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This study obtains expressions for the force and moment coefficients for a finite-span
circular cylinder rolling on a plane wall. It is assumed that a small, but finite, gap exists
between the cylinder and the wall, as a result of, for example, surface roughness. Using the
method of matched asymptotic expansions, the flow is decomposed into an inner solution,
valid in the narrow interstice between the cylinder and the wall, and an outer solution,
valid far from the interstice. Then, the force and moment coefficients are expressed as
the sum of a gap-dependent term, which is computed from the inner solution, and a
gap-independent term, which is computed from the outer solution. Solutions to the inner
flow are obtained by solving numerically the two-dimensional Reynolds equation for the
lubrication flow in the interstice. The inner solution depends only on a single parameter,
the cylinder aspect ratio divided by the gap-diameter ratio, and the effects of this parameter
on the gap-dependent force and moment coefficients are deduced. Solutions to the outer
flow are obtained using thee-dimensional numerical simulations for a range of Reynolds
numbers, cylinder aspect ratios and cylinder rotation rates. Then, the variation of the force
and moment coefficients against each of these terms is obtained.

Key words: lubrication theory, wakes, vortex shedding

1. Introduction
The problem of a body immersed in a fluid, and which both translates and rotates while
in contact with, or near, a wall is of practical interest in understanding and modelling
sediment transport in rivers and coastlines, and improving the efficiency of various
industrial processes involving particle-laden flows. One key aspect of this problem is to
determine the forces and moments applied to the body, and hence, predict its motion along
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the boundary. Generally, the body is assumed to be offset from the wall by an effective
hydrodynamic gap introduced by either surface roughness (Smart et al. 1993; Galvin
et al. 2001; Thompson et al. 2021; Houdroge et al. 2023; Nanayakkara et al. 2024b),
cavitation (Prokunin 2003; Ashmore et al. 2005), compressibility (Terrington et al. 2022)
or elastohydrodynamic effects (Rallabandi et al. 2017; Bertin et al. 2022). While the
introduction of a small hydrodynamic gap does not significantly affect the dominant flow
structures, such as wake formation and vortex shedding (Stewart et al. 2010b), it has a
profound effect on the drag and moment coefficients, due to the large pressures arising in
the narrow lubrication film between the body and the wall.

Analytical predictions of the forces and moments can be obtained for elementary
geometries, such as spheres or infinite cylinders, translating and rotating near plane walls
within the Stokes-flow regime. Expressions for the force and moment applied to an infinite
circular cylinder in the Stokes regime were obtained by Jeffery (1922), Wakiya (1975)
and Jeffrey & Onishi (1981), while O’Neill (1964) and Dean & O’Neill (1963) compute
the corresponding force and moment applied to a sphere, also in the Stokes regime.
Asymptotic expressions for the forces and moments, valid in the limit of a small gap, can
also be obtained using the method of matched asymptotic expansions. Under this approach,
an inner solution, valid in the thin interstice between the body and the wall, is obtained
using lubrication theory. This is combined with an outer solution, which is independent
of the gap between the body and the wall, to obtain the total force and moment. This
approach was used by Goldman et al. (1967), O’Neill & Stewartson (1967) and Cooley &
O’Neill (1968) for spheres in the Stokes regime, and by Merlen & Frankiewicz (2011) for
an infinite circular cylinder in the Stokes-flow regime.

For inertial (finite-Reynolds-number) flows, however, analytical expressions for the
forces and moments are generally not available, and numerical simulations are used to
obtain predictions of the force and moment coefficients. For example, Stewart et al. (2006,
2010b), Rao et al. (2011) and Houdroge et al. (2017, 2020) perform numerical simulations
for cylinders rotating and translating near a plane wall at finite Reynolds number, while
Zeng et al. (2009), Stewart et al. (2010a) and Houdroge et al. (2016, 2023) perform
numerical simulations for spheres rotating and translating near a plane wall. There are
several drawbacks to using numerical simulations to obtain the force and moment coeffi-
cients (Terrington et al. 2023). First, a large number of extremely small elements must be
used to resolve the inner lubrication flow, resulting in numerical stiffness and increased
computational cost. This increased computational effort is essentially wasted, since ana-
lytical solutions to the inner flow are easily obtained using lubrication theory. Moreover,
simulations must be performed for a range of gap-to-diameter ratios, despite the fact that
this only affects the inner lubrication flow, which is already known from lubrication theory.

To counteract these problems, we proposed in a previous work (Terrington et al. 2023)
a combined numerical–analytical approach, where numerical simulations are performed
to obtain the outer-flow solution only, while the analytical lubrication solution is used
for the inner region. For the two-dimensional (2-D) flow over a circular cylinder, we
demonstrated that the total force and moment coefficients can be decomposed into a
gap-dependent part and a gap-independent part. The gap-dependent part was obtained
analytically, using lubrication theory, while the gap-independent part was obtained using
the numerical solution to the outer flow. The present paper applies this approach to the
three-dimensional (3-D) flow over a finite-span cylinder that both translates and rotates
near a plane wall.

Compared with the rolling sphere and infinite cylinder cases, the flow over a finite-span
cylinder near a wall has received far less attention. Saintyves et al. (2020) has provided
asymptotic expressions for the gap-dependent force and moment in the limit of a large
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aspect ratio. Teng et al. (2022) extends this analysis, providing expressions for the
gap-dependent force and moment valid for any aspect ratio, including the limiting cases
of a large aspect ratio (thin rods) and small aspect ratios (thin disks). These studies do not
compute the gap-independent contribution to the force and moment from the outer-flow
region. The present paper presents a methodology to compute both the gap-dependent and
gap-independent contributions to the force and moment coefficients for the inertial flow
over a finite-span circular cylinder.

Previous numerical studies (Pirozzoli et al. 2012; Javadi 2022) have considered the flow
past a finite-length circular cylinder rolling while in contact with a plane wall. However,
neither of these studies consider the significant influence of the hydrodynamic gap on the
force and moment coefficients. Moreover, both papers report finite drag coefficients for
cylinders in contact with the wall, while lubrication theory predicts an infinite drag for
cylinders in contact with the wall. Therefore, accurate numerical predictions for the drag
behind finite-span circular cylinders have not yet been obtained.

The flow over finite-span cylinders in contact with a wall is also relevant to the
automotive and racing industries, as a simplified model for the aerodynamics of wheels
(Diasinos et al. 2015). Unlike the rigid circular cylinders considered in this work,
pneumatic tyres will contact the road by a contact patch, rather than a singular contact
point. Diasinos et al. (2015) report a significant variation in the computed drag coefficient
with the size of this contact patch. We note that they report finite drag coefficients
for isolated wheels in contact with the plane surface, in contrast with the infinite force
predicted for a rigid cylinder. This may be due to the effects of tyre deformation, or some
other aspect of the contact mechanics, which are outside the scope of the present work.
It is unlikely that the assumption of a rigid cylinder with a small effective hydrodynamic
gap is a reasonable approximation for the contact between a deformable tyre and the road.
Additionally, the Reynolds numbers for studies on tyres are generally orders of magnitude
higher than for the present study, which may lead to a reduced influence of the contact
point on the drag coefficient.

A recent experimental investigation (Nanayakkara et al. 2024a) of finite-span circular
cylinders rolling on an inclined plane found that the drag coefficient can be predicted by
assuming an effective hydrodynamic gap equal to the peak surface roughness. However,
they noted that expressions for the gap-independent force and moment coefficients are
currently lacking in the literature, limiting the accuracy of their analysis. The present
work aims to fill this knowledge gap by providing numerical computations of the
gap-independent force and moment coefficients.

The structure of this paper is as follows. First, in § 1.1 we define the problem to be solved.
Then, in § 2 we discuss the lubrication solution to the inner flow and the computation of
the gap-dependent force and moment coefficients. Section 3 then discusses the numerical
solution of the outer flow and the evaluation of the gap-independent force and moment
coefficients. Finally, concluding remarks are made in § 4.

1.1. Problem description
The problem under consideration is as shown in figure 1. A circular cylinder of diameter d
and span W travels along a plane wall with translational velocity U and rotational velocity
Ω , while maintaining a gap G between the wall and the cylinder. The cylinder is immersed
in a fluid that has density ρ and dynamic viscosity μ.

This flow is non-dimensionalised by d, U and ρ. Then, the flow is char-
acterised by the following non-dimensional parameters: the Reynolds number
Re = ρUd/μ, the gap-diameter ratio G/d, the aspect ratio A = W/d and the slip
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Figure 1. Problem considered in this work, showing (a) oblique, (b) side and (c) top views. A finite cylinder
of diameter d and span W translates parallel to a plane wall with velocity U and angular velocity Ω = 2kU/d,
where k is the slip coefficient, while maintaining a gap G between the cylinder and the wall. Both Cartesian
(x, y, z) and cylindrical (r, θ, z) coordinate systems are used.

coefficient k = Ωd/(2U ). We refer to this non-dimensionalisation as the ‘outer-flow’ non-
dimensionalisation, or non-dimensionalisation by outer-flow variables, noting that we will
introduce a new set of non-dimensional parameters for the inner lubrication flow in § 2.

The aim of the present work is to determine the functional dependence of the force and
moment coefficients,

CD = D/

(
1
2

dρU 2W

)
, CL = L/

(
1
2

dρU 2W

)
, CM = M/

(
1
4

d2ρU 2W

)
, (1.1)

against Re, k, G/d and A. Here, D, L and M are the drag, lift and moment applied to
the cylinder, respectively, and CD , CL and CM are the corresponding force and moment
coefficients.

We obtain expressions for the force and moment coefficients using the method of
matched asymptotic expansions, which was previously applied to the 2-D cylinder flow
by Terrington et al. (2023). Under this approach, we conceptually decompose the flow into
separate inner and outer flows, which are matched asymptotically. The inner flow is the
flow in the thin interstice between the cylinder and the wall, and solutions to the inner
flow are obtained using lubrication theory. The outer flow represents the flow far from the
interstice, and is approximately independent of G/d. In this work, the inner-flow solution
is obtained by numerically solving the Reynolds equation in two dimensions, while the
outer-flow solution is obtained using 3-D numerical simulations. The main benefit of this
approach is that the influence of G/d can be treated semi-analytically, and the parameter
space required for full 3-D simulations is reduced to three parameters (A, k and Re),
greatly reducing the computational effort required to explore the parameter space.

Using this approach, we decompose the total force and moment coefficients into gap-
dependent (G) and gap-independent (C) parts:

CD = CD,G + CD,C , CL = CL ,G + CL ,C , CM = CM,G + CM,C . (1.2)

The gap-dependent parts of the force and moment coefficients are obtained using
lubrication theory in § 2. We obtain expressions of the following form:

CD,G = 4π

Re
√

G/d

[
1 + k

2
f ( Â) + 1 − k

2

]
, (1.3)

CL ,G = 0, (1.4)

CM,G = 4π

Re
√

G/d

[
−1 + k

2
f ( Â) + 1 − k

2

]
. (1.5)
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Here f ( Â) is determined using the numerical solution of the inner lubrication flow, and
Â = A/

√
G/d is the aspect ratio normalised by inner-flow variables. The gap-independent

parts of the force and moment coefficients are then obtained from the outer-flow solution
in § 3.

2. Lubrication theory
In this section we obtain expressions for the gap-dependent part of the force and moment
coefficients by considering the lubrication flow in the thin interstice between the cylinder
and the wall. The outer flow is not considered until § 3. This approach was previously
applied to the 2-D (or infinite) cylinder flow, by both the studies of Merlen & Frankiewicz
(2011) and Terrington et al. (2023). An approximate expression for the gap-dependent
drag and moment for the finite-span cylinder was obtained by Saintyves et al. (2020), in
the limit of a large aspect ratio. This analysis was extended to finite cylinders of any aspect
ratio by Teng et al. (2022), including the limiting cases of large (thin rod) and small (thin
disk) aspect ratios.

In this section we develop an alternative formulation of the gap-dependent force and
moment coefficients, by considering the inner lubrication flow. The new solution is
equivalent to Teng et al.’s (2022) solution, differing only by a constant term. This new
solution is easier to couple with the numerical simulation to the outer flow, which is
considered in § 3. Additionally, our solution more explicitly reveals the dependence of
the force and moment coefficients on the parameter Â = A/

√
G/d, while Teng et al.’s

(2022) solution appears to depend separately on A and G/d.
The structure of this section is as follows. In § 2.1 we introduce the equations and bound-

ary conditions for the inner lubrication flow. Then, in § 2.2 we derive expressions for the
gap-dependent force and moment coefficients. These expressions for the gap-dependent
force and moment coefficients depend on a function f ( Â), which is evaluated numerically
in § 2.3. Finally, in § 2.4 we compare our results to Teng et al.’s (2022) solution.

2.1. Lubrication solution
This subsection discusses the lubrication solution to the inner flow. The aim is to obtain
solutions to the pressure in the inner region as a function of G/d, A, Re and k. The
assumptions of lubrication theory are that fluid flow is confined to a thin film, in which
inertial effects are negligible, pressure is constant across the film and cross-film derivatives
of velocity are much larger than streamwise derivatives. These conditions are satisfied in
the inner-flow region, so long as G/d is small. Combined with the assumption of steady
flow in the inner region, one obtains the Reynolds equation, which is expressed in terms
of outer-flow variables as

∇xz ·
[

h3∇xz p

]
= 6

Re
∇xz ·

[
h(U1 + U2)

]
, (2.1)

where ∇xz is the 2-D gradient operator in the x-z plane, h is the thickness of the lubrication
film and U1 and U2 are the velocities of the upper and lower walls, respectively.

The geometry for the inner region is as shown in figure 2. The film thickness is
approximated by a parabolic profile,

h = G

d
+ x2, (2.2)

and this approximation is valid when x � 1. Near the contact point, the velocity of the
wall is U1 = −U êx , while the velocity of the cylinder is U2 = −kU êx , where êx is the
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Cylinder

Fluid

Wall

y

xz

h = G/d + x2

U1

U2

Figure 2. Geometry of the inner lubrication region. Here, h is the film thickness, while U1 and U2 are the
velocities of the wall and cylinder, respectively.

unit vector in the x direction. Substituting these expressions into the Reynolds equation
gives the following equation for the lubrication pressure:

∂

∂x

(
h3 ∂p

∂x

)
+ ∂

∂z

(
h3 ∂p

∂z

)
= 6(1 + k)

Re

∂h

∂x
. (2.3)

Equation (2.3) is non-dimensionalised by outer-flow variables, and the solution depends
on the four parameters G/d, Re, k and A. This equation can be further simplified by using
the following ‘inner-flow’ variable transformations (Terrington et al. 2023):

p = 2(1 + k)

Re(G/d)3/2 p̂, (2.4a)

x̂ = x√
G/d

, ẑ = z√
G/d

, Â = A√
G/d

, (2.4b)

H = h

G/d
= 1 + x̂2. (2.4c)

This gives the following:

∂

∂ x̂

(
H 3 ∂ p̂

∂ x̂

)
+ H3 ∂2 p̂

∂ ẑ2 = 3
∂ H

∂ x̂
. (2.5)

The boundary conditions for this equation are p̂ = 0 at x̂ = ±∞ and p̂ = 0 at ẑ = ± Â/2
(Teng et al. 2022), since the pressure outside the lubrication region is negligible compared
with the pressure within the lubrication region.

Note that the dimensionless pressure distribution p̂(x̂, ẑ) depends on a single
dimensionless parameter, Â. In the limit Â → ∞ (i.e. 2-D flow) we can neglect ẑ
derivatives, and (2.5) reduces to

∂

∂ x̂

(
H3 ∂ p̂2D

∂ x̂

)
= 3

∂ H

∂ x̂
. (2.6)

The solution to this equation is the lubrication pressure for the 2-D cylinder flow (Jeffrey &
Onishi 1981; Merlen & Frankiewicz 2011)

p̂2D = −x̂

(1 + x̂2)2 . (2.7)

We find it convenient to express the dimensionless pressure distribution for finite Â as

p̂(x̂, ẑ) = ĝ(x̂, ẑ) p̂2D(x̂), (2.8)

1010 A15-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.329


Journal of Fluid Mechanics

where ĝ is a modification to the 2-D pressure distribution due to finite-span effects.
Equation (2.5) can be rearranged to give

∂2ĝ

∂ x̂2 + ∂2ĝ

∂ ẑ2 + 2
x̂(1 + x̂2)

∂ ĝ

∂ x̂
− 6

1 + x̂2 ĝ = −6
1 + x̂2 . (2.9)

Due to the pressure boundary conditions, we have ĝ = 0 at ẑ = ± Â/2. The boundary
condition at x̂ = ±∞ is less clear, since p̂2D = 0 at x̂ = ±∞. However, Teng et al. (2022)
show that p̂ decays as x̂−5 for large x̂ , and therefore, ĝ will decay as x̂−2. Therefore, we
use the boundary condition ĝ = 0 at x̂ = ±∞.

In this work we obtain profiles of ĝ(x̂, ẑ) numerically for various values of the parameter
Â = A/

√
G/d, using a finite-difference method implemented in MATLAB. Details of this

implementation are provided in Appendix A.
Figure 3 presents profiles of p̂ computed using the 2-D finite-difference solution to the

lubrication flow and from full 3-D numerical simulations (using the numerical scheme
described in § 3.2) at Â = 10 and Â = 100. Three-dimensional simulations are performed
for Re = 50, A = 1 and k = 1, and G/d = 10−4 for Â = 100 and G/d = 10−2 for Â = 10.
Excellent agreement is observed between subfigures (a) and (b), confirming that the
lubrication solution is valid in the inner region, when the gap is small. Reasonable
agreement is observed between subfigures (c) and (d), however, there are several
small differences. Notably, the pressure distribution in subfigure (d) is not completely
antisymmetric about x̂ = 0 and the pressure does not decrease to zero at the boundaries.
These differences are due to the larger gap-diameter ratio (G/d = 10−2) used for subfigure
(d), so the assumptions used to obtain the lubrication solution (inertia is negligible and the
film thickness is parabolic) are less accurate. Regardless, the inner solution remains a
reasonable approximation for the interstitial pressure distribution in this case.

The dimensionless pressure profiles presented in figure 3 are consistent with the results
of Teng et al. (2022). Away from the ends of the cylinder, the dimensionless pressure
p̂ is approximately equal to the 2-D solution p̂2D . There is a positive pressure peak just
upstream of the point of minimum separation between the cylinder and the wall (which
is situated at x̂ = 0), at x̂ = −1/

√
3, and a negative pressure peak just downstream at

x̂ = 1/
√

3. While the pressure is approximately independent of ẑ away from the ends of the
cylinder, it rapidly decreases to zero at the ends of the cylinder over a thin end correction
region. The width of this end correction region, relative to the total width of the cylinder,
decreases as Â is increased.

2.2. Force and moment coefficients
We now consider the computation of the gap-dependent part of the force and moment
coefficients, using only the inner-flow solution. We assume that the inner and outer
solutions are matched asymptotically, and that both inner and outer approximations are
valid for some angular position θ = θ0. Then, the inner solution is applied for θ � θ0,
while the outer solution is applied for θ � θ0. Without directly computing the outer-flow
solution, we obtain the G/d dependence of the total force and moment coefficients based
on the assumption of asymptotic matching between the inner and outer solutions.

The structure of this section is as follows. First, in § 2.2.1 the force and moment
coefficients are expressed as contributions from the inner and outer solutions. Next,
in § 2.2.2, expressions for the inner-flow force and moment coefficients are obtained
in terms of ĝ(x̂, ẑ). Then, in § 2.2.3 the θ0 dependence of the outer-flow force and
moment coefficients is deduced from the inner-flow solution, without directly computing
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Lubrication theory
0.5

(a) (b)

(c) (d )

0ẑ/Â

Â = 100 

Â = 10 

–0.5
–5 0 5

0.5

0

–0.5
–5 0 5

0.5

0ẑ/Â

x̂
p̂

x̂

–0.5

–0.3 –0.2 –0.1 0 0.1 0.2 0.3

–5 0 5

0.5

0

–0.5
–5 0 5

3D numerical simulations

Figure 3. Contours of dimensionless pressure p̂ for (a,b) Â = 100 and (c,d) Â = 10, computed using (a,c)
lubrication theory and (b,d) full 3-D numerical simulations. For the 3-D simulations, physical parameters were
Re = 50, k = 1, A = 1 and (b) G/d = 10−4 for Â = 100 and (d) G/d = 10−2 for Â = 10.

the outer-flow solution. Finally, expressions for the G/d-dependent force and moment
coefficients are obtained in § 2.2.4.

2.2.1. Contributions from the inner and outer regions
The total force and moment coefficients are expressed as

CD =
∫ π

−π

(− p̄ sin θ + τ̄x )dθ + CD,F , (2.10a)

CL =
∫ π

−π

( p̄ cos θ + τ̄y)dθ + CL ,F , (2.10b)

CM =
∫ π

−π

(τ̄y sin θ + τ̄x cos θ)dθ + CM,F , (2.10c)
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where CD,F , CL ,F and CM,F are the force and moment contributions from the end faces
of the cylinder:

CD,F = 1
A

∫ 2π

0

∫ 1/2

0
τx ,Frdrdθ, (2.11a)

CL ,F = 1
A

∫ 2π

0

∫ 1/2

0
τy ,Frdrdθ, (2.11b)

CM,F = 1
A

∫ 2π

0

∫ 1/2

0
[r cos θτx ,F + r sin θτy ,F ]rdrdθ. (2.11c)

Here, (r, θ, z) are cylindrical coordinates as defined in figure 1, overbars denote the mean
across the cylinder span of quantities on the cylinder’s curved surface:

p̄(θ) =
∫ A/2

−A/2
p

(
r = 1

2

)
dz. (2.12)

Here, subscript F denotes the sum of quantities on the cylinder’s front and back faces:

τx ,F (r, θ) = τx

(
z = − A

2

)
+ τx

(
z = A

2

)
. (2.13)

The total force and moment coefficients may be separated into contributions from the
inner and outer regions, as

C[i] = C[i],I + C[i],O , (2.14)

where a subscript [i] in terms such as C[i] represents either the drag (CD), lift (CL ) or
moment (CM ) coefficient, as required. The outer-flow contributions are

CD,O =
∫ 2π−θ0

θ0

(− p̄ sin θ + τ̄x )dθ + CD,F , (2.15a)

CL ,O =
∫ 2π−θ0

θ0

( p̄ cos θ + τ̄y)dθ + CL ,F , (2.15b)

CM,O =
∫ 2π−θ0

θ0

(τ̄y sin θ + τ̄x cos θ)dθ + CM,F , (2.15c)

while the contributions from the inner flow are

CD,I =
∫ x̂0

−x̂0

[
−4(G/d)x̂ p̄ + 2(G/d)1/2τ̄x

]
dx̂, (2.16a)

CL ,I =
∫ x̂0

−x̂0

2(G/d)1/2( p̄ + τ̄y)dx̂, (2.16b)

CM,I =
∫ x̂0

−x̂0

[
2(G/d)1/2τ̄x + 4(G/d)x̂ τ̄y

]
dx̂, (2.16c)

where the small angle approximation has been used in (2.16a–c). Here, θ0 is the boundary
between the inner and outer regions, and x̂0 = sin θ0/(2

√
G/d) ≈ θ0/(2

√
G/d) is this

same boundary normalised by inner-flow variables. We note that both the inner and outer
force and moment coefficients are functions of θ0. However, the total force and moment
coefficients should be independent of θ0, assuming that the inner and outer solutions are
matched asymptotically.
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2.2.2. Force and moment contributions from the inner region
From (2.4a), (2.8) and (2.12), the pressure in the inner region is expressed as

p̄ = 2(1 + k)

Re(G
d )

3
2

−x̂

(1 + x̂2)2
¯̂g. (2.17)

Under the assumptions of lubrication theory, the wall-shear stress in the inner region is
(Ghosh et al. 2014)

τx = −h

2
∂p

∂x
+ 1 − k

Re

1
h
, (2.18)

and after substituting (2.17) into (2.18), the mean stress is

τ̄x = 1
Re(G/d)

[
(1 + k)

1 − 3x̂2

(1 + x̂2)2
¯̂g + (1 + k)

x̂

1 + x̂2
∂ ¯̂g
∂ x̂

+ (1 − k)
1

1 + x̂2

]
, (2.19)

while the y-shear stress is negligible.
Finally, substituting (2.17) and (2.19) into (2.16) gives the following expressions for the

inner-flow force and moment coefficients:

CD,I = 1
Re

√
G/d

[
(1 + k) f̂x (x̂0, Â) + 4(1 − k) tan−1 x̂0

]
, (2.20a)

CL ,I = 0, (2.20b)

CM,I = 1
Re

√
G/d

[
(1 + k)m̂z(x̂0, Â) + 4(1 − k) tan−1 x̂0

]
, (2.20c)

f̂x =
∫ x̂0

−x̂0

[
8x̂2

(1 + x̂2)2 ḡ + 2(1 − 3x̂2)

(1 + x̂2)2 ḡ + 2x̂

1 + x̂2
∂ ḡ

∂ x̂

]
dx̂, (2.20d)

m̂z =
∫ x̂0

−x̂0

[
2(1 − 3x̂2)

(1 + x̂2)2 ḡ + 2x̂

1 + x̂2
∂ ḡ

∂ x̂

]
dx̂ . (2.20e)

2.2.3. Asymptotic matching to the outer flow
Without directly computing the outer-flow solution, we determine the θ0 dependence of
the outer-flow force and moment coefficient, assuming that the inner and outer solutions
are matched at θ = θ0.

First, we consider the asymptotic behaviour of p̂ for large x̂ . Teng et al. (2022) provide
an expression for this asymptotic pressure p̂o (their (2.25)), which we rewrite as a
modification to the 2-D pressure ĝo:

ĝo = − 3

(x̂/ Â)2

(
1
4

−
(

ẑ

Â

)2
)

−
∑

n=1,3,5,...

cnφn(x̂/ Â) cos(nπ ẑ/ Â), (2.21)

cn = −8 sin(nπ/2)

(nπ)3 , (2.22)

φn(x̂/ Â) = exp(−nπ x̂/ Â)

(x̂/ Â)2

(
3 + 3nπ x̂/ Â + (nπ x̂/ Â)2

)
. (2.23)

Here, p̂o and ĝo are asymptotic expressions for the terms p̂ and ĝ (defined in (2.7)
and (2.8)) in the limit x̂ � 1. Also, ĝo and p̂o are related as p̂o = ĝo p̂2D,o, where
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Figure 4. Profiles of ¯̂g obtained using the finite-difference lubrication solution, along with the analytic outer-
flow solution ¯̂go against (a) x̂ and (b) x = x̂

√
G/d . The aspect ratio is held constant at A = 1, and profiles of ¯̂g

are computed for a range of G/d.

p̂2D,o = −1/x̂3 is the asymptotic value of p̂2D for large x̂ . Averaging across the cylinder
span gives the following expression for ¯̂go:

¯̂go = Â2

2x̂2 −
∑

n=1,3,5,...

16
(nπ)4

exp(−nπ x̂/ Â)

(x̂/ Â)2

(
3 + 3nπ x̂/ Â + (nπ x̂/ Â)2

)
. (2.24)

Note that ĝo in (2.21) is a function of the parameters ẑ/ Â and x̂/ Â, rather than of x̂ and
ẑ alone. These parameters are equivalent to x/A and z/A and are independent of G/d.
Therefore, the pressure far from the interstice is independent of G/d.

Figure 4 presents profiles of both ¯̂go obtained using (2.24) and of ¯̂g computed using
the finite-difference solution of (2.9) for a range of Â. Subfigure (a) presents the profiles
against x̂ , which confirms that the inner-flow solutions (ḡ) approach the asymptotic
solution ¯̂go when x̂ � 1. Subfigure (b) presents the same profiles, but against x = x̂

√
G/d

(i.e. in outer-flow variables). The profiles of ĝ for different Â collapse onto a single
universal outer profile given by ¯̂go for large x , confirming that the pressure far from the
interstice is independent of G/d.

The asymptotic value of the spanwise-averaged lubrication pressure for large x̂ can be
recast into outer-flow variables as

p̄o = −2(1 + k)

Re(G/d)3/2
1
x̂3

¯̂go = −16(1 + k)

Reθ3
¯̂go, (2.25)

where we have assumed that x ≈ θ/2 due to the small angle approximation. Similarly, the
asymptotic value of the wall-shear stress is

τ̄x o = −3(1 + k)

Re

1
x2

¯̂go + 1 + k

Re

1
x

∂ ¯̂go

∂x
+ 1 − k

Re

1
x2 . (2.26)
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We propose that the outer-flow force and moment coefficients be decomposed as the
sum of a θ0-dependent and constant term,

C[i],O(θ0) = C[i],θ0(θ0) + C[i],C . (2.27)

The terms CD,C , CL ,C and CM,C are independent of θ0, and are referred to as the gap-
independent force and moment coefficients. These terms cannot be determined from the
lubrication solution alone, and are evaluated using 3-D numerical simulations in § 3.

The terms CD,θ0 , CL ,θ0 and CM,θ0 in (2.27) are referred to as the θ0 dependent part of
the outer-flow force and moment coefficients. These terms can be determined from the
inner solution alone, up to an arbitrary constant, by requiring that the sum of the inner-
flow and θ0-dependent force/moment coefficient be constant with respect to θ0. We define
this arbitrary constant using the condition C[i],θ0(θ0 = ∞) = 0, so that we have

C[i],θ0 = C[i],I (θ0 = ∞) − C[i],I (θ0), (2.28)

and by substituting (2.16) into (2.28), we obtain the following expressions for the
θ0-dependent force and moment coefficients:

CD,θ0 = 2
∫ ∞

x0

[−4x p̄o + 2τ̄x o]dx, (2.29a)

CL ,θ0 = 0, (2.29b)

CM,θ0 = 2
∫ ∞

x0

2τ̄x odx . (2.29c)

Here, note that integrals have been simplified using symmetry. Finally, substituting (2.25)
and (2.26) into (2.29) gives the following expressions for the θ0-dependent part of the
outer-flow force and moment coefficients:

CD,θ0 = 1
Re

[
(1 + k) fx,o(x0, A) + 4(1 − k)

x0

]
, (2.30a)

CM,θ0 = 1
Re

[
(1 + k)mz,o(x0, A) + 4(1 − k)

x0

]
, (2.30b)

fx,o = 2
∫ ∞

x0

[
2
x2 ḡ0 + 2

x

∂ ḡo

∂x

]
dx, (2.30c)

mz,o = 2
∫ ∞

x0

[−6
x2 ḡo + 2

x

∂ ḡo

∂x

]
dx . (2.30d)

2.2.4. Gap-dependent force and moment coefficients
We define the gap-dependent force and moment coefficients as the sum of the inner flow
and θ0-dependent part of the outer-flow force and moment coefficients:

C[i],G = C[i],I + C[i],θ0 . (2.31)

Then, the total force and moment coefficients are the sum of the gap-dependent and gap-
independent terms:

C[i] = C[i],G + C[i],C . (2.32)

Specifically, the gap-independent terms are constant with respect to G/d, but may be
functions of A, Re and k. These constant terms are determined using direct numerical
simulations of the outer flow in § 3.
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Using the condition C[i],θ0(θ0 = ∞) = 0, the gap-dependent drag can be expressed as

CD,G = CD,I (θ0 = ∞) = 1
Re

√
G/d

[
(1 + k) f̂x ( Â) + 4(1 − k) tan−1 x̂0

]
, (2.33a)

CM,G = CM,I (θ0 = ∞) = 1
Re

√
G/d

[
(1 + k)m̂z( Â) + 4(1 − k) tan−1 x̂0

]
, (2.33b)

f̂x =
∫ ∞

−∞

[
8x̂2

(1 + x̂2)2
¯̂g + 2(1 − 3x̂2)

(1 + x̂2)2
¯̂g + 2x̂

1 + x̂2
∂ ¯̂g
∂ x̂

]
dx̂, (2.33c)

m̂z =
∫ ∞

−∞

[
2(1 − 3x̂2)

(1 + x̂2)2
¯̂g + 2x̂

1 + x̂2
∂ ¯̂g
∂ x̂

]
dx̂ . (2.33d)

Using integration by parts on the final term in both f̂x and m̂z ,∫ ∞

−∞
2x̂

1 + x̂2
∂ ḡ

∂ x̂
dx̂ =

∫ ∞

−∞
2(x̂2 − 1)

1 + x̂2
¯̂g, (2.34)

we obtain

f̂x = −m̂z = 2π f ( Â) =
∫ ∞

−∞
4x̂2

(1 + x̂2)2
¯̂gdx̂, (2.35)

where the factor of 2π is introduced to simplify the notation, so that 0 � f ( Â)� 1.
Finally, the gap-dependent force and moment coefficients are expressed as

CD,G = 4π

Re
√

G/d

[
1 + k

2
f ( Â) + 1 − k

2

]
, (2.36a)

CL ,G = 0, (2.36b)

CM,G = 4π

Re
√

G/d

[
− 1 + k

2
f ( Â) + 1 − k

2

]
, (2.36c)

f ( Â) = 1
2π

∫ ∞

−∞
4x̂2

(1 + x̂2)2
¯̂gdx̂ . (2.36d)

2.3. Numerical evaluation of f ( Â)

The function f ( Â) in (2.36) represents the effects of a finite aspect ratio on the gap-
dependent part of the drag and moment coefficients. Specifically, for 2-D flow ( Â = ∞),
the value of this function is f (∞) = 1, and the force and moment coefficients equal the
2-D solutions (Merlen & Frankiewicz 2011)

CD,G,2D = 4π

Re
√

G/d
, CM,G,2D = −4πk

Re
√

G/d
. (2.37)

For finite Â, f ( Â) is less than one, indicating a reduction in the force and moment
coefficients compared with the 2-D solution.

In this study, f ( Â) is determined numerically. We first obtain profiles of ĝ for a particu-
lar value of Â by numerically solving (2.9) using the finite-difference approach described
in Appendix A. Then, the function f ( Â) is evaluated at this Â by numerical integration
of (2.36d). We consider 61 logarithmically spaced values of Â between Â = 10−2 and
Â = 104. For each of these Â, solutions of ĝ and f were obtained using three different
grid resolutions as listed in table 1, and a Richardson extrapolation was performed to
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nx nz Maximum relative error

Mesh 1 1000 125 2.12 × 10−5

Mesh 2 2000 250 5.32 × 10−6

Mesh 3 4000 500 1.34 × 10−6

Table 1. Resolution study for numerical computations of f ( Â). Here nx and nz are the number of grid points
in the x and z directions, respectively. The maximum relative error is computed with respect to the estimated
grid-independent solution obtained using a Richardson extrapolation.

1.0

0.8

0.6

0.4

f

0.2

0
10–2 10–1 100 101 102

Numerical simulation

Cubic spline interpolation

103 104

Â

Figure 5. Profile of the function f ( Â) (defined in (2.36d)), obtained from 2-D simulations of the lubrication
flow. Markers indicate the numerical data, while the solid line is a cubic-spline interpolation between the data
points.

estimate the grid-independent solution. We note that the maximum relative difference
between the predictions of f ( Â) on the finest mesh and the Richardson extrapolation is
only 1.34 × 10−6, and therefore, the meshes are fine enough to accurately compute f ( Â).

A cubic-spline interpolation is used to obtain values of f ( Â) between the numerical data
points. To ensure that a sufficient number of points are used in the spline interpolation, a
second cubic-spline interpolation was created using half of the data points. The maximum
difference between the two interpolations is only 4.8 × 10−4, and therefore, our spline
interpolation is sufficiently accurate.

Figure 5 presents the function f ( Â), with markers indicating the numerical data, and the
solid line indicating the cubic-spline fit. As expected, f ( Â) approaches 1 as Â approaches
∞, corresponding to 2-D flow. For finite Â, f is between 0 and 1, indicating a reduction in
the gap-dependent force and moment coefficients compared with Stokes flow. The function
f ( Â) is monotonically increasing. Increasing Â – either by increasing A or reducing G/d –
results in force and moment coefficients closer to the 2-D theory, while reducing Â results
in a greater relative difference between the 3-D and 2-D force and moment predictions.

Asymptotic expressions for f ( Â) for both small and large Â are obtained in Appendix B.
For small Â, we obtain the asymptotic value

f ( Â) = 1
8

Â2, Â � 1, (2.38)
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Figure 6. Asymptotic behaviour of the function f ( Â) for (a) small Â and (b) large Â, along with the
asymptotic expressions obtained in Appendix B.

and this is confirmed in figure 6(a) by the close agreement between the numerical data and
the asymptotic expression. For large Â, we obtain the expression

f ( Â) = 1 − 32
3π2

ln( Â)

Â
− 0.7412

Â
, (2.39)

where ln() is the natural logarithm function, and the coefficient of the final term has been
estimated by fitting to our numerical data. As shown in figure 6(b), the numerical data
converge to this asymptotic expression for Â � 1. For Â > 103, f ( Â) > 0.99, so that 2-D
lubrication theory holds to less than 1% error.

For the remainder of this work, we estimate f ( Â) as follows. Within the range
10−2 � Â � 104, a cubic-spline interpolation fit to our numerical data is used. Outside
this range, the asymptotic expression in (2.38) is used for Â < 10−2, while (2.39) is used
for Â > 104. A ‘.mat’ file containing the numerical data for f ( Â) is provided in the online
supplementary material, along with MATLAB and Python scripts for estimating f ( Â)

using the combined cubic-spline/asymptotic method.

2.4. Comparison to Teng et al.
Teng et al. (2022) have also computed the gap-dependent part of the force and moment
coefficients for a finite-span cylinder rolling near a wall. In this subsection we compare
our results to their solution. While the form of our equations (2.36) is quite different from
their equations (2.17), we find that the two expressions differ only by a constant term with
respect to G/d. Since the gap-dependent force and moment coefficients are only unique
up to the addition of a constant term, this means that our solution is validated against the
Teng et al. (2022) solution.

Importantly for the present work, our derivation provides us with an expression for the
θ0-dependent force and moment coefficients (2.30), which are used to compute the gap-
dependent force and moment terms (CD,C , CM,C ) in § 3. It would also appear that this
form is simpler, since the effects of finite aspect ratio are described by a single parameter,

1010 A15-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.329


S.J. Terrington, M.C. Thompson and K. Hourigan

Present study

Teng (approximation)

Teng (numerical)

2-D

30

(a) (b)
0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

25

20

15

C
D

,G

C
D

,G
 –

 C
D

,T
en

g

10

5

0
20 40 60

1/�G/d 1/�G/d
80 100 200 400 600 800 1000

Increasing A

A =
 3.16 ×

 10
–1

A = 3.16 × 10
–2A =

 1 ×
 10

–1

A = 1 × 10
–2 A = 3.16 × 10–1

A = 1 × 100

A = 3.16 × 100

A = 3.16 × 101

A = 1 × 101

1 × 102

3.16 × 101

3.16 × 100

3.16 × 10–1

3.16 × 10–2

1 × 101

1 × 100

1 × 10–1

1 × 10–2

A

A = 1 × 10–1

Figure 7. Comparison between our numerically obtained CD,G (see (2.36)), and Teng et al.’s (2022) solution
(see (2.40)) evaluated using both direct numerical simulations (see (2.41)), and the analytic approximation (see
(2.42)). A range of G/d and A are considered, while the remaining parameters are fixed at Re = 50 and k = 1.
Note that curves for A � 10 overlap in subfigure (a), while curves for A � 0.1 overlap in subfigure (b).

Â, rather than depending separately on both A and G/d, as is the case for the Teng et al.
(2022) formulation.

Teng et al. (2022) expressions for the force and moment can be expressed in terms of
drag and moment coefficients as

CD,G = CD,G,2D − 1 + k

ReA
I(G/d, A), CM,G = CM,G,2D + 1 + k

ReA
I(G/d, A),

(2.40)
where I is the integral

I =
∫ 1/(2

√
G/d)

0

8
3

x̂(1 + x̂2)
∂ p̂

∂ ẑ

∣∣∣∣
ẑ=− Â/2

dx̂ . (2.41)

Teng et al. (2022) give the approximate solution for I as

I(G/d, A) ≈ 64
3π

sinh−1
(

A√
G/d

)
+ 16A +

∑
n=1,3,5,...

64e
−nπ
2A

(
1

3πn
+ 2A

n2π2

)
,

(2.42)
which is valid for G/d � 1. We emphasise that (2.40) does not consider the influence of
the outer flow, and therefore, like our equation (2.36), describes only the gap-dependent
part of the drag, due to lubrication effects in the inner region. These terms are only defined
up to an additive constant, and therefore, (2.40) may differ from (2.36) by an additive
constant.

Figure 7 presents the computed drag coefficients against G/d for a range of aspect
ratios, using both Teng et al.’s (2022) solution and our solution (2.36). For Teng et al.’s
(2022) solution, we have calculated the integral I both by using the analytic approximation
(2.42) and by evaluating (2.41) directly using our numerically obtained solution for p̂.
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For A � 0.1, the analytical approximation is in excellent agreement with the numerical
computation, however, (2.42) is inaccurate when A < 0.1.

Figure 7(a) shows that our solution for the drag coefficient (2.36) displays the same G/d
dependence as Teng et al.’s (2022) solution, however, it differs by a constant with respect
to G/d. This is more clearly shown in figure 7(b), which plots the difference between our
solution and Teng et al.’s (2022) solution (computed by directly evaluating (2.41) from
the numerical solution). For a fixed A, the two solutions differ only by a constant term,
which is a function of A, and likely also depends on both k and Re. This is expected, since
expressions for the gap-dependent drag coefficients (CD,G) are unique up to the addition
of a term that does not depend on G/d.

In § 3 of this paper we obtain the gap-independent force and moment coefficients (CD,C ,
CL ,C and CM,C ), which are added to the gap-dependent force and moment coefficients
(CD,G , CL ,G and CM,G) to obtain the total force and moment coefficients. Since Teng
et al.’s (2022) expressions differ from ours by an additive constant, the corresponding
gap-independent force and moment coefficients presented in § 3 need to be adjusted by this
same additive constant if one uses Teng et al.’s (2022) expressions for the gap-dependent
force and moment coefficients, instead of our solution.

2.5. Applicability of the asymptotic matching assumption
We now consider the limitations of the approximations developed in this section, to inform
the parameter space for which the model developed in this paper is applicable. First, the
parabolic approximation (2.2) is valid for x � 1 (or, alternatively, θ � 1 or x̂ � √

G/d).
The outer flow must be independent of G/d, which occurs for x̂ � 1, or equivalently,
θ � √

G/d. The conditions of asymptotic matching require that θ0 lies in a region where
both inner and outer solutions are valid, which therefore requires

√
G/d � θ0 � 1. This

condition is satisfied when
√

G/d � 1.
An additional consideration is that inertial effects are assumed negligible in the inner

region. The film thickness at θ = θ0 is approximately h = 0.5θ2
0 , and the corresponding

Reynolds number based on the film thickness is Reh = 0.5θ2
0 Re. The lubrication

assumption is valid for Reh � 1, giving a further restriction on θ0:
√

G/d � θ0 � 1/
√

Re,
from which we obtain the condition G/d � 1/Re.

For high Re, we expect the gap-independent force and moment coefficients to remain
of the order of O(1), since these are dominated by inertial effects from the outer flow.
Since the gap-independent force and moment coefficients scale as 1/(Re

√
G/d) (2.36),

we obtain the following considerations at high Re: gap-dependent effects dominate
for G/d � 1/Re2, both gap-dependent and gap-independent effects will be significant
for G/d = O(1/Re2), and gap-independent (outer-flow) effects dominate for G/d �
O(1/Re2).

As a final consideration, Teng et al. (2022) showed that, for a finite-gap height, the
pressure does not decrease to zero at z = A, but extends past the ends of the cylinder by
a distance proportional to G/d. As a result, the inner-flow solution is only accurate for
G/d � A. For thin disks (A � 1), the G/d required to satisfy this assumption becomes
very small.

3. Outer flow
In this section the outer flow in the region far from the gap is obtained using numerical
simulations. Then, the gap-independent force and moment coefficients (CD,C , CL ,C and
CM,C ) are computed using the numerically obtained outer-flow solution. The structure of
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(a) (b)
Far field

Cc

Cf

Cb

Ib

Ioθc

If

Ii

Outlet

Wall

Inlet

y
z

x
Wall

u = (1, 0, 0)

u = (1, 0, 0)

Figure 8. Computational domain for outer-flow simulations, showing (a) the outer boundaries and (b) a closeup
of the cylinder, featuring a cutout region to avoid infinite pressures at the contact point. Solid arrows indicate
the velocity boundary conditions at the inlet and on the wall.

this section is as follows. First, in § 3.1 we discuss the numerical methodology used to
obtain outer-flow solutions. Then, in § 3.2 we validate our approach against single-domain
numerical simulations performed with a finite-gap ratio. Next, in § 3.3 we discuss the
computation of the gap-independent contribution to the force and moment coefficients
from the outer flow. Then, in § 3.4, flow visualisations are presented to discuss the effects
of Re, A and k on the wake structures. Next, in § 3.5 we report the variation of gap-
independent force and moment coefficients against Re, A and k. Then, in § 3.6 we
compare the drag coefficient for a cylinder in contact with a wall to that of a cylinder
in a uniform free-stream flow. Next, in § 3.7 we present the variation of total force and
moment coefficients against A, Re, k and G/d. Finally, in § 3.8 we compare the results of
the present study to experimental measurements.

3.1. Numerical set-up
This subsection discusses the numerical methods used to obtain solutions to the outer flow.
The computational domain is as illustrated in figure 8. There are four external boundaries:
the inlet at x = −20, the outlet at x = 50, the wall at z = 0 and the far-field boundaries at
y = ±50 and z = 50, respectively.

Figure 8(b) shows the geometry near the cylinder. The outer-flow solution is independent
of G/d and obtained under the assumption G/d = 0 (Terrington et al. 2023). To avoid the
infinite pressure at the contact point, a small region near the contact point is cut out from
the computational domain. The size of this cutout region is governed by the cutout angle
θc. The cutout introduces four inlet/outlet boundaries, on the front (I f ), back (Ib), inlet (Ii )
and outlet (Io) sides of the cylinder, respectively. Finally, the cylinder has three boundary
surfaces, namely the front (C f ) and back (Cb) faces, and the curved surface Cc.

Numerical simulations are performed in a moving reference frame, in which the
translational velocity of the cylinder is zero. Then, the boundary conditions are as follows.
The inlet is set to a constant velocity (ux , uy, uz) = (1, 0, 0), the outlet is set to a
constant pressure p = 0 and the far-field boundaries are set to shear-free walls. The no-slip
condition (meaning no slip between the fluid and the solid boundary) is applied to both the
plane wall ((ux , uy, uz) = (1, 0, 0)) and the cylinder ((ux , uy, uz) = (k cos θ, k sin θ, 0)

on C f , Cb and Cc). A constant pressure p = 0 is applied to both I f and Ib. Finally, the
pressure at both Ii and Io is given by (2.25), under the assumption that the outer-flow
pressure approaches the outer-flow lubrication solution in the limit θ → 0 (Terrington et al.
2023).
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(a) (b)

�zo,max
�zo,min

Nc,o

�xi,min

Ny

Nc,i
�zi,max

�zi,min

Figure 9. Illustration of the block-mesh scheme used in this study, showing the meshes for both (a) the outer
region and (b) the inner region. Faces are coloured to indicate the plane wall (grey), the cylinder (green) and
the interface between the two meshes (blue). The locations of the representative cell sizes (	xi,min , 	zi,min ,
	zi,max , 	zo,min , 	zo,max ) and the number of cells across various edges (Nc,o, Nc,i , Ny) used in table 2 are
also indicated.

Numerical simulations were performed using the commercial finite-volume solver
ANSYS FLUENT. The momentum and continuity equations were discretised using the
second-order upwind scheme for all spatial derivatives, and the second-order backwards
time scheme was used for transient simulations. The SIMPLEC scheme was used for
pressure–velocity coupling, and the resulting pressure and momentum equations were
solved using the algebraic multigrid method. A time step of 	t = 0.01 was used. While
this resulted in a high Courant number in the inner region (Co > 25), due to the small
cell size there, flow is steady in the inner region, so time accuracy errors due to a high
Courant number are not an issue. The maximum Courant number in the outer region was
Co ≈ 0.63.

The computational domain was meshed with a block-structured approach, using the
commercial software package ANSYS ICEM CFD. It was found that the region near the
contact point required a much finer grid resolution than the rest of the computational
domain, likely due to large pressure gradients near the contact point. Therefore, separate
meshes were generated for the region near the contact point and the outer-flow region, as
illustrated in figure 9. The two meshes were then coupled using a conformal mesh interface
in ANSYS FLUENT.

The present numerical method was validated by performing numerical simulations of
flow past a finite-span rotating cylinder in a uniform free-stream flow. Figure 10 presents a
comparison between the present numerical scheme and the numerical study of Yang et al.
(2023), showing the variation of lift (CL ) and drag coefficients (CD) against rotation rate
k, at Re = 200 and A = 1. Good agreement between the present solver and Yang et al.
(2023) are observed, with differences below 2 %.

A mesh resolution study was performed to ensure the numerical results are sufficiently
accurate. Table 2 lists the different meshes used, along with a range parameters used to
characterise the grid resolution. These are as indicated in figure 9: Ni and No, the total
number of cells used in the inner and outer meshes; θc, the cutout angle; Ny , the total
number of cells across the film thickness in the inner region; Nc,i and Nc,o, the number of
cells along the cylinder circumference, in both the inner and outer regions; and 	xi,min ,
	zi,min , 	zi,max , 	zo,min , 	zo,max , which are various representative cell sizes on the
cylinder surface.

The resolution study is performed for Re = 200, k = 1 and A = 1. For these parameters,
the wake is unsteady and non-periodic (see figure 28d). To obtain unsteady flow statistics,
simulations were run for t = 200 dimensionless time units prior to collecting statistics,
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1.6(a) (b)

1.4

1.2CD CL

1.0

0.8 –1.0
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Yang et al. (2023)

0

0 0.2 0.4 0.6

k k
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Figure 10. Comparison between the present numerical solver and the numerical results of Yang et al. (2023)
for flow over a rotating finite-span circular cylinder in a uniform free-stream flow at Re = 200 and A = 1.

Ni No θc Ny Nc,i Nc,o 	xi,min 	zi,min 	zi,max 	zo,min 	zo,max

Mesh 1 0.17 × 106 0.33 × 106 0.025 20 60 60 0.004 0.002 0.1 0.01 0.1
Mesh 2 0.53 × 106 0.82 × 106 0.025 30 90 90 0.0027 0.0013 0.067 0.0067 0.067
Mesh 3 1.3 × 106 2.0 × 106 0.025 40 120 120 0.002 0.001 0.05 0.005 0.05
Mesh 4 4.2 × 106 5.8 × 106 0.025 60 200 180 0.0013 0.00067 0.033 0.0033 0.033
Mesh 5 2.6 × 106 2.0 × 106 0.025 80 140 120 0.001 0.001 0.05 0.005 0.05
Mesh 6 2.6 × 106 2.0 × 106 0.05 80 140 120 0.001 0.001 0.05 0.005 0.05

Table 2. List of various meshes used in the grid resolution study, along with a variety of parameters used to
characterise the grid resolution.

to allow the flow to reach a statistically steady state. Then, simulations were run for
a further 500 time units to obtain the mean and root-mean-square (r.m.s.) force and
moment coefficients. To estimate the influence of the sampling window size, a single case
(using mesh 5) was run for an additional 500 time units. The changes in the time-mean
gap-independent drag and moment coefficients (CD,C and CM,C ) were approximately
0.1 %, while changes to the time-averaged gap-dependent lift coefficient (CL ,C ) were
approximately 1%. Changes to the r.m.s. force and moment coefficient were more
significant (4% for CD,rms , 3.5% for CM,rms and 8% for CL ,rms). Therefore, while the
time-mean force and moment coefficients are well resolved, the r.m.s. force and moment
coefficients are not. We consider this to be acceptable, as the present study primarily
focuses on the time-mean force and moment coefficients.

Table 3 lists the time-mean (CD,C , CL ,C , CM,C ) and r.m.s. (CD,rms , CL ,rms , CM,rms)
gap-independent force and moment coefficients obtained for each mesh, which are
computed using the methodology outlined in § 3.3. For meshes 1–4, there is an increase in
grid resolution over the entire computational domain, with a relative cell spacing hrel . A
clear trend in convergence of the time-mean force and moment coefficients with increasing
grid resolution is observed, and a Richardson extrapolation was used to estimate the grid-
independent value of these quantities. Mesh 5 features the same outer-flow resolution
as mesh 3, but with greater resolution in the inner region. The computation using this
mesh predicts the time-averaged drag and moment coefficients with an error of below 1%,
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hrel CD,C CL ,C CM,C CD,rms CL ,rms CM,rms

Mesh 1 1 1.247 0.585 −0.384 0.0278 0.0397 0.00360
(1.8%) (11%) (2.7%)

Mesh 2 2/3 1.253 0.619 −0.388 0.0298 0.0447 0.00390
(1.3%) (5.4%) (1.8%)

Mesh 3 1/2 1.256 0.633 −0.390 0.0283 0.0420 0.00380
(1.0%) (3.2%) (1.3%)

Mesh 4 1/3 1.263 0.643 −0.391 0.0284 0.0419 0.00380
(0.51%) (1.7%) (0.92%)

Mesh 5 – 1.258 0.640 −0.391 0.0289 0.0449 0.00393
(0.91%) (2.1%) (0.91%)

Mesh 6 – 1.259 0.621 −0.391 0.0284 0.0432 0.00385
(0.82%) (5.1%) (0.89%)

Richardson – 1.270 0.654 −0.395 – – –

Table 3. Resolution study for unsteady flow at Re = 200, k = 1 and A = 1. A Richardson extrapolation is
performed for the mean force and moment coefficients, using meshes 1 – 4. The relative error compared with
the Richardson extrapolation is given in parentheses.

and predicts the time-mean lift coefficient to approximately a 2% error. Variation in the
r.m.s. force and moment coefficients between meshes 2–5 is approximately 5%, which is
comparable to the error introduced by the sampling window size. Therefore, mesh 5 is
considered sufficient for the remainder of this study.

Mesh 6 has a similar grid resolution to mesh 5, but with a larger cutout angle θc = 0.05.
Variation in the time-averaged drag and moment coefficients between meshes 5 and 6 are
negligible (CD,C and CM,C change by less than 0.1% between meshes 5 and 6). Changes
to the mean lift coefficient (CL ,C ) between meshes 5 and 6 are larger, at 3.1%. Therefore,
θc = 0.025 is sufficiently small to accurately predict the drag and moment coefficients, and
provides reasonable predictions of the lift coefficient.

3.2. Comparison to finite G/d simulations
To validate the asymptotic matching technique presented in this paper, a set of single-
domain numerical simulations were performed for finite-gap–diameter ratios (G/d)
between 10−4 and 10−1, for Re = 200, A = 1 and k = 1. The details of the numerical
scheme are similar to the zero-gap outer-flow simulations discussed in § 3.1. However,
the finite gap between the cylinder and the wall is included in the numerical domain.
Therefore, these simulations consider a single numerical domain that includes both the
inner and outer regions.

A grid resolution study was performed for the finite-gap computations. Three meshes
were used, with statistics given in table 4. Meshes 1–3 here have a similar resolution in the
outer-flow region to meshes 1–3 in table 2. However, these meshes use far more elements
in the inner region, in order to resolve the lubrication flow in the interstice. In particular,
the minimum cell size in the x direction (	xmin) is an order of magnitude smaller for the
finite-gap simulations, compared with the zero-gap outer-flow computations.

Table 5 lists the time-mean force and moment coefficients obtained on each of the three
meshes, for Re = 200, A = 1, k = 1 and G/d = 10−4. A Richardson extrapolation was
performed to estimate the grid-independent value of the force and moment coefficients,
and mesh 3 has errors of below 1% for CD and CM , and 1.5% for CL compared with the
grid-independent solution, and is therefore considered sufficient for this study.
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Ni No Ny Nc,i Nc,o 	xi,min 	zi,min 	zi,max 	zo,min 	zo,max

Mesh 1 0.86 × 106 0.36 × 106 20 100 60 0.0002 0.001 0.05 0.01 0.1
Mesh 2 3.1 × 106 1.1 × 106 30 150 90 0.00013 0.000667 0.033 0.0067 0.067
Mesh 3 7.3 × 106 2.3 × 106 40 200 120 0.0001 0.0005 0.025 0.005 0.05

Table 4. List of meshes used in the grid resolution study for the finite-gap simulations, along with a variety of
parameters used to characterise the grid resolution. Here, Ny is the number of cells across the film thickness in
the gap-region.

hrel CD CM CL CD,C CM,C

Mesh 1 1 7.183 −6.265 0.572 1.259 −0.341
(0.19%) (0.94%) (7.9%) (1.1%) (15%)

Mesh 2 2/3 7.186 −6.293 0.602 1.262 −0.369
(0.15%) (0.49%) (3.0%) (0.86%) (7.8%)

Mesh 3 1/2 7.190 −6.304 0.612 1.267 −0.380
(0.087%) (0.31%) (1.5%) (0.49%) (5.0%)

Richardson – 7.197 −6.324 0.621 1.273 −0.400

Table 5. Resolution study for finite-gap simulations at Re = 200, A = 1, k = 1 and G/d = 10−4.

An estimate of the gap-independent drag and moment coefficients, CD,C and CM,C ,
is also provided in table 5. These are obtained by subtracting the gap-dependent
force/moment coefficient (2.36) from the total force/moment coefficient. The gap-
independent drag coefficient obtained using mesh 3 is accurate to within 1%, however,
the error in the gap-independent moment coefficient has an error of approximately 5%.
The finite-gap simulations produce relatively large errors in the gap-independent moment
coefficient, since this term comprises only 6% of the total moment coefficient at Re = 200
and G/d = 10−4.

Comparing the estimated grid-independent values of the gap-independent drag and
moment coefficients (tables 3 and 5), there is good agreement between the results of
the finite-gap and zero-gap simulations. The zero-gap outer-flow simulation using mesh 5
required 69.1 hours (approximately 3 days) of wall-clock time using 64 CPU processors on
a single node of the Setonix HPE located at the Pawsey Supercomputing Research Centre
in Western Australia, while the finite-gap simulation using Mesh 3 required 139.8 hours
(approximately 6 days). Therefore, the combined analytical–numerical approach is twice
as fast as directly simulating the finite-gap case, in addition to more accurately predicting
the moment coefficient.

Figure 11 compares the wake behind the cylinder at Re = 200, A = 1 and k = 1,
for (a,b) the zero-gap outer-flow computation, (c,d) G/d = 10−4 and (e,f ) G/d = 10−2

single-domain finite-gap computations. Subfigures (a,c,e) show isosurfaces of time-mean
streamwise vorticity ω̄x = ±0.5, while subfigures (b,d,f ) show isosurfaces of time-mean
spanwise vorticity ω̄z = ±0.5. The time-averaged flow structures are practically identical
between the different values of G/d, confirming that the outer flow is approximately
independent of G/d, when G/d is sufficiently small. Moreover, this figure confirms that
the zero-gap outer-flow simulation is able to correctly predict the outer flow for finite G/d.

Figure 12 presents profiles of the time-mean span-averaged pressure ( p̄) on the
cylinder’s curved surface for a range of G/d, at Re = 200, A = 1 and k = 1. Subfigure (a)
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Figure 11. Isosurfaces of time-mean (a, c, e) streamwise-oriented vorticity ω̄x = ±0.5 and (b, d, f )
spanwise-oriented vorticity ω̄z = ±0.5, at Re = 200, k = 1 and A = 1, and gap-diameter ratios (a,b) G/d = 0,
(c,d) G/d = 10−4 and (e,f ) G/d = 10−2. Red and blue isosurfaces indicate positive and negative vorticity,
respectively.

1.5
(a) (b)

–100

–102

–104

–106

1.0

0.5

G/d = 10–1

G/d = 10–2

G/d = 10–3

G/d = 10–4

G/d = 0

G/d = 10–1

G/d = 10–2

G/d = 10–3

G/d = 10–4

G/d = 0

–0.5

–1.0

–1.5
0 0 0.2 0.4 0.6 0.8 1.0π/2 3π/2 2ππ

θ θ

0p− p− p−0

Figure 12. Profiles of the time-mean span-averaged pressure (p) against angular position θ on the cylinder
circumferential face (Cc) for a range of gap-diameter ratios (G/d), at Re = 200, k = 1 and A = 1. Subfigure
(a) shows the pressure profiles in the outer region, while subfigure (b) shows the pressure profiles near the
contact point. The asymptotic outer-flow pressure profile ( p̄o) given by (2.24) is also included in (b). The gap
region/contact point is located at θ = 0, 2π .
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Figure 13. Profiles of (a) the force and moment contributions from the outer region (C[D/M/L],O ), as well as
the asymptotic profiles (C[D/M/O],θ0 ), and (b) the difference between the outer flow and asymptotic force and
moment coefficients (	C[D/M/L]) against θ0, for Re = 200, k = 1 and A = 1.

is scaled to show the pressure in the outer flow, away from the contact point (located at θ =
0, 2π ). Subfigure (b) presents the same curve on a logarithmic axis to show the asymptotic
behaviour of the span-averaged pressure near the contact point. For G/d � 10−2, the
pressure profiles for different G/d collapse to a single curve, confirming that the outer flow
is independent of G/d, when G/d is small. The solid black line in subfigure (b) indicates
the asymptotic profile for the outer flow obtained from lubrication theory (2.24). As θ

approaches zero, the outer-flow solutions approach this asymptotic limit. For a finite G/d,
however, the pressure profiles deviate from the asymptotic limit when θ �

√
G/d, instead

following the lubrication solution to the inner flow. This was confirmed by figure 3,
which showed good agreement between the pressure profiles predicted from lubrication
theory and those obtained using single-domain finite-gap numerical simulations. Finally,
the outer-flow solution obtained for G/d = 0 overlaps with the asymptotic solution for
small θ .

3.3. Gap-independent force and moment coefficients
We now discuss the computation of the gap-independent force and moment coefficients
using the numerical solution to the outer flow. Figure 13(a) presents profiles of CD,O ,
CL ,O and CM,O obtained for Re = 50, A = 1 and k = 1. These profiles are obtained by
numerically integrating (2.15) using the trapezoid rule for various values of θ0. As θ0
approaches zero, both CD,O and CM,O approach infinity, while CL ,O approaches a finite
value. The dashed lines in figure 13(a) indicate the θ0-dependent part of the outer-flow
profiles (CD,θ0 , CL ,θ0 and CM,θ0) given by (2.30). The divergence of CD,O and CM,O
towards infinity appears to be captured by the terms CD,θ0 and CM,θ0 . To confirm this, we
compute the differences between these two terms,

	C[i] = C[i],O − C[i],θ0, (3.1)

which are plotted in figure 13(b). Each of these terms approaches a finite value as θ0 → 0.
When θ0 is small, computing the terms 	C[i] involves taking the difference of two large

numbers, since the pressure approaches infinity near the contact point. This leads to some
inaccuracies when calculating 	C[i] for small θ0 (Terrington et al. 2023). To estimate
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the behaviour of these functions for small θ0, a polynomial fit is performed over the range
0.2 � θ � 1. These polynomial fits are indicated by the black dashed curves in figure 13(b).

Using (2.27) and (2.32), the gap-independent force and moment coefficients are given
by

C[i],C = 	C[i], (3.2)

which should be independent of θ0, at least when θ0 is small. However, the profiles of
	C[i] plotted in figure 13(b) are not constant with respect to θ0. This indicates that the
assumptions used to derive (2.27) and (2.32), such as the assumption that inertial effects
are negligible for small θ , are not strictly satisfied. This leads to some additional errors in
our estimate of the force and moment coefficients.

To estimate these errors, we assume that both 	CD and 	CM are approximately
quadratic against θ0, while 	CL is approximately linear in θ0, when θ0 is small (Terrington
et al. 2023). Then, using θ0 ∝ √

G/d, we obtain the following expressions for the
gap-independent force and moment coefficients (Terrington et al. 2023):

CD,C ≈ 	CD(θ0 = 0) +O(G/d), (3.3a)

CL ,C ≈ 	CL(θ0 = 0) +O(
√

G/d), (3.3b)
CM,C ≈ 	CM(θ0 = 0) +O(G/d). (3.3c)

Here the terms 	C[i](θ0 = 0) are evaluated using the polynomial fit to 	C[i]. Finally, the
total force and moment coefficients are approximated as the sum of a gap-dependent and
a gap-independent contribution:

CD = CD,G + CD,C +O(G/d), (3.4a)

CL = CL ,C +O(
√

G/d), (3.4b)
CM = CM,G + CM,C +O(G/d). (3.4c)

The gap-dependent part of the force and moment coefficient is obtained using the 2-D
lubrication solution (2.36a–d), while the gap-independent part is obtained using the zero-
gap outer-flow numerical simulation, using (3.3).

To validate the proposed decomposition of the force and moment coefficients, figure 14
presents the variation of (a) CD , (b) CM and (c) CL against G/d for Re = 200, A = 1
and k = 1. This figure presents a comparison between the force and moment coefficients
obtained directly from finite-gap numerical simulations, and the predictions of (3.4a–c).

Figures 14(a) and 14(b) show that (3.4a) and (3.4c) provide an excellent estimate of
the drag and moment coefficients, CD and CM , for gap-diameter ratios less than 10−1.
The gap-dependent drag and moment coefficients (CD,G and CM,G) differ from the
numerically obtained CD and CM by a constant factor (CD,C and CM,C ), which can be
computed using (3.3) using the numerically obtained outer-flow solution.

Figure 14(c) demonstrates that the lift coefficient predicted using (3.3) and (3.4) is
less accurate than the predicted drag and moment coefficients, consistent with the error
estimate in (3.3). Specifically, (3.4) predicts a constant lift coefficient, however, the finite-
gap simulations display a significant variation against G/d. The variation of CL against√

G/d in figure 14(c) appears to be approximately linear for small
√

G/d, and the
numerical data appears to approach the predicted CL ,C as

√
G/d approaches 0, consistent

with the error estimate in (3.4b).
Therefore, the decomposition of the force and moment coefficients presented in this

work can accurately predict the drag and moment coefficients for a wide range of gap
ratios. The lift coefficient estimated by our method instead represents an upper bound on
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Figure 14. Variation of the time-mean predicted (a) drag, (b) moment and (c) lift coefficients against G/d,
for Re = 200, A = 1 and k = 1. Markers indicate numerical data obtained using finite-gap simulations. Dotted
lines indicate the gap-dependent force and moment predictions obtained from lubrication theory (2.33), and
dashed lines indicate the force and moment coefficients predicted using (3.4).

the CL that occurs in the limit G/d → 0. Similar behaviour was observed in our previous
study of the 2-D flow over an infinite circular cylinder (Terrington et al. 2023).

3.4. Flow visualisations
We now present the results of the numerical computations performed over a range of A,
Re and k. The aspect ratio is varied between A = 0.1 and A = 10, the slip coefficient is
varied between k = 0 (no rotation) and k = 1 (no slip) and the Reynolds number is varied
between Re = 10 and Re = 200. This subsection presents flow visualisations to discuss
the effects of A, k and Re on the flow structures and wake shedding. Then, the force and
moment coefficients are presented in § 3.5.

Particle tracking is used for flow visualisations, as it provides clear images of the
wake structures, particle paths and comparison with dye visualisations from experiments.
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Figure 15. Particle visualisations for steady flow past a cylinder with aspect ratio A = 1, and (a) Re = 100,
k = 1; (b) Re = 100, k = 0; (c) Re = 50, k = 1 and (d) Re = 200, k = 0. Three-dimensional particle trajectories
are projected onto the x−z (left) and x−y (right) planes, respectively, and selected particle tracks are shown in
colour for emphasis.

The discrete particle method from ANSYS Fluent was used, with massless particles. For
cases where the flow is steady, particles are injected along two lines: one upstream of the
cylinder, at (x = −1, y = 0.5), and one inside the recirculation region, at (x = 1, y = 1).
For unsteady cases, particles are injected above the centre of the cylinder, along the lines
(x = 0, y = 1.1), (x = 0, y = 1.2) and (x = 0, y = 1.3). Along each of these lines, particle
injection points are spaced a distance of 0.05 apart in the z direction.

We first consider cases where flow is steady. Figure 15 presents particle visualisations
for steady flow past a cylinder with aspect ratio A = 1, and for four combinations of Re
and k. The majority of particle streams are plotted in a semi-transparent green, however,
four selected particle streams are plotted in different colours (blue, red, purple and yellow,
respectively) for clarity. The same general flow structure is observed for all cases, namely,
a semi-circular recirculation region located behind the cylinder. The head of this structure
is visible as a single recirculation zone from the side views (right), while the legs of this
structure are visible as a pair of symmetric recirculation bubbles from the top views (left).
For example, the red particle trace in subfigure (a) is entrained into the recirculation region
at the head of this structure, and exits via one of the legs, while the purple particle trace
in subfigure (d) is entrained into the recirculation region at one of the legs, and exits at the
head.
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Figure 16. Particle visualisations for steady flow past cylinders with aspect ratio (a,c) A = 10 and (b,d)
A = 2, at Re = 10 and k = 1. Three-dimensional particle trajectories are projected onto the x−z (left) and
x−y (right) planes, respectively, and selected particle tracks are shown in colour for emphasis.

Figure 15 demonstrates that increasing Re for a fixed k results in an increase in the
size of the recirculation region. There also appears to be more fluid entrained into the
recirculation region (e.g. the red particle trace in subfigure a and more fluid ejected from
the recirculation region (the blue particle trace exits the recirculation bubble after fewer
loops in subfigure a than in subfigure c). Similarly, increasing k for a fixed Re corresponds
to an increase in the size of the recirculation region, and greater entrainment of fluid into
the recirculation bubble. Finally, we note that, for k = 1, fluid exiting the recirculation
region remains at approximately y = 1, while for k = 0, fluid exiting the recirculation
region approaches the wall.

Figure 16 presents particle visualisations for steady flow at aspect ratios A = 10 (figures
16a and 16c) and A = 2 (figures 16b and 16d), for Re = 10 and k = 1. The structure of the
recirculation region is similar between the two cases, however, the recirculation bubble
is much larger for A = 10 than for A = 2. Therefore, the size of the recirculation bubble
increases as A is increased.

We now consider unsteady cases. Figure 17 presents particle visualisations for unsteady
flow at A = 1, k = 1 and for four different Reynolds numbers. A transient animation is
also provided in supplementary movie 1 available at https://doi.org/10.1017/jfm.2025.329.
At A = 1 and k = 1, transition to unsteady flow was found to occur between Re = 110 and
Re = 120. At Re = 120, there is an unsteady oscillation in the recirculation bubble, but no
clear vortex shedding (figure 17a). Shedding of hairpin vortices is observed at Re = 130
(figure 17b), and the strength and intensity of vortex shedding increases as Re is increased
to Re = 160 (figure 17c) and Re = 200 (figure 17d). In all cases, the oscillations are not
symmetric about z = 0, which we refer to as the asymmetric mode.

At A = 1 and k = 1, Nanayakkara et al. (2024a) observe asymmetric oscillations in the
recirculation region as low at Re = 79, and first observe asymmetric vortex shedding at
Re = 116. Their experiments are performed with freely rolling cylinders, which potentially
experience flow-induced vibrations, which might explain the earlier transition to unsteady
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Figure 17. Particle visualisations for unsteady flow past cylinders with aspect ratio A = 1, slip coefficient k = 1
and Reynolds number (a) Re = 120, (b) Re = 130, (c) Re = 160 and (d) Re = 200. Left and right columns show
top and side views, respectively.

flow. Additionally, environmental disturbances may be present in the experiments, leading
to an earlier flow transition.

We now consider a reduced rotation rate of k = 0.5. Figure 18 presents particle
visualisations for unsteady flow at A = 1 and k = 0.5, for a range of Re. A transient
animation is also provided in supplementary movie 2. For these parameters, transition
to unsteady flow was found to occur between Re = 140 and Re = 150. At Re = 150
(figure 18a), there is an unsteady oscillation in the recirculation region, but no vortex
shedding. At Re = 170 (figure 18b), hairpin vortices are shed from the cylinder. For these
cases, the flow is symmetric about z = 0, which we refer to as the symmetric mode.
Between Re = 170 and Re = 180, flow transitions to the asymmetric shedding mode. This
transition corresponds to a reduction in the flow unsteadiness (as indicated by the r.m.s.
force and moment coefficients; see § 3.5), and no hairpin vortices are observed at Re = 180
(figure 18c). As the Reynolds number is increased to Re = 200 (figure 18d), asymmetric
hairpin vortices are shed from the cylinder.

The critical Reynolds number for transition to unsteady flow increases as k is decreased.
This behaviour has also been observed for the flow over infinite-span cylinders (Rao et al.
2011; Stewart et al. 2010b). For A = 1, the critical Re is between 110 and 120 at k = 1 and
between 140 and 150 for k = 0.5. For k = 0, the critical Re is above 200, and flow remains
steady over the entire range of Re considered in this study.

Figure 19 presents particle visualisations for both (a,c,e) A = 10 and (b,d,f ) A = 3, for
three combinations of Re and k. Transient animations for several different A at these same
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Figure 18. Particle visualisations for unsteady flow past cylinders with aspect ratio A = 1, slip coefficient
k = 0.5 and Reynolds number (a) Re = 150, (b) Re = 170, (c) Re = 180 and (d) Re = 200. Left and right
columns show top and side views, respectively.

combinations of Re and k are also provided in supplementary movies 3, 4 and 5. For
Re = 100 and k = 1 (figures 19a and 19b; movie 3), flow is steady for aspect ratios up
to A = 1, but becomes unsteady between A = 1 and A = 1.5. For aspect ratios between
A = 1.5 and A = 7.5, symmetric hairpin vortices are shed from the cylinder (figure 19b).
However, between A = 7.5 and A = 10 flow transitions to the asymmetric vortex shedding
mode (figure 19a). For Re = 200 and k = 1 (figures 19c and 19d; movie 5), transition
to unsteady flow occurs between A = 0.5 and A = 0.75. At this combination of Re and k,
asymmetric vortex shedding is observed for all aspect ratios above this critical aspect ratio.
Finally, for Re = 100 and k = 0 (figures 19e and 19f ; movie 4), the transition to unsteady
flow occurs between A = 2 and A = 3. Symmetric vortex shedding is then observed for all
aspect ratios above the critical aspect ratio, at least up to A = 10.

Figure 20 presents a comparison between our numerical results and dye visualisations
presented in Nanayakkara et al. (2024a). Subfigure (a) presents a comparison at
approximately Re = 160, A = 1 and k = 1, while subfigure (b) presents a comparison at
approximately A = 10, Re = 100 and k = 1. In both cases, asymmetric shedding of hairpin
vortices is observed. A fair qualitative agreement is observed between the numerical
particle visualisations and the experimental dye visualisations.

Summarising the results of this section, the size of the recirculation bubble behind the
cylinder increases as any of Re, k and A are increased. This also corresponds to a reduction
in the stability of the flow, so that the critical Reynolds number for the transition from
steady to unsteady flow decreases as both A and k are increased. This is consistent with
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Figure 19. Particle visualisations for unsteady flow past cylinders with aspect ratio (a,c,e) A = 10 and (b,d, f )
A = 3, at (a,b) Re = 100, k = 1; (c,d) Re = 200, k = 1 and (e, f ) Re = 100, k = 0.

the experimental study of Nanayakkara et al. (2024a), who found that the critical Reynolds
number for unsteady flow decreases as A is increased, and with previous numerical studies
of the flow over an infinite cylinder (Stewart et al. 2010b; Rao et al. 2011), where the
critical Reynolds number for transition to unsteady flow decreases as k is increased.

Three distinct flow regimes were identified: steady flow, symmetric wake shedding and
asymmetric wake shedding. For some combination of physical parameters, flow transitions
directly from steady flow to the asymmetric regime, while for other parameters, flow first
transitions to the symmetric mode, then a second transition to the asymmetric mode is
observed. This is consistent with previous studies. For A = 0.4 and k = 1, Pirozzoli et al.
(2012) observed steady flow at Re = 300, symmetric hairpin vortices at Re = 400 and
asymmetric hairpins at Re = 500. Nanayakkara et al. (2024a), however, were unable to
observe the symmetric mode for A = 1 and k = 1, in agreement with the present study for
these same parameters.

3.5. Force and moment coefficients
This subsection presents the variation of the gap-independent force and moment
coefficients against the parameters Re, A and k. The predictions obtained in this section
can be combined with the gap-dependent force and moment predictions obtained using
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Figure 20. Comparison between particle visualisations obtained in the present work (top), to experimental
dye visualisations presented in Nanayakkara et al. (2024a) (bottom) (reproduced with permission). Physical
parameters are (a) Re = 160, k = 1 and A = 1 for the numerical simulation, and Re = 157, k = 1 and A = 1
for the experiment, and (b) Re = 100, k = 1 and A = 10 for the numerical simulation, and Re = 104, k = 1 and
A = 10.66 for the experiment.

lubrication theory (2.36), to obtain the total force and moment coefficients, as functions
of G/d, Re, A and k.

3.5.1. Effect of Reynolds number
Figure 21 presents the variation of the time-mean (CD,C , CM,C , CL ,C ) and r.m.s. (CD,rms ,
CM,rms and CL ,rms) gap-independent force and moment coefficients against Reynolds
number, for A = 1 and for three slip coefficients, k = 0, 0.5 and 1. Error bars in this figure
represent the uncertainty due to the duration of sampling interval for unsteady statistics.
To estimate the uncertainties, reduced samples of 250 time units were taken from the full
sampling window of 500 time units. The estimated uncertainty was then obtained as the
difference between the minimum and maximum of various statistics obtained using the
reduced samples.

Figures 21(d), 21(e) and 21( f ) present the r.m.s. drag, moment and lift coefficients,
respectively. The r.m.s. force and moment coefficients reflect the different flow regimes
discussed in § 3.4. For k = 0, flow is steady for all Re considered in this study, and
therefore, the r.m.s. force and moment coefficients are zero. For k = 0.5, flow is steady
for Reynolds numbers up to Re = 140. The symmetrical regime is observed between
Re = 150 and Re = 170, and within this regime the r.m.s. force and moment coefficients
increase approximately linearly with Re. Transition to the asymmetric regime occurs
between Re = 170 and Re = 180, and this is accompanied by a decrease in the r.m.s.
force and moment coefficient to nearly zero. The r.m.s. force and moment coefficients
then increase approximately linearly with Re within the asymmetric vortex shedding
flow regime. Finally, for k = 1, there is a transition from the steady flow regime to the
asymmetric vortex shedding regime between Re = 110 and Re = 120. Above this critical
Reynolds number, the r.m.s. force and moment coefficients increase monotonically with
increasing Re.

Figures 21(a) and 21(b) present the variation of the mean gap-dependent drag and
moment coefficients (CD,C and CM,C ), respectively, against Reynolds number. The drag
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Figure 21. Variation of the time-mean and r.m.s. gap-independent force and moment coefficients (a) CD,C , (b)
CM,C , (c) CL ,C , (d) CD,rms , (e) CM,rms and (f ) CL ,rms , against Re, for A = 1 and for various slip coefficients.
Markers indicate the numerical data, with error bars indicating the uncertainty due to the duration of time
sampling. Solid lines indicate the best fit regressions listed in table 6.
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equation k a1 a2 a3 a4 a5

CD,C (a1 + a2(Re)a3 )/Re 0 28.4 1.23 0.898
0.5 38.0 0.836 1.01
1 42.5 1.06 0.999

CM,C (a1 + a2(Re)a3 )/Re 0 −12.6 −1.41 0.530
0.5 −25.7 −0.745 0.713
1 −36.3 −0.835 0.741

CL ,C a1 exp(−a2 Re) + a3 + [a4 + a5 Re] 0 0.546 0.0203 1.12
0.5 0.702 0.0124 0.4750 −0.276 1.87 × 10−3

1 0.662 0.0173 0.487 −0.147 1.41 × 10−3

Table 6. Empirical fits for the dependence of the mean gap-independent force and moment coefficients
against Reynolds number for various k and for A = 1.

coefficient is positive and decreases monotonically as Re is increased. The moment
coefficient is negative and the magnitude of the moment coefficient also decreases
monotonically as Re is increased. There is no obvious effect of the different wake shedding
regimes (steady, symmetric and asymmetric) on the trends of both CD,C and CM,C against
Re. Empirical fits were obtained for CD,C and CM,C of the form

C[D,M],C = (a1 + a2(Re)a3)/Re, (3.5)

and the coefficients are reported in table 6. Equation (3.5) scales as a1/Re in the limit
Re → 0, which was chosen so that the gap-independent drag and moment are finite,
but non-zero, in the Stokes-flow limit. Specifically, forces and moments for Stokes flow
are typically non-dimensionalised as F = F∗/(µUd) ∝ CD Re, where F∗ is the force
in dimensional units, and therefore, force and moment coefficients for Stokes flow are
proportional to 1/Re.

Figure 21(c) presents the variation of the time-mean lift coefficient, CL ,C , against Re.
Within the steady flow regime, the lift coefficients decrease monotonically with increasing
Re. Empirical fits are obtained of the form

CL ,C st. = a1 exp(−a2 Re) + a3, Re < Rec, (3.6)

with the coefficients reported in table 6. Unlike the drag and moment coefficients, CL ,C
approaches a finite value as Re → 0. This implies that the lift force for Stokes flow will be
zero, when normalised by Stokes-flow variables, as is expected.

Above the critical Reynolds number, the lift coefficient begins to increase. Empirical
fits for the lift coefficient in this regime are given as

CL ,C = CL ,C st. + a4 + a5 Re, Re > Rec, (3.7)

with coefficients reported in table 6.
To understand the physical mechanisms and flow structures leading to the variation of

gap-independent drag and moment coefficients with respect to Re, we decompose the gap-
independent force and moment coefficients into three components: pressure forces on the
curved surface (CD,p), viscous stresses on the curved surface (CD,τ , CM,τ ) and viscous
stresses on the cylinder end faces (CD,F ,CT,F ). The terms CD,F and CM,F are computed
according to (2.11). The remaining terms are evaluated as in § 3.3, but considering only
pressure or viscous terms, respectively.

Figure 22 presents the variation of each of these contributions to the gap-independent
drag and moment coefficients against Re, for A = 1 and k = 1. The viscous terms
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Figure 22. Contributions to the gap-dependent (a) drag and (b) moment coefficients (CD,C and CM,C ) from
pressure forces on the cylinder’s curved surface (CD,p), viscous forces on the cylinder’s curved surface
(CD,τ and CM,τ ) and viscous stresses on the cylinder end faces (CD,F and CM,F ), for different Re, at A = 1
and k = 1.

(CD,τ , CM,τ , CD,F and CM,F ), including contributions from the cylinder end faces,
decrease monotonically with increasing Re, due to the reduced viscosity with increasing
Re. The pressure term, however, increases monotonically with increasing Re, and becomes
the dominant source of gap-independent drag at higher Re.

To further explain these trends, we compute the contributions to the gap-independent
drag and moment coefficient from different angular positions on the cylinder’s curved
surface. These are evaluated as

f p,o = p̄ sin θ − 4(1 + k)

Re

ḡo

x2 , (3.8)

fτ,o = τ̄x − 1
Re

[−3(1 + k)

x2 ḡo + (1 + k)

x

dḡo

dx
+ (1 − k)

x2

]
, (3.9)

mτ,o = τ̄y sin θ + τ̄x cos θ − 1
Re

[−3(1 + k)

x2 ḡo + (1 + k)

x

dḡo

dx
+ (1 − k)

x2

]
, (3.10)

where f p,o is the local contribution to CD,p, fτ,o is the contribution to CD,τ and mτ,o is
the contribution to CM,τ . These expressions were obtained by subtracting the integrands
of (2.30) from the integrands of (2.15), treating the viscous and pressure terms separately.

Figure 23 plots the distributions of f p,o, fτ,o and mτ,o against θ for various values of
Re, for k = 1 and A = 1. Subfigure (b) plots the contribution of viscous forces to the
gap-independent drag coefficient ( fτ,o), while subfigure (c) plots the contributions of
viscous forces to the moment coefficient (mτ,o). In both cases, the general features are
approximately independent of Re: fτ,o is positive for all angles, with a large peak just
upstream of the top of the cylinder, while mτ,o is negative, but otherwise exhibits the same
trends. The peak shear stress corresponds to the boundary layer on the upper surface of the
cylinder, before it separates to form a shear layer above the recirculation region. Increasing
Re decreases the magnitude of the viscous stresses, due to reduced viscosity, but does not
significantly alter the pattern of shear stresses on the cylinder surface. Hence, the viscous
drag and moment coefficients (CD,C and Cτ,C ) decrease monotonically with increasing
Re, as shown in figure 22.
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Figure 23. Contributions to the gap-independent (a,d) pressure drag, (b) viscous drag and (c) viscous torque
from different angular positions on the cylinder’s curved surface for different Re, at (a,b,c) A = 1 and k = 1,
(d) A = 1 and k = 0.5.

Figure 23(a) plots the sectional contribution from pressure forces to the gap-independent
drag coefficient. The pressure forces are largely dominated by three distinct regions. A
positive pressure upstream of the cylinder, negative pressure on the upstream surface of
the cylinder and a negative pressure downstream of the cylinder. These three contributions
also occur for a rotating A = 1 cylinder in a uniform free-stream flow (Yang et al. 2023).
Increasing Re increases the magnitude of positive pressure upstream of the cylinder,
due to increased inertia of the fluid. The area of the negative pressure region behind
the cylinder also increases, due to the increased size of the recirculation region. The
negative contribution from negative pressure on the cylinder’s front face also decreases
as Re increases. All of these effects produce the increasing pressure drag (CD,p) as Re is
increased.

There are only small changes to f p,o between Re = 100 and Re = 200, despite
substantial changes in Re, and a change from steady to unsteady flow. Figure 23(d)
plots f p,o against θ for A = 1 and k = 0.5, for Re = 140 (steady flow), Re = 150 and
Re = 170 (symmetric shedding) and Re = 180 and Re = 200 (asymmetric shedding). The
change from steady flow to symmetric vortex shedding produces no substantial change to
the pressure distribution behind the cylinder. The change from symmetric to asymmetric
shedding produces a small increase in the negative pressure behind the cylinder between
θ = π/2 and θ = π , which produces a small increase in the pressure drag.

3.5.2. Effect of slip coefficient
Figure 24 presents the variation of the time-mean (CD,C , CM,C , CL ,C ) and r.m.s. (CD,rms ,
CM,rms CL ,rms) gap-independent force and moment coefficients against slip coefficient,
for A = 1 and three different Reynolds numbers, Re = 10, Re = 100 and Re = 200.

1010 A15-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.329


Journal of Fluid Mechanics
C

D
,C

C
M

,C

C
L,

C

C
D

,rm
s

C
M

,rm
s

C
L,

rm
s

Re = 10

Re = 100

Re = 200

×10–3

5

4

3

2

1

0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

5

4

3

2

1

0.2 0.4 0.6 0.8 1.0 0
–5

–4

–3

–2

–1

0

0.2 0.4 0.6 0.8 1.0

0.20 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0.20 0.4 0.6

k k
0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06

0.01

0.02

0.03

0.04

0.05

0 0.2 0.4 0.6 0.8 1.0

(a) (b)

(e) ( f )

(c) (d )

Figure 24. Variation of the time-mean and r.m.s. gap-independent force and moment coefficients (a) CD,C ,
(b) CM,C , (c) CL ,C , (d) CD,rms , (e) CM,rms and (f ) CL ,rms , against k, for A = 1 and three different Reynolds
numbers, Re = 10, Re = 100 and Re = 200. Markers indicate the numerical data, with error bars indicating
the uncertainty due to the duration of time sampling. Solid lines indicate the empirical fits to the data listed in
table 7.
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equation Re b1 b2 b3

CD,C b1 + b2k 10 3.71 1.58
100 1.04 0.436
200 0.858 0.413

CM,C b1 + b2k 10 −1.74 −2.37
100 −0.287 −0.332
200 −0.180 −0.214

CL ,C b1 + b2k + b3k2 10 1.65 −1.57 0.978
100 1.20 −1.47 0.861
200 1.15 −1.53 1.02

Table 7. Empirical fits for the dependence of the mean gap-independent force and moment coefficients against
slip coefficient, for various Re and for A = 1.

Error bars indicate the estimated uncertainty due to the duration of sampling for unsteady
statistics.

Figures 24 (d), 24(e) and 24( f ) present the r.m.s. force and moment coefficients. For
Re = 10 and Re = 100, flow is steady for all values of k considered, and the r.m.s. drag,
lift and moment are all zero. For Re = 200, flow is unsteady for k � 0.3, and asymmetric
vortex shedding occurs for all k above this value. The r.m.s. force and moment coefficients
increase approximately linearly with k within this flow regime.

Figures 24(a) and 24(b) present the variation of the time-averaged gap-independent drag
and moment coefficients, respectively, against slip coefficient. Both CD,C and CM,C vary
linearly with k, and empirical fits of the form

C[D,M],C = b1 + b2 k (3.11)

were obtained, with coefficients provided in table 7. The drag coefficient is positive, while
the moment coefficient is negative, and the magnitudes of both CD,C and CM,C increase
as k is increased.

The linear variation of both CD,C and CM,C against k suggests that the drag and moment
coefficients for any combination of k and Re can be obtained by linearly interpolating
between the predictions of (3.5) for k = 0 and k = 1, at least for A = 1,

C[D,M],C = (1 − k)C[D,M],C k=0 + kC[D,M],C k=1. (3.12)

In the above expression, C[D,M],C k=0 and C[D,M],C k=1 are the empirical fits for the force
and moment coefficients against Re (3.5) obtained for k = 0 and k = 1, respectively.

Figure 24(c) presents the variation of CL ,C against k. The lift coefficient depends
approximately quadratically against k, albeit with some scatter in the data. Empirical fits
of the form

CL ,C = b1 + b2 k + b3 k2 (3.13)

were obtained, with coefficients provided in table 7. The minimum lift coefficient occurs
at approximately k = 0.8 for all Re considered, although there are not enough data points
to determine precisely the location of minimum CL ,C .

Figure 25 plots the contributions to the gap-independent drag and moment coefficients
(CD,C and CM,C ) from pressure forces on the cylinder’s curved surface (CD,p), viscous
forces on the cylinder’s curved surface (CD,τ and CM,τ ) and viscous stresses on the
cylinder end faces (CD,F and CM,F ) against k, for Re = 200 and A = 1. At this Re, the
drag coefficient is dominated by pressure forces, and the contributions from the cylinder
end faces to the drag and moment are negligible. Both the viscous and pressure forces
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Figure 25. Contributions to the gap-dependent (a) drag and (b) moment coefficients (CD,C and CM,C ) from
pressure forces on the cylinder’s curved surface (CD,p), viscous forces on the cylinder’s curved surface (CD,τ

and CM,τ ) and viscous stresses on the cylinder end faces (CD,F and CM,F ) against k, at A = 1 and Re = 200.
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Figure 26. Contributions to the gap-independent (a) pressure and (b) viscous drag from different angular
positions on the cylinder’s curved surface for different k, at A = 1 and Re = 200.

increase as k is increased. The increase is approximately linear, except between k = 0.2
and k = 0.4, where there is a transition from steady flow to asymmetric vortex shedding,
associated with an increase in the pressure drag.

Figure 26(a) plots the contributions to pressure drag ( f p,o) against θ for A = 1,
Re = 200 and for various values of k. Increasing rotation rate produces a decrease in
both positive and negative pressures from the front of the cylinder, and an increase
in the contribution from negative pressure on the cylinder’s downstream face, due to
an increasing size of the recirculation region. These general trends are in agreement
with the rotating A = 1 cylinder in a uniform free-stream flow (Yang et al. 2023). The
transition from steady flow to asymmetric shedding between k = 0.2 and k = 0.4 results in
a substantial increase in the negative pressure behind the cylinder, resulting in a jump in
the pressure drag observed in figure 25.

Figure 26(b) plots the viscous contribution to the drag coefficient for various values
of k. The magnitude of the large peak (corresponding to the attached boundary
layer on the cylinder’s front surface) is not significantly affected by the rotation rate.
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However, an increased rotation rate increases the viscous stresses on the remaining regions
of the cylinder, resulting in an increased viscous drag coefficient. Similar trends occur for
the moment coefficient (not shown for brevity).

3.5.3. Effect of aspect ratio
Figure 27 presents the variation in time-averaged and r.m.s. gap-independent force and
moment coefficients against aspect ratio for four different combinations of Re and k.
The first three cases, k = 1 and Re = 10, k = 1 and Re = 100 and k = 1 and Re = 200,
were selected to demonstrate the effect of Reynolds number for different aspect ratios,
while the fourth case, k = 0 and Re = 100, was chosen to demonstrate the influence of slip
coefficient for various aspect ratios. Finally, error bars indicate the estimated uncertainty
due to the duration of sampling for unsteady statistics.

Figures 27(d), (e) and ( f ) present the r.m.s. drag, moment and lift coefficients,
respectively. For Re = 10 and k = 1, the flow is steady for all aspect ratios, and the r.m.s.
force and moment coefficients are zero. For Re = 100 and k = 0, the flow is steady up
to A = 2 and then transitions to the symmetric vortex shedding regime. In this regime,
the r.m.s. force and moment coefficients are maximum at A = 3 and then decrease as A
is increased. For Re = 100 and k = 1, the flow is steady up to A = 1, but transitions to
the symmetric vortex shedding regime by A = 1.5. Within this regime, the r.m.s. force
and moment coefficients increase to a maximum value at A = 3, then generally decrease
as A is increased further. At A = 10, flow transitions to the asymmetric regime. This is
accompanied by a significant increase in the error bars indicating the uncertainty due to
the length of time sampling. Referring to the time histories of drag coefficient presented
in figure 28, the asymmetric mode (subfigures c–f ) are significantly less periodic than the
symmetric modes (subfigures a and b), resulting in larger uncertainties on the unsteady
statistics. Finally, for Re = 200 and k = 1, flow is steady up to A = 0.5 and then transitions
directly to the asymmetric mode. Due to the large uncertainties, no clear trend is observed
in the r.m.s. force and moment coefficients for this case.

Figure 27(a) presents the variation of time-mean drag coefficient against A. For small A,
the drag coefficient increases significantly as A approaches zero. For Re = 10 and k = 1,
the mean drag coefficient decreases monotonically. The remaining cases reach a minimum
value of CD,C at A = 1.5 for Re = 100 and k = 0, and at A = 2 for both Re = 200 and
k = 1, and Re = 100 and k = 1. The mean drag coefficient then increases slightly as A is
increased above this value. For Re = 100 and k = 1, the change of shedding mode between
A = 7.5 and A = 10 results in a decrease in CD,C . The dashed line in figure 27(a) indicates
the value of CD,C obtained for steady 2-D flow over an infinite-span cylinder (Terrington
et al. 2023), and the numerically obtained values of CD,C approximately approach this
value as A is increased. Of course, some differences between the limiting value of CD,C
for a finite-span cylinder and that obtained for steady 2-D flow are expected due to 3-D
and unsteady effects.

Figure 27(b) presents the variation of time-mean gap-dependent moment coefficient
against A. The moment coefficient is negative, and the magnitude of the moment
coefficient increases significantly as A approaches zero. The magnitude of CM,C then
decreases monotonically as A is increased, approximately approaching the value obtained
for steady 2-D flow (dashed lines).

Finally, figure 27(c) presents the variation in the mean gap-independent lift coefficient
against A. The lift coefficient increases monotonically as A is increased, approximately
approaching the value obtained for steady 2-D flow (dashed lines) in the limit A → ∞.
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Figure 27. Variation of the time-mean and r.m.s. gap-independent force and moment coefficients (a) CD,C ,
(b) CM,C , (c) CL ,C , (d) CD,rms , (e) CM,rms and (f ) CL ,rms against A, for four combinations of Re and k.
Markers indicate the numerical data, with error bars indicating the uncertainty due to the duration of time
sampling. In subfigures (a)–(c), solid lines represent a cubic-spline interpolation of the numerical data. In
subfigures (d)–(f ), solid lines indicate the symmetric mode, while dashed lines indicate the asymmetric mode,
with linear interpolation used between data points.
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Figure 28. Time histories of the gap-independent drag coefficient for a selection of cases.
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Figure 29. Contributions to the gap-dependent (a) drag and (b) moment coefficients (CD,C and CM,C ) from
pressure forces on the cylinder’s curved surface (CD,p), viscous forces on the cylinder’s curved surface (CD,τ

and CM,τ ) and viscous stresses on the cylinder end faces (CD,F and CM,F ) against A, at k = 1 and Re = 200.

For all cases with k = 1, the lift coefficient becomes negative when A is small. For k = 0
and Re = 100, the lift coefficient remains positive, but close to zero, at least for A = 0.1.

Figure 29 plots the contributions to the gap-independent drag and moment coefficients
(CD,C and CM,C ) from pressure forces on the cylinder’s curved surface (CD,p), viscous
forces on the cylinder’s curved surface (CD,τ and CM,τ ) and viscous stresses on the
cylinder end faces (CD,F and CM,F ) against A, for Re = 200 and k = 1. The contributions
from the cylinder end faces is negligible for large A, but rises sharply as A → 0, due to the
1/A factor in (2.11). Physically, this represents a larger drag from the end faces, relative
to the cylinder width. The viscous drag force increases monotonically with A, while the
viscous contribution to the moment decreases monotonically with increasing A. Finally,
the pressure drag is minimum at A ≈ 2 and increases for either small A or large A.

Figure 30 plots the local contributions to the gap-independent drag and moment
coefficients from viscous and pressure forces against angular position on the cylinder’s
curved surface. The magnitude of viscous stress increases as A is reduced, however, the
pattern of viscous stresses on the cylinder’s surface is not significantly affected. To explain
this, consider that at the ends of the cylinder, momentum may be transported into the
boundary layer in the spanwise direction, resulting in larger shear stresses near the ends
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Figure 30. Contributions to the gap-independent (a,d) pressure drag, (b) viscous drag and (c) viscous torque
from different angular positions on the cylinder’s curved surface for different A, at (a,b,c) Re = 200 and k = 1,
(d) Re = 100 and k = 1.

of the cylinder. The relative contribution from this effect increases as A decreases. The
contribution to the moment coefficient (subfigure c) is positive over the entire span of
the cylinder, and therefore, the moment coefficient increases as A is decreased. However,
the contribution from viscous forces to the drag force (subfigure b) includes regions of
both positive and negative wall-shear stress, so the total viscous drag decreases as A is
decreased.

Figure 30(a) plots the local contributions of the pressure force to the gap-independent
drag. Increasing A results in an increased force from the negative pressure region behind
the cylinder, due to the increased size of the recirculation region. The pressure force on
the front face is more complex. For small A, there is a positive pressure peak at θ ≈ 3π/2,
which increases as A decreases, and drives the increase in pressure force for small A.
However, for large A, there is a second pressure peak at θ ≈ 7π/4, which increases as A
increases. This second peak, along with the increased contribution from the recirculation
region behind the cylinder, produces the increasing pressure drag with increasing A. This
second peak can be explained by considering that proportionally less fluid can flow around
the sides of the cylinder as A increases (i.e. an increased blockage effect) resulting in a
greater pressure to resist the fluid’s inertia.

Finally, we consider the effects of changing wake modes on the drag. Figure 30(d)
plots the contributions to pressure drag for both A = 7.5 (symmetric mode) and A = 10
(asymmetric mode), for Re = 100 and k = 1. While the positive pressure peak upstream
of the cylinder increases, consistent with the trends seen in figure 30(a), the downstream
negative pressure peak decreases, despite the increase in aspect ratio. The loss of symmetry
due to asymmetric vortex shedding evidently weakens the strength of the recirculation
region for large A, resulting in a decrease in pressure drag.
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Figure 31. Contours of time-averaged pressure, with the asymptotic pressure singularity removed (p − po), on
the cylinder’s curved surface at Re = 100 and k = 1, for (a) A = 1, (b) A = 2, (c) A = 3, (d) A = 5, (e) A = 7.5
and (f ) A = 10.

Figure 31 plots contours of time-averaged pressure, with the asymptotic pressure
singularity subtracted ( p̄ − po), on the cylinder’s surface, for Re = 100 and k = 1, to
illustrate the spanwise contributions to the pressure force. The positive pressure peak
upstream of the cylinder is located at the centre of the cylinder, consistent with the
explanation of a blockage effect. The negative pressure behind the cylinder is strongest
near the edges, particularly for large aspect ratios. This indicates flow separation from the
ends of the cylinder provides the strongest contribution to the negative pressure behind
the cylinder. The visualisations in figure 19 show that fluid flowing around the ends of
the cylinder is entrained into the recirculation region, and the size of these recirculation
cells increases as A is increased. For the symmetric shedding at A = 7.5, there is also
an increased negative pressure at the centre of the cylinder (i.e. the symmetry plane).
However, for asymmetric shedding at A = 10, this negative pressure region is lost, possibly
a result of the loss of symmetry.

3.6. Comparison to 2-D and free-stream cylinders
Figure 32 presents a comparison between the gap-independent drag coefficient obtained
in the present study, the gap-independent drag coefficient for 2-D flow over an infinite
cylinder (Terrington et al. 2023), the drag coefficient for a finite-span cylinder in a uniform
free-stream flow (Yang et al. 2022, 2023), and the drag coefficient for the 2-D cylinder in
the free stream (Qu et al. 2013; Mittal & Kumar 2003). Interestingly, there is a surprisingly
close agreement between the gap-independent drag coefficient for the finite-span cylinder
near a wall and the finite-span cylinder in a free-stream flow, despite the substantial
influence of the wall on the wake.

Figure 32(a) plots the variation in drag coefficient against Re for A = 1 and k = 0. For
all cases, there is a general trend of CD decreasing as A is increased. However, the finite-
span cylinders have a far greater variation compared with the infinite (2-D) cylinders, and
exhibit a substantial increase in CD as Re decreases. Figure 32(b) plots the variation in
drag coefficients against k for A = 1 and Re = 200. For both the 2-D and 3-D rolling
cylinders, as well as the finite-span cylinder, the drag coefficient increases as rotation rate
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Figure 32. Comparison between the gap-independent drag coefficient (CD,C ) for the finite-span cylinder near
a wall and for the 2-D flow over an infinite cylinder near a wall (Terrington et al. 2023); and the drag coefficient
(CD) for either a finite-span (Yang et al. 2022, 2023) or infinite-span (Mittal & Kumar 2003; Qu et al. 2013)
circular cylinder in a uniform free-stream flow. Physical parameters are (a) A = 1 and k = 0, (b) A = 1 and
Re = 200 and (c) Re = 100 and k = 0.

increases. This is not the case for the free-stream 2-D cylinder, for which drag decreases
as k is increased. Finally, figure 32(c) plots the variation in drag coefficient against A for
k = 0 and Re = 100. The free-stream finite-span cylinder displays similar trends as the
near-wall cylinder, i.e. a sharp rise in CD as A decreases, which is likely attributed to
the same general features: a rise in the pressure force and an increased contribution from
viscous stresses on the cylinder side faces. For the wall-adjacent cylinder, there is a gradual
increase in CD,C towards the value for an infinite (2-D) cylinder as A is increased. This is
not observed for the free-stream cylinder, likely because the maximum aspect ratio A = 2
is too small to observe this trend.

3.7. Total drag and moment coefficients
Figure 33 plots the variation of total drag and moment coefficients (the sum of gap-
dependent and gap-independent coefficients) against (a) Re, (b) k and (c) A, for three
different values of G/d. Dashed and dash-dotted lines indicate the gap-dependent drag and
moment coefficients, respectively. Decreasing G/d results in larger contributions from the
gap-dependent drag and moment coefficients, so that the total drag increases substantially
as G/d is decreased.

Figure 33(a) plots the variation of drag and moment coefficients against Re.
Both the gap-dependent and gap-independent drag and moment coefficients decrease
monotonically with increasing Re, so this trend is also observed in the total drag and
moment coefficients. Figure 33(b) plots the variation of drag and moment coefficients
against k. The gap-dependent drag coefficient is constant with respect to k, while the gap-
independent drag coefficient has a moderate linear increase as k increases. As a result,
the total drag coefficient increases only weakly as k is increased. Both gap-dependent and
gap-independent moment coefficients, however, increase linearly as k is increased, and the
same trend is observed in the total moment coefficients.

Figure 33(c) plots the variation of drag and moment coefficients against A. For small
A, the gap-dependent force and moment coefficients increase with increasing A, while
the gap-independent terms decrease with increasing A. For G/d = 10−2, the increase in
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Figure 33. Variation of the total drag and moment coefficients against (a) Re, (b) k and (c) A, for three different
values of G/D. Dashed and dash-dotted lines indicate the contribution from gap-dependent drag and moment
coefficients, respectively. Unless otherwise stated, physical parameters are A = 1, k = 1 and Re = 100.

the gap-dependent term is less than the decrease in the gap-independent term, and the
total drag increases as A is increased. For G/d = 10−3, the changes in both gap-dependent
and gap-independent terms are approximately balanced, and there is only a relatively mild
variation in the total drag and moment coefficients. For G/d = 10−4, the variation in the
gap-dependent term dominates, and the total drag increases as A is increased.

For the range of parameters considered here, both gap-dependent and gap-independent
contributions are significant. For A = 1 and k = 1, the gap-independent term contributes
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Figure 34. Comparison between Nanayakkara et al.’s (2024a) experimental measurements and the combined
analytical/numerical predictions using (3.14) for the variation of effective drag coefficient against (a) Re and
(b) G/d. The cylinder aspect ratio is A = 1.

5.1% of the total drag at Re = 20 and G/d = 10−4, 17.5% at Re = 200 and G/d =
10−4, 50% at Re = 20 and G/d = 10−2, and 63% at Re = 200 and G/d = 10−2. For a
sufficiently small G/d, the gap-dependent term will dominate over the gap-independent
term. At Re = 200, A = 1 and k = 1, the gap-independent term is less than 1% of the
total drag for G/d < 2.5 × 10−7. Likewise, the gap-independent term will dominate for a
sufficiently large Re, assuming a fixed G/d. For G/d = 10−4, and assuming that CD,C ≈ 1
at large Re, the gap-dependent drag accounts for less than 1% of the total drag for
Re > 1.26 × 105. For G/d = 10−2, however, the gap-dependent contribution becomes
negligible (below 1%) at Re > 1.26 × 104.

3.8. Application to experimental measurements of rolling cylinders
We now apply the results of our study to experimental measurements of finite-span
cylinders rolling on a wall presented by Nanayakkara et al. (2024a). Following the
discussion in Nanayakkara et al. (2024a), we assume that the cylinder contacts the wall
via surface asperities. The corresponding hydrodynamic drag is estimated by assuming an
effective gap approximately equal to the peak surface roughness. The total drag force also
includes the contact force necessary to ensure the cylinder rolls without slip (k = 1), so
that the effective drag coefficient is (Nanayakkara et al. 2024a)

CD,e f f. = CD − CM . (3.14)

Figure 34 presents a comparison between Nanayakkara et al.’s (2024a) experimental
measurements and the theoretical predictions, with an effective gap determined by fitting
to the experimental data. Subfigure (a) plots the variation in drag coefficient against Re for
two different non-dimensional surface roughnesses (ξ = 5.9 × 10−4 and ξ = 2.0 × 10−3),
where ξ = Rp/d is the dimensionless peak roughness and Rp is the combined peak
roughness of both the cylinder and panel. The solid line represents the theoretical
predictions of (3.14) using the numerical and analytical results obtained in the present
study, for values of G/d tuned to fit the experimental measurements. Good agreement
between the numerical and experimental results is obtained, with an effective gap of the
same order of magnitude as the peak roughness.

Figure 34(b) plots the variation of effective drag coefficient against G/d for two
Reynolds numbers (Re = 100 and Re = 150). Experimental data for cylinders of various
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surface roughness are also provided, assuming that G/d = 0.58ξ for Re = 100 and G/d =
0.64ξ for Re = 150. The scaling factors for G/d and ξ were determined by fitting the
experimental data. The results suggest that the drag applied to a rough cylinder rolling
on a wall can be predicted by assuming a smooth cylinder and wall, with a gap equal to
approximately 0.6ξ .

4. Conclusions
We have computed the force and moment coefficients for a finite-span circular cylinder
immersed in a fluid that travels parallel to a plane wall with a fixed rotation rate, while
maintaining a fixed gap between the cylinder and the wall. The force and moment
coefficients are a function of four dimensionless variables: the Reynolds number Re =
ρUd/μ, the gap-diameter ratio G/d, the aspect ratio A = W/d and the slip coefficient
k = Ωd/(2U ). Here, d is the cylinder diameter, W is the cylinder span, U and Ω are the
translational and rotational velocities of the cylinder, μ and ρ are the dynamic viscosity
and density of the fluid, respectively, and G is the gap between the cylinder and the wall.

Using the method of matched asymptotic expansions, the total force and moment
coefficients were expressed as the sum of gap-dependent and gap-independent terms. The
gap-dependent force and moment coefficients were obtained by using lubrication theory
to solve for the flow in the narrow gap between the cylinder and the wall. We expressed the
gap-dependent force and moment coefficients analytically in terms of a nonlinear function
f ( Â), where Â = A/

√
G/d is the modified aspect ratio. The 2-D Reynolds equation was

solved numerically for various values of Â to evaluate this function numerically.
The gap-independent force and moment coefficients were obtained by performing

numerical simulations of the outer flow for various values of the parameters Re, A
and k. We find that the combined predictions of lubrication theory for the inner flow,
and numerical simulations of the outer flow, accurately predict the variation of the drag
and moment coefficients against G/d. Our method does not predict the variation of the
lift coefficient against G/d, but does predict the upper bound of CL obtained in the limit
G/d → 0.

The critical Re for transition to unsteady flow was found to decrease as either A or k was
increased. For A = 1, the gap-independent drag and moment coefficients both decrease in
magnitude as Re increases and increase linearly in magnitude as k increases, and empirical
fits for the force and moment coefficients were obtained. As A was increased, the gap-
independent moment coefficient decreased in magnitude, while the gap-independent lift
coefficient increases. The gap-independent drag coefficient is generally minimum near
A = 2 and increased as A was either increased or decreased from this value.

This work allows the drag coefficient for a finite-span rolling circular cylinder to be
related to an effective hydrodynamic gap between the cylinder and the wall. Nanayakkara
et al. (2024a) demonstrate experimentally that this effective gap is approximately equal
to the sum of peak roughness of the cylinder and the wall. However, in their analysis,
they assumed that the gap-independent force and moment coefficients were equal to the
corresponding values for steady 2-D flow, since values for finite-span cylinders have not
been obtained previously. The present study allows a more accurate prediction of the drag
coefficient under the effective gap model, since the effects of finite aspect ratio on the
outer-flow force and moment coefficients are included in the model.

By separating the flow into inner and outer regions, full 3-D numerical simulations
are only required to obtain the outer-flow solution, which does not depend on G/d. This
reduces the parameter space to be explored by numerical simulations from four to three,

1010 A15-48

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.329


Journal of Fluid Mechanics

significantly reducing the computational effort required to predict the drag and moment
applied to the cylinder. This method may also be applicable to other rolling bodies, such
as spheres, ellipsoids or elliptical cylinders, which can be explored in future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.329.

Funding. This work was supported by the Australian Government through the Australian Research Council’s
Discovery Projects funding scheme (projects DP200100704 and DP210100990), and by computational
resources provided by the National Computational Infrastructure and Pawsey Supercomputer Centre (Merit
Grant d71) under the National Computational Merit Allocation Scheme.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Numerical computation of the lubrication flow
This appendix summarises the numerical methodology used to obtain solutions to
(2.9). First, the infinite domain is transformed into a finite domain using a coordinate
transformation. Then, the transformed version of (2.9) is discretised using the finite-
difference method. Finally, the resulting matrix equation is solved using MATLAB’s
mldivide (matrix left division) function.

We first transform the infinite domain −∞ < x̂ < ∞ to a finite domain −1 < t̂ < 1,
using the following transformation:

t̂ = 2
π

tan−1(kt x̂). (A1)

The parameter kt is a stretching parameter that controls the distribution of grid points in
the physical domain. We have found kt = 0.1 to give suitable results.

For large Â, ẑ derivatives of ĝ are only significant in a thin end correction layer.
Therefore, a second stretching function was used to concentrate a large number of grid
points inside the end correction layer. We first estimate the thickness of the end correction
layer. Assuming that ẑ derivatives are much larger than x̂ derivatives in this region, (2.9)
becomes

∂2ĝ

∂ ẑ2 = 6
H

(ĝ − 1), (A2)

which has solutions of the form ĝ ≈ C exp(±√
6/H ẑ) Therefore, the width of the end

correction region will approximately be proportional to
√

H/6, which has a minimum
value of 1/

√
6 at x̂ = 0.

We use the following stretching function to transform the physical coordinate ẑ to a
computational coordinate ŝ (Vafakos & Papadopoulos 2020):

2ẑ

Â
= Pŝ + (1 − P)

tanh(Qŝ)

tanh Q
. (A3)

The parameters P and Q determine the distribution of grid points in the physical domain.
Vafakos & Papadopoulos (2020) provide an algorithm to determine the values of P and Q
required to place a particular percentage of grid points within a thin boundary layer. We
use this algorithm to place 25% of the grid points within the end correction layers (i.e. a
distance of 1/

√
6 from the ends of the cylinder).

For Â < 8/
√

6, the end correction layers cover more than 25% of the domain. Therefore,
we use a uniform transformation,

ŝ = 2ẑ/ Â, (A4)

rather than the stretching function when Â < 8/
√

6.
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Using the transformations A1, A3 and A4, the physical domain (x̂, ẑ) is transformed
to the computational domain (t̂, ŝ), where −1 < t̂ < 1 and −1 < ẑ < 1. Furthermore, ĝ is
symmetric about both ŝ = 0 and t̂ = 0. Therefore, we consider the reduced domain 0 � t̂ �
1 and 0 � ŝ � 1. Boundary conditions are ∂ ĝ/∂ ŝ = 0 at ŝ = 0, ∂ ĝ/∂ t̂ = 0 at t̂ = 0, ĝ = 0 at
t̂ = 1 and ĝ = 0 at ŝ = 1.

Finally, in transformed coordinates, (2.9) is expressed as(
∂ t̂

∂ x̂

)2
∂2ĝ

∂ t̂2
+
[

2
x̂(1 + x̂2)

∂ t̂

∂ x̂
+ ∂2 t̂

∂ x̂2

]
∂ ĝ

∂ t̂
+
(

∂ ŝ

∂ ẑ

)2
∂2ĝ

∂ ŝ2 + ∂2ŝ

∂ ẑ2
∂ ĝ

∂ ŝ
− 6g

1 + x̂2 = −6
1 + x̂2 .

(A5)
To ensure that each of the the terms remains finite, we also multiply the entire equation by
x̂/(1 + x̂),

x̂

1 + x̂

(
∂ t̂

∂ x̂

)2
∂2ĝ

∂ t̂2
+
[

2
(1 + x̂)(1 + x̂2)

∂ t̂

∂ x̂
+ x̂

1 + x̂

∂2 t̂

∂ x̂2

]
∂ ĝ

∂ t̂
+ x̂

1 + x̂

(
∂ ŝ

∂ ẑ

)2
∂2ĝ

∂ ŝ2

+ x̂

1 + x̂

∂2ŝ

∂ ẑ2
∂ ĝ

∂ ŝ
− 6gx̂

(1 + x̂)(1 + x̂2)
= −6x̂

(1 + x̂)(1 + x̂2)
. (A6)

The computational domain (t̂, ŝ) was covered with a uniform grid comprising nt and ns
points in the t̂ and ŝ directions, respectively. Derivatives of ĝ in (A6) were discretised using
second-order central finite differencing. The resulting matrix equation was solved using
MATLAB’s mldivide function. The finite-difference matrix is a sparse, banded matrix,
and therefore, MATLAB automatically selects the banded solver to perform the matrix
inversion.

Appendix B. Asymptotic behaviour of f

In this appendix we compute the asymptotic behaviour of the function f ( Â), in the limits
of both large and small Â. We first note that Teng et al. (2022) have computed estimates
for the asymptotic behaviour of p̂ in both of these limits.

We begin with the limit of small Â. From Teng et al. (2022) equation (2.27), we have

p̂ = −3x̂

(1 + x̂2)3

[
( Â/2)2 − ẑ2

]
, (B1)

and therefore,

ĝ = 3
(1 + x̂2)

[
( Â/2)2 − ẑ2

]
, (B2)

¯̂g = Â2

2(1 + x̂2)
. (B3)

Finally, we obtain

f = Â2

2π

∫ ∞

−∞
2x̂2

(1 + x̂2)3 dx̂ = 1
8

Â2. (B4)

We now consider the limit of large Â. In this limit, Teng et al. (2022) provide asymptotic
solutions valid for both x̂ � Â and for x̂ � Â. For x̂ � Â, (2.22) from Teng et al. (2022)
gives

ĝ(1) = 1 − (3η2 + 1)(π − 2 tan−1 η) − 6η

π
, (B5)
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where η = (ẑ + Â/2)/
√

H is a non-dimensional distance from the end of the cylinder.
Equation (B5) represents the effects of a single end of the cylinder, and assumes that the
two ends of the cylinder are sufficiently separated to not significantly interact. Therefore,
this solution is not valid for x̂ � Â. Noting that the opposite end of the cylinder is situated
at η = Â/

√
H , and accounting for the end correction of both ends of the cylinder, we

obtain the following expression for ¯̂g:

¯̂g(1) = 1 − 2
√

H

Â

∫ Â/
√

H

0
(1 − g)dη

= 1 − 2
π

[(
( Â/x̂)2 + 1

) (
π − 2 tan−1( Â/x̂)

)
− 2( Â/x̂)

]
. (B6)

Here the subscript (1) indicates the solution for x̂ � Â, and we have used
√

H ≈ x̂ .
To estimate the asymptotic value of the integral f , we utilise the following series
approximation for ¯̂g(1), which converges for x̂ � Â:

¯̂g(1) = 1 −
∞∑
j=0

8(−1) j

π(2 j + 1)(2 j + 3)

x̂ (2 j+1)

Â(2 j+1)
. (B7)

For x̂ � Â, Teng et al. (2022) provide the following solution for p̂ (their (2.25)):

p̂(2) = − 3
x̂5

(
( Â/2)2 − ẑ2)−

∑
n=1,3,5,...

cnφn(x̂) cos(nπ ẑ/ Â), (B8)

cn = −8 Â2 sin(nπ/2)

(nπ)3 , (B9)

φn(x) = exp(−nπ x̂/ Â)

x̂5

(
3 + 3nπ x̂/ Â + (nπ x̂/ Â)2

)
. (B10)

Noting that, for x̂ � 1, ĝ ≈ − p̂/x̂3, and averaging across the cylinder span, we obtain

¯̂g(2) = Â2

2x̂2 −
∑

n=1,3,5,...

16
(nπ)4

exp(−nπ x̂/ Â)

(x̂/ Â)2

(
3 + 3nπ x̂/ Â + (nπ x̂/ Â)2

)
. (B11)

We then compute the total f as

f = f(1) + f(2) = 4
π

∫ Â

0

x̂2

(1 + x̂2)2
¯̂g(1)dx̂ + 4

π

∫ ∞

Â

1
x̂2

¯̂g(2)dx̂ . (B12)

For computing f(1), we use the asymptotic approximations of the integrals

4
π

∫ Â

0

x̂2

(1 + x̂2)2 dx̂ ≈ 1 − 4
π

1

Â
, (B13)

∫ Â

0

x̂

Â

x̂2

(1 + x̂2)2 dx̂ ≈ ln Â − 1/2

Â
, (B14)
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0

x̂ (2 j+1)

Â(2 j+1)

x̂2

(1 + x̂2)2 dx̂ ≈ 1
2 j

1

Â
(B15)

to obtain an expression for f , up to order Â−1:

f(1) ≈ 1 − 4
π

1

Â
+ 16

3π2
1

Â
− 32

3π2
ln( Â)

Â
−

∞∑
j=1

16(−1) j

π2 j (2 j + 1)(2 j + 3)

1

Â
. (B16)

Finally, evaluating the sum gives

f(1) ≈ 1 − 4
π

1

Â
+ 16

3π2
1

Â
− 32

3π2
ln( Â)

Â
+ 16

9π2

(− 11 + 3π + ln(8)
)
, (B17)

f(1) ≈ 1 − 32
3π2

ln( Â)

Â
− 0.642036

Â
. (B18)

The first term in f(2) is:

2 Â2

π

∫ ∞

Â

1
x̂4 dx̂ = 2

3π

1

Â
. (B19)

Making the substitution xb = x̂/ Â, the remaining terms of f(2) are of the form

− 64
π(nπ)4

1

Â

∫ ∞

1

[
3
x4

b

+ 3nπ

x3
b

+ (nπ)2

x2
b

]
exp (−nπxb)dxb

= − 64
π(nπ)4

1

Â
(1 + nπ) exp (−nπ), (B20)

and therefore, we have f(2),

f(2) =
⎡
⎣ 2

3π
− 64

π

∑
n=1,3,5,...

1 + nπ

(nπ)4 exp (−nπ)

⎤
⎦ 1

Â
≈ 0.1747742

Â
. (B21)

Therefore, the total f is

f ≈ 1 − 32
3π2

ln( Â)

Â
− 0.4672623

Â
. (B22)

A comparison between the f predicted by (B22) and the f obtained using our numerical
simulations is presented in figure 35(a). Here, we plot (1 − f ) Â against log10 Â so
that the asymptotic expression (B22) becomes linear. The slope of the line corresponds
to the coefficient of the ln( Â)/ Â term, while the y intercept corresponds to the Â−1

term. Equation (B22) correctly predicts the slope of f (the ln( Â)/ Â term), however, it
underpredicts the y intercept (the Â−1 term).

To account for this error, we note that the approximate solution ¯̂g(1) given by (B7) is only
strictly valid for 1 � x̂ � Â. This is confirmed by figure 35, which plots the numerically
obtained profiles of ¯̂g against the approximate solutions ¯̂g(1) and ¯̂g(2). All three solutions
are in excellent agreement for 1 � x̂ � Â. As expected, ¯̂g(1) is inaccurate for x̂ � Â, while
¯̂g(2) is accurate for all x̂ � 1. Finally, we note that neither ¯̂g(1) nor ¯̂g(2) are accurate for
x̂ � 1. Specifically, both ¯̂g(1) and ¯̂g(2) approach 1 as x̂ approaches 0, while ¯̂g remains less
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ḡ̂numerical

ḡ̂(1)

ḡ̂(2)

ḡ̂

x̂ /Âlog10 (Â)

(1
 –

 f
)
Â

12

fnumerical

f(1) + f(2)

Asymptotic

approximation

Asymptotic fit

1.0

0.8

0.6

0.4

0.2
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0 1 2 3 4 10–4 10–2 100 102

(a) (b)

Figure 35. (a) Comparison between the asymptotic approximation for f (B22) and the f computed from
our numerical simulations. Blue markers correspond to our numerical data, while red markers correspond to
a direct numerical integration of (B12). The dashed line is (B22), while the solid line indicates the best fit
approximation to our numerical data. (b) Comparison between the profiles of ¯̂g obtained from our numerical
simulations ( ¯̂gnumerical), as well as the approximate solutions given in (B7) ( ¯̂g(1)) and (B11) ( ¯̂g(2)), for Â = 100.

than 1. Evidently, this leads to an O( Â−1) error in the asymptotic approximation given
by (B22).

Given that we do not have an accurate analytic expression for ¯̂g valid when x̂ � 1, we
instead obtain the Â−1 term by fitting to our numerically obtained f , to give the following
expression:

f = 1 − 32
3π2

ln( Â)

Â
− 0.7412

Â
. (B23)

As shown in figure 35(a), this expression agrees with our numerical data for large Â.
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