in terms of ‘n-dimensional cube
rules’ and applied to Fuglede’s conjecture on cyclic groups.)

(2) Set 2 ≤ 𝛼 ≤ 𝑛𝑖 . Then

Φ𝑀Φ𝑀/𝑝𝑖 · · ·Φ𝑀/𝑝𝛼𝑖
| 𝐴

if and only if A is T𝛼-null, where T𝛼 = (𝑀, �𝛿, 1), 𝛿𝑖 = 𝛼 + 1 if 𝛼𝑖 < 𝑛𝑖 , 𝛿𝑖 = 0 if 𝛼𝑖 = 𝑛𝑖 and 𝛿 𝑗 = 1
for 𝑗 ≠ 𝑖. This can be proved in the same way as in the previous example.

(3) Assume that 𝑛𝑖 ≥ 2 for some 𝑖 ∈ {1, . . . , 𝐾}. Let T = (𝑀, �𝛿, 𝑇), where 𝛿𝑖 = 3 if 𝑛𝑖 ≥ 3, 𝛿𝑖 = 0 if
𝑛𝑖 = 2, 𝛿 𝑗 = 1 for 𝑗 ≠ 𝑖 and

𝑇 (𝑋) =
𝑋𝑀/𝑝𝑖 − 1
𝑋𝑀/𝑝2

𝑖 − 1
= 1 + 𝑋𝑀/𝑝2

𝑖 + · · · + 𝑋 (𝑝𝑖−1)𝑀/𝑝2
𝑖 .
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We claim that if Φ𝑀Φ𝑀/𝑝2
𝑖
| 𝐴, then A is T-null. Indeed, if 𝑛𝑖 ≥ 3, cuboids of type T have the form

Δ (𝑋) = 𝑋𝑐
(
1 − 𝑋𝜇𝑖𝑀/𝑝3

𝑖

) ∏
𝑗≠𝑖

(
1 − 𝑋𝜇 𝑗𝑀/𝑝 𝑗

)
,

where (𝜇𝑖 , 𝑀) = (𝜇 𝑗 , 𝑀) = 1. It follows that Δ (𝑋)𝑇 (𝑋) is divisible by all cyclotomic polynomials
Φ𝑚(𝑋), 𝑚 | 𝑀 , except for Φ𝑀/𝑝2

𝑖
and Φ𝑀 . If 𝑛𝑖 = 2, the same argument applies, except that there

is no factor 1 − 𝑋𝜇𝑖𝑀/𝑝3
𝑖 in Δ (𝑋).

6. Tiling reductions

6.1. Subgroup reduction

In this section, we discuss two ways in which the question of proving (T2) for a tiling 𝐴 ⊕ 𝐵 = Z𝑀 (and,
more generally, investigating the structure of such tilings) may be reduced to the analogous question
for tilings 𝐴′ ⊕ 𝐵′ = Z𝑁 , where 𝑁 | 𝑀 and 𝑁 ≠ 𝑀 . We start with a recap, in a slightly more general
setting, of the reduction that Coven and Meyerowitz used in [2] to prove Theorem 1.1.

Theorem 6.1 (Subgroup reduction [2, Lemma 2.5]; see also [4, Theorem 4.4]). Assume that 𝐴⊕𝐵 = Z𝑀 ,
where 𝑀 =

∏𝐾
𝑖=1 𝑝

𝑛𝑖
𝑖 , and that:

(i) there exists an 𝑖 ∈ {1, . . . , 𝐾} such that 𝐴 ⊂ 𝑝𝑖Z𝑀 and
(ii) (T2) holds for both 𝐴′ and 𝐵′ in any tiling 𝐴′ ⊕ 𝐵′ = Z𝑁𝑖 , where 𝑁𝑖 = 𝑀/𝑝𝑖 , |𝐴′ | = |𝐴| and

|𝐵′ | = |𝐵 |/𝑝𝑖 .

Then 𝐴 and 𝐵 satisfy (T2).

Proof. We have 𝐴(𝑋) = 𝐴′(𝑋 𝑝𝑖 ) for some 𝐴′ ⊂ Z𝑁𝑖 . Write also

𝐵(𝑋) ≡

𝑝𝑖−1∑
𝜈=0

𝑋𝜈𝑀/𝑝
𝑛𝑖−1
𝑖 𝐵𝜈 (𝑋

𝑝𝑖 ) mod 𝑋𝑀 − 1,

where 𝐵𝜈 ⊂ Z𝑁𝑖 for 𝜈 = 0, 1, . . . , 𝑝𝑖 − 1. If 𝑏 ∈ 𝐵 and 𝑏 ≡ 𝑟 mod 𝑝𝑖 , then 𝑎 + 𝑏 ≡ 𝑟 mod 𝑝𝑖 for
all 𝑎 ∈ 𝐴; in other words, the tiling breaks down into separate tilings of residue classes mod 𝑝𝑖 , with
𝐴′ ⊕ 𝐵𝜈 = Z𝑁𝑖 for each 𝜈.

By assumption (ii), 𝐴′ and 𝐵𝜈 satisfy (T2) for all 𝜈. We need to check that this is still true for A and
B. We first claim that for any polynomial 𝐹 (𝑋) and any 𝑠 ∈ N,

Φ𝜏 (𝑠) (𝑋) | 𝐹 (𝑋 𝑝𝑖 ) ⇔ Φ𝑠 (𝑋) | 𝐹 (𝑋), (6.1)

where

𝜏(𝑠) =

{
𝑠 if 𝑝𝑖 � 𝑠,
𝑝𝑖𝑠 if 𝑝𝑖 | 𝑠.

Indeed, we have Φ𝜏 (𝑠) (𝑋) | 𝐹 (𝑋
𝑝𝑖 ) if and only if 𝐹 (𝑒2𝜋𝑖𝑝𝑖/𝜏 (𝑠) ) = 0. This means that 𝐹 (𝑒2𝜋𝑖/𝑠) = 0 if

𝑝𝑖 | 𝑠, and 𝐹 (𝑒2𝜋𝑖𝑝𝑖/𝑠) = 0 if 𝑝𝑖 � 𝑠. In both cases, this is equivalent to Φ𝑠 | 𝐹.
Observe first that, by equation (2.6), we must have

Φ𝑝𝑖 | 𝐵.

Suppose that 𝑠1, . . . , 𝑠𝑘 are powers of distinct primes such that Φ𝑠1 · · ·Φ𝑠𝑘 | 𝐴. As already noted, we
cannot have 𝑠 𝑗 = 𝑝𝑖 for any j. Let 𝑠′𝑗 = 𝑠 𝑗/𝑝𝑖 if 𝑠 𝑗 is a power of 𝑝𝑖 , and 𝑠′𝑗 = 𝑠 𝑗 otherwise. Then 𝑠′𝑗 are
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prime powers, and 𝑠 𝑗 = 𝜏(𝑠′𝑗 ). By equivalence (6.1), Φ𝑠′1
· · ·Φ𝑠′

𝑘
| 𝐴′, and since (T2) holds for 𝐴′, we

have Φ𝑠′1 · · ·𝑠
′
𝑘
| 𝐴′. Since 𝜏(𝑠′1 · · · 𝑠

′
𝑘 ) = 𝑠1 · · · 𝑠𝑘 , we get that Φ𝑠1 · · ·𝑠𝑘 | 𝐴.

Suppose now that 𝑠1, . . . , 𝑠𝑘 are powers of distinct primes such that Φ𝑠1 · · ·Φ𝑠𝑘 | 𝐵 and 𝑠1, . . . , 𝑠𝑘 ≠
𝑝𝑖 , and define 𝑠′1, . . . , 𝑠

′
𝑘 as before. Then for 𝑗 = 1, . . . , 𝑘 we have Φ𝑠 𝑗 � 𝐴, and therefore Φ𝑠′𝑗

� 𝐴′ and,
since 𝐴′ ⊕ 𝐵𝜈 = Z𝑁𝑖 is a tiling, Φ𝑠′𝑗

| 𝐵𝜈 for each 𝜈. Since 𝐵𝜈 satisfies (T2), we have Φ𝑠′1 · · ·𝑠
′
𝑘
| 𝐵𝜈 . It

follows that Φ𝑠1 · · ·𝑠𝑘 | 𝐵𝜈 (𝑋
𝑝𝑖 ) for each 𝜈, and therefore Φ𝑠1 · · ·𝑠𝑘 | 𝐵.

Finally, suppose that 𝑠1, . . . , 𝑠𝑘 are powers of distinct primes such that Φ𝑠1 · · ·Φ𝑠𝑘 | 𝐵 and 𝑠1, . . . , 𝑠𝑘
are not powers of 𝑝𝑖 , and consider Φ𝑝𝑖𝑠 with 𝑠 = 𝑠1 · · · 𝑠𝑘 . We have

𝐵
(
𝑒2𝜋𝑖/𝑝𝑖𝑠

)
=

𝑝𝑖−1∑
𝜈=0

𝑒2𝜋𝑖𝜈𝑀/𝑠𝑝
𝑛𝑖
𝑖 𝐵𝜈

(
𝑒2𝜋𝑖𝑠

)
= 0,

by (T2), for each 𝐵𝜈 . �

Corollary 6.2. Let 𝐴 ⊕ 𝐵 = Z𝑀 , where 𝑀 = 𝑝𝑛1
1 𝑝𝑛2

2 𝑝𝑛3
3 · · · 𝑝𝑛𝐾𝐾 . Assume that for each 𝑖 ≥ 3, the prime

factor 𝑝𝑖 divides at most one of |𝐴| and |𝐵 |. (This happens, for example, if 𝑛𝑖 = 1 for 𝑖 ∉ {1, 2}). Then
both A and B satisfy (T2).

Proof. This is not stated explicitly in [2], but it follows by a very similar argument. (See also [[4],
39, 46].) We proceed by induction in the number of prime factors. If 𝐾 = 2 and 𝑀 = 𝑝𝑛1

1 𝑝𝑛2
2 , this is

Theorem 1.1. Suppose that 𝐾 ≥ 3 and that (T2) holds for both 𝐴′ and 𝐵′ in any tiling 𝐴′ ⊕ 𝐵′ = Z𝑀/𝑝𝐾 .
By the assumption of the lemma, at least one of |𝐴| and |𝐵 | is not divisible by 𝑝𝐾 . Assume without
loss of generality that 𝑝𝐾 � |𝐴|. By Tijdeman’s theorem [47, Theorem 1] (see also [2, Lemma 2.2]),
𝐴̃ ⊕ 𝐵 = Z𝑀 is again a tiling, where 𝐴̃(𝑋) = 𝐴(𝑋 𝑝𝐾 ). We have 𝐴̃ ⊂ 𝑝𝐾Z𝑀 , so that we may apply
Theorem 6.1 to conclude that 𝐴̃ and B satisfy (T2). By equivalence (6.1), this also means that A satisfies
(T2), since the (T2) condition for A involves only cyclotomic polynomials Φ𝑠 with (𝑠, 𝑝𝐾 ) = 1. �

6.2. Slab reduction

Our second tiling reduction also involves passing from a tiling 𝐴 ⊕ 𝐵 = Z𝑀 to a tiling of a smaller
cyclic group. However, instead of restricting to residue classes and thus constructing a family of tilings
of a subgroup 𝑝𝑖Z𝑀 , we will use periodicity. Recall that M-fibers 𝐹𝑖 and M-fibered sets were defined
in Section 2.3 (see formula (2.4)). Let 𝑀 =

∏𝐾
𝑖=1 𝑝

𝑛𝑖
𝑖 , and define

𝐴𝑝𝑖 =
{
𝑎 ∈ 𝐴 : 0 ≤ 𝜋𝑖 (𝑎) ≤ 𝑝𝑛𝑖−1

𝑖 − 1
}
, (6.2)

where 𝜋𝑖 is the array coordinate defined in Section 2.2. Suppose that we have 𝑆 ⊕ 𝐵 = Z𝑀 , where S is
the 𝑀/𝑝𝑖-periodic extension of 𝐴𝑝𝑖 to Z𝑀 :

𝑆(𝑋) = 𝐴𝑝𝑖 (𝑋)𝐹𝑖 (𝑋). (6.3)

Then we may reduce the period of the tiling and write 𝐴𝑝𝑖 ⊕ 𝐵 = Z𝑀/𝑝𝑖 , where 𝐴𝑝𝑖 and B are now
considered mod 𝑀/𝑝𝑖 .

As a motivating example, suppose that 𝐴 ⊕ 𝐵 = Z𝑀 , with M as before, and that A is M-fibered in the
𝑝𝑖 direction. Let 𝐴′ be a set obtained from A by choosing one point from each fiber, so that |𝐴′ | = |𝐴|/𝑝𝑖
and 𝐴 = 𝐴′ ∗ 𝐹𝑖 . Then A is the periodic extension of 𝐴′, and we have 𝐴′ ⊕ 𝐵 = Z𝑀/𝑝𝑖 .

Our main results in this section are Theorem 6.5 and Corollary 6.7, where we develop a criterion
for 𝐴𝑝𝑖 to admit periodic tilings as described, and prove that passing to such tilings preserves the (T2)
property.
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Lemma 6.3. Set 𝐴 ∈ M(Z𝑀 ), with M as before. Assume that Φ𝑑 | 𝐴 for some d such that 𝑝𝑛𝑖𝑖 | 𝑑 | 𝑀 .
Then for every 1 ≤ 𝛼𝑖 ≤ 𝑛𝑖 ,

Φ𝑑/𝑝
𝛼𝑖
𝑖

| 𝐴 ⇒ Φ𝑑/𝑝
𝛼𝑖
𝑖

| 𝐴𝑝𝑖 .

Proof. Let 𝑑 = 𝑀/
∏

𝑗≠𝑖 𝑝
𝛼𝑗
𝑗 and 𝑑 ′ = 𝑑/𝑝𝛼𝑖

𝑖 . Assume that Φ𝑑Φ𝑑′ | 𝐴. We would like to show that
Φ𝑑′ | 𝐴𝑝𝑖 . To this end, we define cuboid types T = (𝑀, �𝛿, 𝑇𝑑) and T′ = (𝑀, �𝛿′, 𝑇𝑑′ ), where 𝑇𝑑 = 𝑇𝑀

𝑑 ,
𝑇𝑑′ = 𝑇𝑀

𝑑′ are the folding templates from Definition 5.7 and �𝛿 = �𝛿𝑀𝑑 , �𝛿′ = �𝛿𝑀𝑑′ are defined as in equation
(5.8), with 𝑁 = 𝑑 and 𝑁 = 𝑑 ′, respectively.

Let S be the periodic extension of 𝐴𝑝𝑖 to Z𝑀 defined in equation (6.3). We have Φ𝑑 | 𝐹𝑖 but Φ𝑑′ � 𝐹𝑖 ,
so that Φ𝑑′ | 𝑆 if and only if Φ𝑑′ | 𝐴𝑝𝑖 . We need to prove that

S𝑑
′

𝑑′ [Δ] = 0

for all cuboids Δ of type T′. Fix such a cuboid

Δ (𝑋) = 𝑋 𝑦 ·
∏
𝑗

(
1 − 𝑋𝑑 𝑗

)
, 𝑦 ∈ Z𝑀 ,

(
𝑑 𝑗 , 𝑀

)
= 𝑀/𝑝

𝛿′𝑗
𝑗 .

Let

Δ 𝑖 (𝑋) = 𝑋 𝑦 ·
∏
𝑗≠𝑖

(
1 − 𝑋𝑑 𝑗

)
so that

Δ (𝑋) =

{(
1 − 𝑋𝑑𝑖

)
Δ 𝑖 (𝑋) if 𝛼𝑖 < 𝑛𝑖 ,

Δ 𝑖 (𝑋) if 𝛼𝑖 = 𝑛𝑖 .

Observe that if 𝜌𝑖 ∈ Z𝑀 satisfies (𝜌𝑖 , 𝑀) = 𝑀/𝑝𝑖 , then (1 − 𝑋𝜌𝑖 )Δ 𝑖 (𝑋) is a cuboid of type T. Since
A is T-null, we have A𝑑

𝑑 [(1 − 𝑋𝜌𝑖 ) Δ 𝑖 (𝑋)] = 0, so that

A𝑑
𝑑 [Δ 𝑖] = A

𝑑
𝑑 [𝜌𝑖 ∗ Δ 𝑖] .

Averaging the last equality over all 𝜌𝑖 ∈ {𝑀/𝑝𝑖 , 2𝑀/𝑝𝑖 , . . . , (𝑝𝑖 − 1)𝑀/𝑝𝑖}, we get

A𝑑
𝑑 [Δ 𝑖] =

1
𝜙(𝑝𝑖)

A𝑑
𝑑 [Δ 𝑖 ∗ (𝐹𝑖 − 1)] .

Clearly we may take linear combinations of the latter – that is, for any set 𝑉 ⊂ Z𝑀 ,

A𝑑
𝑑 [Δ 𝑖 ∗𝑉] =

1
𝜙(𝑝𝑖)

A𝑑
𝑑 [Δ 𝑖 ∗ (𝐹𝑖 − 1) ∗𝑉] . (6.4)

Let Ψ ⊂ Z𝑀 be a set such that Ψ(𝑋) ≡
∏𝛼𝑖

𝜈=2 Ψ𝑀/𝑝𝜈𝑖
(𝑋) mod 𝑋𝑀/𝑝𝑖 − 1, and

0 ≤ 𝜋𝑖 (𝑦 + 𝑧) ≤ 𝑝𝑛𝑖−1
𝑖 − 1 ∀𝑧 ∈ Ψ. (6.5)

Then

𝑇𝑑′ (𝑋) = 𝑇𝑑 (𝑋)𝐹𝑖 (𝑋)Ψ(𝑋)

= 𝑇𝑑 (𝑋)Ψ(𝑋) + (𝐹𝑖 − 1)𝑇𝑑 (𝑋)Ψ(𝑋),
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so that

A𝑑′

𝑑′ [Δ 𝑖] = A
𝑀
𝑀 [Δ 𝑖 ∗ 𝑇𝑑′ ]

= A𝑀
𝑀 [Δ 𝑖 ∗ 𝑇𝑑 ∗ Ψ] + A𝑀

𝑀 [Δ 𝑖 ∗ (𝐹𝑖 − 1) ∗ 𝑇𝑑 ∗ Ψ]

= A𝑑
𝑑 [Δ 𝑖 ∗ Ψ] + A𝑑

𝑑 [Δ 𝑖 ∗ (𝐹𝑖 − 1) ∗ Ψ] .

By equation (6.4) with 𝑉 = Ψ, we get

A𝑑′

𝑑′ [Δ 𝑖] =
𝑝𝑖

𝜙(𝑝𝑖)
A𝑑

𝑑 [Δ 𝑖 ∗ Ψ] . (6.6)

The proof of equation (6.6) used only the fact that Φ𝑑 | 𝐴. Since S has the same property, it follows
that

S𝑑
′

𝑑′ [Δ 𝑖] =
𝑝𝑖

𝜙(𝑝𝑖)
S𝑑𝑑 [Δ 𝑖 ∗ Ψ],

By inequality (6.5), we also have

A𝑑
𝑑 [Δ 𝑖 ∗ Ψ] = S𝑑𝑑 [Δ 𝑖 ∗ Ψ] .

Assume first that 𝛼𝑖 < 𝑛𝑖 , and note that all of the foregoing arguments apply with Δ 𝑖 replaced by
𝑑𝑖 ∗ Δ 𝑖 , yielding the same conclusions with Ψ replaced by Ψ′, such that inequality (6.5) holds with y
replaced by 𝑦 + 𝑑𝑖 . Recall that A is T′-null, so that

0 = A𝑑′

𝑑′ [Δ]

= A𝑑′

𝑑′ [Δ 𝑖] − A
𝑑′

𝑑′ [𝑑𝑖 ∗ Δ 𝑖]

=
𝑝𝑖

𝜙(𝑝𝑖)

(
A𝑑

𝑑 [Δ 𝑖 ∗ Ψ] − A𝑑
𝑑 [𝑑𝑖 ∗ Δ 𝑖 ∗ Ψ

′]
)

=
𝑝𝑖

𝜙(𝑝𝑖)

(
S𝑑𝑑 [Δ 𝑖 ∗ Ψ] − S𝑑𝑑 [𝑑𝑖 ∗ Δ 𝑖 ∗ Ψ

′]
)
.

Taking the convolution with Ψ𝑀/𝑝𝑖 , and using the fact that Ψ(𝑋)Ψ𝑀/𝑝𝑖 (𝑋) ≡ Ψ′(𝑋)Ψ𝑀/𝑝𝑖 (𝑋) mod
(𝑋𝑀 − 1), we conclude that

0 = S𝑑𝑑
[
Δ ∗ Ψ ∗ Ψ𝑀/𝑝𝑖

]
= S𝑑

′

𝑑′ [Δ] .

It follows that S is T′-null, as required.
If 𝛼𝑖 = 𝑛𝑖 , the proof is the same except that then Δ = Δ 𝑖 , and so the terms with 𝑑𝑖 ∗Δ 𝑖 do not appear

in the calculation. �

Lemma 6.4. Set 𝐴 ∈ M(Z𝑀 ), with M as before, and let 𝑝𝑛𝑖𝑖 | 𝑑 | 𝑀 and 1 ≤ 𝛼𝑖 ≤ 𝑛𝑖 . Assume that
Φ𝑑/𝑝

𝛼𝑖
𝑖

| 𝐴′
𝑝𝑖 for all translates 𝐴′ of A. Then Φ𝑑Φ𝑑/𝑝

𝛼𝑖
𝑖

| 𝐴.

Proof. Let 𝑑 = 𝑀/
∏

𝑗≠𝑖 𝑝
𝛼𝑗
𝑗 and 𝑑 ′ = 𝑑/𝑝𝛼𝑖

𝑖 . Define the cuboid types T = (𝑀, �𝛿, 𝑇𝑑) and T′ =

(𝑀, �𝛿′, 𝑇𝑑′ ) as in the proof of Lemma 6.3.
In order to prove that Φ𝑑′ | 𝐴, it suffices to show A𝑑′

𝑑′ [Δ] = 0 for all cuboids of the form

Δ ′(𝑋) = 𝑋 𝑦 ·
∏
𝑗

(
1 − 𝑋𝑑 𝑗

)
, 𝑦 ∈ Z𝑀 ,

(
𝑑 𝑗 , 𝑀

)
= 𝑀/𝑝

𝛿′𝑗
𝑗 . (6.7)
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We write 𝐴(𝑋) =
∑𝑝𝑖−1

𝜈=0 𝐴𝜈 (𝑋), where

𝐴𝜈 =
{
𝑎 ∈ 𝐴 | 0 ≤ 𝜋𝑖 (𝑎) − 𝜈𝑝

𝑛𝑖−1
𝑖 ≤ 𝑝𝑛𝑖−1

𝑖 − 1
}
, 𝜈 = 0, 1, . . . , 𝑝𝑖 − 1. (6.8)

Then

A𝑑′

𝑑′ [Δ ′] =
𝑝𝑖−1∑
𝜈=0

(A𝜈)
𝑑′

𝑑′ [Δ ′] = 0

using the assumption that 𝐴𝜈 are T′-null for all 𝜈.
We now prove that Φ𝑑 | 𝐴. It suffices to show A𝑑

𝑑 [Δ] = 0 for any cuboid of the form

Δ (𝑋) =
(
1 − 𝑋𝑀/𝑝𝑖

)
Δ 𝑖 (𝑋), (6.9)

where 𝑦 ∈ Z𝑁 , and

Δ 𝑖 (𝑋) = 𝑋 𝑦 ·
∏
𝑗≠𝑖

(
1 − 𝑋𝑑 𝑗

)
, 𝑦 ∈ Z𝑀 ,

(
𝑑 𝑗 , 𝑀

)
= 𝑀/𝑝

𝛿 𝑗
𝑗 .

Indeed, any cuboid of type T can be written as a linear combination of cuboids as in equation (6.9).
Let Ψ(𝑋) =

∏𝛼𝑖
𝜈=2 Ψ𝑀/𝑝𝜈𝑖

(𝑋), and

Δ ′′(𝑋) =

{(
1 − 𝑋𝑀/𝑝

𝛼𝑖+1
𝑖

)
Δ 𝑖 (𝑋) if 𝛼𝑖 < 𝑛𝑖 ,

Δ 𝑖 (𝑋) if 𝛼𝑖 = 𝑛𝑖 .

Define also

𝐴′
𝑖 =

{
𝑎 ∈ 𝐴 : 0 ≤ 𝜋𝑖 (𝑎 − 𝑦) ≤ 𝑝𝑛𝑖−1

𝑖 − 1
}
,

𝐴′′
𝑖 =

{
𝑎 ∈ 𝐴 : 1 ≤ 𝜋𝑖 (𝑎 − 𝑦) ≤ 𝑝𝑛𝑖−1

𝑖

}
.

By our assumption on A, Φ𝑑′ divides both 𝐴′
𝑖 and 𝐴′′

𝑖 . Suppose first that 𝛼𝑖 < 𝑛𝑖 . Then

0 =
(
A′

𝑖

)𝑑′

𝑑′ [Δ ′′] = A𝑑
𝑑 [Δ 𝑖 ∗ Ψ] − A𝑑

𝑑

[(
𝑀/𝑝𝛼𝑖+1

𝑖

)
∗ Δ 𝑖 ∗ Ψ

]
,

0 =
(
A′′

𝑖

)𝑑′

𝑑′ [Δ ′′] = A𝑑
𝑑 [Δ 𝑖 ∗ Ψ

′] − A𝑑
𝑑

[(
𝑀/𝑝𝛼𝑖+1

𝑖

)
∗ Δ 𝑖 ∗ Ψ

]
,

where Ψ′(𝑋) = Ψ − 1 + 𝑋𝑀/𝑝𝑖 . Taking the difference, we get

0 =
(
A′

𝑖

)𝑑′

𝑑′ [Δ ′′] −
(
A′′

𝑖

)𝑑′

𝑑′ [Δ ′′]

= A𝑑
𝑑 [Δ 𝑖 ∗ Ψ] − A𝑑

𝑑 [Δ 𝑖 ∗ Ψ
′]

= A𝑑
𝑑 [Δ],

which proves the claim.
If 𝛼𝑖 = 𝑛𝑖 , the proof is the same, except that the terms with (𝑀/𝑝𝛼𝑖+1

𝑖 ) ∗ Δ 𝑖 are replaced by 0 in the
calculation. �
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Theorem 6.5. Assume that 𝐴 ⊕ 𝐵 = Z𝑀 and Φ𝑝
𝑛𝑖
𝑖

| 𝐴. Then the following are equivalent:

(i) For any translate 𝐴′ of 𝐴, we have 𝐴′
𝑝𝑖 ⊕ 𝐵 = Z𝑀/𝑝𝑖 .

(ii) For every d such that 𝑝𝑛𝑖𝑖 | 𝑑 | 𝑀 , at least one of the following holds:

Φ𝑑 | 𝐴, (6.10)

Φ𝑑/𝑝𝑖Φ𝑑/𝑝2
𝑖
· · ·Φ𝑑/𝑝

𝑛𝑖
𝑖

| 𝐵. (6.11)

(iii) For every 𝑝𝑛𝑖𝑖 | 𝑚 | 𝑀 ,

𝑚 ∈ Div(𝐴) ⇒ 𝑚/𝑝𝑖 ∉ Div(𝐵). (6.12)

Proof. Let 𝑁𝑖 = 𝑀/𝑝𝑖 . The assumption that Φ𝑝
𝑛𝑖
𝑖

| 𝐴 implies that for any translate 𝐴′ of A, we have��𝐴′
𝑝𝑖

�� = |𝐴|/𝑝𝑖 , so that ��𝐴′
𝑝𝑖

�� |𝐵 | = 𝑁𝑖 . (6.13)

(i) ⇒ (ii): Assume that (i) holds, and suppose that condition (6.11) fails for some 𝑝𝑛𝑖𝑖 | 𝑑 | 𝑀 . Then
there is an 𝛼𝑖 such that 1 ≤ 𝛼𝑖 ≤ 𝑛𝑖 and Φ𝑑/𝑝

𝛼𝑖
𝑖
� 𝐵. Then Φ𝑑/𝑝

𝛼𝑖
𝑖

| 𝐴′
𝑝𝑖 for any translate 𝐴′ of 𝐴. By

Lemma 6.4, condition (6.10) must hold.
(ii) ⇒ (i): Assume that (ii) holds. With equation (6.13) in place, it suffices to prove that for every

𝑑 ′ | 𝑁𝑖 , 𝑑 ′ > 1, Φ𝑑′ divides at least one of 𝐴′
𝑝𝑖 (𝑋) and 𝐵(𝑋). Let 𝑑 ′ | 𝑁𝑖 , 𝑑 ′ > 1, and suppose that

Φ𝑑′ � 𝐵. Then 𝑑 ′ = 𝑑/𝑝𝛼𝑖
𝑖 for some 𝑝𝑛𝑖𝑖 | 𝑑 | 𝑀 and 1 ≤ 𝛼𝑖 ≤ 𝑛𝑖 . By (ii), we must have Φ𝑑 | 𝐴. Since

𝐴 ⊕ 𝐵 = Z𝑀 is a tiling, we must also have Φ𝑑′ | 𝐴. By Lemma 6.3, we must have Φ𝑑′ | 𝐴′
𝑝𝑖 as claimed.

(i) ⇒ (iii): Assume that (i) holds. This implies in particular that 𝐴′
𝑝𝑖 and 𝐵 mod Z𝑁𝑖 are sets, so that

𝑁𝑖 ∉ Div(𝐵) and condition (6.12) holds for 𝑚 = 𝑀 .
Next, Theorem 2.5 applied to the tiling 𝐴′

𝑝𝑖 ⊕ 𝐵 = Z𝑁𝑖 implies that

Div𝑁𝑖 (𝐴) ∩ Div𝑁𝑖 (𝐵) = {𝑁𝑖}. (6.14)

Suppose that condition (6.12) fails for some 𝑚 ≠ 𝑀 such that 𝑝𝑛𝑖𝑖 | 𝑚 | 𝑀 , so that 𝑚 ∈ Div(𝐴) and
𝑚/𝑝𝑖 ∈ Div(𝐵). Then 𝑚/𝑝𝑖 ≠ 𝑁𝑖 and 𝑚/𝑝𝑖 ∈ Div𝑁𝑖 (𝐴) ∩ Div𝑁𝑖 (𝐵). But this contradicts equation
(6.14).

(iii) ⇒ (i): Assume that (iii) holds. By Theorem 2.5, it suffices to prove that 𝐴′
𝑝𝑖 , 𝐵 mod Z𝑁𝑖 are sets

such that equation (6.14) holds.
We first verify that 𝐴′

𝑝𝑖 , 𝐵 mod Z𝑁𝑖 are sets. Indeed, if 𝑎, 𝑎′ ∈ 𝐴′
𝑝𝑖 and 𝑎 ≡ 𝑎′ mod 𝑁𝑖 , then 𝑎 = 𝑎′

by the definition of 𝐴′
𝑝𝑖 . On the other hand, 𝑀 ∈ Div(𝐴) trivially, and by formula (6.12) it follows that

𝑁𝑖 ∉ Div(𝐵), so that 𝐵 mod 𝑁𝑖 is also a set.
Suppose now that equation (6.14) fails, with 𝑚1 ∈ (Div𝑁𝑖 (𝐴) ∩ Div𝑁𝑖 (𝐵)) \ {𝑁𝑖}. Since Div(𝐴) ∩

Div(𝐵) = {𝑀}, we must have 𝑚1 = 𝑚2/𝑝𝑖 for some 𝑚2 with 𝑝𝑛𝑖𝑖 | 𝑚2 | 𝑀 , so that

𝑚 𝑗 ∈ Div(𝐴′
𝑝𝑖 ), 𝑚𝑘 ∈ Div(𝐵)

for some permutation ( 𝑗 , 𝑘) of (1, 2). By the definition of 𝐴′
𝑝𝑖 , we cannot have 𝑝𝑛𝑖−1

𝑖 ‖ 𝑠 for 𝑠 ∈
Div(𝐴′

𝑝𝑖 ), so that 𝑗 = 2, 𝑘 = 1. But this contradicts condition (6.12). �

Remark 6.6. In the special case when A is M-fibered in the 𝑝𝑖 direction, the condition (6.11) of Theorem
6.5 is satisfied, since then Φ𝑑 | 𝐴 for all 𝑝𝑛𝑖𝑖 | 𝑑 | 𝑀 . It is also easy to verify directly that condition
(6.12) holds in this case.

Corollary 6.7 (Slab reduction). Assume that 𝐴 ⊕ 𝐵 = Z𝑀 , where 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 , and that the following

are true:
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◦ (T2) holds for both 𝐴′ and 𝐵′ in any tiling 𝐴′ ⊕ 𝐵′ = Z𝑁𝑖 , where 𝑁𝑖 = 𝑀/𝑝𝑖 , |𝐴′ | = |𝐴|/𝑝𝑖 and
|𝐵′ | = |𝐵 |;

◦ there exists an 𝑖 ∈ {1, . . . , 𝐾} such that Φ𝑝
𝑛𝑖
𝑖

| 𝐴 and 𝐴, 𝐵 obey one (therefore all) of Theorem
6.5(i)–(iii).

Then 𝐴 and 𝐵 satisfy (T2).

Proof. We are assuming that 𝐴′
𝑝𝑖 ⊕ 𝐵 = Z𝑀/𝑝𝑖 for any translate 𝐴′ of 𝐴. By the inductive part of the

assumption, 𝐴′
𝑝𝑖 and B satisfy (T2). It remains to prove (T2) for 𝐴. Suppose that 𝑑 =

∏
𝑗∈𝐽 𝑝

𝛼𝑗
𝑗 , where

𝐽 ⊂ {1, . . . , 𝐾}, 1 ≤ 𝛼 𝑗 ≤ 𝑛 𝑗 for all 𝑗 ∈ 𝐽, and Φ
𝑝
𝛼𝑗
𝑗
(𝑋) | 𝐴(𝑋) for all 𝑗 ∈ 𝐽. For each prime power 𝑝𝛼𝑗

𝑗

with 𝛼 𝑗 ≠ 0, the polynomial Φ
𝑝
𝛼𝑗
𝑗
(𝑋) can divide only one of A and B in the tiling 𝐴 ⊕ 𝐵 = Z𝑀 , hence

Φ
𝑝
𝛼𝑗
𝑗
� 𝐵 ∀ 𝑗 ∈ 𝐽. (6.15)

Write 𝐴(𝑋) =
∑𝑝𝑖−1

𝜈=0 𝐴𝜈 (𝑋), where 𝐴𝜈 are as in formula (6.8), so that 𝐴𝜈 ⊕ 𝐵 = Z𝑁𝑖 for each 𝜈. We
consider two cases:

◦ Assume that either 𝑖 ∉ 𝐽, or 𝑖 ∈ 𝐽 but 𝛼𝑖 ≠ 𝑛𝑖 . By formula (6.15), we have Φ
𝑝
𝛼𝑗
𝑗

| 𝐴𝜈 for all 𝑗 ∈ 𝐽
and 𝜈 = 0, 1, . . . , 𝑝𝑖 − 1. We are assuming that (T2) holds for 𝐴𝜈 , so that Φ𝑑 | 𝐴𝜈 . Summing over 𝜈,
we get that Φ𝑑 | 𝐴.

◦ Assume now that 𝑖 ∈ 𝐽 and 𝛼𝑖 = 𝑛𝑖 , and let 𝑑 ′ = 𝑑/𝑝𝑛𝑖𝑖 . Then Φ𝑑′ | 𝐴′
𝑝𝑖 for any translate 𝐴′ of A, by

the argument in the first case applied to 𝐴′ instead of A. By Lemma 6.4, it follows that Φ𝑑 | 𝐴. �

We note the following special case:

Corollary 6.8. Assume that 𝐴 ⊕ 𝐵 = Z𝑀 , where 𝑀 = 𝑝𝑛1
1 𝑝𝑛2

2 𝑝𝑛3
3 and 𝑝1, 𝑝2, 𝑝3 are distinct primes.

Moreover, assume that there is a permutation (𝑖, 𝑗 , 𝑘) of (1, 2, 3) such that |𝐴| = 𝑝𝑖 𝑝
𝛼𝑗
𝑗 𝑝𝛼𝑘

𝑘 for some
0 ≤ 𝛼 𝑗 ≤ 𝑛 𝑗 , 0 ≤ 𝛼𝑘 ≤ 𝑛𝑘 , and that A is M-fibered in the 𝑝𝑖 direction. Then 𝐴 and 𝐵 satisfy (T2).

Proof. This follows from Corollaries 6.7 and 6.2. �

7. Saturating sets

7.1. Preliminaries

Definition 7.1 (Restricted N-boxes). Set 𝐴, 𝑋 ⊆ Z𝑀 , and 𝑥 ∈ Z𝑀 . The restriction of A𝑁 [𝑥] to X is the
N-box A𝑁 [𝑥 | 𝑋] with entries

A𝑁
𝑚 [𝑥 | 𝑋] =

∑
𝑎∈𝑋 :(𝑥−𝑎,𝑁 )=𝑚

𝑤𝑁
𝐴 (𝑎), 𝑚 | 𝑁.

In particular,

A𝑀
𝑚 [𝑥 | 𝑋] = #{𝑎 ∈ 𝐴 ∩ 𝑋 : (𝑥 − 𝑎, 𝑀) = 𝑚}.

The next definition is the key to our analysis of unfibered tilings in [24]. While it could be extended
in an obvious way to N-boxes with 𝑁 | 𝑀 , our current arguments only use the M-box version here.

Definition 7.2 (Saturating sets). Set 𝐴, 𝐵 ⊆ Z𝑀 , and 𝑥, 𝑦 ∈ Z𝑀 . Define

𝐴𝑥,𝑦 := {𝑎 ∈ 𝐴 : (𝑥 − 𝑎, 𝑀) = (𝑦 − 𝑏, 𝑀) for some 𝑏 ∈ 𝐵},

𝐴𝑥 :=
⋃
𝑏∈𝐵

𝐴𝑥,𝑏 .
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Equivalently,

𝐴𝑥 = {𝑎 ∈ 𝐴 : (𝑥 − 𝑎, 𝑀) ∈ Div(𝐵)}. (7.1)

We will refer to 𝐴𝑥 as the saturating set for x. The sets 𝐵𝑦,𝑥 and 𝐵𝑦 are defined similarly, with A and B
interchanged.

With this notation, 𝐴𝑥,𝑦 is the minimal set that saturates (the A-side of) the product
〈
A𝑀 [𝑥],B𝑀 [𝑦]

〉
,

in the sense that 〈
A𝑀 [𝑥 | 𝑋],B𝑀 [𝑦]

〉
=

〈
A𝑀 [𝑥],B𝑀 [𝑦]

〉
(7.2)

holds for 𝑋 = 𝐴𝑥,𝑦 , and if 𝑋 ⊂ Z𝑀 is any other set for it holds, then 𝐴𝑥,𝑦 ⊂ 𝑋 . The set 𝐴𝑥 is the
minimal set such that 〈

A𝑀 [𝑥 | 𝐴𝑥],B
𝑀 [𝑏]

〉
=

〈
A𝑀 [𝑥],B𝑀 [𝑏]

〉
∀𝑏 ∈ 𝐵. (7.3)

While Definition 7.2 makes sense for general sets 𝐴, 𝐵 ⊆ Z𝑀 , our intended application is to the tiling
situation 𝐴 ⊕ 𝐵 = Z𝑀 . In that case, by Theorem 4.4, the box products on the right side of equations
(7.2) and (7.3) evaluate to 1. Hence 𝐴𝑥,𝑦 is the smallest set such that〈

A𝑀
[
𝑥 | 𝐴𝑥,𝑦

]
,B𝑀 [𝑦]

〉
= 1, (7.4)

and 𝐴𝑥 is the smallest set such that〈
A𝑀 [𝑥 | 𝐴𝑥],B

𝑀 [𝑏]
〉
= 1 ∀𝑏 ∈ 𝐵. (7.5)

Observe in particular that a saturating set for any 𝑥 ∈ Z𝑀 must be nonempty, and that by Theorem 2.5,

𝐴𝑎 = {𝑎} ∀𝑎 ∈ 𝐴. (7.6)

In the next few definitions and lemmas, we will work toward geometric descriptions of saturating
sets. Assume that 𝐴 ⊕ 𝐵 = Z𝑀 . Set 𝑥 ∈ Z𝑀 \ 𝐴, and suppose that 𝑎 ∈ 𝐴𝑥 . By equation (7.1) and divisor
exclusion, we must have (𝑥 − 𝑎, 𝑀) ∉ Div(𝐴), and in particular (𝑥 − 𝑎, 𝑀) ≠ (𝑎′ − 𝑎, 𝑀) for all 𝑎′ ∈ 𝐴.
This motivates the following definition:

Definition 7.3. Let 𝑀 = 𝑝𝑛1
1 · · · 𝑝𝑛𝐾𝐾 , where 𝑝1, . . . , 𝑝𝐾 are distinct primes, and set 𝑥, 𝑥 ′ ∈ Z𝑀 , 𝑥 ≠ 𝑥 ′.

Suppose that (𝑥 − 𝑥 ′, 𝑀) = 𝑝𝛼1
1 · · · 𝑝𝛼𝐾

𝐾 , with 0 ≤ 𝛼 𝑗 ≤ 𝑛 𝑗 for 𝑗 = 1, . . . , 𝐾 .
Define

Span(𝑥, 𝑥 ′) =
⋃

𝑖:𝛼𝑖<𝑛𝑖

Π
(
𝑥, 𝑝𝛼𝑖+1

𝑖

)
,

Bispan(𝑥, 𝑥 ′) = Span(𝑥, 𝑥 ′) ∪ Span(𝑥 ′, 𝑥). (7.7)

Example 7.4. Let 𝑀 = 𝑝𝑛1
1 𝑝𝑛2

2 𝑝𝑛3
3 , where 𝑝1, 𝑝2, 𝑝3 are distinct primes and 𝑛1, 𝑛2, 𝑛3 ≥ 2. Set 𝑥, 𝑥 ′ ∈

Z𝑀 , and let 𝑚 = (𝑥 − 𝑥 ′, 𝑀).

◦ Suppose that 𝑚 = 𝑀/𝑝1𝑝2𝑝3, so that 𝛼𝑖 = 𝑛𝑖 − 1 for 𝑖 = 1, 2, 3, and represent Z𝑀 as a
3-dimensional M-array. Then Span(𝑥, 𝑥 ′) is the union of the 2-dimensional planes Π(𝑥, 𝑝𝑛𝑖𝑖 ) with
𝑖 = 1, 2, 3, all passing through x, and similarly for Span(𝑥′, 𝑥), with x and 𝑥 ′ interchanged.
Geometrically, Bispan(𝑥, 𝑥 ′) is the union of those 2-dimensional planes at the top scale that contain
at least one 2-dimensional face of the 3-dimensional rectangular box ‘spanned’ by x and 𝑥′.

◦ Suppose now that 𝑚 = 𝑀/𝑝𝑖 for some 𝑖 ∈ {1, 2, 3}. Then Span(𝑥, 𝑥 ′) = Π(𝑥, 𝑝𝑛𝑖𝑖 ) is a single plane
passing through x and perpendicular to the 𝑝𝑖 direction, and similarly for Span(𝑥 ′, 𝑥) = Π(𝑥 ′, 𝑝𝑛𝑖𝑖 ).

◦ If 𝑚 = 𝑀/𝑝𝑖 𝑝 𝑗 for some 𝑖 ≠ 𝑗 , then Span(𝑥, 𝑥 ′) = Π(𝑥, 𝑝𝑛𝑖𝑖 ) ∪ Π(𝑥, 𝑝
𝑛 𝑗
𝑗 ) is a union of two planes.
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The higher-dimensional case has a similar interpretation. As should be clear from the foregoing
example, the definition is not symmetric with respect to 𝑥, 𝑥 ′, so that Span(𝑥, 𝑥 ′) ≠ Span(𝑥 ′, 𝑥). However,
we have the following:

Lemma 7.5. Set 𝑥, 𝑥 ′ ∈ Z𝑀 . Then

𝑥 ′ ∈ Span(𝑥, 𝑧) ⇔ 𝑥 ∈ Span(𝑥 ′, 𝑧).

Proof. We have 𝑥 ′ ∈ Span(𝑥, 𝑧) if and only if there exist 𝑖 ∈ {1, . . . , 𝐾} and 0 ≤ 𝛼𝑖 < 𝑛𝑖 such that
𝑝𝛼𝑖
𝑖 ‖ 𝑥 − 𝑧, 𝑝𝛼𝑖

𝑖 ‖ 𝑥 ′ − 𝑧 and 𝑝𝛼𝑖+1
𝑖 | 𝑥 − 𝑥 ′. These conditions are clearly symmetric with respect to x

and 𝑥 ′. �

Lemma 7.6. If (𝑥 − 𝑥 ′, 𝑀) = (𝑥 − 𝑥 ′′, 𝑀) = 𝑚, then Span(𝑥, 𝑥 ′) = Span(𝑥, 𝑥 ′′).

Proof. This follows directly from the definition. �

Lemma 7.7. Set 𝐴, 𝐵 ⊂ Z𝑀 , 𝑥, 𝑥 ′ ∈ Z𝑀 and 𝑎 ∈ 𝐴. If (𝑥−𝑎, 𝑀) ≠ (𝑥 ′ −𝑎, 𝑀), then 𝑎 ∈ Bispan(𝑥, 𝑥 ′).

Proof. Suppose that (𝑥 − 𝑎, 𝑀) ≠ (𝑥 ′ − 𝑎, 𝑀). It follows that (𝑥 − 𝑎, 𝑝𝑛𝑖𝑖 ) ≠ (𝑥 ′ − 𝑎, 𝑝𝑛𝑖𝑖 ) for some
𝑖 ∈ {1, . . . , 𝐾}. Interchanging x and 𝑥 ′ if necessary, we may assume that 𝑝𝛼𝑖

𝑖 ‖ 𝑥 − 𝑎 and 𝑝𝛼𝑖+1
𝑖 | 𝑥 ′ − 𝑎

for some 𝛼𝑖 ∈ {0, 1, . . . , 𝑛𝑖 − 1}. Hence 𝑝𝛼𝑖
𝑖 ‖ 𝑥 − 𝑥 ′, and 𝑎 ∈ Span(𝑥 ′, 𝑥). �

Lemma 7.8. Let 𝐴, 𝐵 ⊂ Z𝑀 be fixed. Then the following are true:

(i) For any 𝑥, 𝑥 ′, 𝑦 ∈ Z𝑀 , we have

𝐴𝑥′,𝑦 ⊂ 𝐴𝑥,𝑦 ∪ Bispan(𝑥, 𝑥 ′). (7.8)

(ii) Suppose that 𝐴 ⊕ 𝐵 = Z𝑀 . Then for any 𝑥 ∈ Z𝑀 ,

𝐴𝑥 ⊂
⋂
𝑎∈𝐴

Bispan(𝑥, 𝑎). (7.9)

Proof. To prove (i), suppose that 𝑎 ∈ 𝐴𝑥′,𝑦 . Then (𝑥 ′ − 𝑎, 𝑀) = (𝑦 − 𝑏, 𝑀) for some 𝑏 ∈ 𝐵. If
(𝑥 − 𝑎, 𝑀) = (𝑥 ′ − 𝑎, 𝑀), it follows that 𝑎 ∈ 𝐴𝑥,𝑦 . If, on the other hand, (𝑥 − 𝑎, 𝑀) ≠ (𝑥 ′ − 𝑎, 𝑀), then
by Lemma 7.7 we must have 𝑎 ∈ Bispan(𝑥, 𝑥 ′). This proves inclusion (7.8). Part (ii) follows from (i)
and equation (7.6), since 𝑎 ∈ Span(𝑎, 𝑥). �

We note a lemma which will be useful in the evaluation of saturating sets:

Lemma 7.9 (Enhanced divisor exclusion). Let 𝐴 ⊕ 𝐵 = Z𝑀 , with 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 . Let 𝑚 =

∏𝐾
𝑖=1 𝑝

𝛼𝑖
𝑖 and

𝑚′ =
∏𝐾

𝑖=1 𝑝
𝛼′
𝑖

𝑖 , with 0 ≤ 𝛼𝑖 , 𝛼
′
𝑖 ≤ 𝑛𝑖 . Assume that at least one of 𝑚, 𝑚′ is different from M, and that for

every 𝑖 = 1, . . . , 𝐾 we have either 𝛼𝑖 ≠ 𝛼′
𝑖 or 𝛼𝑖 = 𝛼′

𝑖 = 𝑛𝑖 . Then for all 𝑥, 𝑦 ∈ Z𝑀 we have

A𝑀
𝑚 [𝑥]A𝑀

𝑚′ [𝑥]B𝑀
𝑚 [𝑦]B𝑀

𝑚′ [𝑦] = 0.

In other words, there are no configurations (𝑎, 𝑎′, 𝑏, 𝑏′) ∈ 𝐴 × 𝐴 × 𝐵 × 𝐵 such that

(𝑎 − 𝑥, 𝑀) = (𝑏 − 𝑦, 𝑀) = 𝑚, (𝑎′ − 𝑥, 𝑀) = (𝑏′ − 𝑦, 𝑀) = 𝑚′. (7.10)

Proof. If we did have a configuration as in equation (7.10), then under the assumptions of the lemma
we would have

(𝑎 − 𝑎′, 𝑀) = (𝑏 − 𝑏′, 𝑀) =
𝐾∏
𝑖=1

𝑝
min(𝛼𝑖 ,𝛼′

𝑖)
𝑖 ,

with the right side different from M. But that is prohibited by Theorem 2.5. �
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7.2. Examples and applications

We first provide examples of using Lemma 7.8 to derive geometric constraints on saturating sets. For
simplicity, in these examples we return to the three-prime case with 𝑀 = 𝑝𝑛1

1 𝑝𝑛2
2 𝑝𝑛3

3 , where 𝑝1, 𝑝2, 𝑝3
are distinct primes and 𝑛1, 𝑛2, 𝑛3 ≥ 2. Assume that 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling, and set 𝑥 ∈ Z𝑀 .
◦ Suppose that (𝑥 − 𝑎, 𝑀) = 𝑀/𝑝𝑖 for some 𝑎 ∈ 𝐴 and 𝑖 ∈ {1, 2, 3}. Then

𝐴𝑥 ⊂ Bispan(𝑥, 𝑎) = Π
(
𝑥, 𝑝𝑛𝑖𝑖

)
∪ Π

(
𝑎, 𝑝𝑛𝑖𝑖

)
.

◦ Suppose that there are two distinct elements 𝑎, 𝑎′ ∈ 𝐴 such that (𝑥 − 𝑎, 𝑀) = (𝑥 − 𝑎′, 𝑀) = 𝑀/𝑝𝑖 .
Then

𝐴𝑥 ⊂ Bispan(𝑥, 𝑎) ∩ Bispan(𝑥, 𝑎′) = Π
(
𝑥, 𝑝𝑛𝑖𝑖

)
.

◦ Suppose that there are two elements 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴 such that (𝑥 − 𝑎𝑖 , 𝑀) = 𝑀/𝑝𝑖 and
(𝑥 − 𝑎 𝑗 , 𝑀) = 𝑀/𝑝 𝑗 , with 𝑖, 𝑗 ∈ {1, 2, 3} distinct. Then

𝐴𝑥 ⊂ Bispan(𝑥, 𝑎𝑖) ∩ Bispan(𝑥, 𝑎 𝑗 ) = ℓ𝑘 (𝑥) ∪ ℓ𝑘 (𝑎𝑖) ∪ ℓ𝑘
(
𝑎 𝑗

)
∪ ℓ𝑘

(
𝑥𝑖 𝑗

)
,

where {1, 2, 3} \ {𝑖, 𝑗} = {𝑘}, and 𝑥𝑖 𝑗 ∈ Z𝑀 is the unique point such that (𝑥𝑖 𝑗 − 𝑎𝑖 , 𝑀) = 𝑀/𝑝 𝑗 and
(𝑥𝑖 𝑗 − 𝑎 𝑗 , 𝑀) = 𝑀/𝑝𝑖 .

◦ Suppose that (𝑥 − 𝑎, 𝑀) = 𝑀/𝑝𝑖 𝑝 𝑗 for some 𝑎 ∈ 𝐴 and 𝑖, 𝑗 ∈ {1, 2, 3} distinct. Then

𝐴𝑥 ⊂ Π
(
𝑥, 𝑝𝑛𝑖𝑖

)
∪ Π

(
𝑎, 𝑝𝑛𝑖𝑖

)
∪ Π

(
𝑥, 𝑝

𝑛 𝑗
𝑖

)
∪ Π

(
𝑎, 𝑝

𝑛 𝑗
𝑖

)
.

◦ We leave it as an easy exercise for the reader to verify that if there are 𝑎, 𝑎′, 𝑎′′ ∈ 𝐴 such that
(𝑧 − 𝑧′, 𝑀) = 𝑀/𝑝𝑖 𝑝 𝑗 for all pairs of distinct elements 𝑧, 𝑧′ ∈ {𝑥, 𝑎, 𝑎′, 𝑎′′}, then

𝐴𝑥 ⊂ Π
(
𝑥, 𝑝𝑛𝑖𝑖

)
∪ Π

(
𝑥, 𝑝

𝑛 𝑗
𝑖

)
.
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◦ Suppose that 𝑥 ∈ Z𝑀 \ 𝐴 and 𝑦 ∈ Z𝑀 \ 𝐵 with

(𝑥 − 𝑎, 𝑀) = (𝑦 − 𝑏, 𝑀) = 𝑀/𝑝𝑖 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. (7.11)

We claim that

𝐴𝑥,𝑦 ⊂ Π
(
𝑥, 𝑝𝑛𝑖−1

𝑖

)
, 𝐵𝑦,𝑥 ⊂ Π

(
𝑦, 𝑝𝑛𝑖−1

𝑖

)
. (7.12)

One way to prove this is as follows. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 be as in equation (7.11). As in the first
example here, we have 𝐴𝑥,𝑏 ⊂ Bispan(𝑥, 𝑎) ⊂ Π(𝑥, 𝑝𝑛𝑖−1

𝑖 ). Hence
𝐵𝑏,𝑥 ⊂ Π(𝑏, 𝑝𝑛𝑖−1

𝑖 ) = Π(𝑦, 𝑝𝑛𝑖−1
𝑖 ). Applying inclusion (7.8) to B, and using the fact that

Bispan(𝑦, 𝑏) ⊂ Π(𝑦, 𝑝𝑛𝑖−1
𝑖 ), we get that 𝐵𝑦,𝑥 ⊂ Π(𝑦, 𝑝𝑛𝑖−1

𝑖 ) as claimed. This also implies the first
half of claim (7.12). Alternatively, claim (7.12) can also be deduced from Lemma 7.9.

Saturating sets are very useful in identifying configurations that cannot occur in tiling complements.
For example, we have the following easy but important lemma:

Lemma 7.10 (No missing joints). Let 𝐴 ⊕ 𝐵 = Z𝑀 , where 𝑀 = 𝑝𝑛1
1 · · · 𝑝𝑛𝐾𝐾 . Suppose that

{𝐷 (𝑀) | 𝑚 | 𝑀} ∩ Div(𝐵) = ∅, (7.13)

and that for some 𝑥 ∈ Z𝑀 there exist 𝑎1, . . . , 𝑎𝐾 ∈ 𝐴 such that

(𝑥 − 𝑎𝑖 , 𝑀) = 𝑀/𝑝𝑖 ∀𝑖 ∈ {1, . . . , 𝐾}. (7.14)

Then 𝑥 ∈ 𝐴.

Proof. Suppose that 𝑥 ∉ 𝐴, and let Δ be the M-cuboid with vertices 𝑥, 𝑎1, . . . , 𝑎𝐾 . By formulas (7.14)
and (7.9), the saturating set 𝐴𝑥 is contained in the vertex set of Δ . But that is impossible by disjointness
condition (7.13). �

As an application, we prove the following restriction on fibered grids that can be a part of a tiling set:

Proposition 7.11. Let 𝑀 = 𝑝𝑛1
1 𝑝𝑛3

2 𝑝𝑛3
2 . Assume that 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling, and that there exists

a 𝐷 (𝑀)-grid Λ such that 𝐴 ∩ Λ is a nonempty union of disjoint M-fibers. Then there is a subset
{𝜈1, 𝜈2} ⊂ {1, 2, 3} of cardinality 2 such that 𝐴 ∩ Λ is a union of disjoint M-fibers in the 𝑝𝜈1 and 𝑝𝜈2

directions.

Proof. Fix A and Λ as in the statement of the proposition. We will say that 𝜅 : 𝐴 ∩ Λ → {1, 2, 3} is an
assignment function if 𝐴 ∩ Λ can be written as

𝐴 ∩ Λ =
⋃

𝑎∈𝐴∩Λ

(
𝑎 ∗ 𝐹𝜅 (𝑎)

)
,

where for any 𝑎, 𝑎′ ∈ 𝐴 ∩ Λ, the fibers 𝑎 ∗ 𝐹𝜅 (𝑎) and 𝑎′ ∗ 𝐹𝜅 (𝑎′) are either identical or disjoint. Thus if
𝑎′ ∈ 𝑎 ∗ 𝐹𝜅 (𝑎) , then 𝜅(𝑎′) = 𝜅(𝑎). Note that 𝜅 is not necessarily unique, since there exist sets that can be
split into nonintersecting fibers in more than one way. We will use Ξ to denote the set of all assignment
functions for 𝐴 ∩ Λ.

It suffices to prove that any assignment function 𝜅 ∈ Ξ may take at most two values. To prove this,
assume for contradiction that there exists 𝜅 ∈ Ξ such that 𝜅(𝑎1) = 1, 𝜅(𝑎2) = 2, 𝜅(𝑎3) = 3 for some
𝑎1, 𝑎2, 𝑎3 ∈ 𝐴 ∩ Λ. Then the fibers 𝑎1 ∗ 𝐹1, 𝑎2 ∗ 𝐹2, 𝑎3 ∗ 𝐹3 are contained in A and pairwise disjoint.

Let 𝑥 ∈ Λ be the point such that

Π
(
𝑎1, 𝑝

𝑛2
2

)
∩ Π

(
𝑎2, 𝑝

𝑛3
3

)
∩ Π

(
𝑎3, 𝑝

𝑛1
1

)
= {𝑥}.
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Figure 4. A 𝐷 (𝑀)-grid with disjoint M-fibers in all three directions.

Then there are points 𝑎′1 ∈ 𝑎1 ∗ 𝐹1, 𝑎
′
2 ∈ 𝑎2 ∗ 𝐹2, 𝑎

′
3 ∈ 𝑎3 ∗ 𝐹3 such that

(𝑥 − 𝑎′1, 𝑀) = 𝑀/𝑝3, (𝑥 − 𝑎′2, 𝑀) = 𝑀/𝑝1, (𝑥 − 𝑎′3, 𝑀) = 𝑀/𝑝2.

Moreover, {𝐷 (𝑀) | 𝑚 | 𝑀} ⊂ Div(𝐴 ∩ Λ), and hence disjointness condition (7.13) holds. By Lemma
7.10, we must have 𝑥 ∈ 𝐴. However, there is no permitted value for 𝜅(𝑥), since 𝑥 ∗ 𝐹1 intersects 𝑎2 ∗ 𝐹2,
𝑥 ∗ 𝐹2 intersects 𝑎3 ∗ 𝐹3 and 𝑥 ∗ 𝐹3 intersects 𝑎1 ∗ 𝐹1. This contradicts the definition of 𝜅. �

For example, under the assumptions of Proposition 7.11, if 𝐴⊕ 𝐵 = Z𝑀 is a tiling, then 𝐴∩Λ cannot
consist of three nonintersecting fibers in different directions.

Remark 7.12. Suppose thatΦ𝑀 | 𝐴, where 𝑀 = 𝑝𝑛1
1 𝑝𝑛2

2 𝑝𝑛3
3 . LetΛ be a 𝐷 (𝑀)-grid such that 𝐴∩Λ ≠ ∅.

As discussed in Section 5.2, 𝐴 ∩ Λ(𝑋) can be written as

(𝐴 ∩ Λ) (𝑋) =
∑

𝜈∈{1,2,3}
𝑄𝜈 (𝑋)𝐹𝜈 (𝑋), (7.15)

where 𝑄1, 𝑄2, 𝑄3 are polynomials with integer coefficients depending on both A and Λ. If, in addition,
𝑄1, 𝑄2, 𝑄3 are polynomials with nonnegative coefficients, then 𝐴 ∩ Λ is a nonempty union of disjoint
M-fibers. By Proposition 7.11, if 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling, then 𝐴 ∩ Λ can be written in the form of
equation (7.15) with at least one of 𝑄1, 𝑄2, 𝑄3 equal to 0.

It is likely that some consistency conditions of this type occur more broadly in tiling sets. For example,
in [24, Theorem 9.1(IIa)], we prove a much more difficult and technical result of this type on a lower
scale.

8. Fibers and cofibers

8.1. Fibers and fiber chains

Definition 8.1. Let 𝑁 | 𝑀 , and assume that 𝑝 𝛿
𝑖 | 𝑁 for some 𝛿 ≥ 1. Define

Ψ𝑁 /𝑝𝛿𝑖
(𝑋) := Φ𝑝𝑖

(
𝑋𝑁 /𝑝𝛿𝑖

)
= 1 + 𝑋𝑁 /𝑝𝛿𝑖 + 𝑋2𝑁 /𝑝𝛿𝑖 + · · · + 𝑋 (𝑝𝑖−1)𝑁 /𝑝𝛿𝑖 . (8.1)

This is the same notation as in formula (5.6), but here we are using it for a different purpose.
Specifically, we will use polynomials of the form (8.1) as building blocks for multiscale fibers and
fiber chains. While Ψ𝑁 /𝑝𝛿𝑖

depends on both 𝑁/𝑝 𝛿
𝑖 and 𝑝𝑖 , both numbers will always be clear from the

context. We will also use the fact that

Ψ𝑁 /𝑝𝛿𝑖
(𝑋) =

𝑋𝑁 /𝑝𝛿−1
𝑖 − 1

𝑋𝑁 /𝑝𝛿𝑖 − 1
=

∏
𝑠 |𝑀 :𝑠≠1, 𝑝𝜈−𝛿+1

𝑖 ‖𝑠

Φ𝑠 (𝑋), (8.2)

where 𝜈 ≥ 1 is the exponent such that 𝑝𝜈𝑖 ‖ 𝑁 .
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Definition 8.2 (Fibers and fiber chains). Let 𝑁 | 𝑀 , and assume that 𝑝𝑖 | 𝑁 .

(i) A set 𝐹0 ⊂ Z𝑀 is an N-fiber in the 𝑝𝑖 direction if 𝐹0 mod 𝑁 has the mask polynomial

𝐹0 (𝑋) ≡ 𝑐𝑋𝑎Ψ𝑁 /𝑝𝑖 (𝑋) mod 𝑋𝑁 − 1, (8.3)

with fixed 𝑐 ∈ N and 𝑎 ∈ Z𝑁 . Equivalently, 𝐹0 mod 𝑁 is a multiset in Z𝑁 with weights

𝑤𝑁
𝐹0
(𝑥) =

{
𝑐 if 𝑥 ∈ {𝑎, 𝑎 + 𝑁/𝑝𝑖 , 𝑎 + 2𝑁/𝑝𝑖 , . . . , 𝑎 + (𝑝𝑖 − 1)𝑁/𝑝𝑖},
0 otherwise.

If a fiber 𝐹0 has the form (8.3), we will refer to c as its multiplicity, and will say that the fiber is
rooted at a or passes through a.

(ii) A set 𝐴 ⊂ Z𝑀 is N-fibered in the 𝑝𝑖 direction if it can be written as a union of disjoint N-fibers in
the 𝑝𝑖 direction, all with the same multiplicity.

(iii) Let P ⊂ {1, 2, . . . , 𝑛𝑖} be nonempty, where 𝑝𝑛𝑖𝑖 ‖ 𝑀 . A set 𝐹 ⊂ Z𝑀 is a P-fiber chain in the 𝑝𝑖
direction if |𝐹 | = 𝑝 |P |

𝑖 and F is N-fibered in the 𝑝𝑖 direction for each 𝑁 = 𝑀/𝑝𝛼−1
𝑖 , where 𝛼 ∈ P.

We will also use the convention that if P = ∅, then a P-fiber chain in any direction is any singleton
set {𝑥} with 𝑥 ∈ Z𝑀 .

(iv) A set 𝐴 ⊂ Z𝑀 is P-fibered in the 𝑝𝑖 direction if it can be written as a union of disjoint P-fiber
chains in the 𝑝𝑖 direction.

We list a few examples. Observe that although we will not use P-fiber chains with multiplicities
greater than 1, Definition 8.2(iii) does require the concept of N-fibers with multiplicity.

◦ A {1}-fiber chain in the 𝑝𝑖 direction is simply an M-fiber in that direction, and a {1}-fibered set in
the 𝑝𝑖 direction with multiplicity 1 is M-fibered in that direction, as defined in Section 2.3.

◦ A {2}-fiber chain in the 𝑝𝑖 direction is a set 𝐹 ⊂ Z𝑀 such that for some 𝑎 ∈ Z𝑀 we have
𝐹 (𝑥) ≡ 𝑋𝑎 (1 + 𝑋𝑀/𝑝2

𝑖 + 𝑋2𝑀/𝑝2
𝑖 + · · · + 𝑋 (𝑝𝑖−1)𝑀/𝑝2

𝑖 ) mod (𝑋𝑀/𝑝𝑖 − 1). Note that |𝐹 | = 𝑝𝑖 .
◦ A {1, 2}-fiber chain in the 𝑝𝑖 direction is a set 𝐹 ⊂ Z𝑀 such that for some 𝑎 ∈ Z𝑀 we have
𝐹 (𝑥) ≡ 𝑋𝑎 (1 + 𝑋𝑀/𝑝2

𝑖 + 𝑋2𝑀/𝑝2
𝑖 + · · · + 𝑋 (𝑝

2
𝑖 −1)𝑀/𝑝2

𝑖 ) mod (𝑋𝑀 − 1). Note that |𝐹 | = 𝑝2
𝑖 , F is

M-fibered in the 𝑝𝑖 direction with multiplicity 1 and 𝑀/𝑝𝑖-fibered in the 𝑝𝑖 direction with
multiplicity 𝑝𝑖 .

Lemma 8.3 (Properties of fibered sets). Assume that 𝐴 ⊂ Z𝑀 is P-fibered in the 𝑝𝑖 direction for some
P ⊂ {1, 2, . . . , 𝑛𝑖}. Then the following hold:

(i) We have ∏
𝛼∈P

Ψ𝑀/𝑝𝛼𝑖
(𝑋) | 𝐴(𝑋). (8.4)

In particular, Φ𝑠 (𝑋) | 𝐴(𝑋) for all 𝑠 | 𝑀 , 𝑠 ≠ 1, such that 𝑠 = 𝑝𝑛𝑖−𝛼+1
𝑖 𝑠′, where 𝛼 ∈ P and

(𝑠′, 𝑝𝑖) = 1.
(ii) We have 𝑝 |P |

𝑖 | |𝐴|. In particular, a P-fiber chain F as in Definition 8.2(iii) is a minimal set that is
P-fibered in the 𝑝𝑖 direction.

(iii) {𝑀/𝑝𝛼
𝑖 : 𝛼 ∈ P} ⊂ Div(𝐴).

(iv) Let 𝐹 ⊂ Z𝑀 be a P-fiber chain with multiplicity 1 in the 𝑝𝑖 direction. Translating F if necessary, we
may assume that 0 ∈ 𝐹. Let 𝛾 = maxP. Then 𝐹 ⊂ (𝑀/𝑝

𝛾
𝑖 )Z𝑀 ⊂ ℓ𝑖 (0), and F tiles (𝑀/𝑝

𝛾
𝑖 )Z𝑀 �

Z𝑝𝛾𝑖
with the standard tiling complement G, where

𝐺 (𝑋) =
∏

𝜏:1≤𝜏<𝛾,𝜏∉P
Ψ𝑀/𝑝𝜏𝑖

(𝑋).
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(We use the convention that an empty product is equal to 1.)

Proof. Part (i) follows directly from the definition, and (ii) follows from (i) since Φ𝑀/𝑝𝛼𝑖
(1) = 𝑝𝑖 . For

(iii), set 𝛼 ∈ P, and let 𝑎, 𝑎′ ∈ 𝐴 be elements that belong to the same 𝑀/𝑝𝛼−1
𝑖 -fiber in the 𝑝𝑖 direction,

but not to the same 𝑀/𝑝
𝛽
𝑖 -fiber in the 𝑝𝑖 direction for any 𝛽 < 𝛼 − 1. Then (𝑎 − 𝑎′, 𝑀) = 𝑀/𝑝𝛼

𝑖 , as
claimed.

We now prove (iv). Assume that 0 ∈ 𝐹. Since Ψ𝑀/𝑝𝛼𝑖
(𝑋) = Φ

𝑝
𝛾−𝛼+1
𝑖

(𝑋𝑀/𝑝
𝛾
𝑖 ) for 𝛼 ≤ 𝛾, by (i) we

have 𝐹 (𝑋) ≡ 𝑄(𝑋)Ψ(𝑋𝑀/𝑝
𝛾
𝑖 ) mod (𝑋𝑀 − 1), where

Ψ(𝑋) =
∏
𝛼∈P

Φ
𝑝
𝛾−𝛼+1
𝑖

(𝑋).

Since Ψ(1) =
∏

𝛼∈P 𝑝𝑖 = |𝐹 |, we have 𝑄(1) = 1. Splitting up the weighted multiset corresponding to
𝑄(𝑋) into residue classes mod𝑀/𝑝

𝛾
𝑖 , and using the fact that F is a set, we see that𝑄 ∈ M(

(
𝑀/𝑝

𝛾
𝑖

)
Z𝑀 ).

Hence 𝐹 ⊂ (𝑀/𝑝
𝛾
𝑖 )Z𝑀 .

Let 𝐹 ′ = { 𝑥
𝑀/𝑝

𝛾
𝑖

: 𝑥 ∈ 𝐹}, so that 𝐹 ′ ⊂ Z𝑝𝛾𝑖
and Ψ(𝑋) | 𝐹 ′(𝑋), with Ψ(1) = |𝑝𝑖 |

|P | = |𝐹 ′ |.
This is the (T1) tiling condition for 𝐹 ′. Hence 𝐹 ′ tiles Z𝑝𝛾𝑖 with the standard tiling complement (see
Remark 3.5). Rescaling back to 𝐹 ⊂ Z𝑀 , we get (iv). �

8.2. Cofibers and cofibered structures

Given a tiling 𝐴 ⊕ 𝐵 = Z𝑀 , we will be interested in the occurrences of ‘complementary’ fiber chains in
A and B, in the following sense:

Definition 8.4 (Cofibers). Set 𝐴, 𝐵 ⊂ Z𝑀 , and fix 1 ≤ 𝛾 ≤ 𝑛𝑖 . Let P𝐴,P𝐵 be two disjoint sets such that

P𝐴 ∪ P𝐵 = {1, 2, . . . , 𝛾}. (8.5)

We say that 𝐹 ⊂ 𝐴, 𝐺 ⊂ 𝐵 are (P𝐴,P𝐵)-cofibers in the 𝑝𝑖 direction if:

◦ F is a P𝐴-fiber chain in the 𝑝𝑖 direction and
◦ G is a P𝐵-fiber chain in the 𝑝𝑖 direction.

We will also refer to (𝐹, 𝐺) as a (P𝐴,P𝐵)-cofiber pair.

Note that if 𝛾 = 1, then one of the sets P𝐴 and P𝐵 must be empty. If 𝛾 = 1 and P𝐴 = ∅, then F is a
singleton and G is an M-fiber in the 𝑝𝑖 direction.

Our goal will be to find global cofibered structures, as we will describe. If 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling
pair, having a cofibered structure will often allow us to reduce proving (T2) for (𝐴, 𝐵) to proving it to
an equivalent but simpler tiling pair. In order to allow for intermediate steps involving sets that are only
partially fibered, we state the definition for arbitrary sets 𝐴, 𝐵 ⊂ Z𝑀 :

Definition 8.5 (Cofibered structure and cofibered sets). Set 𝐴, 𝐵 ⊂ Z𝑀 , and fix 1 ≤ 𝛾 ≤ 𝑛𝑖 . Let P𝐴,P𝐵

be two disjoint sets obeying condition (8.5).

(i) We say that the pair (𝐴, 𝐵) has a (P𝐴,P𝐵)-cofibered structure in the 𝑝𝑖 direction if:
◦ B is P𝐵-fibered in the 𝑝𝑖 direction and
◦ A contains at least one ‘complementary’ P𝐴-fiber chain 𝐹 ⊂ 𝐴 in the 𝑝𝑖 direction, which we

will call a cofiber for this structure. We will say that F is rooted at 𝑎 ∈ 𝐴 if 𝑎 ∈ 𝐹.
(ii) We say that the pair (𝐴, 𝐵) is (P𝐴,P𝐵)-cofibered in the 𝑝𝑖 direction if:

◦ A is P𝐴-fibered in the 𝑝𝑖 direction and
◦ B is P𝐵-fibered in the 𝑝𝑖 direction.

We emphasise that part (i) of the definition is not symmetric with respect to A and B. Our convention
is that the second set in the pair must be fibered in its entirety. While a cofibered structure may have
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more than one cofiber in A, we do not require that the entire pair (𝐴, 𝐵) be cofibered. We will refer to
the number 𝛾 in Definitions 8.4 and 8.5 as the depth of, respectively, the cofiber pair or the cofibered
structure.

If A and B satisfy Definition 8.5(i), then by Lemma 8.3,{
𝑀/𝑝𝛼

𝑖 : 𝛼 ∈ P𝐴

}
⊆ Div(𝐴),

{
𝑀/𝑝

𝛽
𝑖 : 𝛽 ∈ P𝐵

}
⊆ Div(𝐵), (8.6)∏

𝛽∈P𝐵
Ψ

𝑀/𝑝
𝛽
𝑖
(𝑋) | 𝐵(𝑋), (8.7)

and if a cofiber F is rooted at some 𝑎 ∈ 𝐴, then

𝑋𝑎
∏
𝛼∈P𝐴

Ψ𝑀/𝑝𝛼𝑖
(𝑋) | 𝐹 (𝑋). (8.8)

Remark 8.6. Assume that 𝐴, 𝐵 ⊂ Z𝑀 satisfy Div(𝐴) ∩Div(𝐵) = {𝑀}, and fix 1 ≤ 𝛾 ≤ 𝑛𝑖 . Let P𝐴,P𝐵

be two disjoint sets obeying condition (8.5). Assume that{
𝑀/𝑝𝛼

𝑖 : 𝛼 ∈ P𝐴

}
∩ Div(𝐵) = ∅. (8.9)

(In particular, if 𝐴⊕𝐵 = Z𝑀 and A contains a P𝐴-fiber chain in the 𝑝𝑖 direction, then this equation holds
by Lemma 8.3(iii) and divisor exclusion.) Then, in order to prove that B is P𝐵-fibered in the 𝑝𝑖 direction,
it suffices to verify that every 𝑏 ∈ 𝐵 belongs to a P𝐵-fiber chain 𝐹 (𝑏) in the 𝑝𝑖 direction. Indeed, by
Lemma 8.3 (iv), every 𝐹 (𝑏) is a maximal subset of 𝑏 ∗ (𝑀/𝑝

𝛾
𝑖 )Z𝑀 such that Div(𝐹 (𝑏)) ∩ {𝑀/𝑝𝛼

𝑖 :
𝛼 ∈ P𝐴} = ∅. Hence, under the given assumptions, any two fiber chains 𝐹 (𝑏) and 𝐹 (𝑏′) with 𝑏, 𝑏′ ∈ 𝐵
must be either identical or disjoint.

8.3. Fiber shifting

Cofibered structures are important for two reasons. On one hand, they arise naturally from 1-dimensional
saturating spaces (see Lemma 8.10). On the other hand, with a cofibered structure in place, Lemma 8.7
allows us to shift the cofibers in A as indicated while maintaining both the tiling property and the (T2)
status of A. Applying such shifts repeatedly, we are able to reduce many cases to simpler tilings where
(T2) is easy to verify.
Lemma 8.7 (Fiber-shifting lemma). Let 𝐴 ⊕ 𝐵 = Z𝑀 . Assume that the pair (𝐴, 𝐵) has a (P𝐴,P𝐵)-
cofibered structure, with a cofiber 𝐹 ⊂ 𝐴. Let 𝐴′ be the set obtained from A by shifting F by 𝑀/𝑝

𝛽
𝑖 for

any 𝛽 ∈ P𝐵. Then 𝐴′ ⊕ 𝐵 = Z𝑀 , and A is (T2)-equivalent to 𝐴′.
Proof. We have

𝐴′(𝑋) = 𝐴(𝑋) + (𝑋 𝑘𝑀/𝑝
𝛽
𝑖 − 1)𝐹 (𝑋)

for some k with (𝑘, 𝑝𝑖) = 1.
We must prove that Φ𝑠 (𝑋) | 𝐴

′(𝑋)𝐵(𝑋) for all 𝑠 | 𝑀, 𝑠 ≠ 1. Fix such s, and write it as 𝑠 = 𝑝
𝑛𝑖−𝛾
𝑖 𝑠′,

where (𝑠, 𝑝𝑖) = 1. Consider three cases:

◦ If 𝛾 ≥ 𝛽, then Φ𝑠 (𝑋) | (𝑋
𝑘𝑀/𝑝

𝛽
𝑖 − 1), and therefore it divides A if and only if it divides 𝐴′.

◦ If 𝛾 < 𝛽 and 𝛾 ∈ P𝐵, then Φ𝑠 (𝑋) | Ψ𝑀/𝑝
𝛾
𝑖
(𝑋) | 𝐵(𝑋).

◦ If 𝛾 < 𝛽 and 𝛾 ∈ P𝐴, then Φ𝑠 (𝑋) | Ψ𝑀/𝑝
𝛾
𝑖
(𝑋) | 𝐹 (𝑋), therefore Φ𝑠 divides A if and only if it

divides 𝐴′.
This implies the first part of the lemma.

Suppose furthermore that Φ𝑠 is a (T2) cyclotomic polynomial of A, in the sense that 𝑠 = 𝑠1 · · · 𝑠𝜏 ,
where 𝑠1, . . . , 𝑠𝜏 are powers of distinct primes such that Φ𝑠1 · · ·Φ𝑠𝜏 | 𝐴. In particular, we must have
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Φ𝑝
𝑛𝑖−𝛾
𝑖

| 𝐴, and therefore Φ𝑝
𝑛𝑖−𝛾
𝑖
� 𝐵. By the foregoing analysis applied to 𝑝

𝑛𝑖−𝛾
𝑖 instead of s, we must

have either 𝛾 ≥ 𝛽 or 𝛾 ∈ P𝐴. In both cases, we get that Φ𝑠 divides A if and only if it divides 𝐴′, so that
the (T2) property is preserved when we pass from A to 𝐴′. �

8.4. Fibers and 1-dimensional saturating spaces

We now prove that 1-dimensional saturating sets imply cofibered structures.

Lemma 8.8. Assume that 𝐴 ⊕ 𝐵 = Z𝑀 , and let 𝑥, 𝑦 ∈ Z𝑀 .

(i) Let 1 ≤ 𝛼, 𝛼′ ≤ 𝑛𝑖 , with 𝛼 ≠ 𝛼′. Then

A𝑀/𝑝𝛼𝑖
[𝑥]B𝑀/𝑝𝛼𝑖

[𝑦]A𝑀/𝑝𝛼
′

𝑖
[𝑥]B𝑀/𝑝𝛼

′

𝑖
[𝑦] = 0.

In particular, if 𝐴𝑥,𝑦 ⊂ ℓ𝑖 (𝑥), then the product 〈A[𝑥],B[𝑦]〉 is saturated by a single divisor.
(ii) Suppose that 𝐴𝑥 ⊂ ℓ𝑖 (𝑥). Then there exists an 𝛼 with 0 ≤ 𝛼 ≤ 𝑛𝑖 such that

A𝑀/𝑝𝛼𝑖
[𝑥]B𝑀/𝑝𝛼𝑖

[𝑏] = 𝜙
(
𝑝𝛼
𝑖

)
for all 𝑏 ∈ 𝐵.

Proof. Part (i) is a special case of Lemma 7.9, and part (ii) follows from inclusion (7.9). �

Definition 8.9. Set P ⊂ {1, 2, . . . , 𝑛𝑖}, and let 𝐹 ⊂ Z𝑀 be a P-fiber chain in the 𝑝𝑖 direction.

(i) An element 𝑥 ∈ Z𝑀 is at distance m from F if𝑚 | 𝑀 is the maximal divisor such that (𝑧−𝑥, 𝑀) = 𝑚
for some 𝑧 ∈ 𝐹.

(ii) If 1 ≤ 𝛿 ≤ 𝑛𝑖 , we will write P[𝛿] = P ∩ {1, 2, . . . , 𝛿}.

If 𝑥 ∈ Z𝑀 and 𝐹 ⊂ Z𝑀 is a P-fiber chain in the 𝑝𝑖 direction, then for all 𝑧 ∈ 𝐹 we have
(𝑧 − 𝑥, 𝑀) = 𝑚′𝑝𝛼(𝑧)

𝑖 , where 𝑚′ | (𝑀/𝑝𝑛𝑖𝑖 ) is the same for all 𝑧 ∈ 𝐹. In particular, the distance from x
to F is well defined and is equal to 𝑚′𝑝

max𝑧∈𝐹 𝛼(𝑧)
𝑖 .

Lemma 8.10 (The structure of 1-dimensional saturating spaces). Assume that 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling.

(i) Suppose that 𝑥, 𝑦 ∈ Z𝑀 satisfy 𝑥 ∉ 𝐴 and

A𝑀
𝑀/𝑝

𝛾
𝑖
[𝑥]B𝑀

𝑀/𝑝
𝛾
𝑖
[𝑦] = 𝜙

(
𝑝
𝛾
𝑖

)
(8.10)

for some 0 < 𝛾 ≤ 𝑛𝑖 . Then there exist two disjoint sets P𝐴,P𝐵 with

P𝐴 ∪ P𝐵 = {1, . . . , 𝛾 − 1}, (8.11){
𝑀/𝑝𝛼

𝑖 : 𝛼 ∈ P𝐴

}
⊆ Div(𝐴),

{
𝑀/𝑝

𝛽
𝑖 : 𝛽 ∈ P𝐵

}
⊆ Div(𝐵), (8.12)

such that the following holds. Let 𝐴0 ⊂ 𝐴𝑥,𝑦 be a maximal subset such that for all 𝑎, 𝑎′ ∈ 𝐴0 with
𝑎 ≠ 𝑎′ we have (𝑎 − 𝑎′, 𝑀) = 𝑀/𝑝

𝛾
𝑖 , and let 𝐵0 be a similar subset of 𝐵𝑦,𝑥 . Then one of the sets

𝐴0 and 𝐵0 has cardinality 1, the other has cardinality 𝑝𝑖 − 1, and furthermore

𝐴𝑥,𝑦 =
⋃
𝑎∈𝐴0

𝐹 (𝑎), 𝐵𝑦,𝑥 =
⋃
𝑏∈𝐵0

𝐺 (𝑏), (8.13)

where 𝐹 (𝑎) is a P𝐴-fiber chain in the 𝑝𝑖 direction rooted at a and 𝐺 (𝑏) is a P𝐵-fiber chain in the
𝑝𝑖 direction rooted at b.

(ii) Suppose that 𝑥 ∈ Z𝑀 \ 𝐴 and 𝐴𝑥 ⊂ ℓ𝑖 (𝑥), with

A𝑀
𝑀/𝑝

𝛾
𝑖
[𝑥]B𝑀

𝑀/𝑝
𝛾
𝑖
[𝑏] = 𝜙

(
𝑝
𝛾
𝑖

)
for all 𝑏 ∈ 𝐵, (8.14)
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where 0 < 𝛾 ≤ 𝑛𝑖 (as follows from Lemma 8.8(ii)). Then the pair (𝐴, 𝐵) has a (P𝐴,P𝐵 ∪ {𝛾})-
cofibered structure, with 𝐴𝑥 as a P𝐴-cofiber at a distance 𝑀/𝑝

𝛾
𝑖 from x.

Proof. We first prove (i). Define 𝐴0 and 𝐵0 as before. Since 𝐴0 ⊂ 𝑥 ∗ (𝑀/𝑝
𝛾
𝑖 )Z𝑀 and each element of

𝐴0 ∪ {𝑥} is contained in a different residue class mod 𝑀/𝑝
𝛾
𝑖 , we have |𝐴0 | ≤ 𝑝𝑖 − 1, and similarly for

𝐵0. By divisor exclusion, at most one of these sets has cardinality greater than 1.
Next, let 𝐴1 ⊂ 𝑥 ∗ (𝑀/𝑝

𝛾
𝑖 )Z𝑀 be a maximal subset of 𝐴𝑥,𝑦 such that

∀𝑎, 𝑎′ ∈ 𝐴1 with 𝑎 ≠ 𝑎′, we have (𝑎 − 𝑎′, 𝑀) = 𝑀/𝑝
𝛾−1
𝑖 ,

and define 𝐵1 similarly. Then |𝐴1 | ≤ 𝑝𝑖 |𝐴0 |, since for each 𝑎 ∈ 𝐴1 there must be a ‘parent’ 𝑎0 ∈ 𝐴0
with 𝑀/𝑝

𝛾−1
𝑖 | 𝑎 − 𝑎0, and each 𝑎0 can have at most 𝑝𝑖 such ‘children’ 𝑎 ∈ 𝐴1 (we allow 𝑎 = 𝑎0, so that

𝐴0 ⊂ 𝐴1). Similarly, |𝐵1 | ≤ 𝑝𝑖 |𝐵0 |. Moreover, if |𝐴1 | > |𝐴0 |, then we must have 𝑀/𝑝
𝛾−1
𝑖 ∈ Div(𝐴),

and similarly for B, so that at least one of |𝐴1 | = |𝐴0 | and |𝐵1 | = |𝐵0 | must hold. If |𝐴1 | > |𝐴0 |, we
place 𝛾 − 1 in P𝐴; otherwise we place it in P𝐵.

We continue by induction, constructing a sequence of sets

𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 ⊂ · · · ⊂ 𝐴𝛾−1 = 𝐴𝑥,𝑦 , 𝐵0 ⊂ 𝐵1 ⊂ 𝐵2 ⊂ · · · ⊂ 𝐵𝛾−1 = 𝐵𝑦,𝑥 ,

and two disjoint sets P𝐴,P𝐵 obeying condition (8.11), so that for each 𝑙 = 1, 2, . . . , 𝛾 − 1:

◦ if 𝑙 ∈ P𝐴, then
��𝐴𝛾−𝑙+1

�� ≤ 𝑝𝑖
��𝐴𝛾−𝑙

��, ��𝐵𝛾−𝑙+1
�� = ��𝐵𝛾−𝑙

�� and 𝑀/𝑝
𝛾−𝑙
𝑖 ∉ Div(𝐵); and

◦ if 𝑙 ∈ P𝐵, then the same holds with A and B interchanged.

It follows that

A𝑀
𝑀/𝑝

𝛾
𝑖
[𝑥]B𝑀

𝑀/𝑝
𝛾
𝑖
[𝑦] ≤ |𝐴0 | |𝐵0 |𝑝

|P𝐴 |
𝑖 𝑝 |P𝐵 |

𝑖 ≤ (𝑝𝑖 − 1)𝑝𝛾−1
𝑖 = 𝜙

(
𝑝
𝛾
𝑖

)
.

Furthermore, for the equality to hold, one of the sets 𝐴0, 𝐵0 must have cardinality 𝑝𝑖 − 1; for each
𝑎 ∈ 𝐴0, the set 𝐹 (𝑎) := {𝑎 ∈ 𝐴𝑥,𝑦 : 𝑀/𝑝

𝛾−1
𝑖 | 𝑎 − 𝑎0} must be a full P𝐴-fiber chain in the 𝑝𝑖 direction

rooted at a; and a similar statement must hold for B. This yields the structure described in part (i).
For part (ii), assume that condition (8.14) holds, and let 𝐵0(𝑏) be the set from formula (8.12) with

𝑦 = 𝑏 for each 𝑏 ∈ 𝐵. Since 𝑀/𝑝
𝛾
𝑖 ∈ Div(𝐵), we must have |𝐴0 | = 1 and |𝐵0 (𝑏) | = 𝑝𝑖 − 1. Fix 𝑏 ∈ 𝐵,

so that

𝐵𝑏,𝑥 =
⋃

𝑏′ ∈𝐵0 (𝑏)

𝐺 (𝑏′).

Set 𝑏′ ∈ 𝐵0 (𝑏), and apply part (i) of the lemma with 𝑦 = 𝑏′. Since 𝑏 ∈ 𝐵𝑏′,𝑥 , there is a P𝐵-fiber chain
𝐺 (𝑏) ⊂ 𝐵 rooted at b, so that

𝐵𝑏′,𝑥 = 𝐺 (𝑏) ∪
⋃

𝑏′′ ∈𝐵0 (𝑏) ,𝑏′′≠𝑏′

𝐺 (𝑏′′).

Thus
⋃

𝑏′′ ∈𝐵0 (𝑏)∪{𝑏} 𝐺 (𝑏′′) is a (P𝐵 ∪ {𝛾})-fiber chain in B, rooted at b. Applying this argument to all
𝑏 ∈ 𝐵, and using Remark 8.6, we get the cofibered structure as indicated. �

The following special case will be used frequently in [24]:

Corollary 8.11. Assume that 𝐴 ⊕ 𝐵 = Z𝑀 is a tiling. Suppose that 𝑥 ∈ Z𝑀 \ 𝐴, 𝑏 ∈ 𝐵, 𝑀/𝑝𝑖 ∈ Div(𝐴)
and

A𝑀
𝑀/𝑝2

𝑖

[𝑥]B𝑀
𝑀/𝑝2

𝑖

[𝑏] = 𝜙
(
𝑝2
𝑖

)
. (8.15)
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Then there exists a ({1}, {2})-cofiber pair (𝐹, 𝐺) such that 𝐹 ⊂ 𝐴 is at distance 𝑀/𝑝2
𝑖 from x, 𝐺 ⊂ 𝐵

is rooted at b and

A𝑀
𝑀/𝑝2

𝑖

[𝑥 | 𝐹]B𝑀
𝑀/𝑝2

𝑖

[𝑏 | 𝐺] = 𝜙
(
𝑝2
𝑖

)
. (8.16)

In particular, if 𝑀/𝑝𝑖 ∈ Div(𝐴) and 𝐴𝑥 ⊂ ℓ𝑖 (𝑥) with 𝑀/𝑝2
𝑖 as the contributing divisor (compare

Lemma 8.8(ii)), then the pair (𝐴, 𝐵) has a ({1}, {2})-cofibered structure.

For simplicity, when M is fixed, we will write ‘(1, 2)-cofiber pair’ instead of ‘({1}, {2})-cofiber pair’,
and similarly for cofibered structures.

8.5. Examples and applications

Let 𝑀 = 𝑝𝑛1
1 · · · 𝑝𝑛𝐾𝐾 with 𝐾 ≥ 3 and 𝑝1, . . . , 𝑝𝐾 ≥ 3. Assume that 𝐴 ⊕ 𝐵 = Z𝑀 and |𝐴| = 𝑝1 · · · 𝑝𝐾 .

Let also Λ be a fixed 𝐷 (𝑀)-grid, and assume that 0 ∈ 𝐴 ∩ Λ.

Example 8.12. By Lemma 7.10, we cannot have Λ \ 𝐴 = {𝑥} for a single point 𝑥 ∈ Λ. Similarly, we
cannot have 𝐴 ∩ Λ = 𝐴0 if 𝐴0 is obtained from Λ by deleting a few more points in an ‘unstructured’
way so that the assumptions of Lemma 7.10 still apply.

Suppose, however, that 𝐴0 = Λ \ (𝑥 ∗ 𝐹𝑖) for some 𝑥 ∈ Λ and 𝑖 ∈ {1, . . . , 𝐾}. Then Lemma 7.10
is no longer applicable, and indeed, it is possible to have 𝐴 ∩ Λ = 𝐴0. However, as we now show, this
determines the structure of the entire set A, and in particular, both A and B satisfy (T2).

Indeed, we have A𝑀/𝑝 𝑗 [𝑥] ≥ 2 for all 𝑗 ≠ 𝑖. It follows by inclusion (7.9) that 𝐴𝑥 ⊂ ℓ𝑖 (𝑥). By
Proposition 8.10, the pair (𝐴, 𝐵) has a (P𝐴,P𝐵)-cofibered structure of depth 𝛾 ≥ 2, with 1 ∈ P𝐴 since
𝑀/𝑝𝑖 ∈ Div(𝐴). In particular, A must contain an M-fiber in the 𝑝𝑖 direction at distance 𝑀/𝑝

𝛾
𝑖 from x.

By Lemma 8.7, we can shift that fiber to x, proving that A is (T2)-equivalent to Λ. Thus 𝐴♭ = Λ, and
Corollary 3.8 implies (T2) for both A and B.

We note that the same argument still applies if 𝐴∩Λ has several fibers missing (possibly in different
directions). This is the case in, for example, Szabó-type examples in [25, 43].

Example 8.13. We now consider a more difficult example where saturating sets are not as obvious. Let
𝑀 = 𝑝2

𝑖 𝑝
2
𝑗 𝑝

2
𝑘 with 𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 ≥ 3, and assume that |𝐴| = 𝑝𝑖 𝑝 𝑗 𝑝𝑘 tiles Z𝑀 . Suppose that there exists an

element 𝑥 ∈ Λ \ 𝐴 such that

A𝑀/𝑝𝑖 [𝑥] = 𝜙(𝑝𝑖), A𝑀/𝑝 𝑗 𝑝𝑘 [𝑥] = 𝜙
(
𝑝 𝑗 𝑝𝑘

)
(8.17)

and A𝑚 [𝑥] = 0 for all 𝑚 ∈ {𝐷 (𝑀) | 𝑚 | 𝑀} \ {𝑀/𝑝𝑖 , 𝑀/𝑝 𝑗 𝑝𝑘 }. In the terminology of [24], this is
a 𝑝𝑖-full plane structure. We prove in [24, Section 7] that for a broader class of tilings including this
situation, we have 𝐴♭ = Λ and the tiling 𝐴 ⊕ 𝐵 = Z𝑀 is (T2)-equivalent to Λ ⊕ 𝐵 = Z𝑀 via fiber shifts.
By Corollary 3.8, both A and B satisfy (T2). For expository purposes, we restrict our attention here to
this specific structure.

Consider the saturating set 𝐴𝑥 , with x as before. This time, geometric restrictions alone are not
sufficient to confine 𝐴𝑥 to a single line through x. Nonetheless, with an additional argument we have
the following lemma:

Lemma 8.14. Under the assumptions of Example 8.13, we have either 𝐴𝑥 ⊂ ℓ 𝑗 (𝑥) or 𝐴𝑥 ⊂ ℓ𝑘 (𝑥).

Proof. By inclusion (7.9), we have

𝐴𝑥 ⊂ ℓ 𝑗 (𝑥) ∪ ℓ𝑘 (𝑥). (8.18)

Set 𝑏 ∈ 𝐵. Suppose that 𝐴𝑥,𝑏 ∩ ℓ 𝑗 (𝑥) is nonempty. Since 𝑀/𝑝 𝑗 ∈ Div(𝐴), we must have

A𝑀/𝑝2
𝑗
[𝑥]B𝑀/𝑝2

𝑗
[𝑏] > 0. (8.19)
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Figure 5. A 𝑝𝑖-full plane structure on a 𝐷 (𝑀)-grid.

If we also had 𝐴𝑥,𝑏 ∩ ℓ𝑘 (𝑥) ≠ ∅ for the same b, that would imply that

A𝑀/𝑝2
𝑘
[𝑥]B𝑀/𝑝2

𝑘
[𝑏] > 0; (8.20)

however, having inequalities (8.19) and (8.20) at the same time would contradict Lemma 7.9. Therefore
we must have either 𝐴𝑥,𝑏 ⊂ ℓ 𝑗 (𝑥) or 𝐴𝑥,𝑏 ⊂ ℓ𝑘 (𝑥). Notice that in the former case we have

A𝑀/𝑝2
𝑗
[𝑥]B𝑀/𝑝2

𝑗
[𝑏] = 𝜙(𝑝2

𝑗 ). (8.21)

Since 𝑀/𝑝 𝑗 ∈ Div(𝐴), this can only happen if

A𝑀/𝑝2
𝑗
[𝑥] = 𝑝 𝑗 and B𝑀/𝑝2

𝑗
[𝑏] = 𝜙(𝑝 𝑗 ). (8.22)

In other words, the pair (𝐴 ∩ ℓ 𝑗 (𝑥), 𝐵 ∩ ℓ 𝑗 (𝑏)) contains a (1, 2)-cofiber pair in the 𝑝 𝑗 direction. If
𝐴𝑥,𝑏 ⊂ ℓ𝑘 (𝑥), equations (8.21) and (8.22) hold with j replaced by k.

We claim that either 𝐴𝑥 ⊂ ℓ 𝑗 (𝑥) or 𝐴𝑥 ⊂ ℓ𝑘 (𝑥). Indeed, assume for contradiction that there exist
𝑏 𝑗 , 𝑏𝑘 ∈ 𝐵 such that 𝐴𝑥,𝑏 𝑗 ⊂ ℓ 𝑗 (𝑥) and 𝐴𝑥,𝑏 ⊂ ℓ𝑘 (𝑥). It follows from equation (8.22) that��𝐴 ∩ Π

(
𝑥, 𝑝𝑛𝑖𝑖

) �� ≥ A𝑀/𝑝2
𝑗
[𝑥] + A𝑀/𝑝2

𝑘
[𝑥] + A𝑀/𝑝 𝑗 𝑝𝑘 [𝑥]

= 𝑝 𝑗 + 𝑝𝑘 +
(
𝑝 𝑗 − 1

)
(𝑝𝑘 − 1)

= 𝑝 𝑗 𝑝𝑘 + 1.

This, however, contradicts Lemma 2.3. �

Assume, without loss of generality, that 𝐴𝑥 ⊂ ℓ 𝑗 (𝑥). By Corollary 8.11, the pair (𝐴, 𝐵) has a (1, 2)-
cofibered structure in the 𝑝 𝑗 direction, with a cofiber in A at distance 𝑀/𝑝2

𝑗 from x. By Lemma 8.7, we
may shift the cofiber to x. Let 𝐴′ be the set thus obtained, so that 𝐴′ ∩ Λ contains all points of 𝐴 ∩ Λ
plus, additionally, the fiber 𝑥 ∗ 𝐹𝑗 ⊂ 𝐴′. Moreover, 𝐴′ is (T2)-equivalent to A, and 𝐴′ ⊕ 𝐵 = Z𝑀 .

In this example, we do not get (T2)-equivalence to a standard set right away. Instead, the new set
𝐴′ contains a structure we call a 𝑝 𝑗 -corner [24], consisting of two nonintersecting M-fibers in the 𝑝𝑖
and 𝑝𝑘 directions in Λ. We then have to work further with that structure to prove that, ultimately, 𝐴′

(therefore A) is (T2)-equivalent to Λ.

9. Conjectures and open questions

9.1. Tiling reductions

We first consider the question of whether proving properties such as (T2) or, more generally, proving
structure and classification results for tilings, could be accomplished by inductive arguments involving
reduction to tilings of smaller groups.
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Let 𝐴⊕ 𝐵 = Z𝑀 be a tiling, and assume for convenience that 0 ∈ 𝐴∩𝐵. If M has at most two distinct
prime factors, then Sands’ theorem [37] states that at least one of A, B must be contained in 𝑝Z𝑀 for
some prime 𝑝 | 𝑀 . Thus we can always use Theorem 6.1 to decompose such a tiling into tilings of
residue classes, with at least one of the sets A and B tiling 𝑝Z𝑀 . This was the route taken in [2].

Suppose now that 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 , where 𝑝𝑖 are distinct primes and 𝐾 ≥ 3. Sands’ theorem no

longer holds in that setting, with counterexamples given by Szabó [43] (see also [25]). However, it is
conceivable that other inductive arguments, not based on Theorem 6.1, may still apply. For example,
the following question is open:

Question 1. Let 𝐴 ⊕ 𝐵 = Z𝑀 with 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 .

(i) (Strong version) Suppose that Φ𝑝
𝑛𝑖
𝑖

| 𝐴 for some 𝑖 ∈ {1, 2, . . . , 𝐾}. Is it always true that, in the
notation of Theorem 6.5, we have 𝐴′

𝑝𝑖 ⊕ 𝐵 = Z𝑀/𝑝𝑖 for every translate 𝐴′ of A?
(ii) (Weak version) Must there always exist some 𝑖 ∈ {1, 2, . . . , 𝐾} such that either 𝐴′

𝑝𝑖 ⊕ 𝐵 = Z𝑀/𝑝𝑖

for every translate 𝐴′ of A, or 𝐴 ⊕ 𝐵′
𝑝𝑖 = Z𝑀/𝑝𝑖 for every translate 𝐵′ of B?

We do not know of any counterexamples to this. Szabó’s examples [43] satisfy the conditions of
Theorem 6.5, as do all tilings of period 𝑀 = 𝑝2

1𝑝
2
2𝑝

2
3, where 𝑝1, 𝑝2, 𝑝3 are all odd [24].

Assume that Φ𝑝
𝑛𝑖
𝑖

| 𝐴 for some 𝑖 ∈ {1, 2, . . . , 𝐾}. By Proposition 3.4, property (T2) for B is
equivalent to 𝐴♭ ⊕ 𝐵 = Z𝑀 , where 𝐴♭ is the corresponding standard tiling complement. Heuristically,
the slab reduction could be thought of as going part of the way in that direction, with the original tile
A replaced by a new tile S which keeps some of the structure of A but, additionally, is periodic in the
𝑝𝑖 direction. On the other hand, even if we assume a priori that both A and B satisfy (T2), this does
not appear to imply the slab reduction in any obvious formal way. We do not know whether it is always
possible to start with the original tiling and reach 𝐴♭ ⊕ 𝐵 = Z𝑀 via a sequence of slab reductions or
other similar steps. While it does follow from [24] that all tilings of odd period 𝑀 = 𝑝2

1𝑝
2
2𝑝

2
3 satisfy

the conditions of Theorem 6.5, this is obtained a posteriori as a consequence of our classification of all
such tilings, with (T2) and the classification results obtained by other means in some cases.

It is worthwhile to describe Szabó-type examples in more detail. (For the purpose of this paper, we
use a modification of Szabó’s original construction in [43], which was set in a different abelian group
but was nonetheless based on the same idea. See also the examples in [25] and [4].) We start with the
standard tiling 𝐴♭ ⊕ 𝐵♭ = Z𝑀 , where 𝑀 = 𝑝2

1𝑝
2
2𝑝

2
3, 𝐴♭ is the standard tiling set with Φ𝑝2

𝑖
| 𝐴 for

all 𝑖 ∈ {1, 2, 3} and 𝐵♭ is the standard tiling set with Φ𝑝𝑖 | 𝐵 for all 𝑖 ∈ {1, 2, 3}. We then use fiber
shifts (Lemma 8.7) to modify 𝐴♭ so that for each i, one M-fiber in 𝐴♭ in the 𝑝𝑖 direction is shifted
by a distance 𝑀/𝑝2

𝑖 . For 𝐾 = 3, the M-fibers in all three directions can be selected so that all three
shifts can be performed independently without destroying the tiling property. This produces a new tiling
𝐴 ⊕ 𝐵♭ = Z𝑀 in which neither A nor 𝐵♭ is contained in a proper subgroup of Z𝑀 .

Noting that the pair (𝐴, 𝐵♭) in this construction has a (1, 2)-cofibered structure in all three directions,
one might ask whether one of A or B must in fact be contained in a proper subgroup if no such
obstructions are present. This motivates the following question:

Question 2. Let 𝐴 ⊕ 𝐵 = Z𝑀 with 𝑀 =
∏𝐾

𝑖=1 𝑝
𝑛𝑖
𝑖 . Suppose that Φ𝑝

𝑛𝑖
𝑖

| 𝐴 for some 𝑖 ∈ {1, 2, . . . , 𝐾}.
Is it always true that at least one of the following must hold?

(i) (Subgroup tiling) 𝐴 ⊂ Z𝑀/𝑝𝑖 .
(ii) (Obstruction) There exists an element 𝑥 ∈ Z𝑀 \ 𝐴 such that 𝐴𝑥 ⊂ ℓ𝑖 (𝑥). Furthermore, the pair

(𝐴, 𝐵) has a (P𝐴,P𝐵)-cofibered structure of depth at least 2, with 1 ∈ P𝐴.

It is possible that, at least for 𝐾 ≥ 4, more complicated obstructions may occur that cannot be reduced
to 1-dimensional saturating spaces. However, the results of [24] show that the answer is affirmative if
𝑀 = 𝑝2

1𝑝
2
2𝑝

2
3. It seems reasonable to conjecture the following:

Conjecture 9.1. The answers to Questions 1 (both versions) and 2 are affirmative when M has at most
three distinct prime factors.
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Proposition 3.4 also relates the (T2) property to divisor sets, in the sense that B satisfies (T2) if and
only if its divisor set Div(𝐵) is disjoint from Div(𝐴♭). The equivalence between Theorem 6.5(ii) and (iii)
establishes a more granular result in this direction, by connecting a smaller family of differences in A to
the corresponding family of cyclotomic polynomials. Specifically, if we write 𝑆𝑖 := {𝑚 : 𝑝𝑛𝑖𝑖 | 𝑚 | 𝑀}
for a fixed 𝑖 ∈ {1, . . . , 𝐾}, then Theorem 6.5 establishes a fundamental connection between the set of
differences 𝑚 ∈ Div(𝐴) ∩ 𝑆𝑖 and the collection of all cyclotomic polynomials Φ𝑑 dividing A, for 𝑑 ∈ 𝑆𝑖 .
It would be interesting to know whether such relationships exist on the level of individual differences
and cyclotomic polynomials. As an extreme example of a hypothetical result of this type, we state the
following:

Conjecture 9.2. If Φ𝑝
𝑛𝑖
𝑖

| 𝐴, then 𝑀/𝑝𝑖 ∉ Div(𝐵).

This conjecture can be stated purely in terms of differences, since Φ𝑝
𝑛𝑖
𝑖

| 𝐴 if and only if 𝑀/𝑝𝑖 ∈

Div(𝐴♭). It is obviously necessary in order for (T2) to hold, though not sufficient. Absent a proof of
(T2) in its full generality, this might be an interesting direction to explore.

Our saturating-set techniques provide partial support for the conjecture, as follows. Suppose that
𝑀/𝑝𝑖 ∈ Div(𝐵), with (𝑏 − 𝑏′, 𝑀) = 𝑀/𝑝𝑖 for some 𝑏, 𝑏′ ∈ 𝐵. Suppose further that Conjecture 9.2 is
true. Then Φ𝑝

𝑛𝑖
𝑖
� 𝐴, so that Φ𝑝

𝑛𝑖
𝑖

| 𝐵. In particular,

��𝐵 ∩ Π
(
𝑦, 𝑝𝑛𝑖𝑖

) �� = 1
𝑝𝑖

���𝐵 ∩ Π
(
𝑏, 𝑝𝑛𝑖−1

𝑖

)���
for every 𝑦 ∈ Z𝑀 with (𝑦 − 𝑏, 𝑀) = 𝑀/𝑝𝑖 . We do not know how to prove this, but we can prove the
weaker statement that 𝐵 ∩ Π(𝑦, 𝑝𝑛𝑖𝑖 ) ≠ ∅ for each such y. Indeed, if 𝑦 ∈ 𝐵, this is obvious. If, on the
other hand, 𝑦 ∉ 𝐵, then by inclusion (7.9) we have 𝐵𝑦 ⊂ Π(𝑦, 𝑝𝑛𝑖𝑖 ), and in particular 𝐵 ∩ Π(𝑦, 𝑝𝑛𝑖𝑖 ) is
nonempty.

We note that fibering plays a significant role in all our tiling arguments. For instance, if A is M-fibered
in some direction, this is sufficient to apply slab reduction (see Remark 6.6). At the other extreme, if
Φ𝑀 | 𝐴 but A fails to be M-fibered on some 𝐷 (𝑀)-grid, our strategy in [24] is to identify and use
cofibered structures, which in particular implies fibering in B on a lower scale. Motivated by this, we
conjecture the following:

Conjecture 9.3. For every i there exists 1 ≤ 𝛼𝑖 < 𝑛𝑖 such that either A or B is 𝑀/𝑝𝛼𝑖
𝑖 -fibered in the 𝑝𝑖

direction. In particular, if M has three prime factors, Φ𝑀 | 𝐴 and there exists a 𝐷 (𝑀)-grid Λ such that
𝐴 ∩ Λ is not fibered in any direction, then B is fibered in all directions on some scale. (This happens,
for example, in Szabó’s examples.)

9.2. Saturating sets

We have seen in Lemma 8.10 and Corollary 8.11 that if 𝐴𝑥 ⊂ ℓ𝑖 (𝑥) for some 𝑖 ∈ {1, . . . , 𝐾} and 𝑥 ∈ Z\𝐴,
this implies a cofibered structure in (𝐴, 𝐵). By Lemma 8.7, this allows us to shift M-fibers in A in the
given direction. We use this in [24] to reduce 𝐴 ⊕ 𝐵 = Z𝑀 to (T2)-equivalent tilings 𝐴′ ⊕ 𝐵 = Z𝑀 ,
where 𝐴′ has additional regularity properties. It would therefore be interesting to either find a structure
theorem (an analogue of Lemma 8.10) for saturating sets contained in higher-dimensional subspaces or,
alternatively, to find a systematic way of adding geometric constraints on saturating sets until we find a
cofibered structure.

In all examples where we have been able to determine saturating sets, we found that they enjoy
pleasant ‘splitting’ properties. For example, suppose that (𝑥 − 𝑎, 𝑀) = 𝑀/𝑝𝑖 for some 𝑎 ∈ 𝐴 and
𝑖 ∈ {1, . . . , 𝐾}. By inclusion (7.9), we have

𝐴𝑥 ⊂ Bispan(𝑥, 𝑎) = Π
(
𝑥, 𝑝𝑛𝑖𝑖

)
∪ Π

(
𝑎, 𝑝𝑛𝑖𝑖

)
. (9.1)
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However, what actually tends to happen is that either 𝐴𝑥 ⊂ Π(𝑥, 𝑝𝑛𝑖𝑖 ) or 𝐴𝑥 ⊂ Π(𝑎, 𝑝𝑛𝑖𝑖 ). For instance,
if A𝑀/𝑝𝑖 [𝑎] > 0, then A𝑀/𝑝𝑖 [𝑥] ≥ 2 and

𝐴𝑥 ⊂ Π
(
𝑥, 𝑝𝑛𝑖𝑖

)
.

If, however, B𝑀/𝑝𝑖 [𝑏] > 0, then

𝐴𝑥,𝑏 ⊂ Π
(
𝑎, 𝑝𝑛𝑖𝑖

)
.

For an example of a less-obvious situation where this happens, see, for example, [24, Lemma 9.18].
Similarly, suppose that 𝐾 = 3 and set 𝑥 ∈ Z𝑀 . Assume that there are two elements 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴 such

that (𝑥 − 𝑎𝑖 , 𝑀) = 𝑀/𝑝𝑖 and (𝑥 − 𝑎 𝑗 , 𝑀) = 𝑀/𝑝 𝑗 , with 𝑖, 𝑗 ∈ {1, 2, 3} distinct. Then, by formula (7.9)
again,

𝐴𝑥 ⊂ Bispan(𝑥, 𝑎𝑖) ∩ Bispan
(
𝑥, 𝑎 𝑗

)
= ℓ𝑘 (𝑥) ∪ ℓ𝑘 (𝑎𝑖) ∪ ℓ𝑘

(
𝑎 𝑗

)
∪ ℓ𝑘

(
𝑥𝑖 𝑗

)
,

where 𝑥𝑖 𝑗 ∈ Z𝑀 is the unique point such that (𝑥𝑖 𝑗 − 𝑎𝑖 , 𝑀) = 𝑀/𝑝 𝑗 and (𝑥𝑖 𝑗 − 𝑎 𝑗 , 𝑀) = 𝑀/𝑝𝑖 .
However, in all tiling examples that we have worked out, 𝐴𝑥 is in fact contained in just one of these
lines. An example of this type of situation is provided by [24, Lemma 4.6]. See also Lemma 8.14 for
a different example where the initial geometric constraints restrict the saturating set to a union of two
lines (inclusion 8.18), but then additional arguments show that only one of these lines may participate.

Returning to the ‘two planes’ situation as in inclusion (9.1), we can in fact say a little bit more. By
inclusion (9.1), we have for any 𝑏 ∈ 𝐵,

1 =
∑
𝑝
𝑛𝑖
𝑖 |𝑚

1
𝜙(𝑀/𝑚)

(
A𝑚 [𝑥]B𝑚 [𝑏] + A𝑚/𝑝𝑖 [𝑥]B𝑚/𝑝𝑖 [𝑏]

)
.

Suppose that B𝑚 [𝑏] and B𝑚/𝑝𝑖 [𝑏] are both nonzero for some m with 𝑝𝑛𝑖𝑖 | 𝑚 | 𝑀 . If there were an
𝑎′ ∈ 𝐴 with (𝑥 − 𝑎′, 𝑀) ∈ {𝑚, 𝑚/𝑝𝑖}, then we would also have (𝑎 − 𝑎′, 𝑀) ∈ {𝑚, 𝑚/𝑝𝑖}, contradicting
divisor exclusion. Moreover, if B𝑚/𝑝𝑖 [𝑏] ≠ 0, then any 𝑎′ ∈ 𝐴 with (𝑥 − 𝑎′, 𝑀) ∈ {𝑚, 𝑚/𝑝𝑖} must lie
in the plane Π(𝑎, 𝑝𝑛𝑖𝑖 ). Hence

1 =
∑
𝑝
𝑛𝑖
𝑖 |𝑚

1
𝜙(𝑀/𝑚)

(
𝛿𝑚A𝑚 [𝑥]B𝑚 [𝑏] + (1 − 𝛿𝑚)A𝑚 [𝑎]B𝑚/𝑝𝑖 [𝑏]

)
, (9.2)

where 𝛿𝑚 ∈ {0, 1} for all 𝑝𝑛𝑖𝑖 | 𝑚.
It appears reasonable to conjecture the following:

Conjecture 9.4. Let 𝐴 ⊕ 𝐵 = Z𝑀 be a tiling, and assume that (𝑥 − 𝑎, 𝑀) = 𝑀/𝑝𝑖 for some 𝑎 ∈ 𝐴,
𝑥 ∈ Z𝑀 \ 𝐴 and 𝑖 ∈ {1, . . . , 𝐾}. Then either 𝐴𝑥 ⊂ Π(𝑥, 𝑝𝑛𝑖𝑖 ) or 𝐴𝑥 ⊂ Π(𝑎, 𝑝𝑛𝑖𝑖 ). Furthermore, either
𝛿𝑚 = 1 for all m or 𝛿𝑚 = 0 for all m, depending only on the choice of 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

A similar reasoning, with only slightly more effort, applies to 𝐴𝑥,𝑦 and 𝐵𝑦,𝑥 as in formula (7.12)
with 𝑥 ∈ Z𝑀 \ 𝐴 and 𝑦 ∈ Z𝑀 \ 𝐵.

9.3. Subspace bounds

The special case of Lemma 2.3 with 𝐾 = 3 and 𝛼𝑖 = 0 is a simple but very effective tool in [24]. It would
be useful to have similar bounds for lower-dimensional subspaces, for example lines in the three-prime
case. In this regard, we formulate the following modest conjecture:
Conjecture 9.5. Suppose that 𝑝𝛼𝑖

𝑖 ‖ |𝐴| with 𝛼𝑖 < 𝑛𝑖 . Then for all 𝑥 ∈ Z𝑀 ,

|𝐴 ∩ ℓ𝑖 (𝑥) | < 𝑝𝑛𝑖𝑖 . (9.3)
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This is clearly true when:

◦ 𝑝𝑛𝑖𝑖 exceeds the plane bounds
���𝐴 ∩ Π(𝑥, 𝑝

𝑛 𝑗
𝑗 )

��� for 𝑗 ≠ 𝑖 and

◦ A satisfies (T2) (in this case, 𝐴 ⊕ 𝐵♭ = Z𝑀 and there exists 𝛽𝑖 so that 𝑀/𝑝
𝛽𝑖
𝑖 ∉ Div(𝐴)).

Acknowledgements. This research was supported by the Natural Sciences and Engineering Research Council of Canada (Dis-
covery Grant 22R80520)

Conflicts of Interest: None.

References

[1] S. Bhattacharya, ‘Periodicity and decidability of tilings of Z2’, Amer. J. Math. 142(1) (2020), 255–266.
[2] E. Coven and A. Meyerowitz, ‘Tiling the integers with translates of one finite set’, J. Algebra 212(1) (1999), 161–174.
[3] N. G. de Bruijn, ‘On the factorization of cyclic groups’, Indag. Math. 15 (1953), 370–377.
[4] D. E. Dutkay and I. Kraus, ‘On spectral sets of integers’, in Frames and Harmonic Analysis, Contemporary Mathematics

vol. 706 (American Mathematical Society, Providence, RI, 2018), 215–234.
[5] D. E. Dutkay and C.-K. Lai, ‘Some reductions of the spectral set conjecture to integers’, Math. Proc. Cambridge Philos.

Soc. 156(1) (2014), 123–135.
[6] T. Fallon, G. Kiss and G. Somlai, ‘Spectral sets and tiles in Z2

𝑝 × Z2
𝑞’, Preprint, 2021, arXiv:2105.10575.

[7] T. Fallon, A. Mayeli and D. Villano, ‘The Fuglede conjecture holds in 𝐹3
𝑝 for 𝑝 = 5, 7’, Proc. Amer. Math. Soc., forthcoming.

[8] B. Farkas, M. Matolcsi and P. Móra, ‘On Fuglede’s conjecture and the existence of universal spectra’, J. Fourier Anal. Appl.
12(5) (2006), 483–494.

[9] B. Farkas and S. G. Révész, ‘Tiles with no spectra in dimension 4’, Math. Scand. 98(1) (2006), 44–52.
[10] B. Fuglede, ‘Commuting self-adjoint partial differential operators and a group-theoretic problem’, J. Funct. Anal. 16 (1974),

101–121.
[11] A. Granville, I. Łaba and Y. Wang, ‘A characterization of finite sets that tile the integers, Preprint, 2001, arXiv:math/0109127.
[12] R. Greenfeld and N. Lev, ‘Fuglede’s spectral set conjecture for convex polytopes’, Anal. PDE 10(6) (2017), 1497–1538.
[13] R. Greenfeld and T. Tao, ‘The structure of translational tilings in Z𝑑’, Discrete Anal. 2021, Paper No. 16, 28 pp.
[14] A. Iosevich, N. Katz and T. Tao, ‘The Fuglede spectral conjecture holds for convex planar domains’, Math. Res. Lett. 10(5-6)

(2003), 559–569.
[15] A. Iosevich, A. Mayeli and J. Pakianathan, ‘The Fuglede conjecture holds in Z𝑝 × Z𝑝’, Anal. PDE 10(4) (2017), 757–764.
[16] G. Kiss, R. D. Malikiosis, G. Somlai and M. Vizer, ‘On the discrete Fuglede and Pompeiu problems’, Anal. PDE 13(3)

(2020), 765–788.
[17] G. Kiss, R. D. Malikiosis, G. Somlai and M. Vizer, ‘Fuglede’s conjecture holds for cyclic groups of order pqrs’, Preprint,

2000, arXiv:2011.09578.
[18] G. Kiss and S. Somlai, ‘Fuglede’s conjecture holds on Z2

𝑝 × Z𝑞’, Proc. Amer. Math. Soc. 149(10) (2021), 4181–4188.
[19] M. N. Kolountzakis and N. Lev, ‘Tiling by translates of a function: results and open problems’, Discrete Anal. 2021, Paper

No. 12, 24 pp.
[20] M. N. Kolountzakis and M. Matolcsi, ‘Complex Hadamard matrices and the spectral set conjecture’, Collect. Math. Extra

(2006), 281–291.
[21] M. N. Kolountzakis and M. Matolcsi, ‘Tiles with no spectra’, Forum Math. 18(3) (2006), 519–528.
[22] S. Konyagin and I. Łaba, ‘Spectra of certain types of polynomials and tiling the integers with translates of finite sets’, J.

Number Theory 103(2) (2003), 267–280.
[23] I. Łaba, ‘The spectral set conjecture and multiplicative properties of roots of polynomials’, J. London Math. Soc. (2) 65

(2002), 661–671.
[24] I. Łaba and I. Londner, ‘The Coven-Meyerowitz tiling conditions for 3 odd prime factors’, Preprint, 2021, arXiv:2106.14044.
[25] J.C. Lagarias and S. Szabó, ‘Universal spectra and Tijdeman’s conjecture on factorization of cyclic groups’, J. Fourier Anal.

Appl. 1(7) (2001), 63–70.
[26] J. C. Lagarias and Y. Wang, ‘Tiling the line with translates of one tile’, Invent. Math. 124(1-3) (1996), 341–365.
[27] J. C. Lagarias and Y. Wang, ‘Spectral sets and factorization of finite abelian groups’, J. Funct. Anal. 145(1) (1997), 73–98.
[28] T. Y. Lam and K. H. Leung, ‘On vanishing sums of roots of unity’, J. Algebra 224(1) (2000), 91–109.
[29] N. Lev and M. Matolcsi, ‘The Fuglede conjecture for convex domains is true in all dimensions’, Acta Math., forthcoming,

arXiv:1904.12262.
[30] R. D. Malikiosis, ‘On the structure of spectral and tiling subsets of cyclic groups’, Preprint, 2020, arXiv:2005.05800.
[31] R. D. Malikiosis and M. N. Kolountzakis, ‘Fuglede’s conjecture on cyclic groups of order 𝑝𝑛𝑞’, Discrete Anal. 2017, Paper

No. 12, 16 pp.
[32] H. B. Mann, ‘On linear relations between roots of unity’, Mathematika 12(2) (1965), 107–117.
[33] M. Matolcsi, ‘Fuglede’s conjecture fails in dimension 4’, Proc. Amer. Math. Soc. 133(10) (2005), 3021–3026.

https://doi.org/10.1017/fmp.2022.3 Published online by Cambridge University Press

https://arxiv.org/abs/2105.10575
https://arxiv.org/abs/0109127
https://arxiv.org/abs/2011.09578
https://arxiv.org/abs/2106.14044
https://arxiv.org/abs/1904.12262
https://arxiv.org/abs/2005.05800
https://doi.org/10.1017/fmp.2022.3


46 Izabella Łaba and Itay Londner

[34] D. J. Newman, ‘Tesselation of integers’, J. Number Theory 9(1) (1977), 107–111.
[35] L. Rédei, ‘Über das Kreisteilungspolynom’, Acta Math. Hungar. 5 (1954), 27–28.
[36] L. Rédei, ‘Natürliche Basen des Kreisteilungskörpers’, Abh. Math. Sem. Univ. Hambg. 23 (1959), 180–200.
[37] A. Sands, ‘On Keller’s conjecture for certain cyclic groups’, Proc. Edinb. Math. Soc. (2) 22(1) (1979).
[38] I. J. Schoenberg, ‘A note on the cyclotomic polynomial’, Mathematika 11 (1964), 131–136.
[39] R. Shi, ‘Fuglede’s conjecture holds on cyclic groups Z𝑝2qr’, Discrete Anal. 2019, Paper No. 14, 14 pp.
[40] R. Shi, ‘Equi-distribution on planes and spectral set conjecture on Z𝑝2 × Z𝑝’, J. Lond. Math. Soc. (2) 102(2) (2020),

1030–1046.
[41] G. Somlai, ‘Spectral sets in Z𝑝2qr tile’, Preprint, 2019, arXiv:1907.04398.
[42] J. P. Steinberger, ‘Minimal vanishing sums of roots of unity with large coefficients’, Proc. Lond. Math. Soc. (3) 97(3) (2008),

689–717.
[43] S. Szabó, ‘A type of factorization of finite abelian groups’, Discrete Math. 54(1) (1985), 121–124.
[44] S. Szabó, Topics in Factorization of Abelian Groups (Hindustan Book Agency, Basel, 2004).
[45] T. Tao, ‘Fuglede’s conjecture is false in 5 and higher dimensions’, Math. Res. Lett. 11(2-3) (2004), 251–258.
[46] T. Tao, ‘Some notes on the Coven-Meyerowitz conjecture’ (2011). URL:https://terrytao.wordpress.com/2011/11/19/some-

notes-on-the-coven-meyerowitz-conjecture/.
[47] R. Tijdeman, ‘Decomposition of the integers as a direct sum of two subsets’, in Number Theory (Paris 1992–1993), London

Mathematical Society Lecture Note Series vol. 215 (Cambridge University Press, Cambridge, UK, 1995), 261–276.
[48] T. Zhang, ‘Fuglede’s conjecture holds in Z𝑝 × Z𝑝𝑛 ’, Preprint, 2021, arXiv:2109:08400.

https://doi.org/10.1017/fmp.2022.3 Published online by Cambridge University Press

https://arxiv.org/abs/1907.04398
https://terrytao.wordpress.com/2011/11/19/some-notes-on-the-coven-meyerowitz-conjecture/
https://arxiv.org/abs/2109:08400
https://doi.org/10.1017/fmp.2022.3

	1 Introduction
	2 Notation and preliminaries
	2.1 Multisets and mask polynomials
	2.2 Array coordinates
	2.3 Grids, planes, lines, fibers
	2.4 Cyclotomic polynomials and cyclotomic divisibility
	2.5 Divisor set and divisor exclusion

	3 A reformulation of (T2)
	3.1 Standard tiling complements
	3.2 (T2)-equivalence

	4 Box product
	4.1 Box-product characterisation of tiling
	4.2 A Fourier-analytic identity
	4.3 Proof of Theorem 4.4

	5 Cuboids
	5.1 Definitions
	5.2 Classic cuboids
	5.3 Multiscale cuboids

	6 Tiling reductions
	6.1 Subgroup reduction
	6.2 Slab reduction

	7 Saturating sets
	7.1 Preliminaries
	7.2 Examples and applications

	8 Fibers and cofibers
	8.1 Fibers and fiber chains
	8.2 Cofibers and cofibered structures
	8.3 Fiber shifting
	8.4 Fibers and 1-dimensional saturating spaces
	8.5 Examples and applications

	9 Conjectures and open questions
	9.1 Tiling reductions
	9.2 Saturating sets
	9.3 Subspace bounds


