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Abstract

A framework with sets of attacking arguments (SETAF) is an extension of the well-known Dung’s
Abstract Argumentation Frameworks (AAF s) that allows joint attacks on arguments. In this
paper, we provide a translation from Normal Logic Programs (NLPs) to SETAFs and vice versa,
from SETAFs to NLPs. We show that there is pairwise equivalence between their semantics,
including the equivalence between L-stable and semi-stable semantics. Furthermore, for a class
of NLPs called Redundancy-Free Atomic Logic Programs (RFALPs), there is also a structural
equivalence as these back-and-forth translations are each other’s inverse. Then, we show that
RFALPs are as expressive as NLPs by transforming any NLP into an equivalent RFALP through
a series of program transformations already known in the literature. We also show that these
program transformations are confluent, meaning that every NLP will be transformed into a
unique RFALP. The results presented in this paper enhance our understanding that NLPs and
SETAFs are essentially the same formalism.

KEYWORDS: argumentation, logic programming semantics, program transformations

1 Introduction

Argumentation and logic programming are two of the most successful paradigms in arti-

ficial intelligence and knowledge representation. Argumentation revolves around the idea

of constructing and evaluating arguments to determine the acceptability of a claim. It

models complex reasoning by considering various pieces of evidence and their interrela-

tionships, making it a powerful tool for handling uncertainty and conflicting information.

On the other hand, logic programming provides a formalism for expressing knowledge

and defining computational processes through a set of logical rules.

In this scenario, the Abstract Argumentation Frameworks (AAF s) proposed by Dung

(1995b) in his seminal paper have exerted a dominant influence over the development

of formal argumentation. We can depict such frameworks simply as a directed graph

whose nodes represent arguments and edges represent the attack relation between them.

Indeed, in AAF s, the content of these arguments is not considered, and the attack relation
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stands as the unique relation. The simplicity and elegance of AAF s have made them an

appealing formalism for computational applications.

In Dung’s proposal, the semantics for AAF s are given in terms of extensions, which are

sets of arguments satisfying certain criteria of acceptability. Naturally, different criteria

of acceptability will lead to different extension-based semantics, including Dung’s origi-

nal concepts of complete, stable, preferred, and grounded semantics (Dung 1995b) and

semi-stable semantics (Verheij 1996; Caminada 2006). A richer characterization based

on labelings was proposed by Caminada and Gabbay (2009) to describe these seman-

tics. Differently from extensions, which explicitly regard solely the accepted arguments,

the labeling-based approach permits a more fine-grained setting, where each argument

is assigned a label in, out, or undec. Intuitively, we accept an argument labeled as in,

reject one labeled as out, and consider one labeled as undec as undecided, meaning it is

neither accepted nor rejected.

Despite providing distinct perspectives on reasoning and decision-making, argumenta-

tion and logic programming have clear connections. Indeed, we can see in Dung’s (1995b)

work how to translate a Normal Logic Program (NLP) into an AAF . Besides, the author

proved that stable models (resp., the well-founded model) of an NLP correspond to

stable extensions (resp., the grounded extension) of the associated AAF . These results

led to several studies concerning connections between argumentation and logic program-

ming (Dung 1995a; Nieves et al. 2008; Wu et al. 2009; Toni and Sergot 2011; Dvořák et

al. 2013; Caminada et al. 2015b, 2022). In particular, Wu et al. (2009) established the

equivalence between complete semantics and partial stable semantics. These semantics

generalize a series of other relevant semantics for each system, as extensively documented

by Caminada et al. (2015b). However, one equivalence formerly expected to hold remained

elusive: the correspondence between the semi-stable semantics (Caminada 2006) in AAF

and the L-stable semantics in NLP (Eiter et al. 1997) could not be attained. Caminada

et al. (2015b) even showed that with their proposed translation from NLPs to AAF s,

there cannot be a semantics for AAF s equivalent to L-stable semantics.

Caminada and Schulz (2017) demonstrated how to translate Assumption-Based

Argumentation (ABA) (Bondarenko et al. 1997; Dung et al. 2009; Toni 2014) to NLPs

and how this translation can be reapplied for a reverse translation from NLPs to ABA.

Curiously, the problematic direction here is from ABA to NLP. Caminada and Schulz

(2017) proved that with their translation, there cannot be a semantics for NLPs equiv-

alent to the semi-stable semantics (Schulz and Toni 2015; Caminada et al. 2015a) for

ABA.

Since then, a great effort has been made to identify paradigms where semi-stable and

L-stable semantics are equivalent. The strategy employed by Alcântara et al. (2019) was

to look for more expressive argumentation frameworks than AAF s: Attacking Dialectical

Frameworks, a support-free fragment of Abstract Dialectical Frameworks (Brewka and

Woltran 2010; Brewka et al. 2013), a generalization of AAF s designed to express arbi-

trary relationships among arguments. A translation from NLP to ADF+ was proved

by Alcântara et al. (2019) to account for various equivalences between their semantics,

including the definition of a semantics for ADF+ corresponding to the L-stable semantics

for NLPs.
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In a similar vein, other relevant proposals explored the equivalence between L-stable

and semi-stable semantics for Claim-augmented Argumentation Frameworks (CAF s)

(Dvořák et al. 2023; Rapberger 2020; Rocha and Cozman 2022b), which are a gen-

eralization of AAF s where each argument is explicitly associated with a claim, and

for Bipolar Argumentation Frameworks (BAF s) with conclusions (Rocha and Cozman

2022a), a generalization of CAF s with the inclusion of an explicit notion of support

between arguments. In both frameworks, the equivalence with NLPs does not just involve

their semantics; it is also structural as there is a one-to-one mapping from them to NLPs.

Instead of looking for more expressive argumentation frameworks, the idea proposed

by Sá and Alcântara (2021a) was to introduce more fine-grained semantics to deal with

AAF s. Then a five-valued setting was employed rather than the usual three-valued one.

As in the previous cases, this approach also captures the correspondence between the

semantics for AAF s and NLPs. Specifically, it captures the correspondence involving

L-stable semantics.

The connections between ABA and logic programming were later revisited by Sá and

Alcântara (2019, 2021b), where they proposed a new translation from ABA frameworks

to NLPs. The correspondence between their semantics (including L-stable) is obtained

by selecting specific atoms in the characterization of the NLP semantics.

In summary, in the connections between NLP and argumentation semantics, the

Achilles’ heel is the relationship between L-stable and semi-stable semantics.

In this paper, we focus on the relationship between logic programming and SETAF

(Nielsen and Parsons 2006), an extension of Dung’s AAF s to allow joint attacks on

arguments. Following the strategy adopted by Caminada et al. (2015b) and Alcântara et

al. (2019), we resort to the characterization of the SETAF semantics in terms of labelings

(Flouris and Bikakis 2019). As a starting point, we provide a mapping from NLPs to

SETAFs (and vice versa) and show that NLPs and SETAFs are pairwise equivalent under

various semantics, including the equivalence between L-stable and semi-stable. These

results were inspired directly by two of our previous works: the equivalence between

NLPs and ADF+s (Alcântara et al. 2019), and the equivalence between ADF+s and

SETAFs (Alcântara and Sá 2021).

Furthermore, we investigate a class of NLPs called Redundancy-Free Atomic Logic

Programs (RFALPs) (König et al. 2022). In RFALPs, the translations from NLPs to

SETAFs and vice versa preserve the structure of each other’s theories. In essence, these

translations become inverses of each other. Consequently, the equivalence results concern-

ing NLPs and SETAFs have deeper implications than the correspondence results between

NLPs and AAF s: they encompass equivalence in both semantics as well as structure.

Some of these results are not new as recently they have already been obtained indepen-

dently by König et al. (2022). In fact, their translation from NLPs to SETAFs and vice

versa coincide with ours, and the structural equivalence between RFALPs and SETAFs

has also been identified there. However, their focus differs from ours. While their work

establishes the equivalence between stable models and stable extensions, it does not

explore equivalences involving labeling-based semantics or address the controversy relat-

ing semi-stable semantics and L-stable semantics, which is a key motivation for this work.

In comparison with König et al.’s work, the novelty of our proposal lies essentially in the

aspects below:
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• Our proofs of these results follow a significantly distinct path as they are based on

properties of argument labelings and are deeply rooted in the works of Caminada

et al. (2015b); Alcântara et al. (2019); Alcântara and Sá (2021).

• We prove the equivalence between partial stable, well-founded, regular, stable, and

semi-stable model semantics for NLPs and, respectively, complete, grounded, pre-

ferred, stable, and semi-stable labelings for SETAFs. In particular, for the first time,

an equivalence between L-stable model semantics for NLPs and semi-stable labelings

for SETAFs is established.

• We provide a more in-depth analysis of the relationship between NLPs and SETAFs.

Going beyond just proving semantic equivalence, we define functions that map label-

ings to interpretations and interpretations to labelings. These functions allow us to

see interpretations and labelings as equivalent entities, further strengthening the

connections between NLPs and SETAFs. In substance, we demonstrate that the

equivalence also holds at the level of interpretations/labelings.

The strong connection we establish between interpretations and labelings opens doors

for future exploration. This extends the applicability of our equivalence results to novel

semantics beyond those investigated here, potentially even encompassing multivalued

settings. This holds particular significance for the logic programming community. Well-

established concepts from argumentation, such as argument strength (Beirlaen et al.

2018), can now be translated and investigated within the context of logic programming.

This underscores the value of our decision to employ labelings instead of extensions as a

more suitable approach to bridge the gap between NLPs and SETAFs.

Our research offers another key contribution, particularly relevant to the logic pro-

gramming community: it explores the expressiveness of RFALPs. We demonstrate that

a specific combination (denoted by �→UTPM) of program transformations can transform

any NLP into an RFALP with exactly the same semantics. In simpler terms, RFALPs

possess the same level of expressiveness as NLPs. Although each program transformation

in �→UTPM was proposed by Brass and Dix (1994, 1997, 1999), the combination of these

program transformations (to our knowledge) has not been investigated yet. Then we

establish several properties of �→UTPM. Among other original contributions of our work

related to �→UTPM, we highlight the following results:

• Given an NLP, if repeatedly applying �→UTPM leads to a program where no further

transformations are applicable (irreducible program), then the resulting program is

guaranteed to be an RFALP.

• We show that �→UTPM is confluent; that is, given an NLP, it does not matter the

order by which we apply repeatedly these program transformations; whenever we

arrive at an irreducible program, they will always result in the same RFALP (and in

the same corresponding SETAF). Hence, besides NLPs and RFALPs being equally

expressive, each NLP is associated with a unique RFALP.

• The SETAF corresponding to an NLP is invariant with respect to �→UTPM; that is,

if P2 is obtained from P1 via �→UTPM (denoted by P1 �→UTPM P2), both P1 and P2

will be translated into the same SETAF.

• We show that �→UTPM preserves the semantics for NLPs studied in this paper: if

P1 �→UTPM P2, then P1 and P2 have the same partial stable models, well-founded

models, regular models, stable models, and L-stable models.
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The structure of the paper unfolds as follows: in Section 2, we establish the fundamen-

tal definitions related to SETAFs and NLPs. In Section 3, we adapt the procedure from

Caminada et al. (2015b) and Alcântara et al. (2019) to translate NLPs into SETAFs, and

subsequently, in the following section, we perform the reverse translation from SETAFs

to NLPs. In both directions, we demonstrate that our labeling-based approach effectively

preserves semantic correspondences, including the challenging case involving the equiva-

lence between semi-stable semantics (on the SETAFs side) and L-stable semantics (on the

NLPs side). In Section 5, we focus on RFALPs and reveal that, when restricted to them,

the translation processes between NLPs and SETAFs are each other’s inverse. Then,

in Section 6, we guarantee that RFALPs are as expressive as NLPs. We conclude the

paper with a discussion of our findings and outline potential avenues for future research

endeavors.

The proofs for all novel results are provided in the Supplementary Material.

2 Preliminaries

2.1 SETAF

Nielsen and Parsons (2006) proposed an extension of Dung’s (1995b) Abstract

Argumentation Frameworks (AAF s) to allow joint attacks on arguments. The resulting

framework, called SETAF, is defined next:

Definition 1 (SETAF (Nielsen and Parsons 2006)).

A framework with sets of attacking arguments (SETAF for short) is a pair A= (A,Att),
in which A is a finite set of arguments and Att ⊆ (2A \ {∅})×A is an attack relation such

that if (B, a)∈Att , there is no B′ ⊂B such that (B′, a)∈Att ; that is, B is a minimal set

(w.r.t. ⊆) attacking a1. By Att(a) = {B ⊆A | (B, a)∈Att}, we mean the set of attackers

of a.

In AAF s, only individual arguments can attack arguments. In SETAFs, the novelty is

that sets of two or more arguments can also attack arguments. This means that SETAFs

(A,Att) with |B|= 1 for each (B, a)∈Att amount to (standard Dung) AAF s.

The semantics for SETAFs are generalizations of the corresponding semantics for

AAF s (Nielsen and Parsons 2006) and can be defined equivalently in terms of extensions

or labelings (Flouris and Bikakis 2019). Our focus here will be on their labeling-based

semantics.

Definition 2 (Labelings (Flouris and Bikakis 2019)).

Let A= (A,Att) be a SETAF . A labeling is a function L :A→{in, out, undec}. It is

admissible iff for each a∈A,
• If L(a) = in, then for each B ∈Att(a), it holds L(b) = out for some b∈B.
• If L(a) = out, then there exists B ∈Att(a) such that L(b) = in for each b∈B.
A labeling L is called complete iff it is admissible and for each a∈A,

1 In the original definition of SETAF s by Nielsen and Parsons (2006), attacks are not necessarily subset-
minimal.
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• If L(a) = undec, then there exists B ∈Att(a) such that L(b) �= out for each b∈B,
and for each B ∈Att(a), it holds L(b) �= in for some b∈B.

We write in(L) for {a∈A | L(a) = in}, out(L) for {a∈A | L(a) = out}, and undec(L)
for {a∈A | L(a) = undec}. As a labeling essentially defines a partition among the argu-

ments, we sometimes write L as a triple (in(L), out(L), undec(L)). Intuitively, an

argument labeled in represents explicit acceptance; an argument labeled out indicates

rejection; and one labeled undec is undecided; that is, it is neither accepted nor rejected.

We can now describe the SETAF semantics studied in this paper:

Definition 3 (Semantics (Flouris and Bikakis 2019)).

Let A= (A,Att) be a SETAF . A complete labeling L is called

• grounded iff in(L) is minimal (w.r.t. ⊆) among all complete labelings of A.

• preferred iff in(L) is maximal (w.r.t. ⊆) among all complete labelings of A.

• stable iff undec(L) = ∅.
• semi-stable iff undec(L) is minimal (w.r.t. ⊆) among all complete labelings of A.

Let us consider the following example:

Example 1.

Consider the SETAF A= (A,Att) below:

Fig. 1. A SETAF A.

Concerning the semantics of A, we have

• Complete labelings: L1 = (∅, ∅, {a, b, c, d, e}), L2 = ({a} , {b} , {c, d, e}) and L3 =

({b} , {a, e} , {c, d});
• Grounded labelings: L1 = (∅, ∅, {a, b, c, d, e});
• Preferred labelings: L2 = ({a} , {b} , {c, d, e}) and L3 = ({b} , {a, e} , {c, d});
• Stable labelings: none;

• Semi-stable labelings: L3 = ({b} , {a, e} , {c, d}).

2.2 Logic programs and semantics

Now, we take a look at propositional Normal Logic Programs. To delve into their defini-

tion and semantics, we will follow the presentation outlined by Caminada et al. (2015b),

which draws from the foundation laid out by Przymusinski (1990).

https://doi.org/10.1017/S1471068424000188 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000188
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Definition 4 (Caminada et al. (2015b).)

A rule r is an expression

r : c← a1, . . . , am, not b1, . . . , not bn (1)

where (m, n≥ 0); c, each ai (1≤ i≤m) and each bj (1≤ j ≤ n) are atoms, and not

represents negation as failure. A literal is either an atom a (positive literal) or a negated

atom not a (negative literal). Given a rule r as above, c is called the head of r, which

we denote as head(r), and body(r) = {a1, . . . , am, not b1, . . . , not bn} is called the body

of r. Further, we divide body(r) into two sets body+(r) = {a1, . . . , am} and body−(r) =
{not b1, . . . , not bn}. A fact is a rule where m= n= 0. A Normal Logic Program (NLP)

or simply a program P is a finite set of rules. If every r ∈ P has body−(r) = ∅, P is a

positive program. The Herbrand Base of P is the set HBP of all atoms appearing in P .

A wide range of NLP semantics are based on the three-valued interpretations of

programs (Przymusinski 1990):

Definition 5 (Three-Valued Herbrand Interpretation (Przymusinski 1990)).

A three-valued Herbrand Interpretation I (or simply interpretation) of an NLP P is a

pair 〈T, F 〉 with T, F ⊆HBP and T ∩ F = ∅. The atoms in T are true in I, the atoms in

F are false in I, and the atoms in HBP \ (T ∪ F ) are undefined in I. For convenience,

when the NLP P is clear from the context, we will refer to the set of undefined atoms in

HBP \ (T ∪ F ) simply as T ∪ F .

Now we will consider the main semantics for NLPs. Let I = 〈T, F 〉 be a three-valued

Herbrand interpretation of an NLP P ; the reduct of P with respect to I (written as P/I)
is the NLP constructed using the following steps:

1. Remove any a← a1, . . . , am, not b1, . . . , not bn ∈ P such that bj ∈ T for some j

(1≤ j ≤ n);

2. Afterward, remove any occurrence of not bj from P such that bj ∈ F ;

3. Then, replace any occurrence of not bj left by a special atom u (u �∈HBP ).

In the above procedure, u is assumed to be an atom not in HBP which is undefined in all

interpretations of P (a constant). Note that P/I is a positive program since all negative

literals have been removed. As a consequence, P/I has a unique least three-valued model

(Przymusinski 1990), obtained by the Ψ operator:

Definition 6 (Ψ Operator (Przymusinski 1990)).

Let P be a positive program and J = 〈T, F 〉 be an interpretation. Define ΨP (J ) =
〈T ′, F ′〉, where
• c∈ T ′ iff c∈HBP and there exists c← a1, . . . , am ∈ P such that for all i, 1≤ i≤m,

ai ∈ T ;
• c∈ F ′ iff c∈HBP and for every c← a1, . . . , am ∈ P , there exists i, 1≤ i≤m, such

that ai ∈ F .

The least three-valued model of P is given by Ψ↑ ω
P (Przymusinski 1990), the least

fixed point of ΨP iteratively obtained as follows:
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Ψ↑ 0
P = 〈∅,HBP 〉

Ψ↑ i+1
P =ΨP (Ψ

↑ i
P )

Ψ↑ ω
P =

〈⋃
i<ω

{
Ti |Ψ↑ i

P = 〈Ti, Fi〉
}
,
⋂
i<ω

{
Fi |Ψ↑ i

P = 〈Ti, Fi〉
}〉

where ω denotes the first infinite ordinal.

We can now describe the logic programming semantics studied in this paper:

Definition 7.

Let P be an NLP and I = 〈T, F 〉 be an interpretation; by ΩP (I) =Ψ↑ ω
P
I

, we mean the

least three-valued model of P
I . We say that

• I is a partial stable model of P iff ΩP (I) = I (Przymusinski 1990).

• I is a well-founded model of P iff I is a partial stable model of P where there is

no partial stable model I ′ = 〈T ′, F ′〉 of P such that T ′ ⊂ T ; that is, T is minimal

(w.r.t. set inclusion) among all partial stable models of P (Przymusinski 1990).

• I is a regular model of P iff I is a partial stable model of P where there is no partial

stable model I ′ = 〈T ′, F ′〉 of P such that T ⊂ T ′; that is, T is maximal (w.r.t. set

inclusion) among all partial stable models of P (Eiter et al. 1997).

• I is a (two-valued) stable model of P iff I is a partial stable model of P where

T ∪ F =HBP (Przymusinski 1990).

• I is an L-stable model of P iff I is a partial stable model of P where there is no

partial stable model I ′ = 〈T ′, F ′〉 of P such that T ∪ F ⊂ T ′ ∪ F ′; that is, T ∪ F is

maximal (w.r.t. set inclusion) among all partial stable models of P (Eiter et al.

1997).

Although some of these definitions are not standard in logic programming literature,

their equivalence was proved by Caminada et al. (2015b). This format helps us to relate

NLP and SETAF semantics due to the structural similarities between Definition 7 and

Definitions 2 and 3. We illustrate these semantics in the following example:

Example 2.

Consider the following logic program P :

r1 : a← not b r2 : b← not a r3 : c← not a, not c

r4 : c← not c, not d r5 : d← not d r6 : e← not b, not e

This program has

• Partial Stable Models:M1 = 〈∅, ∅〉,M2 = 〈{a} , {b}〉 andM3 = 〈{b} , {a, e}〉;
• Well-founded model:M1 = 〈∅, ∅〉;
• Regular models:M2 = 〈{a} , {b}〉 andM3 = 〈{b} , {a, e}〉;
• Stable models: none;

• L-stable model:M3 = 〈{b} , {a, e}〉.
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3. From NLP to SETAF

In this section, we revisit the three-step process of argumentation framework instanti-

ation as employed by Caminada et al. (2015b) for translating an NLP into an AAF .

This method is based on the approach introduced by Wu et al. (2009) and shares sim-

ilarities with the procedures used in ASPIC (Caminada and Amgoud 2005, 2007) and

logic-based argumentation (Gorogiannis and Hunter 2011). Its first step involves taking

an NLP and constructing its associated AAF . Then, we apply AAF semantics in the

second step, followed by an analysis of the implications of these semantics at the level

of conclusions (step 3). In our case, starting with an NLP P , we derive the associated

SETAF (AP ,AttP ). Unlike the construction described by Caminada et al. (2015b), rules

with identical conclusions in P will result in a single argument in AP . This distinction is

capital for establishing the equivalence results between NLPs and SETAFs. Additionally,

it simplifies steps 2 and 3, making them more straightforward to follow. We now detail

this process.

3.1 SETAF construction

We will devise one translation from NLP to SETAF that is sufficiently robust to guar-

antee the equivalence between various kinds of NLPs models and SETAFs labelings.

Specifically, our approach will establish the correspondence between partial stable mod-

els and complete labelings, well-founded models and grounded labelings, regular models

and preferred labelings, stable models and stable labelings, L-stable models and semi-

stable labelings. Our method is built upon a translation from NLP to AAF proposed by

Caminada et al. (2015b), where NLP rules are directly translated into arguments. We

will adapt this approach for SETAF by employing the translation method outlined by

Caminada et al. (2015b) to construct statements, and then statements corresponding to

rules with the same head will be grouped to form a single argument. Taking an NLP P ,

we can start to construct statements recursively as follows:

Definition 8 (Statements and Arguments).

Let P be an NLP .

• If c← not b1, . . . , not bn is a rule in P , then it is also a statement (say s) with

— Conc(s) = c,

— Rules(s) = {c← not b1, . . . , not bn},
— Vul(s) = {b1, . . . , bn}, and
— Sub(s) = {s}.

• If c← a1, . . . , am, not b1, . . . , not bn is a rule in P and for each ai (1≤ i≤m) there

exists a statement si with Conc(si) = ai and c← a1, . . . , am, not b1, . . . , not bn
is not contained in Rules(si), then c← (s1), . . . , (sm), not b1, . . . , not bn is a

statement (say s) with
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— Conc(s) = c,

— Rules(s) = Rules(s1)∪ . . .∪ Rules(sm)∪
{c← a1, . . . , am, not b1, . . . , not bn}

— Vul(s) = Vul(s1) ∪ . . .∪ Vul(sm) ∪ {b1, . . . , bn}, and
— Sub(s) = {s} ∪ Sub(s1)∪ . . .∪ Sub(sm).

By SP , we mean the set of all statements we can construct from P as above. Then we

define AP = {Conc(s) | s∈SP } as the set of all arguments we can construct from P . For

an argument c from P (c∈AP ), we have that

• Conc(c) = c, and

• VulP (c) = {Vul(s) | s∈SP and Conc(s) = c}.
If c is an argument, then Conc(c) is referred to as the conclusion of c, and VulP (c)

is referred to as the vulnerabilities of c in P . When the context is clear, we will write

simply Vul(c) instead of VulP (c).

Now we will clarify the connection between the existence of statements and the

existence of a derivation in a reduct.

Lemma 1.

Let P be an NLP, I = 〈T, F 〉 an interpretation and ΩP (I) = 〈T ′, F ′〉 the least three-valued
model of P

I . It holds

(i) c∈ T ′ iff there exists a statement s constructed from P such that Conc(s) = c and

Vul(s)⊆ F .

(ii) c∈ F ′ iff for every statement s constructed from P such that Conc(s) = c, we have

Vul(s)∩ T �= ∅
We can prove both results in Lemma 1 by induction. Assuming that Ψ↑ i

P
I

= 〈Ti, Fi〉 for
each i∈N, we can prove the right-hand side of item 1 and the left-hand side of item 2

by induction on the value of i after guaranteeing the following results:

• If c∈ Ti, then there exists a statement s constructed from P such that Conc(s) = c

and Vul(s)⊆ F .

• If c �∈ Fi, then there exists a statement s constructed from P such that Conc(s) = c

and Vul(s)∩ T = ∅.
The remaining cases of Lemma 1 can be proved by structural induction on the construc-

tion of a statement s (see a detailed account of the proof of Lemma 1 in Supplementary

Material).

Lemma 1 ensures that statements are closely related to derivations in a reduct. An

atom c is true in the least three-valued model of P
I iff we can construct a statement with

conclusion c and whose vulnerabilities are false according to I; otherwise, c is false in the

least three-valued model of P
I iff for every statement whose conclusion is c, at least one

of its vulnerabilities is true in I. The next result is a direct consequence of Lemma 1:

Corollary 2.

Let P be an NLP.
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• Assume I = 〈∅,HBP 〉 and ΩP (I) = 〈T ′, F ′〉. It holds that c∈ T ′ iff there exists a

statement s constructed from P such that Conc(s) = c.

• There is no statement s constructed from P such that Conc(s) = c iff c∈ F ′ for

every interpretation I with ΩP (I) = 〈T ′, F ′〉.
The reduct of P with respect to 〈∅,HBP 〉 gives us all the possible derivations of P , and

from these derivations, we can construct all the statements associated with P . On the

other hand, the atoms that are lost in the translation, that is, the atoms not associated

with statements, are simply those that are false in the least three-valued model of every

possible reduct of P . Besides establishing connections between statements and derivations

in a reduct, Lemma 1 also plays a central role in the proof of Theorems 4 and 5.

Apart from that, intuitively, we can see a statement as a tree-like structure representing

a possible derivation of an atom from the rules of a program. In contrast, an argument for

c in P is associated with the (derivable) atom c itself and can be obtained by collecting

all the statements with the same conclusion c (i.e., all the possible ways of deriving c in

P ).

Example 3.

Consider the NLP P below with rules {r1, . . . , r8}:
r1 : a r2 : b← a r3 : c← not c

r4 : d← b, not a, not d r5 : d← not c, not d r6 : e← b, c, not e

r7 : c← f, not g r8 : f ← c, g

According to Definition 8, we can construct the following statements from P :

s1 : a s2 : b← (s1) s3 : c← not c

s4 : d← (s2), not a, not d s5 : d← not c, not d s6 : e← (s2), (s3), not e

In the next table, we give the conclusions and vulnerabilities of each statement:

s1 s2 s3 s4 s5 s6

Conc(.) a b c d d e
Vul(.) ∅ ∅ {c} {a, d} {c, d} {c, e}

Alternatively, we can depict statements as possible derivations as in Figure 2:

Fig. 2. Statements constructed from P .
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The vulnerabilities of a statement s are associated with the negative literals found in

the derivation of s. If not a is one of them, we know that a is one of its vulnerabilities.

This means that if a is derived, then Conc(s) cannot be obtained via this derivation

represented by s. However, it can still be obtained via other derivations/statements. For

instance, in the program P of Example 3, the derivation of a suffices to prevent the

derivation of d via statement s4 (for that reason, a∈ Vul(s4)), but we still can derive d

via s5. Notice also that there are no statements with conclusions f and g. From Corollary

2, we know that it is not possible to derive them in P as they are false in the least three-

valued model of each reduct of P . In addition, to determine the vulnerabilities of an atom

(and not only of a specific derivation leading to this atom), we collect these data about

the statements with the same conclusions to give the conclusions and vulnerabilities of

each argument. In our example, we obtain the following results:

a b c d e

Conc(.) a b c d e
Vul(.) {∅} {∅} {c} {{a, d} , {c, d}} {{c, e}}

As the vulnerabilities of an atom/argument a are a collection of the vulnerabilities of

the statements whose conclusion is a, any set containing at least one atom in each of

these statements suffices to prevent the derivation of a in P . In our example, there are

two statements with the same conclusion d and Vul(d) = {{a, d} , {c, d}}. Thus any set

of atoms containing {d} or {a, c} prevents the conclusion of d in P . We will resort to

these minimal sets to determine the attack relation:

Definition 9.

Let P be an NLP and let B and a be, respectively, a set of arguments and an argument

in the sense of Definition 8. We say that (B, a)∈AttP iff B is a minimal set (w.r.t. set

inclusion) such that for each V ∈ VulP (a), there exists b∈B ∩ V .

For the arguments of Example 3, it holds that both a and b are not attacked, c attacks

itself, c attacks e, e attacks itself, d attacks itself, a and c (collectively) attack d. This

strategy of extracting statements from NLPs rules and then gathering those with identical

conclusions into arguments is not novel; Alcântara et al. (2019) proposed a translation

from NLPs into Abstract Dialectical Frameworks (Brewka and Woltran 2010; Brewka et

al. 2013) by following a similar path. Using the thus-defined notions of arguments and

attacks, we define the SETAF associated with an NLP.

Definition 10.

Let P be an NLP . We define its associated SETAF as AP = (AP ,AttP ), where AP is

the set of arguments in the sense of Definition 8 and AttP is the attack relation in the

sense of Definition 9.

As an example, the SETAF AP = (AP ,AttP ) associated with the NLP of Example 3

is depicted in Figure 3.
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Fig. 3. A SETAF AP = (AP ,AttP ).

3.2 Equivalence results

Once the SETAF has been constructed, we show the equivalence between the semantics

for an NLP P and their counterpart for the associated SETAF AP . One distinguishing

characteristic of our approach in comparison with König et al.’s (2022) proposal is that

it is more organic. We prove the equivalence results by identifying connections between

fundamental notions used in the definition of the semantics for NLPs and SETAFs. With

this purpose, we introduce two functions: L2IP associates an interpretation to each

labeling while I2LP associates a labeling to each interpretation. We then investigate the

conditions under which they are each other’s inverse and employ these results to prove

the equivalence between the semantics. These functions essentially permit us to treat

interpretations and labelings interchangeably.

Definition 11 (L2IP and I2LP Functions).

Let P be an NLP , AP = (AP ,AttP ) be its associated SETAF , Int be the set of all the

three-valued interpretations of P and Lab be the set of all labelings of Ap. We introduce

a function L2IP :Lab→Int such that L2IP (L) = 〈T, F 〉, in which

• T = {c∈HBP | c∈AP and L(c) = in};
• F = {c∈HBP | c �∈ AP or c∈AP and L(c) = out};
• T ∪ F = {c∈HBP | c∈AP and L(c) = undec}.
We introduce a function I2LP : Int→Lab such that for any I = 〈T, F 〉 ∈ Int and any

c∈AP ,

• I2LP (I)(c) = in if c∈ T ;
• I2LP (I)(c) = out if c∈ F ;

• I2LP (I)(c) = undec if c �∈ T ∪ F .

I2LP (I)(c) is not defined if c �∈ AP .

The correspondence between labelings and interpretations is clear for those atoms

c∈HBP in which c∈AP . In this case, we have that c is interpreted as true iff c is

labeled as in; c is interpreted as false iff c is labeled as out. In contradistinction,

those atoms c∈HBP not associated with arguments (c �∈ AP ) are simply interpreted

as false. This will suffice to guarantee our results; next theorem assures us that

I2LP (L2IP (L)) =L:
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Theorem 3.

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. For any labeling L of

AP , it holds I2LP (L2IP (L)) =L.
In general, L2IP (I2LP (I)) is not equal to I, because of those atoms c occur-

ring in an NLP P , but not in AP . However, when M is a partial stable model,

L2IP (I2LP (M)) =M:

Theorem 4.

Let P be an NLP, AP = (AP ,AttP ) be the associated SETAF andM= 〈T, F 〉 be a partial

stable model of P . It holds that L2IP (I2LP (M)) =M.

This means that when restricted to partial stable models and complete labelings, L2IP
and I2LP are each other’s inverse. From Lemma 1, and Theorems 3 and 4, we can obtain

the following result:

Theorem 5.

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

• L is a complete labeling of AP iff L2IP (L) is a partial stable model of P .

• M is a partial stable model of P iff I2LP (M) is a complete labeling of AP .

Theorem 5 is one of the main results of this paper. It plays a central role in ensuring

the equivalence between the semantics for NLP and their counterpart for SETAF:

Theorem 6.

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

1. L is a grounded labeling of AP iff L2IP (L) is a well-founded model of P .

2. L is a preferred labeling of AP iff L2IP (L) is a regular model of P .

3. L is a stable labeling of AP iff L2IP (L) is a stable model of P .

4. L is a semi-stable labeling of AP iff L2IP (L) is an L-stable model of P .

The following result is a direct consequence of Theorems 4 and 6:

Corollary 7.

Let P be an NLP and AP = (AP ,AttP ) be the associated SETAF. It holds

1. M is a well-founded model of P iff I2LP (M) is a grounded labeling of AP .

2. M is a regular model of P iff I2LP (M) is a preferred labeling of AP .

3. M is a stable model of P iff I2LP (M) is a stable labeling of AP .

4. M is an L-stable model of P iff I2LP (M) is a semi-stable labeling of AP .

Next, we consider the NLP exploited by Caminada et al. (2015b) as a counterexample

to show that in general, L-stable models and semi-stable labelings do not coincide with

each other in their translation from NLPs to AAF s:

Example 4.

Let P be the NLP and AP be the associated SETAF depicted in Figure 4:
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(a) (b)

Fig. 4. NLP P and its associated SETAF AP .

As expected from Theorems 5 and 6, we obtain in Table 1 the equivalence between

partial stable models and complete labelings, well-founded models and grounded label-

ings, regular models and preferred labelings, stable models and stable labelings, L-stable

models and semi-stable labelings. We emphasize the coincidence between L-stable models

and semi-stable labelings in Table 1 as it does not occur in the approach of Caminada

et al. (2015b). In their work, the associated AAF possesses two semi-stable labelings in

contrast with the unique L-stable modelM3 of P . In the next two sections, we will show

that this relation between NLPs and SETAFs has even deeper implications.

4 From SETAF to NLP

Now we will provide a translation in the other direction, that is, from SETAFs to

NLPs. As in the previous section, this translation guarantees the equivalence between

the semantics for NLPs and their counterpart for SETAFs.

Definition 12.

Let A= (A,Att) be a SETAF. For any argument a∈A, we will assume Va = {V |
V is a minimal set (w.r.t. set inclusion) such that for each B ∈Att(a), there exists b∈
B ∩ V }. We define the associated NLP PA as follows:

PA = {a← not b1, . . . not bn | a∈A, V ∈ Va and V = {b1, . . . , bn}} .
Example 5.

Recall the SETAF A of Example 1 (it is the same as that in Figure 4b). The associated

NLP PA is

d← not d c← not c, not d

a← not b b← not a

c← not c, not a e← not e, not b

Notice that PA and the NLP P of Example 4 are the same. As it will be clear in

the next section, this is not merely a coincidence. Besides, from Definition 12, it is clear

that HBPA
=A. Consequently, when considering a SETAF A and its associated NLP

PA, the definition of the function L2IA (resp., I2LA), which associates labelings with

interpretations (resp., interpretations with labelings), will be simpler than the definition

of L2IP (resp., I2LP ) presented in the previous section.
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Table 1. Semantics for P and AP

Partial stable models M1 = 〈∅, ∅〉 Complete labelings L1 = (∅, ∅, {a, b, c, d, e})
M2 = 〈{a} , {b}〉 L2 = ({a} , {b} , {c, d, e})
M3 = 〈{b} , {a, e}〉 L3 = ({b} , {a, e} , {c, d})

Well-founded models M1 = 〈∅, ∅〉 Grounded labelings L1 = (∅, ∅, {a, b, c, d, e})
Regular models M2 = 〈{a} , {b}〉 Preferred labelings L2 = ({a} , {b} , {c, d, e})

M3 = 〈{b} , {a, e}〉 L3 = ({b} , {a, e} , {c, d})
Stable models None Stable labelings None

L-stable models M3 = 〈{b} , {a, e}〉 Semi-stable L3 = ({b} , {a, e} , {c, d})
Labelings

Definition 13 (L2IA and I2LA Functions).

Let A be a SETAF and P be its associated NLP, Lab be the set of all labelings of A and

Int be the set of all the three-valued interpretations of PA. We introduce the functions

• L2IA :Lab→Int , in which

L2IA(L) = 〈in(L), out(L)〉 .
Obviously in(L)∪ out(L) = undec(L).

• I2LA : Int→Lab, in which forM= 〈T, F 〉 ∈ Int ,
I2LA(M) = (T, F, T ∪ F ).

In contrast with L2IP and I2LP , the functions L2IA and I2LA are each other’s

inverse in the general case:

Theorem 8.

Let A= (A,Att) be a SETAF and PA its associated NLP.

• For any labeling L of A, it holds I2LA(L2IA(L)) =L.
• For any interpretation I of PA, it holds L2IA(I2LA(I)) = I.
A similar result to Theorem 5 also holds here:

Theorem 9.

Let A be a SETAF and PA be its associated NLP. It holds

• L is a complete labeling of A iff L2IA(L) is a partial stable model of PA.

• M is a partial stable model of PA iff I2LA(M) is a complete labeling of A.

From Theorem 9, we can ensure the equivalence between the semantics for NLP and

their counterpart for SETAF:

Theorem 10.

Let A be a SETAF and PA its associated NLP. It holds

1. L is a grounded labeling of A iff L2IA(L) is a well-founded model of PA.

2. L is a preferred labeling of A iff L2IA(L) is a regular model of PA.
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3. L is a stable labeling of A iff L2IA(L) is a stable model of PA.

4. L is a semi-stable labeling of A iff L2IA(L) is an L-stable model of PA.

The following result is a direct consequence of Theorems 8 and 10:

Corollary 11.

Let A be a SETAF and PA its associated NLP. It holds

1. M is a well-founded model of PA iff I2LA(M) is a grounded labeling of A.

2. M is a regular model of PA iff I2LA(M) is a preferred labeling of A.

3. M is a stable model of PA iff I2LA(M) is a stable labeling of A.

4. M is an L-stable model of PA iff I2LA(M) is a semi-stable labeling of A.

Recalling the SETAF A and its associated PA of Example 5, we obtain the expected

equivalence results related to their semantics (see Table 1). In the next section, we will

identify a class of NLPs in which the translation from a SETAF to an NLP (Definition 12)

behaves as the inverse of the translation from an NLP to a SETAF (Definition 10).

5 On the relation between RFALPs and SETAFs

We will recall a particular kind of NLPs, called Redundancy-Free Atomic Logic Programs

(RFALPs). From an RFALP P , we obtain its associated SETAF AP via Definition 10;

from AP , we obtain its associated NLP PAP
via Definition 12. By following the other

direction, from a SETAF A, we obtain its associated NLP PA, and from PA, its associated

SETAF APA
. An important result mentioned in this section is that P = PAP

and A=APA
;

that is, the translation from an NLP to a SETAF and the translation from a SETAF to

an NLP are each other’s inverse. Next, we define RFALPs:

Definition 14 (RFALP (König et al. 2022)).

We define a Redundancy-Free Atomic Logic Program (RFALP) P as an NLP such that

1. P is redundancy-free; that is, HBP = {head(r) | r ∈ P}, and if c←
not b1, . . . , not bn ∈ P , there is no rule c← not c1, . . . , not c

n
′ ∈ P such that{

c1, . . . , cn′
}⊂ {b1, . . . , bn}.

2. P is atomic; that is, each rule has the form c← not b1, . . . , not bn (n≥ 0).

First, Proposition 12 sustains that for any SETAF A, its associated NLP PA will always

be an RFALP:

Proposition 12.

Let A= (A,Att) be a SETAF and PA its associated NLP. It holds PA is an RFALP.

The following results guarantee that A=APA
(Theorem 13) and P = PAP

(Theorem 14):

Theorem 13.

Let A= (A,Att) be a SETAF, PA its associated NLP, and APA
the associated SETAF

of PA. It holds that A=APA
.

https://doi.org/10.1017/S1471068424000188 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000188


On the equivalence between logic programming and SETAF 1225

(a) (b) (c)

Fig. 5. Possible SETAFs associated with P .

Theorem 14.

Let P be an RFALP, AP its associated SETAF, and PAP
the associated NLP of AP . It

holds that P = PAP
.

Remark 1.

Minimality is crucial to ensure that the translation from an NLP to a SETAF and

the translation from a SETAF to an NLP are each other’s inverse. If the minimality

requirement in Definition 1 (and consequently in Definition 9) were dropped, any SETAF

(among other combinations) in Figure 5 could be a possible candidate to be the associated

SETAF AP of the RFALP P

c← not a, not c c← not b, not c

a b

As a result, Theorem 13 would no longer hold, and these translations would not be

each other’s inverse. Notice also that the SETAFs in Figure 5 have the same complete

labelings as non-minimal attacks are irrelevant and can be ignored when determining

semantics based on complete labelings.

Theorems 13 and 14 reveal that SETAFs and RFALPs are essentially the same for-

malism. The equivalence between them involves their semantics and is also structural:

two distinct SETAFs will always be translated into two distinct RFALPs and vice versa.

In contradistinction, Theorem 14 would not hold if we had replaced our translation from

NLP to SETAF (Definition 10) with that from NLP to AAF presented by Caminada et

al. (2015b). Thus, the connection between NLPs and SETAFs is more robust than that

between NLPs and AAF s. In the forthcoming section, we will explore how expressive

RFALPs can be; we will ensure they are as expressive as NLPs.

6 On the expressiveness of RFALPs

Dvořák et al. (2019) comprehensively characterized the expressiveness of SETAFs. Now

we compare the expressiveness of NLPs with that of RFALPs. In the previous section, we

established that SETAFs and RFALPs are essentially the same formalism. We demon-

strated that from the SETAF AP associated with an NLP P , we can obtain P ; and

conversely, from the NLP PA associated with a SETAF A, we can obtain A. Here,
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J. Alcântara et al.1226

we reveal that this connection between SETAFs and RFALPs is even more substan-

tial: RFALPs are as expressive as NLPs when considering the semantics for NLPs we

have exploited in this paper. With this aim in mind, we transform any NLP P into an

RFALP P ∗ by resorting to a specific combination (denoted by �→UTPM) of some program

transformations proposed by Brass and Dix (1994, 1997, 1999). Although each program

transformation in �→UTPM was proposed by Brass and Dix (1994, 1997, 1999), the com-

bination of these program transformations (as far as we know) has not been investigated

yet. Then, we show that P and P ∗ share the same partial stable models. Since well-

founded models, regular models, stable models, and L-stable models are all settled on

partial stable models, it follows that both P and P ∗ also coincide under these semantics.

Based on Dunne et al.’s (2015) work, where they define the notion of expressiveness of

the semantics for AAF s, we define formally expressiveness in terms of the signatures of

the semantics for NLPs:

Definition 15 (Expressiveness).

Let P be a class of NLPs. The signature ΣP
PSM of the partial stable models associated

with P is defined as

ΣP
PSM = {σ(P ) | P ∈P} ,

where σ(P ) = {I | I is a partial stable model of P} is the set of all partial stable models

of P .

Given two classes P1 and P2 of NLPs, we say that P1 and P2 have the same

expressiveness for the partial stable models semantics if ΣP1

PSM =ΣP2

PSM

In other words, P1 and P2 have the same expressiveness if

• For every P1 ∈P1, there exists P2 ∈P2 such that P1 and P2 have the same set of

partial stable models.

• For every P2 ∈P2, there exists P1 ∈P1 such that P1 and P2 have the same set of

partial stable models.

Similarly, we can define when P1 and P2 have the same expressiveness for the well-

founded, regular, stable, and L-stable semantics.

As the class of RFALPs is contained in the class of all NLPs, to show that these classes

have the same expressiveness for these semantics, it suffices to prove that for every NLP,

there exists an RFALP with the same set of partial stable models. We will obtain this

result by resorting to a combination of program transformations:

Definition 16 (Program Transformation (Brass and Dix, 1994, 1997, 1999)).

A program transformation is any binary relation �→ between NLPs. By �→∗ we mean the

reflexive and transitive closure of �→.

Thus, P �→∗ P ′ means that there is a finite sequence P = P1 �→ · · · �→ Pn = P ′. We are

particularly interested in program transformations preserving partial stable models:

Definition 17 (Equivalence Transformation (Brass and Dix, 1994, 1997, 1999)).

We say a program transformation �→ is a partial stable model equivalence transformation

if for any NLPs P1 and P2 with P1 �→ P2, it holds M is a partial stable model of P1 iff

M is a partial stable model of P2.

https://doi.org/10.1017/S1471068424000188 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000188


On the equivalence between logic programming and SETAF 1227

From Definitions 18 to 21, we focus on the following program transformations intro-

duced by Brass and Dix (1994, 1997, 1999): Unfolding (it is also known as Generalized

Principle of Partial Evaluation (GPPE )), elimination of tautologies , positive reduction,

and elimination of non-minimal Rules . They are sufficient for our purposes.

Definition 18 (Unfolding (Brass and Dix, 1994, 1997, 1999)).

An NLP P2 results from an NLP P1 by unfolding (P1 �→U P2) iff there exists a rule

c← a, a1, . . . , am, not b1, . . . , not bn ∈ P1 such that

P2 = (P1 − {c← a, a1, . . . , am, not b1, . . . , not bn})
∪ {c← a1

′, . . . , ap′, a1, . . . , am, not b1
′, . . . , not bq

′, not b1, . . . , not bn |
a← a1

′, . . . , ap′, not b1
′, . . . , not bq

′ ∈ P1}.
Definition 19 (Elimination of Tautologies (Brass and Dix, 1994, 1997, 1999)).

An NLP P2 results from an NLP P1 by elimination of tautologies (P1 �→T P2) iff there

exists a rule r ∈ P1 such that head(r)∈ body+(r) and P2 = P1 − {r}.
Definition 20 (Positive Reduction (Brass and Dix, 1994, 1999)).

An NLP P2 results from an NLP P1 by positive reduction (P1 �→P P2)

iff there exists a rule c← a1, . . . , am, not b, not b1, . . . , not bn ∈ P1 such that

b �∈ {head(r) | r ∈ P1} and
P2 = (P1 − {c← a1, . . . , am, not b, not b1, . . . , not bn})

∪ {c← a1, . . . , am, not b1, . . . , not bn} .
Definition 21 (Elimination of Non-Minimal Rules (Brass and Dix, 1994, 1999)).

An NLP P2 results from an NLP P1 by elimination of non-minimal rules (P1 �→M P2)

iff there are two distinct rules r and r′ in P1 such that head(r) = head(r′), body+(r′)⊆
body+(r), body−(r′)⊆ body−(r) and P2 = P1 − {r}.
Now we combine these program transformations and define �→UTPM as follows:

Definition 22 (Combined Transformation).

Let �→UTPM= �→U ∪ �→T ∪ �→P ∪ �→M .

We call an NLP P irreducible concerning �→ if there is no NLP P ′ �= P with P �→∗ P ′.
Besides, we say �→ is strongly terminating iff every sequence of successive applications of

�→ eventually leads to an irreducible NLP. As displayed by Brass and Dix (1998), not

every program transformation is strongly terminating. For instance, in the NLP

a ← b

b← a

c ← a, not c

c

if we apply unfolding ( �→U ) to the third rule, this rule is replaced by c← b, not c. We can

now apply unfolding again to this rule and get the original program; such an oscillation

can repeat indefinitely. Thus we have a sequence of program transformations that do not

https://doi.org/10.1017/S1471068424000188 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000188
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terminate. However, if we restrict ourselves to fair sequences of program transformations,

the termination is guaranteed:

Definition 23 (Fair Sequences (Brass and Dix, 1998)).

A sequence of program transformations P1 �→ · · · �→ Pn is fair with respect to �→ if

• Every positive body atom occurring in P1 is eventually removed in some Pi with

1< i≤ n (either by removing the whole rule using a suitable program transformation

or by an application of �→U );

• Every rule r ∈ Pi such that head(r)∈ body+(r) is eventually removed in some Pj

with i < j ≤ n (either by applying �→T or another suitable program transformation).

The sequence above of program transformations is not fair, because it does not remove

the positive body atoms occurring in the program. In contrast, the sequence of program

transformations given by

a ← b

b ← a

c ← a, not c

c

�→U

a ← a

b ← a

c ← a, not c

c

�→T

b ← a

c ← a, not c

c

�→U

b ← a

c
�→U c

is not only fair but also terminates. The next result guarantees that it is not simply a

coincidence:

Theorem 15.

The relation �→UTPM is strongly terminating for fair sequences of program transforma-

tions; that is, such fair sequences always lead to irreducible programs.

Theorem 15 is crucial to obtain the following result:

Theorem 16.

For any NLP P , there exists an irreducible NLP P ∗ such that P �→∗
UTPM P ∗.

This means that from an NLP P , it is always possible to obtain an irreducible NLP

P ∗ after successive applications of �→UTPM. Indeed, P ∗ is an RFALP:

Theorem 17.

Let P be an NLP and P ∗ be an NLP obtained after applying repeatedly the program

transformation �→UTPM until no further transformation is possible; that is, P �→∗
UTPM P ∗

and P ∗ is irreducible. Then P ∗ is an RFALP.

From Theorems 15 and 17, we can infer that for fair sequences, after applying

repeatedly �→UTPM, we will eventually produce an RFALP. In fact, every RFALP is

irreducible:

Theorem 18.

Let P be an RFALP. Then P is irreducible with respect to �→UTPM.

Theorems 16 and 17 guarantee that every NLP P can be transformed into an RFALP

P ∗ by applying �→UTPM a finite number of times. It remains to show that P and P ∗

share the same partial stable models (and consequently, the same well-founded, regular,
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stable, and L-stable models). Before, however, note that �→UTPM does not introduce

new atoms; instead, it can eliminate the occurrence of existing atoms in an NLP. For

simplicity in notation, we assume throughout the rest of this section that HBP =HB
P
′

whenever P �→∗
UTPM P ′. Next, we recall that these program transformations preserve the

least models of positive programs:

Lemma 19 (Brass and Dix, 1995, 1997).

Let P1 and P2 be positive programs such that P1 �→x P2, in which x∈ {U, T, P,M}. It
holds M is the least model of P1 iff M is the least model of P2.

In the sequel, we aim to extend Lemma 19 to NLPs. Notice, however, that we already

have the result for the program transformation �→U :

Theorem 20 (Aravindan and Minh 1995).

Let P1 and P2 be NLPs such that P1 �→U P2. It holds M is a partial stable model of P1

iff M is a partial stable model of P2.

It remains to guarantee the result for the program transformation �→T , �→P and �→M :

Theorem 21.

Let P1 and P2 be NLPs such that P1 �→T P2. It holds M is a partial stable model of P1

iff M is a partial stable model of P2.

Theorem 22.

Let P1 and P2 be NLPs such that P1 �→P P2. It holds M is a partial stable model of P1

iff M is a partial stable model of P2.

Theorem 23.

Let P1 and P2 be NLPs such that P1 �→M P2. It holds M is a partial stable model of P1

iff M is a partial stable model of P2.

Consequently, if P1 �→UTPM P2, then P1 and P2 share the same partial stable models.

By repeatedly resorting to this result, we can even show that for any NLP, there exists an

irreducible NLP with the same set of partial stable models, well-founded models, regular

models, stable models, and L-stable models:

Theorem 24.

Let P be an NLP and P ∗ be an irreducible NLP such that P �→∗
UTPM P ∗. It holds M is

a partial stable model of P iff M is a partial stable model of P ∗.

Corollary 25.

Let P be an NLP and P ∗ be an irreducible NLP such that P �→∗
UTPM P ∗. It holds M is a

well-founded, regular, stable, L-stable model of P iff M is, respectively, a well-founded,

regular, stable, L-stable model of P ∗.

As any irreducible NLP is an RFALP (Theorem 17), the following result is immediate:

Corollary 26.

For any NLP P , there exists an RFALP P ∗ such that M is a partial stable, well-founded,

regular, stable, L-stable model of P iff M is, respectively, a partial stable, well-founded,

regular, stable, L-stable model of P ∗.
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Given that each NLP can be associated with an RFALP preserving the semantics above,

it follows that NLP and RFALPs have the same expressiveness for those semantics:

Theorem 27.

NLPs and RFALPs have the same expressiveness for partial stable, well-founded, regular,

stable, and L-stable semantics.

Another important result is that the SETAF corresponding to an NLP is invariant

with respect to �→UTPM:

Theorem 28.

For any NLPs P1 and P2, if P1 �→UTPM P2, then AP1
=AP2

This means that any NLP in a sequence of program transformations from �→UTPM has

the same corresponding SETAF. For instance, every NLP in this sequence

a ← b

b ← a

c ← a, not c

c

�→U

a ← a

b ← a

c ← a, not c

c

�→T

b ← a

c ← a, not c

c

�→U

b ← a

c
�→U c

leads to the same corresponding SETAF, constituted by a unique (unattacked) argument:

c

Theorem 28 also suggests an alternative way to find the SETAF corresponding to

an NLP P : instead of resorting directly to Definition 8 to construct the arguments,

we can apply (starting from P ) �→UTPM successively by following a fair sequence of

program transformations. By Theorems 15 and 17, we know that eventually, we will reach

an RFALP whose corresponding SETAF is identical to that of the original program P

(Theorem 28). Then, we apply Definition 8 to this RFALP to obtain the arguments and

Definition 9 for the attack relation. Notably, when P is an RFALP, Definition 8 becomes

considerably simpler, requiring only its first item to characterize the statements.

In addition, from the same NLP, various fair sequences of program transformations

can be conceived. Recalling the NLP

a ← b

b← a

c ← a, not c

c

exploited above, we can design the following alternative fair sequence

a ← b

b ← a

c ← a, not c

c

�→M

a ← a

b ← a

c

�→U

a ← b

b ← b

c

�→T

a ← b

c
�→U c
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This sequence produced the same RFALP as before; it is not a coincidence. Apart from

being strongly terminating for fair sequences of program transformations, the relation

�→UTPM has an appealing property; it is also confluent:

Theorem 29.

The relation �→UTPM is confluent; that is, for any NLPs P , P ′ and P ′′, if P �→∗
UTPM P ′

and P �→∗
UTPM P ′′ and both P ′ and P ′′ are irreducible, then P ′ = P ′′.

By confluent �→UTPM, we mean that it does not matter the path we take by repeatedly

applying �→UTPM, if it ends, it will always lead to the same irreducible NLP. In addition,

as any irreducible NLP is an RFALP (Theorem 17), and the translations from SETAF to

RFALPs and conversely, from RFALPs to SETAF are each other’s inverse (Theorems 13

and 14), we obtain that two distinct SETAFs will always be associated with two distinct

NLPs. The confluence of �→UTPM is of particular significance from the logic programming

perspective as it guarantees that the ordering of the transformations in UTPM does

not matter: we are free to choose always the “best” transformation, which maximally

reduces the program. Consequently, Theorem 29 also sheds light on the search for efficient

implementations in NLPs.

From the previous section, we know that the equivalence between SETAFs and RFALPs

is not only of a semantic nature but also structural: two distinct SETAFs will always be

translated into two distinct RFALPs and vice versa. Now we enhance our understanding

of this result still more by establishing that

• RFALPs are as expressive as NLPs.

• The SETAF corresponding to an NLP is invariant with respect to �→UTPM; that is,

if P1 �→UTPM P2, then AP1
=AP2

.

• Each NLP P leads to a unique RFALP P ∗ via the relation �→UTPM. Besides, P and

P ∗ have the same partial stable, grounded, regular, stable, and L-stable models.

Beyond revealing the connections between SETAFs and NLPs, the results in this paper

also enhance our understanding of NLPs themselves. To give a concrete example, let us

consider the following issue: in the sequence of program transformations in �→UTPM,

atoms can be removed. Are these atoms underivable and set to false in the partial stable

models of the program or true/undecided atoms can be removed in this sequence? Such

questions can be answered by considering some results from Section 3 and the current

section. In more formal terms, let P and P ∗ be NLPs such that P �→∗
UTPM P ∗ and P ∗ is

irreducible. We have

• P ∗ is an RFALP (Theorem 17), and the set of atoms occurring in P ∗ is

{head(r) | r ∈ P ∗} (Definition 14);

• AP∗ = {head(r) | r ∈ P ∗} is the set of all arguments we can construct from P ∗

(Definition 8), and AP =AP∗ (Theorem 28), that is, AP =AP∗ ;

• Thus c occurs in P , but does not occur in P ∗ iff there is no statement s con-

structed from P such that Conc(s) = c. According to Corollary 2, c∈ F ′ for every

interpretation I with ΩP (I) = 〈T ′, F ′〉.
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Consequently, every atom occurring in P , but not occurring in P ∗ is set to false in the

least three-valued model of each disjunct of P . In particular, they will be false in its

partial stable models.

Supported by the findings presented in the current section, we can argue that SETAFs

and RFALPs are essentially the same paradigm, and both are deeply connected with

NLPs.

7 Conclusion and future works

This paper investigates the connections between frameworks with sets of attacking argu-

ments (SETAFs) and Normal Logic Programs (NLPs). Building on the research of

Alcântara et al. (2019); Alcântara and Sá (2021), we employ the characterization of the

SETAF semantics in terms of labelings (Flouris and Bikakis 2019) to establish a map-

ping from NLPs to SETAFs (and vice versa). We further demonstrate the equivalence

between partial stable, well-founded, regular, stable, and L-stable models semantics for

NLPs and, respectively, complete, grounded, preferred, stable, and semi-stable labelings

for SETAFs.

Our translation from NLPs to SETAFs offers a key advantage over the translation

from NLPs to AAF s presented by Caminada et al. (2015b). Our approach captures the

equivalence between semi-stable labelings for SETAFs and L-stable models for NLPs. In

addition, their translation is unable to preserve the structure of the NLPs. While an NLP

can be translated to an AAF , recovering the original NLP from the corresponding AAF

is generally not possible. In contradistinction, we have revisited a class of NLPs called

Redundancy-Free Atomic Logic Programs (RFALPs). For RFALPs, the translations from

NLPs to SETAFs and from SETAFs to NLPs also preserve their structures as they are

each other’s inverse. Hence, when compared to the relationship between NLPs and AAF s,

the relationship between NLPs and SETAFs is demonstrably more robust. It extends

beyond semantics to encompass structural aspects.

Some of these results are not new as they have already been obtained independently

by König et al. (2022). In fact, their translation from NLPs to SETAFs and vice versa

coincide with ours, and the structural equivalence between RFALPs and SETAFs has

also been identified there. Notwithstanding, our proofs of these results stem from a sig-

nificantly distinct path as they are based on properties of argument labelings and are

deeply rooted in the works of Caminada et al. (2015b); Alcântara et al. (2019); Alcântara

and Sá (2021). For instance, our equivalence results are settled on two important aspects:

• Properties involving the maximization/minimization of labelings adapted from

Caminada et al.’s (2015b) work to deal with labelings for SETAFs.

• Again inspired by Caminada et al. (2015b), we proposed a mapping from interpreta-

tions to labelings and a mapping from labelings to interpretations. We also showed

that they are each other’s inverse.

In contrast, König et al. (2022) demonstrated the equivalence between the semantics

in terms of extensions. They also have not tackled the controversy between semi-stable

and L-stable, one of our leading motivations for developing this work.
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In addition to showing this structural equivalence between RFALPs and SETAFs, we

have also investigated the expressiveness of RFALPs. To demonstrate that they are as

expressive as NLPs, we proved that any NLP can be transformed into an RFALP with the

same partial stable models through repeated applications of the program transformation

�→UTPM. It is worth noticing that �→UTPM results from the combination of the follow-

ing program transformations presented by Brass and Dix (1994, 1997, 1999): unfolding,

elimination of tautologies, positive reduction, and elimination of non-minimal rules. In

the course of our investigations, we also have obtained relevant findings as follows:

• RFALPs are irreducible with respect to �→UTPM: the application of �→UTPM to an

RFALP will result in the same program.

• The mapping from NLPs to SETAFs is invariant with respect to the program trans-

formation �→UTPM; that is, if an NLP P2 is obtained from an NLP P1 via �→UTPM,

then the SETAF corresponding to P1 is the same corresponding to P2.

• The program transformation �→UTPM is confluent: any NLP will lead to a unique

RFALP after repeatedly applying �→UTPM. Consequently, two distinct RFALPs will

always be associated with two distinct NLPs.

In summary, RFALPs (which are as expressive as NLPs) and SETAFs are essentially

the same formalism. Roughly speaking, we can consider a SETAF as a graphical rep-

resentation of an RFALP and an RFALP as a rule-based representation of a SETAF.

Any change in one formalism is mirrored by a corresponding change in the other.

Thus, SETAFs emerge as a natural candidate for representing argumentation frameworks

corresponding to NLPs.

Regarding the significance and potential impact of our results, we highlight that by pur-

suing this line of research, one gains insight into what forms of non-monotonic reasoning

can and cannot be represented by formal argumentation. In particular, by enlightening

these connections between SETAFs and NLPs, many approaches, semantics, and tech-

niques naturally developed for the former may be applied to the latter, and vice versa.

While SETAFs serve as an inspiration for defining RFALPs, the representation of NLPs

as SETAFs is an alternative for intuitively visualizing logic programs.

In addition, our results associated with the confluence of �→UTPM are of particular

significance from the logic programming perspective as they guarantee that the ordering

of the transformations in �→UTPM does not matter: we are free to choose always the

“best” transformation, which maximally reduces the program. Consequently, our paper

also sheds light on the search for efficient implementations in NLPs.

Natural ramifications of this work include an in-depth analysis of other program trans-

formations beyond those studied here and their impact on SETAF and argumentation

in general. Given the close relationship between argumentation and logic programming,

a possible line of research is to investigate how Argumentation can benefit from these

program transformations in the development of more efficient algorithms. The structural

connection involving RFALPs and SETAFs gives rise to exploiting other extensions of

Dung AAF s; in particular, we are interested in identifying which of them are robust

enough to preserve the structure of logic programs. Along this same line of research,

it is also our aim to study connections between extensions of NLPs (including their

paraconsistent semantics) and Argumentation.
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Alcântara, J., Sá, S. and Acosta-Guadarrama, J. 2019. On the equivalence between
abstract dialectical frameworks and logic programs. Theory and Practice of Logic
Programming 19, 5–6, 941–956.

Aravindan, C. and Minh, D. P. 1995. On the correctness of unfold/fold transformation of
normal and extended logic programs. The Journal of Logic Programming 24, 3, 201–217.

M., Beirlaen, Heyninck, J., Pardo, P.and Straßer, C. 2018. Argument strength in formal
argumentation. FLAP 5, 3, 629–676.

Bondarenko, A., Dung, P. M., Kowalski, R. A. and Toni, F. 1997. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence 93, 1–2, 63–101.

Brass, S. and Dix, J. 1994. A disjunctive semantics based on unfolding and bottom-up evalua-
tion. In Innovationen Bei Rechen-und Kommunikationssystemen (IFIP-Congress, Workshop
FG2: Disjunctive Logic Programming and Disjunctive Databases), Berlin Heidelberg, Springer,
83–91.

Brass, S. and Dix, J. 1995. Disjunctive semantics based upon partial and bottom-up evaluation.
In ICLP, 199–213.

Brass, S. and Dix, J. 1997. Characterizations of the disjunctive stable semantics by partial
evaluation. The Journal of Logic Programming 32, 3, 207–228.

Brass, S. and Dix, J. 1998. Characterizations of the disjunctive well-founded semantics:
Confluent calculi and iterated gcwa. Journal of Automated Reasoning 20, 143–165.

Brass, S. and Dix, J. 1999. Semantics of (disjunctive) logic programs based on partial
evaluation. The Journal of Logic Programming 40, 1, 1–46.

Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J. P. and Woltran, S. 2013.
Abstract dialectical frameworks revisited. In Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, 803–809.

Brewka, G. and Woltran, S. 2010. Abstract dialectical frameworks. In Proceedings of the
Twelfth International Conference on Principles of Knowledge Representation and Reasoning ,
102–111.

Caminada, M. 2006. Semi-stable semantics. In 1st International Conference on Computational
Models of Argument (COMMA), 144, 121–130.

Caminada, M. and Amgoud, L. 2005. An axiomatic account of formal argumentation. In AAAI,
6, 608–613.

Caminada, M. and Amgoud, L. 2007. On the evaluation of argumentation formalisms. Artificial
Intelligence 171, 5–6, 286–310.
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