Short Geodesics of Unitaries in the L^{2} Metric

Esteban Andruchow

Abstract. Let \mathcal{M} be a type II_{1} von Neumann algebra, τ a trace in \mathcal{M}, and $L^{2}(\mathcal{M}, \tau)$ the GNS Hilbert space of τ. We regard the unitary group $U_{\mathcal{M}}$ as a subset of $L^{2}(\mathcal{M}, \tau)$ and characterize the shortest smooth curves joining two fixed unitaries in the L^{2} metric. As a consequence of this we obtain that $U_{\mathcal{M}}$, though a complete (metric) topological group, is not an embedded riemannian submanifold of $L^{2}(\mathcal{M}, \tau)$

1 Introduction

Let \mathcal{M} be a type II_{1} von Neumann algebra with a faithful and normal tracial state τ. Let $L^{2}(\mathcal{M}, \tau)$ be the Hilbert space obtained by completion of \mathcal{M} with the norm $\|x\|_{2}=\tau\left(x^{*} x\right)^{1 / 2}$. Denote by $U_{\mathcal{M}}$ the group of unitaries of \mathcal{M}. Then $U_{\mathcal{M}}$, as a subset of $L^{2}(\mathcal{M}, \tau)$, is a complete metric space and a topological group. The Hilbert space norm induces on $U_{\mathcal{M}}$ the strong operator topology. These are well-known facts (see [10]). In a previous note [1], we showed that $U_{\mathcal{M}}$ cannot be embedded as a differentiable submanifold in a way which makes the product of unitaries a differentiable map. Here we show that the same question, dropping the requirement for the product, again has a negative answer: $U_{\mathcal{M}} \subset L^{2}(\mathcal{M}, \tau)$ is not an embedded riemannian submanifold.

Hence, it makes sense to study the following: are there curves of unitaries of \mathcal{M} which have minimal length measured in the L^{2} metric? We measure the length of a curve of unitaries in the following way: let $\mu(t)$ be a curve in $U_{\mathcal{M}}$, with $\mu(0)=v$ and $\mu(1)=u$, which is piecewise C^{1} as a curve in $L^{2}(\mathcal{M}, \tau)$, then the length of μ is

$$
\ell(\mu)=\int_{0}^{1}\|\dot{\mu}(t)\|_{2} d t
$$

where, as is the usual notation, $\|x\|_{2}=\tau\left(x^{*} x\right)^{1 / 2}$. The usual norm of \mathcal{M} is denoted by || $\|$.

Suppose that we fix u and v. Is there a shortest curve joining u and v inside $U_{\mathcal{M}}$? We obtain the following answer (Theorem 3.4):

There exists $x=x^{*} \in \mathcal{M}$ with $\|x\| \leq \pi$ such that $v^{*} u=e^{i x}$. The curve

$$
\delta(t)=v e^{i t x}
$$

has minimal length among piecewise C^{1} curves of unitaries joining u and v.

[^0]1. If $\|x\|<\pi$, then such x is uniquely determined and the curve δ is unique among piecewise C^{∞} minimizing curves.
2. Otherwise $(\|x\|=\pi), \delta$ is non unique. Other minimizing piecewise C^{2} curves are of the form $\gamma(t)=v e^{i t L_{\xi}}$, with $\xi=J \xi \in L^{4}(\mathcal{M}, \tau)$.
In both cases, the shortest (piecewise C^{1}) curve has length $\|x\|_{2}$.
The first condition defines a set of unitaries, namely:

$$
\left\{u \in U_{\mathcal{M}}: v^{*} u=e^{i x} \text { for } x^{*}=x \text { with }\|x\|<\pi\right\}
$$

which is an open neighbourhood of v in the norm topology, but not in the strong operator topology. In [7] Popa and Takesaki found what E. Michael [6] calls a geodesic structure for the unitary group of certain type II_{1} factors. Such a structure has strong topological implications, leading for example to a complete elucidation of the homotopy type of the unitary group for such factors, in the strong operator topology. We wanted to know if the naive "geodesic" curves, of the form $\delta(t)=v e^{i t x}$, could be used to obtain a geodesic structure for all type II_{1} von Neumann algebras in the strong operator topology, as is the case in the norm topology for arbitrary C^{*}-algebras [2]. The result above proves that one cannot.

We call these curves δ geodesics, because they are the geodesics of a covariant derivative defined in $U_{\mathcal{M}}$ in a natural way. If $U_{\mathcal{M}}$ were an embedded submanifold of $L^{2}(\mathcal{M}, \tau)$, this covariant derivative would be the Levi-Civita derivative. Therefore the result above also shows that $U_{\mathcal{M}}$ is not a submanifold of $L^{2}(\mathcal{M}, \tau)$.

This study was inspired by the paper by Durán, Mata-Lorenzo and Recht [4] which studied minimal curves of projections for the p-norms.

2 Geodesics in $U_{\mathcal{M}}$

Let us first define the tangent spaces of $U_{\mathcal{M}}$ in the L^{2} topology. Let $J: L^{2}(\mathcal{M}, \tau) \rightarrow$ $L^{2}(\mathcal{M}, \tau)$ be the involution, i.e., the extension to $L^{2}(\mathcal{M}, \tau)$ of the usual involution $*$ of \mathcal{M}. Clearly $J^{2}=I$. Let $L^{2}(\mathcal{M}, \tau)_{+}=\left\{\xi \in L^{2}(\mathcal{M}, \tau): J \xi=\xi\right\}$ and $L^{2}(\mathcal{M}, \tau)_{-}=$ $\left\{\xi \in L^{2}(\mathcal{M}, \tau): J \xi=-\xi\right\}$, which are real Hilbert spaces. $L^{2}(\mathcal{M}, \tau)_{-}$is the completion in the L^{2} norm of the set of antihermitian elements of $\mathcal{M}\left(x^{*}=-x\right)$, which is the tangent space of $U_{\mathcal{M}}$ at the identity 1 in the norm topology. Let us postulate $T\left(U_{\mathcal{M}}\right)_{1}:=L^{2}(\mathcal{M}, \tau)_{-}$. For $u \in U_{\mathcal{M}}$, the map $L_{u}: L^{2}(\mathcal{M}, \tau) \rightarrow L^{2}(\mathcal{M}, \tau)$, defined on $\mathcal{M} \subset L^{2}(\mathcal{M}, \tau)$ as $L_{u}(x)=u x$ (i.e., the GNS representation of u as an operator in $\left.L^{2}(\mathcal{M}, \tau)\right)$ is a unitary operator. Then we choose $T\left(U_{\mathcal{M}}\right)_{u}=L_{u}\left(L^{2}(\mathcal{M}, \tau)_{-}\right)$. Also, right multiplication $R_{u}(x)=x u$ extends to a unitary operator in $L^{2}(\mathcal{N}, \tau)$. For brevity, we shall write $u \xi$ and $u\left(L^{2}(\mathcal{M}, \tau)\right)$ (resp. ξu and $\left.\left(L^{2}(\mathcal{M}, \tau)_{-}\right) u\right)$ instead of $L_{u} \xi$ and $L_{u}\left(L^{2}(\mathcal{M}, \tau)_{-}\right)\left(\operatorname{resp} . R_{u}(\xi)\right.$ and $\left.R_{u}\left(L^{2}(\mathcal{M}, \tau)_{-}\right)\right)$.

Let μ be a curve of unitaries which is C^{1} as a curve in the Hilbert space $L^{2}(\mathcal{M}, \tau)$, and let X be a differentiable vector field in a neighbourhood of $\{\mu(t): t \in[0,1]\}$, which takes values in $T U_{\mathcal{M}}$ when restricted to $U_{\mathcal{M}}$, i.e., $X_{\mu(t)} \in \mu(t) L^{2}(\mathcal{M}, \tau)_{-}$. For obvious reasons, such a field will be called a tangent vector field along μ. The covariant derivative of X along μ is given by:

$$
\frac{D X}{d t}=\frac{1}{2}\{\dot{X}-\mu J(\dot{X}) \mu\}
$$

where \dot{X} denotes the usual derivative with respect to t in the Hilbert space $L^{2}(\mathcal{N}, \tau)$. This formula is obtained simply by projecting \dot{X} orthogonally (with respect to the inner product given by the real part of τ) onto $T\left(U_{\mathcal{M}}\right)_{\mu}$. Note that if $\mu(t)$ is a C^{2} curve in $U_{\mathcal{M}}$, then $\dot{\mu}$ is a tangent vector field along μ as usual. In particular, μ is a geodesic if

$$
0 \equiv \frac{D \dot{\mu}}{d t}
$$

or equivalently

$$
\begin{equation*}
\ddot{\mu}=\mu J(\ddot{\mu}) \mu \tag{1}
\end{equation*}
$$

It is straightforward to verify that if $x \in \mathcal{M}$ with $x^{*}=x$, and $v \in U_{\mathcal{M}}$, then $\mu(t)=$ $v e^{i t x}$ is a C^{∞} curve with $\dot{\mu}(t)=i v x e^{i t x}$.

There are other exponentials which give curves in $U_{\mathcal{M} \mathcal{C}}$. If $\xi \in L^{2}(\mathcal{M}, \tau)_{+}$, then ξ induces a possibly unbounded selfadjoint operator L_{ξ} on $L^{2}(\mathcal{M}, \tau)$, affiliated to \mathcal{M} (see [3, 9]). Namely, L_{ξ} is the closure of the linear map $L_{\xi}: \mathcal{M} \subset L^{2}(\mathcal{M}, \tau) \rightarrow$ $L^{2}(\mathcal{M}, \tau)$ given by $L_{\xi}(m)=J m^{*} J \xi$. Therefore $\mu(t)=e^{i t L_{\xi}}$ is a continuous curve in the L^{2} topology, which is differentiable in $L^{2}(\mathcal{M}, \tau)$. Indeed, the topological embedding $U_{\mathcal{M}} \subset L^{2}(\mathcal{M}, \tau)$ can be regarded as evaluation at the vector $1 \in L^{2}(\mathcal{M}, \tau)$. Strictly speaking, one should write $\mu(t)=e^{i t L_{\xi}}$. Since 1 lies in the domain of the operator L_{ξ} [9], by Stone's theorem $\mu(t)$ can be differentiated, and the derivative equals (see [8])

$$
\dot{\mu}(t)=i e^{i t L_{\xi}} \xi
$$

However, this curve $\dot{\mu}(t)$ cannot be differentiated again (in $L^{2}(\mathcal{M}, \tau)$) if ξ^{2} does not belong to $L^{2}(\mathcal{M}, \tau)$. It could be differentiated in $L^{1}(\mathcal{M}, \tau)$. Clearly it is not in general a C^{∞} curve of $L^{2}(\mathcal{M}, \tau)$.

Lemma 2.1 Let $\xi \in L^{2}(\mathcal{M}, \tau)_{+}$, then the curve $\mu(t)=e^{i t L_{\xi}}$ is C^{∞} if and only if L_{ξ} is bounded, i.e., $\xi \in \mathcal{M}$.

Proof The "if" part is clear. Suppose that μ has derivatives of any order. This implies that all the powers $L_{\xi}^{k}, k \geq 1$ lie in $L^{2}(\mathcal{M}, \tau)$. Denote by m the probability measure on \mathbb{R} given by the trace of the spectral measure of L_{ξ}. Then

$$
\infty>\left\|L_{\xi}^{k} 1\right\|_{2}^{2}=\int_{\mathbb{R}} \lambda^{2 k} d m(\lambda), \quad \text { for all } k \geq 1
$$

The above statement means that the map $\mathbb{R} \rightarrow \mathbb{R}, \lambda \mapsto \lambda$ lies in $L^{\infty}(\mathbb{R}, m)$, i.e., m has support contained in a bounded interval $[-K, K]$. This implies that L_{ξ} is bounded by K, and therefore lies in \mathcal{M}.

Note that if ξ lies in $L^{2}(\mathcal{M}, \tau)$ but not in $L^{4}(\mathcal{M}, \tau)$, then $\mu(t)=v e^{i t L_{\xi}}$ is C^{1} but not C^{2}, etc. Indeed, $\dot{\mu}(t)=i L_{\xi} e^{i t L_{\xi}}$ is continuous in the L^{2} norm: if $t \rightarrow t_{0}$, then

$$
\left\|\dot{\mu}(t)-\dot{\mu}\left(t_{0}\right)\right\|_{2}=\left\|e^{i\left(t-t_{0}\right) L_{\xi}} \xi-\xi\right\|_{2} \rightarrow 0
$$

Let us call a C^{2} curve a geodesic in $U_{\mathcal{M}}$ if it is a solution of the differential equation (1).

Proposition 2.2 The C^{∞} geodesics in $U_{\mathcal{M}}$ are of the form $\delta(t)=v e^{i t x}$, for $x^{*}=$ $x \in \mathcal{M}$.

Proof First note that if $x^{*}=x$, then $\delta(t)=v e^{i t x}$ satisfies (1). Let μ be a C^{∞} curve in $L^{2}(\mathcal{M}, \tau)$ with values in $U_{\mathcal{M}}$, which is a solution of (1), parametrized in the interval $[0,1]$, with $\mu(0)=v$. Let $i \xi=\dot{\mu}(0)$ and $\xi^{\prime}=\ddot{\mu}(0)$, which lie in $L^{2}(\mathcal{M}, \tau)$ because μ is C^{∞}.

If ν is a solution of (1), then $v^{*} \nu$ is another solution. Since $J\left(v^{*} \ddot{\nu}\right)=J(\ddot{\nu}) v$,

$$
v^{*} \nu J\left(v^{*} \ddot{\nu}\right) v^{*} \nu=v^{*} \nu J(\ddot{\nu}) \nu=v^{*} \ddot{\nu}=v^{*} \nu
$$

Therefore we may suppose $v=1$ without loss of generality.
Differentiating the identity $\mu(t) \mu^{*}(t)=1$, one obtains (we omit the parameter t)

$$
\dot{\mu} \mu^{*}+\mu J(\dot{\mu})=0
$$

($\dot{\mu}$ may lie outside \mathcal{M}, so we find more appropriate to write $J(\dot{\mu})$ instead of $\dot{\mu}^{*}$). Differentiating again,

$$
\ddot{\mu} \mu^{*}+2 \dot{\mu} J(\dot{\mu})+\mu J(\ddot{\mu})=0 .
$$

At $t=0$ one obtains the relations

$$
i \xi+J(i \xi)=0, \quad \text { i.e. } \xi \in L^{2}(\mathcal{M}, \tau)_{+}
$$

and

$$
2 \xi^{\prime}+2 i \xi J(i \xi)=0, \quad \text { i.e. } \xi^{\prime}=-\xi J(\xi)=-\xi^{2}
$$

Consider the curve $\gamma(t)=e^{i t L_{\xi}}$. Then $\dot{\gamma}(t)=i e^{i t L_{\xi}} \xi$ and $\ddot{\gamma}(t)=e^{i t L_{\xi}} \xi^{\prime}$. Therefore γ is $C^{2}\left(\xi^{\prime} \in L^{2}(\mathcal{M}, \tau)\right)$, and the relations above show that it is a solution of (1), satisfying

$$
\dot{\gamma}(0)=i \xi=\dot{\mu}(0) \text { and } \ddot{\gamma}(0)=\xi^{\prime}=\ddot{\mu}(0) .
$$

We claim that these facts imply that $\mu=\gamma$. To prove this claim, one needs a result on uniqueness of solutions of second order differential equations on Banach spaces. Let us first obtain a new form for equation (1). Consider again the identity $\ddot{\mu} \mu^{*}+$ $2 \dot{\mu} J(\dot{\mu})+\mu J(\ddot{\mu})=0$ and multiply it on the right by μ

$$
\ddot{\mu}+2 \dot{\mu} J(\dot{\mu}) \mu+\mu J(\ddot{\mu}) \mu=0 .
$$

Then the identity (1) $\ddot{\mu}=\mu J(\ddot{\mu}) \mu$, replaced above gives

$$
\begin{equation*}
\ddot{\mu}=-\dot{\mu} J(\dot{\mu}) \mu, \tag{2}
\end{equation*}
$$

which we shall adopt. We need a Banach space on which this equation will be considered. Our $L^{2}(\mathcal{M}, \tau)$ is not appropriate, since the right-hand side of the equation does not make sense for arbitrary $\mu(t)$ with derivatives in $L^{2}(\mathcal{M}, \tau)$, because $\dot{\mu} J(\dot{\mu})$ may lie outside $L^{2}(\mathcal{M}, \tau)$. We are not worried about existence-we already know
the solutions-we need a uniqueness result. Let us consider $L^{4}(\mathcal{M}, \tau)$. The map $L^{4}(\mathcal{M}, \tau) \rightarrow L^{2}(\mathcal{M}, \tau), \xi \mapsto \xi J(\xi)$ is differentiable. It follows that the function

$$
F(x, \xi)=-\xi J(\xi) x
$$

with variables $x \in \mathcal{M}$ and $\xi \in L^{4}(\mathcal{M}, \tau)$ and values in $L^{2}(\mathcal{M}, \tau)$, satisfies a Lipschitz condition. Therefore the differential equation (2), $\ddot{\mu}=F(\mu, \dot{\mu})$ has unique local solutions for any given set of initial conditions. Note that any solution μ of (2) should satisfy $\dot{\mu} \in L^{4}(\mathcal{M}, \tau)$ anyway.

Therefore $\mu(t)=e^{i t L_{\xi}}$. The fact that μ is C^{∞} implies, by the lemma above, that $\xi=x$ is a selfadjoint element of \mathcal{M}.

Remark 2.3 The same argument can be used to prove that the C^{2} geodesics are of the form $\delta(t)=v e^{i t L_{\xi}}$, with $\xi \in L^{4}(\mathcal{M}, \tau)$.

Our next result is borrowed and adapted from [4]. There it is stated for variations of geodesics of the grassmannian manifold (i.e., manifold of selfadjoint projections) of a C^{*}-algebra with trace. Also, there the p-length functionals are considered (induced by the p-norms $\left.\|x\|_{p}=\tau\left(\left(x^{*} x\right)^{p / 2}\right)^{1 / p}\right)$, for $p=2 n$. We are interested only in the case $p=2$. Our exposition in the rest of this section follows [4] with slight modifications. We want to compute the extremals of the functional

$$
\ell(\mu)=\int_{0}^{1}\|\dot{\mu}(t)\|_{2} d t
$$

Let $U(t, s):[0,1] \times(-\epsilon, \epsilon) \rightarrow U_{\mathcal{M}}$ be a variation of a curve $\mu:[0,1] \rightarrow U_{\mathcal{M}}$, with fixed endpoints, i.e.,

$$
U(t, 0)=\mu(t) \quad \text { for all } t \in[0,1]
$$

and

$$
U(0, s)=\mu(0), \quad U(1, s)=\mu(1) \quad \text { for all } s \in[0,1]
$$

The variation is through piecewise C^{2} curves, i.e., for each fixed s, the curve $U(t, s)$ is piecewise C^{2} in the parameter t, and vice versa. Denote by $\delta \ell(s)$ the variation

$$
\delta \ell(s)=\frac{\partial}{\partial s} \int_{0}^{1}\left\|\frac{\partial U}{\partial t}\right\|_{2} d t
$$

The extremals of ℓ are the curves μ such that $\delta \ell(0)=0$ for any $U(t, s)$ as above. Denote $V=\frac{\partial U}{\partial t}$ and $W=\frac{\partial U}{\partial s}$. Let us compute

$$
\delta \ell(s)=\frac{\partial}{\partial s} \int_{0}^{1}\left\|\frac{\partial U}{\partial t}\right\|_{2} d t=\int_{0}^{1} \frac{\partial}{\partial s} \tau\left(J\left(\frac{\partial U}{\partial t}\right) \frac{\partial U}{\partial t}\right)^{1 / 2} d t
$$

An easy computation shows that if $\xi(s) \neq 0$ is differentiable in $L^{2}(\mathcal{M}, \tau)$, then

$$
\frac{d}{d s} \tau(J(\xi(s)) \xi(s))^{1 / 2}=\frac{1}{2\|\xi(s)\|_{2}} \tau\left(J\left(\frac{d x(s)}{d s}\right) x(s)+J(x(s)) \frac{d x(s)}{d s}\right)
$$

In our case this gives

$$
\delta \ell(s)=\int_{0}^{1} \frac{1}{2\|V\|_{2}} \tau\left(\left[\frac{\partial}{\partial s} J(V)\right] V+J(V) \frac{\partial}{\partial s} V\right) d t
$$

We shall assume that the curve μ is parametrized by a multiple of arc length. In other words, $\|V\|_{2}$ is constant for $s=0$. One should make the further assumption that V does not vanish for all s, t, in order that the above expression makes sense. Let us point out that at the final stages of this computation we put $s=0$. Therefore it suffices to have that $V(t, s)$ does not vanish for all t and small s (which is attained if we suppose μ with constant speed).

Since U is (piecewise) C^{2} we may interchange

$$
\frac{\partial}{\partial s} V=\frac{\partial}{\partial s}\left(\frac{\partial U}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial U}{\partial s}\right)=\frac{\partial}{\partial t} W
$$

Therefore the variation formula equals

$$
\frac{1}{2} \int_{0}^{1} \tau\left(J\left(\frac{\partial}{\partial t} W\right) \frac{V}{\|V\|_{2}}+J\left(\frac{V}{\|V\|_{2}}\right) \frac{\partial}{\partial t} W\right) d t
$$

Fix s, and let $0=t_{0}<t_{1}<\cdots<t_{n}=1$ be a partition of [0, 1] such that $U(t, s)$ is C^{2} in the interior of the smaller intervals. We may integrate the above formula by parts in each interval $\left[t_{i-1}, t_{i}\right]$ to obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{t_{i-1}}^{t_{i}} \tau\left(J\left(\frac{\partial}{\partial t} W\right) \frac{V}{\|V\|_{2}}\right.\left.+J\left(\frac{V}{\|V\|_{2}}\right) \frac{\partial}{\partial t} W\right) d t= \\
&\left.\frac{1}{2}\left\{\tau\left(J(W) \frac{V}{\|V\|_{2}}+W J\left(\frac{V}{\|V\|_{2}}\right)\right)\right\}\right|_{t_{i-1}} ^{t_{i}} \\
&-\frac{1}{2} \int_{t_{i-1}}^{t_{i}} \tau\left(J(W) \frac{\partial}{\partial t}\left(\frac{V}{\|V\|_{2}}\right)+W \frac{\partial}{\partial t} J\left(\frac{V}{\|V\|_{2}}\right)\right) d t
\end{aligned}
$$

Recall from the beginning of this section the definition of the covariant derivative of a tangent vector field X along a curve μ of unitaries:

$$
\frac{D X}{d t}=\frac{1}{2}\{\dot{X}-\mu J(\dot{X}) \mu\}
$$

In our case, for each fixed s, the field $\frac{V}{\|V\|_{2}}$ is tangent along the curve $U(t, s)$, so we have

$$
\frac{D}{d t} \frac{V}{\|V\|_{2}}=\frac{1}{2}\left\{\frac{\partial}{\partial t} \frac{V}{\|V\|_{2}}-U J\left(\frac{\partial}{\partial t} \frac{V}{\|V\|_{2}}\right) U\right\}
$$

Now we differentiate the identity $U^{*} U=1$ with respect to t. It was pointed out in the introduction that the product of unitaries is not a differentiable map of the arguments in the L^{2} topology. However a product $u(t) v(t)$ of C^{2} curves of unitaries
$u(t)$ and $v(t)$ can be differentiated twice with respect to t. Indeed, the first derivative yields $\dot{u} v+u \dot{v}$. Since u and v are C^{2}, the norms $\|\dot{v}(t)\|_{2}$ and $\|\dot{u}(t)\|_{2}$ are uniformly bounded, and the second derivative can be computed. In our case, the derivative of the identity $U^{*} U=1$ gives

$$
V=-U J(V) U
$$

i.e.,

$$
\frac{V}{\|V\|_{2}}=-U J\left(\frac{V}{\|V\|_{2}}\right) U
$$

Before computing the second derivative we put $s=0$

$$
\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}=-\mu J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) \mu
$$

Differentiating this expression with respect to t (recall that we assume that μ is parametrized proportionally to arc length, i.e., $\|\dot{\mu}\|_{2}$ is constant)

$$
\frac{\partial}{\partial t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}=-\dot{\mu} J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) \mu-\mu J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) \dot{\mu}-\mu J\left(\frac{\partial}{\partial t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) \mu
$$

Combining these one obtains

$$
2 \frac{\partial}{\partial t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}=2 \frac{D}{d t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}-\frac{\dot{\mu} J(\dot{\mu})}{\|\dot{\mu}\|_{2}} \mu-\mu \frac{J(\dot{\mu}) \dot{\mu}}{\|\dot{\mu}\|_{2}}
$$

with an analogous expression for $2 J\left(\frac{\partial}{\partial t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right)$. We add the integrals over the intervals [$\left.t_{i-1}, t_{i}\right]$, and use these relations to obtain,

$$
\begin{aligned}
\delta \ell(s)=\frac{1}{2} \sum_{1=1}^{n} & \left.\left\{\tau\left(J(W) \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}+W J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right)\right)\right\}\right|_{t_{i-1}} ^{t_{i}} \\
& +\frac{1}{2} \int_{0}^{1} \tau\left(J (W) \left(\mu \dot{\mu} J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right)-2 J(W) \frac{D}{d t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right.\right. \\
& \quad+W\left(\mu^{*} \dot{\mu} J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right)+J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}} \dot{\mu} \mu^{*}\right)-2 J\left(\frac{D}{d t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right)\right) d t
\end{aligned}
$$

We can deal better with this expression if we relate it to the second differential of the map $x \mapsto \tau\left(x^{*} x\right)$, which is the (real) bilinear form

$$
H: L^{2}(\mathcal{M}, \tau) \times L^{2}(\mathcal{M}, \tau) \rightarrow \mathbb{R}, \quad H(\xi, \eta)=\tau(\xi J(\eta)+J(\xi) \eta)
$$

Then the expression for the variation of ℓ becomes

$$
\begin{array}{rl}
\delta \ell(0)=\frac{1}{2} \sum_{i=1}^{n} & \left.H\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}, W\right)\right|_{t_{i-1}} ^{t_{i}} \\
& +\int_{0}^{1} H\left(\mu^{*} W, \frac{1}{2\|\dot{\mu}\|_{2}}(J(\dot{\mu}) \dot{\mu}-\dot{\mu} J(\dot{\mu}))\right)-H\left(\frac{D}{d t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}, W\right) d t
\end{array}
$$

A fact used here is that the field W satisfies relations analogous as V, i.e., $U^{*} W=$ $-J(W) U$. A remark is in order. The element $\dot{\mu} J(\dot{\mu})$ (resp. $\dot{\mu} J(\dot{\mu}))$ lies in $L^{2}(\mathcal{M}, \tau)$. This is a consequence of μ being (piecewise) C^{2}, namely, its second derivatives, which involve such terms, lie in $L^{2}(\mathcal{M}, \tau)$.

Note that $\frac{1}{\|\dot{\mu}\|_{2}}(J(\dot{\mu}) \dot{\mu}-\dot{\mu} J(\dot{\mu}))$ lies in $L^{2}(\mathcal{M}, \tau)_{+}$(is "hermitian") and $\mu^{*} W$ lies in $L^{2}(\mathcal{M}, \tau)_{-}$("antihermitian"). Indeed, the latter has just been remarked. The former holds because $\dot{\mu}$ can be approximated by elements x of \mathcal{M}, and therefore $J(\dot{\mu}) \dot{\mu}-\dot{\mu} J(\dot{\mu})$ can be approximated by $x^{*} x-x x^{*}$. Now if $\xi \in L^{2}(\mathcal{M}, \tau)_{-}$and $\eta \in L^{2}(\mathcal{M}, \tau)_{+}$, it is clear that $H(\xi, \eta)=0$. Therefore we arrive at our final expression for the variation

$$
\begin{equation*}
\delta \ell(0)=-\left.\frac{1}{2} \sum_{i=1}^{n} H\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}, W\right)\right|_{t_{i-1}} ^{t_{i}}-\int_{0}^{1} H\left(\frac{D}{d t} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}, W\right) d t \tag{3}
\end{equation*}
$$

Let us transcribe Theorem 3.3 by Durán, Mata-Lorenzo and Recht [4], which applies to our situation, with minor adaptations, once we have (3) analogous to their expression for the variation.

If a piecewise C^{2} curve μ has minimal length among all the piecewise C^{2} curves of unitaries joining the same endpoints, then clearly $\delta \ell(0)$ vanishes for any variation U of μ. As is standard use, let us call a curve for which all variations make $\delta \ell(0)$ vanish, an extremal of ℓ.

Theorem 2.4 The extremals of ℓ (among piecewise C^{2}-curves) are precisely the geodesics of $U_{\mathcal{M}}$.

Proof Clearly a geodesic is an extremal of ℓ. Suppose now that μ is a piecewise C^{2} curve of unitaries. The converse is proven as in [4], by means of the following facts:

1. If μ is an extremal of ℓ, then for all $t \in[0,1]$ and every vector field W along μ

$$
H\left(W(t), \frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}\right)=0
$$

2. If μ is an extremal of ℓ, then μ is C^{2}.
3. If μ is C^{2} and satisfies that for any vector field W along μ

$$
H\left(W(t), \frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}\right)=0
$$

then μ is a geodesic.
For the first assertion, suppose that for some t_{0} (a point where μ is C^{2}) one has

$$
H\left(W\left(t_{0}\right), \frac{D}{d t} \frac{\dot{\mu}\left(t_{0}\right)}{\left\|\dot{\mu}\left(t_{0}\right)\right\|_{2}}\right)>0
$$

for some variation U. Let us consider another variation

$$
\tilde{U}(t, s)=U(t, \varphi(t) s)
$$

where φ is a scalar function satisfying

1. $0 \leq \varphi(t) \leq 1$, with $\varphi(0)=1$ and $\varphi(1)=1$.
2. $\varphi\left(t_{0}\right)=1$ and φ vanishes on small intervals around the points t_{1}, \ldots, t_{n} where the derivative of μ is not continuous.
Note that $\tilde{U}(t, 0)=U(t, 0)=\mu(t)$. Also the first condition above implies that $\tilde{U}(0, s)=U(s, 0)=\mu(0)$ and $\tilde{U}(1, s)=U(1, s)=\mu(1)$. In other words, \tilde{U} is another variation of μ with fixed endpoints. Moreover

$$
\tilde{W}(t, s)=\frac{\partial \tilde{U}}{\partial s}=\frac{\partial U}{\partial s}(t, \varphi(t) s)=\varphi(t) W(t, \varphi(t) s)
$$

and therefore $\tilde{W}(t)=\tilde{W}(t, 0)=\varphi(t) W(t)$. Note that since $\varphi\left(t_{0}\right)=1$,

$$
H\left(\frac{D}{d t} \frac{\dot{\mu}\left(t_{0}\right)}{\left\|\dot{\mu}\left(t_{0}\right)\right\|_{2}}, \tilde{W}\left(t_{0}\right)\right)>0
$$

We can further choose φ in order that

$$
H\left(\frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}, \tilde{W}(t)\right)=\varphi(t) H\left(\frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}, W(t)\right) \geq 0
$$

Since $\tilde{W}(t)=\varphi(t) W(t)$ vanishes at the points t_{1}, \ldots, t_{n}, it follows that for \tilde{U} the variation is

$$
\delta \ell(0)=-\frac{1}{2} \int_{0}^{1} H\left(\frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}, \tilde{W}(t)\right) d t>0
$$

and therefore μ is not an extremal.
To prove the second assertion, suppose that μ is an extremal of ℓ, and that t_{0} is a point where $\dot{\mu}$ is not continuous. Denote by V_{0}^{+}and V_{0}^{-}the lateral limits of $\frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}$ at $t=t_{0}$. Note that V_{0}^{+}and V_{0}^{-}are unit vectors. Put

$$
U(t, s)=e^{i s \varphi(t) V_{0}^{+}}
$$

where $\varphi(t)$ is a smooth scalar function, which satisfies that $0 \leq \varphi(t) \leq 1, \varphi\left(t_{0}\right)=1$ and φ vanishes on the other points where $\dot{\mu}$ is not continuous. By the first assertion, the integral term in the expression of the variation of μ vanishes. Moreover, by the choice of φ, one has

$$
\delta \ell(0)=H\left(W\left(t_{0}\right), V_{0}^{+}\right)-H\left(W\left(t_{0}\right), V_{0}^{-}\right)=H\left(V_{0}^{+}, V_{0}^{+}\right)-H\left(V_{0}^{+}, V_{0}^{-}\right) .
$$

Now

$$
H\left(V_{0}^{+}, V_{0}^{+}\right)=\tau\left(V_{0}^{+} J\left(V_{0}^{+}\right)+J\left(V_{0}^{+}\right) V_{0}^{+}\right)=2\left\|V_{0}^{+}\right\|_{2}^{2}=2 .
$$

On the other hand, the fact that $\frac{\mu(t)}{\|\mu(t)\|_{2}}$ has a jump at $t=t_{0}$ implies that the unit vectors V_{0}^{+}and V_{0}^{-}do not point in the same direction, i.e., the Cauchy-Schwarz inequality is strict:

$$
\tau\left(V_{0}^{+} J\left(V_{0}^{-}\right)\right)<\left\|V_{0}^{+}\right\|_{2}\left\|V_{0}^{-}\right\|_{2}=1
$$

and analogously $\tau\left(J\left(V_{0}^{+}\right) V_{0}^{-}\right)<1$. It follows that

$$
\delta \ell(0)>0
$$

for this U, and μ is not an extremal.
The third assertion is straightforward. Since in our case, the form H is nondegenerate, the identity

$$
H\left(W(t), \frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}\right)=0
$$

for any field W implies that

$$
\frac{D}{d t} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_{2}}=0
$$

i.e., μ is a geodesic.

3 Short Curves

The key to our main result is the following:
Lemma 3.1 Let x be a selfadjoint element of \mathcal{M} with finite spectrum and $\|x\|<\pi$. Then $\delta(t)=e^{i t x}$ has minimal length amongst piecewise C^{1} curves joining 1 and $e^{i x}$, in the L^{2} metric.

Proof The element x is of the form $x=\sum_{i=1}^{k} \alpha_{i} p_{i}$, where p_{1}, \ldots, p_{k} are pairwise orthogonal projections and $\alpha_{1}, \ldots, \alpha_{k}$ are real numbers with $\left|\alpha_{i}\right|<\pi$. The length of the geodesic δ is $\|x\|_{2}=\left(\sum_{i=1}^{k} \alpha_{i}^{2} r_{i}\right)^{1 / 2}$, where $r_{i}=\tau\left(p_{i}\right)$. Suppose that μ is another piecewise C^{1} curve of unitaries with $\mu(0)=1$ and $\mu(1)=e^{i x}$. Then

$$
\ell(\mu)=\int_{0}^{1}(\tau(J(\dot{\mu}) \dot{\mu}))^{1 / 2} d t=\int_{0}^{1}\left(\sum_{i=1}^{k} \tau\left(p_{i} J(\dot{\mu}) \dot{\mu} p_{i}\right)\right)^{1 / 2} d t
$$

For each $1 \leq i \leq k$ denote by $S_{r_{i}^{1 / 2}}$ the sphere of radius $r_{i}^{1 / 2}$ in $L^{2}(\mathcal{M}, \tau)$,

$$
S_{r_{i}^{1 / 2}}=\left\{\xi \in L^{2}(\mathcal{M}, \tau):\langle\xi, \xi\rangle=r_{i}\right\} .
$$

Note that the curves $p_{i} \delta$ and $p_{i} \mu$ are curves in $S_{r_{i}^{1 / 2}}$. Indeed, for example

$$
\left\langle p_{i} \mu, p_{i} \mu\right\rangle=\tau\left(\left(p_{i} \mu\right)^{*} p_{i} \mu\right)=\tau\left(p_{i}\right)=r_{i} .
$$

Moreover, $p_{i} \delta$ is a geodesic of $S_{r_{i}^{1 / 2}}$ with length strictly less than $\pi r_{i}^{1 / 2}$. An elementary spectral argument shows that

$$
p_{i} \delta(t)=p_{i} e^{i t x}=p_{i} e^{i t \alpha_{i}}
$$

which is clearly a geodesic of the sphere $S_{r_{i}^{1 / 2}}$. The length of $p_{i} \delta$ is

$$
\ell\left(p_{i} \delta\right)=\left\|\alpha_{i} p_{i}\right\|_{2}=\left|\alpha_{i}\right| r_{i}^{1 / 2}<r_{i}^{1 / 2} \pi
$$

In other words, $p_{i} \delta$ is the shortest curve in $S_{r_{i}^{1 / 2}}$ joining its endpoints.
Consider the riemannian submanifold of $L^{2}(\mathcal{M}, \tau)^{k}$

$$
\mathcal{S}=S_{r_{1}^{1 / 2}} \times \cdots \times S_{r_{k}^{1 / 2}}
$$

with its Levi-Civita connection. The curve $\Delta(t)=\left(p_{1} \delta(t), \ldots, p_{k} \delta(t)\right)$ is a geodesic of \mathcal{S}, since it is a k-tuple of geodesics of the coordinates. Moreover, it is the shortest curve of \mathcal{S} joining its endpoints. Indeed, none of its coordinates could be replaced by a shorter curve. Therefore it is shorter than the curve $M(t)=\left(p_{1} \mu(t), \ldots, p_{k} \mu(t)\right)$. Now the length of M in S is measured as follows:

$$
\int_{0}^{1}\langle\dot{M}(t), \dot{M}(t)\rangle^{1 / 2} d t=\int_{0}^{1}\left(\sum_{i=1}^{k} \tau\left(p_{i} J(\dot{\mu}(t)) \dot{\mu}(t)\right)\right)^{1 / 2} d t=\ell(\mu)
$$

Analogously, the length of Δ coincides with $\ell(\delta)$. It follows that

$$
\ell(\mu) \geq \ell(\delta)
$$

Lemma 3.2 Let $x \in \mathcal{M}$ be a selfadjoint element with $\|x\|<\pi$, and $v \in U_{\mathcal{M}}$. Then the geodesic $\delta(t)=v e^{i t x}$ has minimal length among piecewise C^{1} curves of unitaries joining its endpoints. It is unique among piecewise C^{∞} curves with this property.

Proof There is no loss in generality if we suppose $v=1$. Indeed, for any curve μ of unitaries, $\ell(\mu)=\ell\left(v^{*} \mu\right)$. Suppose that there exists a piecewise C^{1} curve of unitaries μ which is strictly shorter than $\delta, \ell(\mu)<\ell(\delta)-\epsilon=\|x\|_{2}-\epsilon$. The element x can be approximated in the norm topology of \mathcal{M} by selfadjoint elements of \mathcal{M}, say z, with finite spectrum and the following conditions:

1. $\|z\| \leq\|x\|<\pi$.
2. $\|x\|_{2}-\epsilon / 2<\|z\|_{2} \leq\|x\|_{2}$.
3. $\left\|e^{i x}-e^{i z}\right\|<2$.
4. There exists a C^{∞} curve of unitaries joining $e^{i x}$ and $e^{i z}$ of length less than $\epsilon / 2$.

The first three are clear. The fourth condition can be obtained as follows. By the third condition $e^{-i x} e^{i z}=e^{i y}$, with $y^{*}=y \in \mathcal{M}$. Moreover z can be adjusted so as to obtain y of arbitrarily small norm. Then the curve of unitaries $\gamma(t)=e^{i x} e^{i t y}$ is C^{∞}, joins $e^{i x}$ and $e^{i z}$, with length $\|y\|_{2} \leq\|y\|<\epsilon / 2$.

Consider now the curve μ^{\prime}, which is the curve μ followed by the curve $e^{i x} e^{i t y}$ above. Then clearly

$$
\ell\left(\mu^{\prime}\right) \leq \ell(\mu)+\|y\|_{2}<\ell(\mu)+\epsilon / 2 .
$$

Therefore $\ell\left(\mu^{\prime}\right)<\|x\|_{2}-\epsilon / 2$. On the other hand, since μ^{\prime} joins 1 and $e^{i z}$, by the lemma above, it must have length greater than or equal to $\|z\|_{2}$. It follows that

$$
\|z\|_{2} \leq\|x\|_{2}-\epsilon / 2
$$

a contradiction.
Let us now show that δ is unique. Let δ^{\prime} be another piecewise C^{∞} curve joining the same endpoints, parametrized proportional to arc length, with $\ell(\delta)=\ell\left(\delta^{\prime}\right)$. The minimality of δ^{\prime} implies, by Theorem 2.4, that it is a C^{∞} geodesic. Then $\delta^{\prime}(t)=e^{i t x^{\prime}}$ for some $x^{\prime *}=x^{\prime} \in \mathcal{M}$. We claim that $x^{\prime}=x$.

Since $\|x\|<\pi$, ix can be obtained as an analytic logarithm of $e^{i x}=e^{i x^{\prime}}$. It follows that x and x^{\prime} commute. Then $e^{i\left(x-x^{\prime}\right)}=1$ and therefore $x-x^{\prime}$ is a selfadjoint element with finite spectrum, contained in the discrete set $\{2 n \pi: n \in \mathbb{Z}\}$. Then $x^{\prime}=x+\sum_{i=1}^{k} 2 n_{i} \pi p_{i}$ with $n_{i} \in \mathbb{Z}$ and p_{i} pairwise orthogonal projections in \mathcal{M}, $i=1, \ldots, k$. Note that $x p_{i}=0$. Therefore

$$
\left\|x^{\prime}\right\|_{2}^{2}=\|x\|_{2}^{2}+\sum_{i=1}^{k} 4 n_{i}^{2} \pi^{2} \tau\left(p_{i}\right)
$$

Now, since $\|x\|_{2}=\ell(\delta)=\ell\left(\delta^{\prime}\right)=\left\|x^{\prime}\right\|_{2}$, it follows that $\tau\left(p_{i}\right)=0$, for each $i=$ $1, \ldots, k$, i.e., $x=x^{\prime}$.

Lemma 3.3 Let x be a selfadjoint element of \mathcal{M} with $\|x\|=\pi$. Then $\delta=v e^{i t x}$ is the shortest curve joining its endpoints.

Proof The proof is the same as the first part of the above lemma, approximating x with z of finite spectrum and $\|z\|<\pi$. Note that any unitary $u \in U_{\mathcal{M}}$ is of the form $u=e^{i x}$ with $x^{*}=x$ and $\|x\| \leq \pi$. This element x is non unique.

We may summarize these lemmas in our main result.
Theorem 3.4 Let u, v be unitaries in \mathcal{M}, and $x=x^{*} \in \mathcal{M}$ with $\|x\| \leq \pi$, such that $v^{*} u=e^{i x}$.

1. If $\|x\|<\pi$, then there exists a geodesic joining u and v, which has minimal length among piecewise C^{1} curves with these endpoints. It is unique with this property among piecewise C^{∞} curves.
2. If $\|x\|=\pi$, there exist many minimal C^{∞} geodesics joining u and v.

Remark 3.5 In case 2, the multiple C^{∞} geodesics are of the form $\delta(t)=v e^{i t x}$ for diverse $x=x^{*} \in \mathcal{M}$ with $\|x\|=\pi$ such that $v^{*} u=e^{i x}$. If one only requires that the curves be C^{2}, other minimizing curves appear. Namely, by Remark 2.3 they are of the form $\gamma(t)=v e^{i t L_{\xi}}$, where ξ lies in $L^{4}(\mathcal{M}, \tau)$, and satisfies $J \xi=\xi$ and $v^{*} u=e^{i L_{\xi}}$.

The following corollary might be obtained in a more straightforward way.

Corollary 3.6 Let $x, y \in \mathcal{M}$ be selfadjoint elements of norm less than or equal to π such that $e^{i x}=e^{i y}$. Then $\tau\left(x^{2}\right)=\tau\left(y^{2}\right)$.

Proof Both $\delta(t)=e^{i t x}$ and $\gamma(t)=e^{i t y}$ are minimizing geodesics joining 1 and $e^{i x}$, therefore $\ell(\delta)=\ell(\gamma)$, i.e., $\tau\left(x^{2}\right)=\tau\left(y^{2}\right)$.

4 Non Embeddability of $U_{\mathcal{M}}$ in $L^{2}(\mathcal{M}, \tau)$

In this section we show that $U_{\mathcal{M}}$ is not a riemannian submanifold of $L^{2}(\mathcal{M}, \tau)$. By this we mean that $U_{\mathcal{M}}$ is not a riemannian manifold with the inner product of $L^{2}(\mathcal{M}, \tau)$ at each tangent space. We also consider other aspects of the local structure of $U_{\mathcal{M}}$.

Lemma 4.1 There exists a sequence of selfadjoint elements $a_{n} \in \mathcal{M}$ such that $\left\|a_{n}\right\|_{2}=$ ϵ for a given $\epsilon>0$ and $\left\|e^{i a_{n}}-1\right\|_{2}$ tends to zero.

Proof For each $n \geq 1$ pick a projection p_{n} in \mathcal{M} such that $\tau\left(p_{n}\right)=\frac{\epsilon^{2}}{n^{2}}$. Put $a_{n}=$ $n p_{n}$. Note that $\left\|a_{n}\right\|_{2}=n \tau\left(p_{n}\right)^{1 / 2}=\epsilon$. On the other hand

$$
\left\|e^{i a_{n}}-1\right\|_{2}^{2}=2-\tau\left(e^{i a_{n}}\right)-\tau\left(e^{-i a_{n}}\right)
$$

Clearly

$$
\tau\left(e^{i a_{n}}\right)=1+\frac{\epsilon^{2}}{n^{2}}\left(e^{i n}-1\right)
$$

which tends to 1 . Analogously for $\tau\left(e^{-i a_{n}}\right)$.
Corollary 4.2 $U_{\mathcal{M}}$ is not a riemannian submanifold of $L^{2}(\mathcal{M}, \tau)$.
Proof Consider $u_{n}=e^{i a_{n}} \in U_{\mathcal{M}}$ as above. Then the sequence u_{n} tends to 1 in the L^{2} metric. If $U_{\mathcal{M}}$ were a riemannian submanifold, then $\delta_{n}(t)=e^{i t a_{n}}$ would be a geodesic. If one adjusts ϵ smaller than the radius of a normal neighbourhood around $1 \in U_{\mathcal{M}}$, then δ_{n} would be a minimizing geodesic. It follows that the geodesic distance between 1 and $e^{i a_{n}}$ equals ϵ for all n. This leads to contradiction: in a riemannian manifold the topology given by the geodesic distance and the underlying topology are equivalent.

Note that δ_{n} above is in fact not a minimizing geodesic, according to our discussion of the previous section. Indeed, $\left\|a_{n}\right\|=n$. If one tries to compute minimizing geodesics joining 1 and $e^{i a_{n}}$, one must replace the exponent $a_{n}=n p_{n}$ by $x_{n}=\left(n-2 k_{n} \pi\right) p_{n}$, where k_{n} is an integer such that $\left|n-2 k_{n} \pi\right| \leq \pi$ (in this case it will be strictly smaller than π). Such x_{n} satisfy

$$
\left\|x_{n}\right\|_{2}^{2}=\left(n-2 k_{n} \pi\right)^{2} \frac{\epsilon^{2}}{n^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

In other words, these minimizing geodesics have lengths which tend to 0 .

Let us denote by d_{g} the geodesic distance in $U_{\mathcal{M}}$, i.e.,

$$
d_{g}(u, v)=\inf \left\{\ell(\mu): \mu \text { piecewise } C^{1} \text { curve of unitaries with } \mu(0)=u, \mu(1)=v\right\}
$$

Since $U_{\mathcal{M}}$ is not a riemannian manifold, we must prove the following:
Proposition $4.3 d_{g}$ is a metric in $U_{\mathcal{M}}$.
Proof Clearly $d_{g}(u, v) \geq 0$ and $d_{g}(u, v)=0$ imply $u=v$. Also it is clear that $d_{g}(u, v)=d_{g}(v, u)$. Let us verify that the triangle inequality holds. Let $u, v, w \in U_{\mathcal{M}}$. We need to show that

$$
d_{g}(u, v) \leq d_{g}(u, w)+d_{g}(w, v)
$$

By Theorem 3.4, u and w are joined by a minimizing geodesic δ and w and u are joined by a minimizing geodesic δ^{\prime}, with both curves realizing the geodesic distance. The curve δ followed by the curve δ^{\prime} is a piecewise C^{1} curve of unitaries joining u and v, with length $d_{g}(u, w)+d_{g}(w, v)$. Therefore $d_{g}(u, v) \leq d_{g}(u, w)+d_{g}(w, v)$.

Proposition 4.4 The metrics d_{g} and $\left\|\|_{2}\right.$ are equivalent in $U_{\mathcal{M}}$.
Proof Both metrics are invariant by left translation with elements of $U_{\mathcal{M}}$, i.e., $d_{g}(u, v)=d_{g}\left(v^{*} u, 1\right)$ and $\|u-v\|_{2}=\left\|v^{*} u-1\right\|_{2}$. Therefore it suffices to compare $d_{g}(u, 1)$ and $\|u-1\|_{2}$, for $u \in U_{\mathcal{M}}$. Let $x=x^{*} \in \mathcal{M}$ with $\|x\| \leq \pi$ and $u=e^{i x}$. Then by Theorem 3.4

$$
d_{g}(u, 1)=\|x\|_{2}=\tau\left(x^{2}\right)^{1 / 2}
$$

On the other hand

$$
\|u-1\|_{2}^{2}=2-\tau\left(e^{i x}+e^{-i x}\right)=2\left[\frac{\tau\left(x^{2}\right)}{2}-\frac{\tau\left(x^{4}\right)}{4!}+\frac{\tau\left(x^{6}\right)}{6!}-\cdots\right]
$$

Note that for all $n \geq 1$,

$$
\frac{\tau\left(x^{2 n}\right)}{(2 n)!}-\frac{\tau\left(x^{2 n+2}\right)}{(2 n+2)!} \geq 0
$$

Indeed, it is apparent that this inequality is equivalent to $(2 n+2)(2 n+1) \geq \frac{\tau\left(x^{2 n+2}\right)}{\tau\left(x^{2 n}\right)}$. Since $x^{2} \leq \pi^{2}$,

$$
\frac{\tau\left(x^{2 n+2}\right)}{\tau\left(x^{2 n}\right)}=\frac{\tau\left(x^{n} x^{2} x^{n}\right)}{\tau\left(x^{2 n}\right)} \leq \frac{\tau\left(x^{n} \pi^{2} x^{n}\right)}{\tau\left(x^{2 n}\right)}=\pi^{2}
$$

and the above claim holds. First, note that with this inequality one has

$$
\|u-1\|_{2}^{2}=2\left[\frac{1}{2} \tau\left(x^{2}\right)-\left(\frac{\tau\left(x^{4}\right)}{4!}-\frac{\tau\left(x^{6}\right)}{6!}\right)-\cdots\right] \leq \tau\left(x^{2}\right)
$$

i.e., $\|u-1\|_{2} \leq d_{g}(u, 1)$.

On the other hand, the same inequality proves that
$\|u-1\|_{2}^{2}=2\left[\frac{1}{2} \tau\left(x^{2}\right)-\frac{1}{4!} \tau\left(x^{4}\right)+\left(\frac{\tau\left(x^{6}\right)}{6!}-\frac{\tau\left(x^{8}\right)}{8!}\right)+\cdots\right] \geq 2\left[\frac{1}{2} \tau\left(x^{2}\right)-\frac{1}{4!} \tau\left(x^{4}\right)\right]$.

Since $1-\frac{x^{2}}{12} \geq 1-\frac{\pi^{2}}{12}>0$, it follows that

$$
\frac{1}{2} \tau\left(x^{2}\right)-\frac{1}{4!} \tau\left(x^{4}\right)=\frac{1}{2} \tau\left(x^{2}\left(1-\frac{1}{12} x^{2}\right)\right) \geq \frac{1}{2}\left(1-\frac{\pi^{2}}{12}\right) \tau\left(x^{2}\right)
$$

In other words,

$$
\|u-1\|_{2} \geq C d_{g}(u, 1)
$$

for $C=\sqrt{1-\frac{\pi^{2}}{12}}$.
Further properties of this metric d_{g} will be studied elsewhere.

References

[1] E. Andruchow, A non smooth exponential. Studia Math. 155(2003), 265-271.
[2] C. J. Atkin, The Finsler geometry of groups of isometries of Hilbert space. J. Austral. Math. Soc. Ser. A 42(1987), 196-222.
[3] E. Christensen, Universally bounded operators on von Neumann algebras of type II_{1}. In: Algebraic methods in operator theory, Birkäuser Boston, Boston, MA, 1994, 195-204.
[4] C. E. Durán, L. E. Mata-Lorenzo, and L. Recht, Natural variational problems in the Grassmann manifold of $a C^{*}$-algebra with trace. Adv. Math. 154(2000), 196-228.
[5] L. Mata-Lorenzo and L. Recht, Convexity properties of $\operatorname{Tr}\left[\left(a^{*} a\right)^{n}\right]$. Linear Algebra Appl. 315(2000), 25-38.
[6] E. Michael, Convex structures and continuous selections. Canadian J. Math. 11(1959), 556-575.
[7] S. Popa and M. Takesaki, The topological structure of the unitary and automorphism groups of a factor. Commun. Math. Phys. 155(1993), 93-101.
[8] M. Read and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis. 2nd ed. Academic Press, New York, 1980.
[9] I. E. Segal, A non commutative extension of abstract integration. Ann. of Math. 57(1953), 401-457.
[10] M. Takesaki, Theory of Operator Algebras. I. Springer-Verlag, New York, 1979.

Instituto de Ciencias Universidad Nacional de Gral. Sarmiento
J. M. Gutierrez entre J.L. Suarez y Verdi
(1613) Los Polvorines

Argentina
e-mail: eandruch@ungs.edu.ar

[^0]: Received by the editors August 22, 2003.
 AMS subject classification: 46L51, 58B10, 58B25.
 Keywords: unitary group, short geodesics, infinite dimensional riemannian manifolds.
 (c)Canadian Mathematical Society 2005.

