An Extension of Heaviside's Operational Method of Solving Differential Equations.

By Dr Bevan B. Bakrr.

(Read 2nd May 1924. Received 1uth September 1924.)

§ 1. Introductory.

An elegant symbolic method of solving differential equations was developed by Heaviside in his "Electrical Papers" and "Electromagnetic Theory," chiefly in connexion with problems concerning electric currents in net-works of wires. Attention has recently been called to the method by Bromwich,* who applied it to a wider range of problems and gave an extension of Heaviside's formula; another generalisation of the formula has been abtained by Carson. \dagger

In the present paper a formula is obtained which contains the formulae of Heaviside, Bromwich and Carson as particular cases, and whose form is such that it may be readily applied to physical problems.

§ 2. Deduction of the Formula.

Consider a physical system which is governed by one or more differential equations; let u be one of the dependent variables and t one of the independent variables. Let p be written for the operator $\partial / \partial t, p^{2}$ for $\partial^{2} / \partial t^{2}$ and so on and let p be treated as a symbol obeying the ordinary laws of Algebra.

Suppose that after making this substitution a solution of the differential equation or equations can be obtained, satisfying any given boundary conditions, in the symbolic form

$$
\begin{equation*}
u=\frac{F^{\prime}(p)}{\Delta(p)} P \tag{1}
\end{equation*}
$$

where $F(p)$ and $\Delta(p)$ denote polynomials in p, which are such that $\Delta(p)$ is of higher degree than $F(p)$, and P is a function of the

[^0]independent variables. The method consists in interpreting this symbolic solution by obtaining an equivalent expression which no longer involves the operator p.

If $\Delta(p)$ be of degree n, and if its zeros be $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, which we suppose all different, it is a well-known algebraic result that

$$
\begin{equation*}
\frac{F(p)}{\Delta(p)}=\sum_{r=1}^{n} \frac{A_{r}}{p-\alpha_{r}}, \text { where } A_{r}=\frac{F\left(\alpha_{r}\right)}{\Delta^{\prime}\left(\alpha_{r}\right)} \tag{2}
\end{equation*}
$$

Let us suppose in the first place that $P=K l^{k} e^{\lambda t}$ where K, k and λ are independent of t. Let z be the function obtained by operating on P with the operator $\left(p \cdots \alpha_{r}\right)^{-1}$, so that z is a solution of the differential equation

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\alpha_{r}\right) z=K t^{k} e^{\lambda t} ; \tag{3}
\end{equation*}
$$

integrating this as an ordinary differential equation for z, we obtain
$z e^{-a_{r} t}=C+K \int t^{k} e^{\left(\lambda-a_{r}\right) t} d t$
$=C+K e^{\left(\lambda-\alpha_{r}\right) t}\left[\frac{t^{k}}{\lambda-\alpha_{r}}-\frac{k t^{k-1}}{\left(\lambda-\alpha_{r}\right)^{2}}+\frac{k(k-1) t^{k-2}}{\left(\lambda-\alpha_{r}\right)^{3}}-\ldots+\frac{(-1)^{k} k!}{\left(\lambda-\alpha_{r}\right)^{k+1}}\right]$
where C is an arbitrary constant of integration. We now take z to be that solution of (3) which reduces to zero when $t=0$, so that

$$
\begin{array}{r}
z=K e^{\lambda t}\left[\frac{t^{k}}{\lambda-\alpha_{r}}-\frac{k t^{k-1}}{\left(\lambda-\alpha_{r}\right)^{2}}+\frac{k(k-1) t^{k-2}}{\left(\lambda-\alpha_{r}\right)^{3}}-\ldots+\frac{(-1)^{k} k!}{\left(\lambda-\alpha_{r}\right)^{k+1}}\right] \\
-\frac{(-1)^{k} k!K e^{\alpha_{r} t}}{\left(\lambda-\alpha_{r}\right)^{k+1}} \cdot \cdots \tag{4}
\end{array}
$$

To obtain the result of operating on P with $F(p) / \Delta(p)$ we multiply the expression (4) by A_{r} and sum for all values of r from 1 to n, giving for the value of u which reduces to zero when $t=0$ the formula

$$
\begin{align*}
u=K & {\left[e ^ { \lambda t } \left\{t^{k} \sum_{r=1}^{n} \frac{A_{r}}{\lambda-\alpha_{r}}-k t^{k-1} \sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\alpha_{r}\right)^{2}}+k(k-1) t^{k-2} \sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\alpha_{r}\right)^{3}}\right.\right.} \\
& \left.\left.-\ldots+(-1)^{k} k!\sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\alpha_{r}\right)^{k+1}}\right\}-(-1)^{k} k!\sum_{r=1}^{n} \frac{A_{r} e^{\alpha_{r} t}}{\left(\lambda-\alpha_{r}\right)^{k+1}}\right] \ldots(5) \tag{5}
\end{align*}
$$

Now suppose that $F(p) / \Delta(p)$ can be expanded in a series of positive powers of ($p-\lambda$) in the form

$$
\frac{F(p)}{\Delta(p)}=N_{0}+N_{1}(p-\lambda)+N_{2}(p-\dot{\lambda})^{2}+N_{3}(p-\lambda)^{3}+\ldots \ldots
$$

From equation (2) we obtain also

$$
\begin{aligned}
\frac{F(p)}{\Delta(p)}=\sum_{r=1}^{n} \frac{A_{r}}{\lambda-\alpha_{r}}\left(1+\frac{p-\lambda}{\lambda-\alpha_{r}}\right)^{-1}=\sum_{r=1}^{n} & \frac{A_{r}}{\lambda-\alpha_{r}}-(p-\lambda) \sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\alpha_{r}\right)^{2}} \\
& +(p-\lambda)^{2} \sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\alpha_{r}\right)^{3}}-\ldots \ldots
\end{aligned}
$$

Comparing the coefficients of powers of ($p-\lambda$) in these expansions we have

$$
\begin{aligned}
& N_{0}=\sum_{r=1}^{n} \frac{A_{r}}{\lambda-\alpha_{r}}, N_{1}=-\sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\alpha_{r}\right)^{2}}, \ldots, \\
& N_{t}=(-1)^{*} \sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\frac{\left.\alpha_{r}\right)^{2+1}}{n}\right.}, \ldots,
\end{aligned}
$$

and the solution (5) can be written in the form

$$
\begin{aligned}
u= & K\left[e^{\lambda t}\left\{N_{0} t^{k}+N_{1} k t^{k-1}+N_{2} k(k-1) t^{k-\Omega}+\ldots+N_{k} k!\right\}\right. \\
& \left.-(-1)^{k} k!\sum_{r=1}^{n} \frac{A_{r}}{\left(\lambda-\alpha_{r}\right)^{k+1}} a^{a_{r} t}\right] \\
= & K\left[e^{\lambda t}\left\{N_{0} t^{t}+N_{1} \frac{d}{d t} t^{k}+N_{2} \frac{a^{2}}{d t t^{2}} t^{k}+\ldots+N_{k} \frac{d^{k}}{d t^{k}} t^{k}\right\}\right. \\
& \left.-(-1)^{k} k!\sum_{r=1}^{n} \frac{F\left(\alpha_{r}\right) e^{a_{r} t}}{\left(\lambda-\alpha_{r}\right)^{k+1} \Delta^{\prime}\left(\alpha_{r}\right)}\right]
\end{aligned}
$$

It is then easy to extend the lesult to the case in which P bas the form $f(t) e^{\lambda t}$ where $f(t)$ is a polynomial in t of degree m, and we obtain the following general theorem :-

If u be one of the dependent variables in a differential equation or system of differential equations and t be one of the independent variables, and if by writing $\partial / \partial t=p$ and treating p as an algebraic quantity a solution satisfying the boundary conditions can be obtained in the symbolic form

$$
u=\frac{F(p)}{\Delta(p)} P
$$

where $F(p)$ and $\Delta(p)$ are polynomials in p such that $\Delta(p)$ is of ligher degree than $F(p)$, and P is a function of t (and of the other independent variables) of the form

$$
P=f^{\prime}(t) e^{\lambda t}, \text { where } f(t)=C_{0}+C_{1} t+C_{2} t^{2}+\ldots+C_{k}^{\prime} t^{k}
$$

then the solution which satisfies the prescribed boundary conditions and which reduces to zero when $t=0$ is given by

$$
\begin{align*}
& u= e^{\lambda t}\left[N_{0} \dot{f}(t)+N_{1} f^{\prime}(t)+N_{2} f^{\prime \prime}(t)+\ldots+N_{k} f^{\kappa}(t)\right] \\
&+\sum_{r=1}^{n} \frac{F\left(\alpha_{r}\right)}{د^{\prime}\left(\alpha_{r}\right)} e^{\alpha_{r} t}\left[\frac{C_{0}}{\alpha_{r}-\lambda}+\frac{C_{1}}{\left(\alpha_{r}-\lambda\right)^{2}}+\frac{C_{3} \cdot 2!}{\left(\alpha_{r}-\lambda\right)^{3}}+\frac{C_{3} \cdot 3!}{\left(\alpha_{r}-\lambda\right)^{4}}\right. \\
&\left.+\ldots+\frac{C_{k} \cdot k!}{\left(\alpha_{r}-\lambda\right)^{k+1}}\right] \tag{6}
\end{align*}
$$

where N_{0}, N_{1}, \ldots are the coefficients in the expansion of $F(p) / \Delta(p)$ in a series of powers of $(p-\lambda)$ in the form

$$
\frac{F(p)}{\Delta(p)}=N_{0}+N_{1}(p-\lambda)+N_{2}(p-\lambda)^{2}+\ldots
$$

and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the roots of $\Delta(p)=0$.
The formula (6) may be written in the alternative form

$$
\begin{aligned}
u & =e^{\lambda t}\left[N_{0}+N_{1} \frac{d}{d t}+N_{2} \frac{d^{2}}{d t^{2}}+\ldots+N_{k} \frac{d^{k}}{d t^{k}}\right] f(t) \\
& +\sum_{r=1}^{n} \frac{F\left(\alpha_{r}\right)}{\Delta^{\prime}\left(\alpha_{r}\right)} e^{\alpha_{r} t}\left[f\left(\frac{d}{d s}\right)\left(\frac{1}{\alpha_{r}-s}\right)\right]_{s=\lambda}
\end{aligned}
$$

or

$$
u=e^{\lambda t}\left[\frac{F\left(\lambda+\frac{d}{d t}\right)}{\Delta\left(\lambda+\frac{d}{d t}\right)} f^{\prime}(t)\right]+\sum_{r=1}^{n} \frac{F\left(\alpha_{r}\right)}{\Delta^{\prime}\left(\alpha_{r}\right)} e^{a_{r} t}\left[f\left(\frac{d}{d_{8}}\right)\left(\frac{1}{\alpha_{r}-s}\right)\right]_{B=\lambda}
$$

where the expression $F^{\prime}\left(\lambda+\frac{d}{d t}\right) / \Delta\left(\lambda+\frac{d}{d t}\right)$ is supposed to be expanded in a series of powers of $\frac{d}{d t}$.

It is easy to modify the result for the case in which the roots of $\Delta(p)=0$ are repeated.

Although the theorem has only been proved when $F(p)$ and $\Delta(p)$ are polynomials in p, it is readily seen that the formula may also be used when more general types of functions take the place of these polynomials, though a formal proof in such cases is more troublesome; such cases will be illustrated in the examples which follow.

Evidently the result will also apply when the function $f(t)$ is in the form of an infinite series of powers of t, provided that the series on the right hand side of (6) are convergent.

When P is a constant, say C, the formula reduces to Heaviside's result,

$$
u=C\left[\frac{F(0)}{\Delta(0)}+\sum_{r=1}^{n} \overline{\Delta^{\prime}\left(\alpha_{r}\right)} \frac{F\left(\alpha_{r}\right)}{\frac{y a_{r} t}{\alpha_{r}}}\right] .
$$

When $P=C e^{\lambda t}$, the formula becomes

$$
u=C\left[\frac{F(\lambda)}{\Delta(\lambda)} e^{\lambda t}+\sum_{r=1}^{n} \frac{F\left(\alpha_{r}\right)}{\Delta^{\prime}\left(\alpha_{r}\right)} \frac{e^{\alpha_{r}}}{\left(\alpha_{r}-\lambda\right)}\right]
$$

which is the result given by Carson (loc. cit.)
When $P=C t$, we obtain the formula

$$
u=C\left[N_{0} t+N_{1}+\sum_{r=1}^{n} \frac{F\left(\alpha_{r}\right)}{\Delta^{\prime}\left(\alpha_{r}\right)} \frac{e^{\alpha_{r} t}}{\alpha_{r}^{2}}\right]
$$

which is Bromwich's expression (loc. cit.).

§ 3. Example 1. The interaction of Two Equal Coils.

As a first illustration of the method we will consider the effect of switching an electromotive force E into one of two coils which, to simplify the algebra we will take to be equal in all respects. Let R be the resistance, L the self-inductance and M the mutual inductance of the two coils and let the current in the primary coil be x, that in the secondary being y; the equations to be satisfied are therefore

$$
L \frac{d x}{d t}+M \frac{d y}{d t}+R x=E, M \frac{d x}{d t}+L \frac{d y}{d t}+R y=0 .
$$

Writing p for $\frac{d}{d t}$ these become

$$
(L p+R) x+M p y=E, M p x+(L p+R) y=0
$$

and therefore

$$
x=\frac{(L p+R) E}{(L p+R)^{2}-M^{2} p^{2}}, y=-\frac{M p E}{(L p+R)^{2}-M^{2} p^{2}}
$$

Let the electromotive force E be switrhed into the primary circuit at the instant $t=0$, and let it be represented by

$$
E=f(t) e^{\lambda t} \text { where } f(t)=M_{0}+M_{1} t+M_{2} t^{2}+\ldots+M_{m} t^{m}
$$

To obtain the current x we have to interpret the effect of the operator $F(p) / \Delta(p)$ acting on the function E, where

$$
F(p)=L p+R \text { and } \Delta(p)=(L p+R)^{2}-M M^{2} p^{2}
$$

Writing $\xi=p-\lambda$, the operator $F(p) / \Delta(p)$ can be written in the form

$$
\frac{A \xi+B}{C \xi^{2}+\bar{D} \xi+F}=\phi(\xi) \text { say, where }
$$

$A=L, B=L \lambda+R, C=L^{2}-M^{2}, D=2\left\{\left(L^{2}-M^{2}\right) \lambda+L R\right\}$,

$$
F=(L \lambda+R)^{2}-M^{2} \lambda^{2}
$$

Expanding the function $\phi(\xi)$ in a series of powers of ξ by Maclaurin's theorem we obtain

$$
\phi(\xi)=\frac{B}{F}+\frac{(A F-B D)}{F^{2}} \xi+\frac{\left(B D^{2}-C B F-A F D\right)}{F^{3}} \xi^{2}+\ldots
$$

the later coefficients in the series being determined from the recurrence formula

$$
F \phi^{n}(0)+n D \phi^{n-1}(0)+n(n-1) C \phi^{n-2}(0)=0
$$

In the notation of $\S 2$ we have therefore

$$
N_{0}=\frac{B}{F}, N_{1}=\frac{A F-B D}{F}, N_{2}=\frac{B D^{2}-C B F-A D F}{F}, \ldots
$$

Again the roots of $\Delta(p)=0$ are $\alpha=-\frac{R}{L+M}, \beta=-\frac{R}{L-M}$ and therefore

$$
\begin{aligned}
& \frac{F(\alpha)}{\Delta^{\prime}(\alpha)}=\frac{L \alpha+R}{2 L(L \alpha+R)-2 M^{2} \alpha}=\frac{L \alpha+R}{2\left\{\left(L^{2}-M^{2}\right) \alpha+L R\right\}}=\frac{1}{2(L+M)}, \\
& \frac{F(\beta)}{\Delta^{\prime}(\beta)}=\frac{L \beta+R}{2\left\{\left(L^{2}-M^{2}\right) \beta+L R\right\}}=\frac{1}{2(L-M)} .
\end{aligned}
$$

Applying the formula of $\S 2$ the current in the primary circuit is given by

$$
\begin{gathered}
x=e^{\lambda t}\left[N_{0} f(t)+N_{1} \frac{d}{d t} f(t)+N_{2} \frac{d^{2}}{d t^{2}} f(t)+\ldots+N_{m} \frac{d^{m}}{d t^{m}} f(t)\right] \\
+\frac{e^{\alpha t}}{2(L+M)}\left[\frac{M_{0}}{\alpha-\lambda}+\frac{M_{1}}{(\alpha-\lambda)^{2}}+\frac{M_{2} \cdot 2!}{(\alpha-\lambda)^{3}}+\frac{M_{3} \cdot 3!}{(\alpha-\lambda)^{4}}+\ldots+\frac{M_{m}}{\left(\alpha-\frac{m}{\lambda)^{m+1}}\right]}\right. \\
+\frac{e^{\beta t}}{2(L-M)}\left[\frac{M_{0}}{\beta-\lambda}+\frac{M_{1}}{(\beta-\lambda)^{2}}+\frac{M_{2} \cdot 2!}{(\beta-\lambda)^{3}}+\frac{M_{3} \cdot 3!}{(\beta-\lambda)^{4}}+\ldots+\frac{M_{n} m!}{(\beta-\lambda)^{m+1}}\right]
\end{gathered}
$$

To obtain the current in the secondary circuit we consider the operator $F(p) / \Delta(p)$ where $F(p)=-M p$ and $\Delta(p)=(L p+R)^{2}-M^{2} p^{2}$ and obtain in this case

$$
\begin{aligned}
N_{0}^{\prime} & =-\frac{M \lambda}{F}, N_{1}^{\prime}=-\frac{M\left(F^{\prime}-D \lambda\right)}{F^{2}}, N_{2}^{\prime}=-\frac{M\left(D^{2} \lambda-C F^{\prime} \lambda-D F\right)}{F^{3}}, \ldots, \text { and } \\
y & =e^{\lambda t}\left[N_{0}^{\prime} f(t)+N_{1}^{\prime} \frac{d}{d t} f(t)+N^{\prime} \frac{l^{2}}{1_{2}^{2}} f(t)+\ldots+N_{m}^{\prime} \frac{d^{m}}{d t^{m}} f(t)\right] \\
& +\frac{e^{\alpha t}}{2(L+M)}\left[\frac{M_{0}}{\alpha-\lambda}+\frac{M_{1}}{(\alpha-\lambda)^{2}}+\frac{M_{2} \cdot 2!}{(\alpha-\lambda)^{2}}+\frac{M_{3} \cdot 3!}{(\alpha-\lambda)^{4}}+\ldots+\frac{M_{m} \cdot m!}{(\alpha-\lambda)^{m+1}}\right] \\
& -\frac{e^{\beta t}}{2(L-M)}\left[\frac{M_{0}}{\beta-\lambda}+\frac{M_{1}}{(\beta-\lambda)^{2}}+\frac{M_{2} \cdot 2!}{(\beta-\lambda)^{3}}+\frac{M_{3} \cdot 3!}{(\beta-\lambda)^{4}}+\ldots+\frac{M_{m} \cdot m!}{(\beta-\lambda)^{m+1}}\right]
\end{aligned}
$$

By putting $\lambda=\tau \mu$ and then taking the real parts of these expressions for x and y we should obtain the currents in the two circuits when the electromotive force in the primary circuit is of the form

$$
E=f(t) \cos \mu t, \text { where } f(t)=M_{0}+M_{1} t+M_{2} t^{2}+\ldots+M_{\pi k} t^{m} \text {, }
$$

§4. Example 2. The conduction of Heat through a Block of Finite Thickness.

Consider the conduction of heat in an infinite block of conducting material of thickness l, whose initial temperature is zero and whose faces are parallel and are maintained at temperatures $f_{1}(t)$ and $f_{2}(t)$ from the instant $t=0$ onwards.

The axis of x being taken perpendicular to the bounding planes, the temperature u satisfies the differential equation

$$
k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

where $k=K / \rho \sigma, K$ being the thermal conductivity, ρ the density and σ the specific heat of the substance composing the block; subject to the boundary conditions: $-u=f_{1}(t)$ for $x=0$ and $u=f_{2}(t)$ for $x=l$, for all positive values of t.

Writing p for $\partial / \partial t$ and putting $p=k q^{2}$, the solution satisfying the assigned boundary conditions is obtained in the symbolic form

$$
u=\frac{\sinh q(l-x)}{\sinh q l} f_{1}(t)+\frac{\sinh q x}{\sinh q l} f_{3}(t) .
$$

Now suppose

$$
f_{1}(t)=\left(A_{0}+A_{1} t+A_{2} t^{2}\right) e^{\lambda_{1} t}, f_{2}(t)=\left(B_{0}+B_{1} t+B_{2} t^{2}\right) e^{\lambda_{2}} t,
$$

and write $u=u_{1}+u_{2}$, where u_{1} is the part of u arising from $f_{1}(t)$ and u_{2} is the part arising from $f_{2}(t)$.

Consider first u_{2} and, in the notation of $\S 2$, take

$$
F(p)=\sinh q x / q, \Delta(p)=\sinh q l / q ;
$$

then expanding $F(p) / \Delta(p)$ in a series of powers of $\left(p-\lambda_{2}\right)$ we obtain

$$
F(p) / \Delta(p)=N_{0}+N_{1}\left(p-\lambda_{2}\right)+N_{0}\left(p-\lambda_{2}\right)^{2}+\ldots,
$$

where

$$
N_{0}=\frac{\sinh \beta_{2} x}{\sinh \beta_{2} l}, N_{1}=\frac{x \cosh \beta_{2} x-l \operatorname{coth} \beta_{2} l \sinh \beta_{2} x}{2 \sqrt{\bar{k} \lambda_{2}} \sinh \beta_{2} l}
$$

$N_{2}=\frac{\left(x^{2}-l^{2}\right) \sinh \beta_{2} l \sinh \beta_{2} x-\left(\beta_{2}^{-1} \sinh \beta_{2} l+2 l \cosh \mathcal{B}_{2} l\right)\left(x \cosh \beta_{2} x-l \operatorname{coth} \beta_{2} l \sinh \beta_{2} x\right)}{8 k \lambda_{2} \sinh ^{2} \beta_{2} l}$
where $\beta_{2}=\sqrt{\lambda_{2} / k .}$

The roots $\alpha_{01}, \alpha_{1}, \alpha_{2}, \ldots$ of $\Delta(p)=0$ occur when $q l=\iota r \pi$, where r is zero or a positive integer,* so that $\alpha_{r}=-k r^{2} \pi^{2} / l^{2}$; we obtain

$$
\frac{F\left(\alpha_{r}\right)}{\Delta^{\prime}\left(\alpha_{r}\right)}=-(-1)^{r} \frac{2 k r \pi}{l^{g}} \sin \frac{r \pi x}{l} .
$$

It follows from the formula of $\S 2$, that

$$
\begin{gathered}
u_{2}=\left\{N_{0} B_{0}+N_{1} B_{1}+2 N_{2} B_{2}+\left(N_{0} B_{1}+2 N_{1} B_{2}\right) l+N_{0} B_{2} t^{2}\right\} e^{\lambda_{2} t} \\
+\sum_{r=0}^{\infty}(-1)^{r} \frac{2 k r \pi}{l^{2}} \sin \frac{r \pi x}{l} e^{\frac{-k r^{2} \pi^{2} t}{l^{2}}} \\
\left\{\frac{B_{0}}{\lambda_{2}+k r^{2} \pi^{2} / l^{2}}-\frac{B_{1}}{\left(\lambda_{2}+k r^{2} \pi^{2} l^{2}\right)^{2}}+\frac{2 B_{2}}{\left(\lambda_{2}+k r^{2} \pi^{2} / l^{2}\right)^{3}}\right\} .
\end{gathered}
$$

The value of u_{1} is obtained from this by changing x into $l-x$ and replacing B_{0}, B_{1}, B_{2} by A_{0}, A_{1}, A_{2}, respectively, and λ_{2} by λ_{1}. By adding the value of u_{1} so obtained to the above expression for $u_{\mathbf{l}}$ we obtain the required temperature u.

By writing $\lambda_{1}=\iota \sigma_{1}$ and $\lambda_{2}=\iota \sigma_{2}$ and taking the real parts, the formulae give the temperature at any point when, from the instant $t=0$ onwards, the bounding planes are maintained at temperatures

$$
f_{1}(t)=\left(A_{0}+A_{1} t+A_{3} t^{2}\right) \cos \sigma_{1} t, f_{2}(t)=\left(B_{0}+B_{1} t+B_{2} t^{2}\right) \cos \sigma_{2} t .
$$

[^1]
[^0]: * Phil Mag, 6th Ser., 37, (1919), p. 407.
 \dagger Physical Review, 2nd Ser., 10, (1917), p. 217.

[^1]: *The values for which r is a negative integer provide no new soots of $\Delta(p)=0$.

