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Abstract

The Emden-Fowler equation x"(t) + a(t) \x \y sgn x = 0, t g0, is said to be in the sublinear
or superlinear case according to whether y < 1 or y > 1. Conditions on a(t) are given to ensure
local uniqueness of solutions in the sublinear case and continuability of solutions in the
superlinear case. Boundedness of solutions is also studied.

1. Introduction

We are interested in the generalized Emden-Fowler equation

(1) x"(t)+a(t)\x\ysgnx=0 t i? 0

where a(t) is a non-negative continuous function on [0,°o). The more general
second order non-linear differential equation

can be transformed into (1) under suitable change of variables. For a thorough
survey on results concerning solutions of (1), please consult Wong (1973).

We classify equation (1) into sublinear and superlinear cases according to
y > 1 or y < 1 respectively. Problems arising from these cases are different,
though in a sense dually related.

Let us first consider the sublinear case. The function a(t)\x\y is not
Lipschitz continuous in a neighbourhood of x = 0. Hence local uniqueness of
solutions of initial value problems of (1) is not guaranteed by the classical
theorem. In other words, there might exist more than one solution of (1) in an
interval [0, p] such that
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Coffman and Wong (1972) have shown that if x,/0, the solution is
necessarily unique. So the whole problem reduces to that of uniqueness of the
initially stationary solution, namely

(2) JC(0) = X ' ( 0 ) = 0.

In other words, one tries to determine whether the trivial solution
x(/) = 0 is the only initially stationary solution of (1) in a neighbourhood of
t = 0.

No conclusion can be drawn unless some conditions are imposed on the
function a (t). Heidel (1970) obtains the first result in this direction. He proves
that if a (t) > 0 and is of bounded variation in a neighbourhood of 0, then the
local solution of (1) satisfying (2) is unique.

Coffman and Wong (1972) obtain the weaker condition that log ty+}a(t)
be of finite lower variation in a neighbourhood of / = 0. They obtain another
related condition that log a (t) be of finite upper variation in a neighbourhood
of t = 0. This latter condition automatically implies that a(0)>0, and hence
cannot be applied when a(t) has an isolated zero at 0.

In the superlinear case, uniqueness is no more a problem. The difficulty is
now continuability. We say that "all solutions of (1) are continuable through a
point b < 3c" if for some a < b every local solution of (1) in (a, b) has a C2

extension on an open interval containing b. The crucial criterion is whether all
solutions of (1) in (a, b) are bounded as t —»b. With a shift of the f-axis
followed by a reflection, the problem of continuability through b is equivalent
to the following one:

What conditions should be imposed on a(t) so that in a neighbourhood
(0, E] of t = 0, there exists no solution of (1) such that limsup,^0*(0 = »?
(We shall call such solutions initially unbounded.)

Interesting enough, the two conditions discovered by Coffman and Wong
are exactly those they found for the uniqueness problem in the sublinear case.

In both cases they arrive at their results by studying some Liapunov-like
functions associated with (1) and differential inequalities derived from them.

In this paper we employ a more elementary approach which furnishes us
with a condition similar to Coffman and Wong's first condition. When
v'5 > y > V5 - 2 our result improves theirs. But unfortunately for other
values of y, it is the other way round. The same method also enables us to
improve their second condition.

Our method is also applicable to the study of boundedness of solutions
of (1).
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2. Some inequalities

Results in this section hold for both y > 1 and y < 1.

Let T be a zero of x(t), and T an adjacent (either to the left or to the

right of T) extreme point at which x(t) attains its maximum or minimum.

T, 7 V 0. Suppose that a{t) > 0, for t > 0 . Without loss of generality, we may

assume that T < T. We write X = x ( T ) , V = X'(T).

M = max {a(t):t £ [T, T]}

m = m\n{a(t):t £ [T, T]}

LEMMA 1.

0) gLlxrmv^

(ii) — = \ X \ ° y)/2~
V M' ' V m'

where

dy
C = V(l + y)/2 "1 _ y i ^ v y / 2 -

where

r -

PROOF We prove only the inequalities relating to m, the proofs of those

relating to M being similar. Without loss of generality we assume that

i ( l )S0 in [T,T].

Equation (1) can be written as

„*--.<,„.
w h e r e v = dx/dt. I n t e g r a t i n g b o t h s ides wi th r e s p e c t t o JC o v e r [t,T], w e

ob ta in

Taking ( = T, we obtain the required inequality in (i).
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(3) gives

+ y

Integrating this inequality, we obtain

2m

The substitution x(t) = Xy(t) now gives the required inequality in (ii).

COROLLARY 2. There exists s G [x, T] (or [T, T] ) such that

2a(s)

COROLLARY 3. Let Tn + ,< Tn+i< rn < Tn be such that rn*,, rn are ftvo
successive zeros of x(t) and Tn + 1, Tn are two successive extreme points of x(t).
Then there exist

snG[rn, Tn], sB.e[T.,.,,TB]
and

such that

3. Rate of decay (growth) of initially stationary (unbounded)
solutions as t —> 0

Coffman and Wong (1972) have proved the necessity part of the
following theorem. The sufficiency part is obvious.

THEOREM 4. x(t) is an initially stationary (when y < 1) or an initially
unbounded (when y > 1) solution if and only if t = 0 is an accumulation point
of the zeros of x(t).

THEOREM 5. Suppose y < 1. Let x(t) be an initially stationary solution of

(1), then

\X\ = o(TWy))

as T,

https://doi.org/10.1017/S1446788700020127 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020127


[5] The Emden-Fowler equation 125

PROOF. We only give the proof for the rate of decay of X, that for V
being similar.

Case 1. a(0) = 0.
Suppose the contrary. Then there exists a constant a such that no matter

how small e >0 is, we can find a T < e such that

Since a(t) is continuous, we can choose e so near 0 that

N = max{a(t):t £ [0, e]}

is small enough to satisfy

By Lemma 1 (ii),

T - T 5 -Q= | X I"-1"'2 g ~ a°-yV2 T > T.
VM VN

Hence x < 0. This means that x (t) has no other zeros in [0, T], contradicting
Theorem 4.

Case 2. a(0)>0.
Similar method as in case 1 shows that X = O(T2/<lyl). Suppose that

limsupr-o|X |/T2<1~V) = a / 0. Since a{t) is continuous and a(0)^0,

min{a(s):Qgs g(}lim k (t) = hm )—) \ _ ^—-—.• = 1.,_o v / r - ( imax |a(s) :0Sjg(}

Let N = max{tf (f): f G [0,1]}. From the definition of a, for any 8 >0, there
exist two successive extreme values of JC(() at, say, Tn and Tn^,(< Tn < 1), as
near 0 as we wish such that

a-S< \Xn\/T
2J('-y)<a + 8

and

By Lemma 1 (ii)

where
Mn =max{a(():ie[Tn, Tn]}.

Therefore
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and

from which

I v / v i -- /"2i(\-y) a + o
a — 5

However Corollary 3 implies that

a — 5

The right hand side is definitely less than 1 if 5 is suitably chosen. However
since Tn can be as near zero as we wish, k{Tn) can be made very near to 1.
This is a contradiction.

THEOREM 6. Suppose y > 1. Let x(t) be an initially unbounded solution of
(1). Then

as T, T ^ O .

PROOF. The proof is exactly the same as that of Theorem 5.

4. Main theorems

THEOREM 7. Let y < 1. Suppose that Iogt2"'y)/(i~y) a(t) has finite lower
variation in [0, e] . Then the trivial solution is the only initially stationary
solution of (1) in [Q,e].

PROOF. Let x(t) be a non-trivial solution of (1) in [0, e]. We attempt to
show that it cannot be initially stationary. We can settle right away the case of
non-oscillatory x(t) by Theorem 4. Hence assume that x(t) has infinitely
many zeros in [0, e]. Take any 10 G [0, e] such that x(to)/ 0. Consider the first
zero of x (t) we meet when we move from t0 to 0. This must be an isolated zero
in view of Theorem 4. Call it T,. Continue moving to the left and we shall meet
the second zero of x(t), which must also be an isolated zero in view of
Theorem 4. As we continue the process, we obtain a decreasing sequence of
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zeros of x(t), namely {rn}. Let x(t) attain its extreme values at Tn G (T«, rn_,).
The sequence {rn} must converge, say to r G [0, t,,]. According to Corollary 3,

Hence,

But

g

Therefore

* • • « • ' -

s;'"T>/""y'a(5,) \ > _ flower variation of]
' ' ) = 1 2<l)/(1) J

-

= 1 1 -2( l
5

1 1 - 2 (
i - i 5 ,

= n%7v(-TTfg

from which,

If x ^ 0, this inequality contradicts the fact that Xn -+ 0 as n -»=° (Theorem 4).
If T = 0, this inequality contradicts Theorem 5.

THEOREM 8. Let y < 1. Suppose that log <2<1"T)/<yl)a(0 has /im'fe upper
variation in [0,e]. Then the trivial solution is the only initially stationary

solution of (1) in [0, e].

PROOF. The proof is the same as that of Theorem 7. However this time
we consider j Vn+,/Vn | instead of \Xn/Xn + l .

The same arguments apply also to the superlinear case if we take
Theorem 6 into account-. We just state the theorems without proof.

THEOREM 9. Let y > 1 . Suppose that log t2{^y)l{y'1) a{t) has finite lower
variation in [0, e ]. Then there exists no initially unbounded solution in [0, e ].

THEOREM 10. Let y > 1. Suppose that log /2<1^>/<1 ~y) a(t) has finite upper
variation in [0, e ]. Then there exists no initially unbounded solution in [0, e ].

These two theorems can easily be reformulated in a form using continua-
bility.
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5. Boundedness of solutions

The following theorem holds in both cases y < 1 and y > 1.

THEOREM 11. If either
(i) Lower variation of loga(/)<oc, or
(ii) Upper variation of log a(f)<oc a «^ a(t)^tn >0 /or a// sufficiently

large t,
then all solutions of (1) are bounded.

Wong proves this theorem for a somewhat more general equation. In the
case of equation (1), our approach gives a simple proof.

PROOF. When (i) is satisfied, the same argument as in the proof of
Theorem 7 shows that the amplitude of the oscillations are bounded. Similarly
when (ii) is satisfied, the Vn's are bounded from above, say

! Vn | g k < *.

Corollary 2 then gives

2m
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