
J. Austral. Math. Soc. ISeries -II M\ (1980). 201-214

SLIM TREES

ELLIOTT EVANS

I Received 14 December 1977; revised 14 April 1980)

Communicated by J. N. Crossley

Abstract

A semilattice tree Twith 0 is slim if there is a chain C with 0 so that the lattices 0 (T)and 0 (C) of semilattice
congruences are isomorphic. This paper establishes elementary consequences of slimness and uses simple
constructive techniques to show certain small trees slim. If 7"is the union of at most countably many
branches, each of which has a maximum or a countable cofinal subset, then Tis slim. For trees with
enough maximals slimness is equivalent with not having any uncountable anti-chains. If a tree T has a
countable cofinal subset then 7"is slim. Thus finitary trees are slim.
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1. Introduction

A meet semilattice Tis called a tree if for each xe T, {ye T\ y < x} is a chain. For a
semilattice M, 0(M) here denotes the lattice of semilattice congruences of M. Call a
tree Twith zero (having a least element) slim if there is some chain C with zero so that
6{T) = 0(C). Slim trees are then those trees whose semilattice congruence structure is
chainlike. It is the purpose of this paper to use elementary constructive techniques to
establish some criteria for slimness as well as the slimness of certain small trees.

The approach used here is based on the notion of the Boolean ring B[M]
universal over a semilattice M (Evans (1977)). This is roughly speaking a Boolean
ring generated by an independent multiplicative system M in it. For a tree Twith
zero the lattice J{B[T]) of ideals of the ring B{T\ is isomorphic with 0(T). This allows
a rephrasing of slimness for T: there is a chain C with zero so that B[T\ s B[C~\.
Detecting slimness then boils down to asking which trees T have a generating chain
in their B[T]. This work is then tied in with the long standing research (Mostowski
and Tarski (1939), Mayer and Pierce (1960) and others) on chain generated Boolean
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202 Elliott Evans [2]

rings. Essentially the work here consists of various elementary ways of slimming out
a tree Tinside B[T\ to produce a chain which will generate B[T].

In Section 2 we review the notion of the Boolean ring universal over a semilattice
and establish some terminology. In Section 3 we introduce slimness and some of its
elementary consequences, finding that slim trees cannot have in them uncountable
anti-chains. Section 4 introduces two constructions. The first roughly consists of
taking a family of trees T( with zero and gluing them together at zero (taking their
disjoint union and then identifying the zeros) to produce a tree we denote
The other is a familiar stacking of chains construction.

Section 5 analyses trees via their branches showing that if a tree T has an at most
countable family {Zj of branches whose union is Tthen one can produce chains
with zero {Cj so that B\T~\ s B\\Jcj. If these branches {Z,j have top points we
show that the chains {C,-} can be stacked and the original T is shown slim. Section 6
shows first that for trees where each element is dominated by a maximal, slimness is
equivalent with the tree not having any uncountable anti-chains. Then the notion of
countable chain is introduced and it is shown that if a tree T has an at most
countable family of branches whose union is T, and if these branches are either
countable chains or have top points, then T is slim. We conclude in Section 7 by
presenting the notion of a finitary tree, an idea designed to encompass the well-
known binary trees (trees generally with too many branches). We show that finitary
trees are slim.

All semilattices here are meet (lower) semilattices; their operation is written as
multiplication. If M is a semilattice, D c M, [MD denotes {xe M | for some deD.
x < d}. If D = {d} write [Md instead of lM{d}. If the context is clear, drop the
subscript M. Similar comments hold for f M D, j D, ]M d. T d. An ordinal number as
used here is thought of as the set of its predecessors. Each natural number (starting
with 0. the empty set) is an ordinal and the set o of natural numbers is an ordinal.
The two element field is denoted Z2.

2. Boolean rings universal over semilattices

Let M be a semilattice with 0, B be a Boolean ring and <p: M -» B be a zero
preserving multiplicative homomorphism. The pair(B, </>)is said to be universal over
M if for any Boolean ring R and any zero preserving multiplicative homomorphism
\ji: M -* R there is exactly one ring homomorphism %: B -» R so that % 0 = i//. If
<f>: M -> B is universal over M the map </> is an order embedding and B is unique up
to isomorphism extending </>. For each semilattice M with zero there is a universal
Boolean ring (and map); we denote this ring by B[M].

We say for a semilattice M and a Boolean ring B that M is a subsemilattice in B if
M is a subsemilattice of B's multiplicative reduct; we say that M is a 0-semilattice in B
if M, beyond being a semilattice in B, contains the zero, the least element of B. If the
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meet semilattice Tis a tree (that is, for each x e T, J, x is a chain) we use the phrases
trees in B, 0-tree in B; similar phrases are used for chains. If D £ B, B a Boolean ring
then <D> denotes the subring generated by D. If M is a semilattice in B then <M>
consists precisely of those elements which are finite sums of elements of M. If M is a
0-semilattice in B then M ]()} is Z2 linearly independent in B if and only if whenever
ml,...,mm meM and all mt < m then their join in B, ra, v ... v mn < m (in B).

Let M be a semilattice with 0. Construct B[M] so that it contains M and so that
the universal map mentioned above is inclusion. Internally characterized B = B[M]
is a Boolean ring such that M is a 0-semilattice in B, M\{0} is Z2 linearly
independent in Band <M> = B. If Mis a tree Tthen these reduce to the demands: T
is a 0-tree in B so that < T> = B (Tgenerates B).

The space J%(M) of proper filters (filters # (/), M) of a semilattice with zero M
with its intrinsic order topology (inherited from the power set of M) is homeo-
morphic with the Stone space (prime ideal space) of the ring B[M]. The lattices of
open sets C{:¥p(M)), C(S(B[M])) of these spaces are then isomorphic from which
follows C(,?p(M) ^ ,/(B[A/]) the ideal lattice of the ring B[M].

For any congruence a of M, ffc denotes the extension of u to B[M], that is the ring
congruence of B[M] generated by a. Fora ring congruence 5 of B[M],f)c denotes the
contraction oiS to M, the congruence d n (M x M) of M. For each congruence <r of
M, B[A//ff] = B[M]/(T' ' and as a consequence a = (aef. If M is a tree with 0 then for
each congruence of B[M]. (3cf = S. Thus the Galois connexion of extension and
contraction establishes, in the case of a semilattice tree T with 0, an order
isomorphism between the lattice 9(T) of congruences of Tand the lattice ,/(B[T]) of
ideals of the ring B[7]. Hence for such a Tthe lattices 0{T) and C(3?p(T)) are
isomorphic.

We mention one final fact. If M is a semilattice in the Boolean ring B, beB is a
lower bound in B of M, then the set b + M = {b + m | m e M} is a semilattice in M and
the map M -> b + M whereby m i-> fc + >n is a multiplicative isomorphism between M
and£> + Af. Similar results hold ifwe assume, rather than b being a lower bound of M,
that for each m e M, b • m = 0 (calculated in B).

3. Slim trees

We begin with a result of Mayer and Pierce (1960, page 930) which can be
generalized to arbitrary meet semilattices M.

THEOREM 3.1. let M be a chain with largest element. The following statements are
equivalent.

(i) B[M~\ is countably complete (countable subsets have least upper bounds),
(ii) B[Af] is complete,

(iii) M is finite.
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Applying this result to trees one obtains the following.

COROLLARY 3.2. Let Tbe any tree with 0. Tlw following statements are equivalent.

(i) B[T~\ is conditionally complete (nonempty bounded above subsets have sups).

(ii) for each teT, [Tt is finite,

(iii) Tliere is a set S so that fl[T] is isomorphic with the lattice Fin(S) of finite

subsets of S.

PROOF. Write B for B[T], Assume (i). Let f e X Note that

Since B is conditionally complete then B[J.rr] is complete. But | 7 f is a chain with a
largest element. Thus 3.1 says [Tt is finite.

Assume (ii). Tis then a tree wherein every interval is finite. So by a result of Varlet
(1965) the congruence lattice 0(T) is a Boolean algebra. But 0(T) is complete and
dually atomic. (The latter is because 0{T) ^ ,/(B[T]) and every ideal of B[T] is the
intersection of maximal ideals.) Thus 0(T) is isomorphic to a power set. Hence there
is a set S so that 0(T) ^ P(S) = {x\x £ S}. Restricting the isomorphisms
•f{B[T]) ^ 0(T) and 0(T) ^ P{S) of these algebraic lattices to their compact
elements we have

B[T] s c(0(Tj) ^ c(P(S)) - Fin(5)

Here c(L) denotes the collection of compact elements of an algebraic lattice L. This
gives (iii). Note that where B[7] s Fin(S) and Tis infinite.#T= #S.

The implication (iii) to (i) is trivial.

A tree Twith 0 is said to be slim if there is a chain C with 0 so that B[7] s B[C~\.
Internally this means that there must be a 0-chain C in B[7] so that <C> = B[7"].
The first result on slim trees is trivial.

THEOREM 3.3. Let Tbe any tree with 0. Vie following statements are equivalent.
(i) Tis slim,

(ii) there is a chain C with 0 so that 0(T) ^ 0{C),
(iii) there is a chain C with 0 so that .Wp(T) is homeomorphic with -Fp(C).

THEOREM 3.4. Let Tbe a slim tree. Each semilattice homomorphic image of Tis slim.

PROOF. Suppose Tis a slim tree and M is a homomorphic image of T; then for
some semilattice congruence a of T, M ^ Tin. Thus M is a tree with 0. But
B[M~\ s B[7;'a] s B[r]/ae. Since T is slim there is a chain C with 0 so that
B[T~\ 5= B[C]. There is then a ring congruence/:) of B[C] so that B[T] V s B[C]!/1.
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Now there is a congruence y of C so that ye = fi. Hence

B[Af] =s B[T]/xe £ B[C]IP = B\C]lf s fl[C/y].

But C/7 is certainly a chain with 0. Hence M is a slim tree.

THEOREM 3.5. Suppose Tis a tree so that B[T] is conditionally complete and
# T > Ko. 1)wn Tis not slim.

PROOF. Since B[T~\ is conditionally complete and # T> Ko then there is a set D so
that #£> > Ko and B[T] = Fin(D). Suppose by way of contradiction that 71s slim.
Then for some chain C with 0, 6[C] = Fin(D). Hence by 3.2 each interval of C is
finite. Since C is a chain with 0 where each interval is finite then C is countable. But
with B[C] == Fin(£»), # D > No this is impossible.

A subset D of a tree T is called an anti-chain if for any x, y,eD, x / y we have
x 3E y and y ^ x. Clearly by Zorn's lemma each anti-chain of Tis contained in a
maximal anti-chain.

COROLLARY 3.6. If the tree Tis slim then every anti-chain in Tis at most countable.

PROOF. Suppose T is slim but that T has an anti-chain A so that # A > Ko- Let si
be an anti-chain maximal in Tcontaining A. Then # . G / > KO. Note that if te\Tsi
there is exactly one atesJ with t ^ a,. Observe also that T = C[Tsi)yj{[Tsi\si), a
disjoint union.

Let R denote the tree whose carrier set is si u {0} and whose multiplication is
given by x • y = 0 whenever x # y. Note that #/? > Ko and ,?/ is a maximal anti-
chain in R. Define a map <(>: T-* R as follows. For any t e T,

The map 4> decomposes the tree T into convex subsemilattices; thus 0 is a
homomorphism. Clearly <f> is onto R. Thus R is a homomorphic image of T. So R is
slim. But for each reR, [Rr is certainly finite so 3.2 says B[R] is conditionally
complete. But then Theorem 3.5 says R cannot be slim.

Note that the construction of R given in the proof of 3.6 allows one to construct
many Boolean rings which are tree generated but which cannot be chain generated.

4. Some constructions

Let (7; | / e /) be a system of trees with zero. Suppose Tis a tree with 0 and for each i
there is an injective zero preserving homomorphism <̂ ,- of Tf into T. Suppose the
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system (7̂ </>;) satisfies
(i) If ( T£ j then the composite product $,[73 • 0;[7}] = {0},

(ii) T = U { 0 [ 7 D | i e / } .
The tree Tif it exists is unique up to isomorphism. We will here denote it by y Tt. If
/ = {1,2} we will write it as 7\ Y T2. Note that as a consequence of (i), if i # ; ,
Wm n ^[7J] = {0}.

For a collection (B( | i e /) of Boolean rings ZB, denotes the subring {/e XBf | for
almost all i, /(i) = 0} of the ring X B,,

For a system (T]|ieJ) of trees with zero and for each index jeI define a map
</>,-: 7} -> IB[7J] as follows. If re 7} and if iel

Ui=j,

i f . , , .

Then cpj(t): / -> IJ B[7J] so that for each i, 0,(r)(i) e B[7j] and so that for almost all i,
<pj(t)(i) = 0;. But clearly (/)( is an order embedding zero preserving multiplicative
homomorphism. Now if i / j and if t e TJ, s e Tj then for any index k e I

and one of these right-hand factors must be zero; so for any k e /, [0j(t) • $,-(s)] (fc) = 0.
Hence cp^TJ • ̂ [TJ] calculated in SB[7J] is {6} {C in IB[7j]). Thus if
T= [J {</>i[7J] / e / } then Tis a 0-tree in SB[7J] and is isomorphic with\/7J. Let

D = {/e£B[7J] |for exactly one iel. f(i) # 0f}.

Certainly D generates the ring ZB[7J]. L e t / e D and suppose i e / so that/(i) # 0.
Now/(i) is a nonzero element of B[7J] and 7]\ {0} is a base for B[7J] as a Z2 vector
space. Thus there exist nonzero elements tl,....,tne T{ so that/(i) = f, 4-... + tn. Then
without difficulty

Thus Dg <T>, so <T> =

T H E O R E M 4 . 1 . l e t ( T { \ i e l ) be a s y s t e m of trees with zero. Tlien the t r e j
e x i s t s and B [ \ / 7 J ] ^ S B [ 7 j ] . Hence for trees Tl, T2 with zero.

IT, Y T2] S BCTJ x B[TJ.

COROLLARY 4.2. Suppose each o/(TJ | / e /) a/id (S,. | /' e /) ;.s a svsfem of trees with zero
so that for each iel, B[7J] =s B[SJ. 77ien B\\/T^ ^ B

PRfX)F. The individual isomorphisms B[7J] = B[.S'I] induce an isomorphism
XB[7J] ^XB[Sf]. This latter restricts to an isomorphism IB[7J] = IB[S,-].
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Let n be an ordinal, 0 < n ^ to. If T is a tree with zero then n • T denotes
y(Tj\ien) where the system (T j i e / ) is determined by: for each ien, Tt = 7?

For any chain C use C to denote C if C has no largest element and to denote
C\ {maxCj ifChasa largest element. For a tree T with zero and C a chain with zero
write C -o T to denote the semilattice whose carrier set is the disjoint union of C and
Tand whose multiplication is given by

x- v =

x • y calculated in T if x, y e T,

x • y calculated in C if x, y e C,

x if x e C", v e T.

Notice that C <i Tis again a tree with zero. If Co, Cx are chains with zero and one
and if T is a tree with zero we define C0<a Cl o T by (C0<i C J - a Z Similarly
define f o < C , < C 2 < Tand so forth. If (Cj)ieeo is a sequence of chains with 0 and 1
then C0<i C, <a ....(or -=3ie(0C;) denotes the direct limit of ( C 0 o ...<: Cn)neo) with
appropriate inclusion maps.

THEOREM 4.3. Suppose C is a chain with zero and 1 and Tis a tree with zero. Then
B [ C v T ] i 6[C -a T].

PROOF. Let y denote the maximum element of C. We know

B[C v T] s B[C] x B[7]. In the latter construct the set

D = {(c,0)\ceC}u{(y,t)\teT}.

This D is a 0-tree in B[C] x B[T] which is isomorphic with C o T. The elements of
the set {(c,0) |ceC}u{(0,r) |reT} generate B[C]xB[T] . But for each ceC,
(c,0)£<£>> and if f e T then (0,0 = (y,0) + (y,t) so that (0,0e<D>. Thus
B[C] x B[T] = D. Hence S[C v T] = B[C<i T],

Note that the assumption that C has a 1 is necessary here. For if C = to and if
T= 1 (a 1 element tree) then CvTg^C and B[C] = Fin(C). However
C <i 7 ^ w + 1 (that is the ordered set of natural numbers followed by one point) and
there is an element ( e f < Twith J. t infinite. Hence B [ C o T\ is not conditionally
complete. Thus B [ C o T] ^ B[C v T].

5. Branches

L E M M A 5 . 1 . / / ? a tree Tif x ^ a and x ^ b then x - b = a - b .
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PROOF. Certainly xb ^ ab. Since Tis a tree and both x and a • b are below a then
either x ^ ab or ab ^ x. But if x ^ a • b then x ^ b. against our assumption.
Hence a • b ^ x. Thus ab ^ xb.

A branch Z of a tree Tis a maximal chain in T. Certainly each branch Z of Tis a
lower end of T(x e Z, y < x implying >• e Z). Every point of Tand every chain in T is
contained in a branch of T.

LEMMA 5.2. Suppose Zu...,Zn, C are distinct branches of the tree Twith zero. Jlien
the set C n [Zx u ... u Zn) has a largest element, lat z = max [C n (Zt u ... u ZJ]. If
f e C \ ( Z , u ... u Z J and if seZ{u ... u Zn then t-s = z-s. Finally
C \ ( Z 1 u . . . u Z n ) = ( t z \

PROOF. For each i = 1,..., n, bt = max(C n Z,) exists (take xeC"\Zj, yeZ; C; it is
not difficult to show x • y = max(Z( n C)). The set {b !,..../)„}, being a subset ofC, is a
chain. Let z = max {/>!,...,£>„}. Then z e C n ( Z , u . . . u Zn). If iveC n (Zj u ... u ZJ
then for some i, weCn Z,- so that w ^ b( ^ z. Hence z = max(Cn(Z! u ... u Zn)).

Let S E Z , U ... u Zn, say seZt and let f e C \ ( Z 1 u ... u Zn). Then z ^ f (actually
strictly less than t since each Z; is a lower end). If z ^ s then Lemma 5.1 says
z • s = t • s. So suppose z ^ s. Then z ^ s • t. Since s ' t e f n Z j then s-1 ^ bt ^ z so
s • t = z = z • s.

The last assertion of the lemma is trivial.

Let n be any.nonzero ordinal so that n ^ a> (thus either n is a natural number or n
is the set of natural numbers). Suppose {Z(\ien} are distinct branches of a tree T
with zero so that T = (JjenZf. Let z0 = 0 in Tand choose for each ien (i > 0),
z,- = max(Z1-n(yj-<jZJ.)). Let C; = (frz,-)n Zf for each ie«. Note that C,- is a chain
with least element zt. Working in the ring B = B[T] let D,- = z, + C, for each ien.
Note that Do = Co = Zo and that each £),. is a 0-chain in S which is order isomorphic
with Cj.

We claim that if x e Dh yeDj for i, j e n, i ^ j then v v = 0. To see this suppose
i < j and write x = z( + ct, ct e Ct and y = Zj + c-j, c} e Cj. Now z,-, ct e \Jk <J Zk. If z;- = Cj
then y = 0 so x • y = 0. So assume z,. < c;-. Then c;. e Z; ((Jt <j Zk). So by Lemma 5.2
since z-s = max [Z -̂ n (|Jk <J. Z^)] then z( c7- = z; zs and c,- ĉ- = c, z;-. Hence
(Zj + C;)^. = (Zi + Ci)Zj so that

v • }• = (zk + c() (zj + Cj) = (Zi + c,) z} + (z, + ct) cj = 0.

Thus (J,-eHDi is a 0-tree in £ and it is order isomorphic with \A 6 n Cf. Now
Zo = <U,eIIDI.>. Now suppose Z0,...,Zks<U,.SI1D,>. If reZk + 1\(U7<ik+i Zj) then
f e C l + 1 , so zk+1 + t e D k + j . Then with zk+ ( e<(JJ-<k+ , £),•> we have
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so that «e<Ui6n AX Thus

THEOREM 5.3. Suppose n is a nonzero ordinal, n ^ u> and Tis a tree with zero having
certain distinct branches {Zj1£n so that T= {JienZt. Le t z0 = 0 and for ien, i > 0 let
zi = max [Z; n (\Jj <; Zj)~\. For each i e n let Ct = (f z;) n Z; and calculating in
/f f £>; = Z; + Cj. 77W7

(i) [j^D.isaO-treein B[T],
(ii) (JiEnD, is isomorphic to \ZienCh

(ni) <UJ6.^> B[T]

COROLLARY 5.4. Let n be a nonzero ordinal n ^ a>, and /ef The a tree with zero
having certain distinct branches {Z,}ien whose union is T. Choose C, as i« Tlieorem 5.3.

{C;|/e;ij /s a family of chains with zero so that B[T] s /

THEOREM 5.5. Suppose n is a nonzero ordinal, n < OJ and Tis a tree with zero having
distinct branches {D,],en so that

(i) DrDj = {0} ifijeiuijtj,
(ii) e«c7i £),- /ias a maximum element ah

(iii) Tis the union of{Dt\isn.
In B = B[T~\ let bt = a o + c/, + . . . + «,- for each ien. Let Eo = Do and ifO < ien let
Ei = bj.i+Dj. Tien

(a) each £,- is a chain in B order isomorphic with Dt;
(b) E = [Jien £,• is a 0-chain in B order isomorphic with D0o Dt <i ...;
(c) <£> = B.

PROOF. For all 1,7, at-cij = 0 (1 ^ j) so that £>,• = a0 v ... v ai formed in B. If
reD,(i > 0) then t •&,-_, = 0. Thus for; > 0, £,• ̂  D,-. Certainly £0 ^ £)0. Notice that
b{_, is least in £( (1 > 0) and b( is greatest in £,-. We claim that for each 1, xe Et,
ye Ei+ , imply x ̂  y and that x = y if and only if x = bt = y. This is clear for i = 0.
Assume this true for j < i and suppose i+\en. Suppose xeEb yeEi+l. Then
y = bt+di+ 1 = b; Y di+ , for some di+ , eDi+ ,. Since fe,- is greatest in £, we have
x ^ b,- ̂  i),- v di+i = y. Now if x = y then x = b{ = y is clear.

Thus £ = [JienE[ is a 0-chain in B isomorphic with D o < i ) 1 < .... Certainly
Do c <£>. Suppose for all i < j e n that D, c <£>. We show Dj s <£>. Then
a0,...,<Vj_! e<£>. Let xeDj. Then fcj.j+xeEj so ao,...,aj^1, bj_1+x are all
elements of <£> hence x = ao-\-...+aj_l +bj_l +x is in <£)• So

COROLLARY 5.6. Suppose (C, | ie/i) /s a system of chains with zero and one (n is a
nonzero ordinal, n < OJ). Ihen \JienCi is slim. In fact B[\JC[] = B[C0<] C, *a .. .] .
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6. Trees with enough maximals; countable chains

We say a tree T has enough maximals if for each t e T there is an element m,
maximal in T, so that t ^ m.

THEOREM 6.1. Suppose a tree Thus enough maximals and that the set of maximal
elements of Tis at most countable. Vwn Tis slim.

PROOF. There is an ordinal number n so that 0 < n < <o and so that (a, j i e n) is a
listing without repetitions of the maximal elements of T. For each i e n let Zt denote
lT Oj. Then the Z,'s are distinct branches of T whose union is T Form the C,'s and the
D,-'s as in Theorem 5.3. Then Tt = \JienDi os a 0-tree in B[T] whose span is BIT]
and which satisfies the conditions of Theorem 5.5. So applying 5.5 to the tree T, we
produce a 0-chain E (isomorphic with £>0o D ( < ...) in B[T\ = B[T{] so that
<£> = B[TJ. Then B[£] = <£> = B[TJ = B[T~\. Thus Tis slim.

As a corollary we state the main theorem of this section.

COROLLARY 6.2. Suppose Tis a tree with zero having enough maximals. Tlien the
following statements are equivalent.

(i) Each anti-chain in Tis at most countable.
(ii) Vie set of maximal elements of Tis at most countable.

(iii) Tis slim.

Thus for trees with enough maximals, slimness is equivalent with not having any
too big anti-chains.

EXAMPLE. Let C denote the usual real number unit interval (the rational interval
would work here also). Let T denote any of the trees m-C. C o ( n C ) ,
m-{C o n- C) v / -(Co/c-C) and so forth (here n, m. L k are nonzero natural
numbers). Then passing through the application of 5.3. 5.5 as in the proof of 6.1 we
have B[T] = B[C]. If D = [0, 1)( 1 removed, do the same in the rational case) and if
Tdenotes any of the trees «• C, C o w C, and so forth, then B[T] = B[D~\.

We say a chain C is of countable type if C has no greatest element and if there is an
increasing sequence cl,c2,--. of elements of C so that for each f e C, t ^ c,. for some i.
Observe that if Co. Cj,... is a sequence of chains with least and greatest elements then
Co o C l o C2 o ... is a chain of countable type. Thus there is a chain C of countable
type with S[C] ^ B[\ /C i ] -
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LEMMA 6.3. Let n be an ordinal, 0 < n ^ w. Suppose {C(\ien} is a family of

countable type chains. Tlien there is a chain C of countable type so that

Bin = B[\/C,].

PROOF. For each ien write C,- as C, = D'o <iD\ <J D'2 -=a... where each Dj is an
interval in Ct (and so is a chain with 0 and 1). Now B[Ct] = B[\/(I»}| jew)]. So

Since (D'j) is a countably infinite family of chains with 0 and 1 there is a countable
type chain C so that B[\A>j] = B\_C]. This completes the proof.

THEOREM 6.4. Suppose a tree Twith zero has a set of finitely or countably many
branches, each of which is a countable type chain, whose union is T. Tlien there is a chain
C of countable type so that B[T] = B\C].

PR(X)F. One follows through the application of 5.3 and 5.5 as in the proof of
Theorem 6.1. One need only observe that ifZ is a countable type chain in Tand : e Z
then C\z)r\Z is again a countable type chain.

EXAMPLE. Let C = [0. I). Let T be either nC or «• C (/i # 0, new). Then
BIT] 3;

THEOREM 6.5. Suppose the tree Twith zero has an at most countable family of distinct
branches whose union is Tand so that each oj these branches either has a maximum or is
a countable type chain. Tlien T is slim.

PR(X)F. Denote the collection of branches in question by \Z{ \ieK}. Let

/ = [ie K jZ, has a maximum} let J = [ ie K \Zt is of countable type}. Using 5.3 we

can produce a family of chains with 0 (C,-1 ie 1} u {Cj \ je J} so that:

(i) BIT] ^ B[\/{C, | / e / u •/)]== B[\Ji€l C,] x B[\JJEJ CJ.

(ii) Each Cjd'e/) has a maximum,
liii) Each Cj(jeJ) is of countable type.

Notice that if either / or J is empty the result is given by earlier work.
Assume J # 0 ^ /. Since J is at most countable there is a countable type chain C

with 0 so that B[\JJ€jCj] > fi[C].

Case 1. Suppose / is Unite. Then there is a chain D with 0 and 1 so that
BID] ± B [ y e ; r , ] . Then B[T] s B[D] x B[C] ^ B[D<a C].

Case 2. Suppose / is innnite. Then there is a countable type chain E so that
B [ \ / E ; Q ] = B\_E]. Then HIT] s B[_E] x B[C] ^ B[c\^E] where C.E are coun-
table type chains. Lemma 6.3. says Tis slim.
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7. Applications; finitary and other trees

Let T be a tree, let B be a subset of T. We will say B is cofinal in Tif for each t e T,
t ^ b for some beB.

LEMMA 7.1. Suppose C is a chain without a greatest clement having a countable
subset D which is cofinal in C. Tlien C is a countable chain.

PROOF. Let D = {dud2,...}. Choose x{ = dx and if xn has been chosen, choose
xn+ , to be any element of C greater than max(xn,dn + [). Then (xn) is an increasing
sequence so that for each zeC, z < xn for some n.

Thus if C is a chain with no maximum having countably many elements then C is a
countable chain.

LEMMA 7.2. Suppose B is a countable subset of the tree Tand that B is cofinal in T. Let
C be a branch of Thaving no maximum. Let U(C) denote the set:

Tlien U(C) is countably infinite and cofinal in C.

PROOF. Let be B. Lemma 5.1 implies that the set {x-b\ x e C, x ^ b, b ^-x] has at

most one element. Hence U(C) is countable. Let xeC. Then there is a beB with

x ^ b. If b e C then x ^ b for b e U(C). ifbgC then since C is a chain maximal in T

there is some yeC with b =g y and y ^ b. Certainly y < x. Thus x < r. But then

x ^ y • b with y be U(C). Hence U(C) is cofinal in C. Since C has no maximum. U(C)

is infinite. Notice that U(C) c C.

LEMMA 7.3. IfTis a tree with a countable subset which is cofinal in T then each
branch of T either has a maximum or is a countable chain.

PROOF. This is an easy consequence of 7.1. and 7.2.

THEOREM 7.4. LfT is a tree with a countable subset B so that B is cofinal in T, then T
is slim.

PROOF. Each branch of T either has a maximum point or is a countable type chain.
Let B = {bi,b2,...}. Choose for each i, a branch Zi containing the point bt. Then Tis
the union of the branches Z,,Z2, . . . . Thus Tis the union of finitely or countably
many branches, each of which either has a maximum or is a countable type chain.
Theorem 6.5 tells us that Tis slim.
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A well-ordered tree (that is, where each [x is well ordered) will be said to be of
finite type if:

Fl For each positive integer n there is an element x with ord [J.x] = /?.
F2 For each positive integer n. the set {.x | ord [J. x] = n) is finite.
F3 For each x, ord \_[ x] is finite.

Here for any well-ordered set D, ord [D] denotes the unique ordinal number
which is order isomorphic to D.

Certainly each well-ordered tree of finite type is slim.
For any tree Tlet N(T) - N be the set

[x|x = 0 or x is maximal in Tor xs(T—{x})2}.

Then N(T) is meet closed in T. Call a tree Tfinitary if
(i) N{ T) is either finite or in the inherited order it is well ordered of finite type, and

(ii) N(T) is cofinal in T.
Such trees have at most countable cofinal subsets.

COROLLARY 7.5. Each finitary tree is slim.

Familiar examples of finitary trees are the binary and ternary trees. For a positive
integer n, call a finitary tree n-ary if for each positive integer k the set

{xeN(T) |ord[i , vx] = k}

has precisely it ~ ' elements. It is not difficult to show: if T is any /i-ary tree so that for
each x. j x is order isomorphic to [0,1] then B[T] is isomorphic with B[[0,1)]. If
n > 1 each »/-ary tree has uncountably many branches (overall) but the tree can be
expressed as the union of countably many of these.

We say a well-ordered tree is of countable type if it satisfies Fl and F3 above as
well as:

C2 For each positive integer n the set (x|ord[J,x] = n) is at most countable.
A tree Tmight be called countable-wy if N(T) is cofinal in Tand if N(T) is either

finite or a well-ordered tree of countable type. Certainly each countable-ary tree Tis
slim (N(T) constitutes an at most countable cofinal subset). By analogy with H-ary
trees, we might say a countable-ary tree is i\0-ary if for each n the set

{xe/V(T)|ord[i.vx] =n

has a countably infinite number of elements. All such trees are slim.
Let A denote the class of those trees with an at most countable cofinal subset (all

examples of this section fit here). Let B denote the class of trees where each anti-chain
is at most countable. With S denoting the class of slim trees one has A ^ S ^ B.
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Writing fi to denote the first uncountable ordinal, ji is certainly a slim tree so
A jt S. Just where in the interval [A, B~\ S lies is currently open, but helpful in this
direction would be a decision as to whether the tree ji v ji (with ji as above) is slim.
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