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ON COMMUTATIVITY OF ASSOCIATIVE RINGS

MOHD. ASHRAF AND MURTAZA A. QUADRI

111 this paper we prove that if R is a ring with unity satisfying [icy - xnym, x] = 0, for
all x,y £ R and fixed integers m > 1, n ^ 1, then R is commutative.

1. INTRODUCTION

The famous Jacobson theorem [4] that any ring in which for each ring element x
there exists a positive integer n = n(x) > 1 such that xn — x is commutative, can
be easity generalised as follows: if for each pair of elements in a ring R there exists a
positive integer n = n(x,y) > 1 such that (xy)n = xy, then i? is commutative [10].
Thus this class of rings includes the rings which satisfy the following identity:

(*) For all x,y in R there is fixed integer n > 1 such that xnyn = xy.
The object of this note is to investigate the commutativity of the rings satisfying

condition (*) which is certainly weaker than the condition (xy)" = xy. In fact we prove
rather a more general result:

THEOREM. Let R be an associative ring with unity in which [xy — xnym, x] = 0
for ail x,y 6 R and fixed integers m > 1, n ^ 1. Then R is commutative.

Remark 1. The above theorem is also a generalisation of a theorem of Bell [2, Theorem
5], for rings with unity if n is assumed to be fixed.

Remark 2. It is trivial to see that not both m and n can be equal to 1 in the
hypothesis of our theorem.

Remark 3. The ring of 3 x 3 strictly upper triangular matrices over a ring provides
an example showing that the existence of unity in the hypothesis of our theorem is
essential.

In the remainder of the paper let us denote the centre of the ring R by Z(R) , the
commutator ideal by C(R), the set of nilpotent elements by N(R) and the set of all
zero divisors in R by N'(R). For any a,b £ R, [a, b] = ab — ba, the well known Lie
product.
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2.

The following results are pertinent in developing the proof of the above theorem.

The proof of Lemma 1 can be found in [5, p. 221]. Although Lemma 2 has been proved

in [6], we supply here an independent and more elementary proof.

LEMMA 1. If x,y 6 R and [x, y] commutes with x, then [xn, y] = nxn~1\x, y]

for all positive integers n .

LEMMA 2. Suppose a and b are elements of R with unity 1, satisfying amb = 0

and (1 + a) 6 = 0 for some positive integer m . Then b = 0.

PROOF: We have b = {(1 + a) — a}2 m + 16. On expanding the right hand side

expression by the Binomial Theorem and using the fact that amb = 0 and (1 + a)mb —

0, we see that 6 = 0. I

PROOF OF THEOREM: Since R is isomorphic to a subdirect sum of subdirectly

irreducible rings Ra each of which as a homomorpliic image of R satisfies the property

placed on R, R itself can be assumed to be subdirectly irreducible. So 5 , the inter-

section of all noil zero ideals, is non-zero. Now R satisfies [xy — xny"1, x] = 0 for all

x,y G R, wliich is a polynomial identity with relatively prime integral coefficients. But

if we consider x = e^ > y = &2\, we find that no ring of 2 x 2 matrices over GF(p), p

a prime, satisfies the identity. Hence by [1, Theorem 1] the commutator ideal C(R) of

R is nil.

Using the hypothesis of our theorem, we get

(1) x[x, y] = xn[x,ym] fo r all x,y £ R.

By repeated use of (1), we see that for any positive integer p,

x"[x, y] = x'-tx^x, ym]

and finally,

(Z) x [x, y] — x [x, y j .

Now if u is a nilpotent element of R, then um = 0 for sufficiently large p . Using

(2), we have xp[x, u] = 0. Replace x by (1 + a;), to get (1 + x)p[x, u] = 0. Then by

Lemma 2, we get [x, u] = 0 for all x € R and hence

(3) C(R) C N(R) C Z{R).
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Now if n = 1, then replacing x by (1 + x) in (1) we get [x, y] = [x, ym] that is
[x,y — ym] = 0 for all i , y £ R. Hence R is commutative by a theorem of Herstein [3].
So we assume henceforth that n > 1, and we choose the positive integer q = 2 n + 1 — 22 .
Then by using (1), we have

qx[x,y] = 2n+1x[x, y)-2ix[x,y]

= (2x)n[2x, ym) - 2a;[2x, y]

= 0

that is, qx[x, y] = 0 . With 1 + x in place of x, this yields g(l + x)[x, y] = 0. On
combining we get q[x, y] = 0 . But since commutators are central, by employing Lemma
1, we have [xq, y] = qxq~1[x, y] — 0, which yields

(4) xq
 G Z(R).

Replacing y by ym in (1), we get

(5) x[x,ym}-xn{x,(ym)m} = 0.

Since commutators are central,

x[x, ym] = [x, ym]x

= mym~1[x, y]x, by (3) and Lemma 1,

= mym-1x[x,y], by (3).

Again using (1) and (3) respectively, the above yields

= mym-1[x,ym]xn.

Using similar techniques, we get

Thus (5) gives my"1'1 (\ - y(m"1)2)[a;, ym]xn = 0. Again the usual argument of re-

placing x by (1 + x), etcetera in the last identity shows that my"1'1 i\ — j / ( m ^ 1 ' )

[x, ym] = 0 and therefore finally we obtain,

(6)
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Next we claim that N'(R) C Z(R). Let a £ N'{R), then by (4) a^"1'1^ £

JV'(i?) n Z{R) and 5a«(m-1>2 = (0) . Since by (6), ma"1"1 f 1 - a'*"1"1'2 W am] = 0,

that is, ( l - o ' ^ - ' ^ j m o 1 " - 1 ^ , a m ] = 0. If ma"1'1^, am] ^ 0 then (l - a'*"1-1)2)

£ TV'(iZ) and so S(l - a ^ " 1 " 1 ^ ) = 0 , which leads to the contradiction that S = (0).

Hence mam~1[x, am] = 0. Using (1) and Lemma 1, we obtain

x2[x, a] =xxn[x, am]

= 0.

This implies that x2[x, a] = 0, and so the usual argument of replacing x by (1 + x)

etcetra shows that [x, a] = 0 and hence,

(7) N'(R) C Z(R).

Now for any x £ R, xq and xqm are in ^(i2) and for any y £ R, (1) yields

(xq - xgm)x[x, y] = xqx[x, y] - xqmx"[x, ym]

= x[x,xqy]-xn[x,(x"y)m]

= 0.

Hence we have (.T — xqm~q+1)xq[x, y] = 0. If JR is not commutative then by [3,
Theorem 18], there exists an x £ R such that x — xk £ Z(R), where k = qm — q + 1.
Clearly x (jz Z(R), hence neither x — x nor x is a zero divisor, thus (a; — a;fc)z' is
also not a zero divisor. Now for all y £ R, (x — xk)xq[x, y] — 0, implies [x, y] = 0,
which is a contradiction. Hence R is commutative. I
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