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Abstract. A mixing subshift of finite type T is a factor of a sofic shift S of greater
entropy if and only if the period of any periodic point of S is divisible by the period
of some periodic point of T. Mixing sofic shifts T satisfying this theorem are
characterized, as are those mixing sofic shifts for which Krieger's Embedding
Theorem holds. These and other results rest on a general method for extending
shift-commuting continuous maps into mixing subshifts of finite type.

0. Introduction
Wolfgang Krieger ([5]) has proved a striking embedding theorem: if S is a mixing
subshift of finite type (MSFT), and T is any subshift with h(T)<h(S) which satisfies
a trivially necessary periodic condition, then T is isomorphic to a subshift of S. The
trivial condition is that for all ;, w;-(T)< TTJ(S), where TTJ(T) = \Pj(T)\ and

p.( T) = {x: T'x = x, Tx * x for 0 < i < /}.

This result suggests an optimistic conjecture: if S and T are MSFT's with h( T) < h(S)
which satisfy some trivially necessary periodic condition, then T is a factor of
S{S | T). The conjecture is true. (In fact, S and T need only be irreducible subshifts

per

of finite type.) The trivial condition (S * T) is that the period of any periodic
point of S is divisible by the period of some periodic point of T. Bruce Kitchens
and Brian Marcus have proved this theorem independently, finding essentially the
same proof which leads naturally to the other results of this paper.

We prove the theorem in two steps. First we cover T with an MSFT of equal
entropy which by Krieger's theorem is isomorphic to a subshift S of S. (Krieger
has already done this in [5]; we give a more elaborate lemma for later use.) Then
we extend the factor map S I T to a factor map S | T by means of a general
extension lemma. If <£ is a continuous shift-commuting map from a subshift S into
an MSFT T, where S is a subshift of a subshift S and S * T, then the lemma
extends <£ to a continuous shift-commuting map from S into T. The lemma's proof
is a straightforward adaptation of the marker method Krieger used to prove his
embedding theorem.

As one corollary, we find that irreducible subshifts of finite type with the same
zeta function have the same (sofic) factors of lower entropy. As another, we find

per

that a sofic shift S factors onto an MSFT T of lower entropy if S • T. These
results fail in the larger class of sofic shifts. Examples lead us to isolate a class of
periodic points we call receptive points. Where the existence of an embedding or
factor map from S to a mixing SFT T is guaranteed by an entropy inequality and
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a sufficiency of periodic points in T, the existence of the map into a mixing sofic
shift T will be guaranteed by the entropy inequality and a sufficiency of receptive
periodic points in T. These results let us characterize those mixing sofic shifts which
behave like MSFT's with respect to higher-entropy sofic extensions (receptive shifts)
and those which behave like MSFT's with respect to embeddings (inclusive shifts).
A mixing sofic shift is receptive if and only if the period of any periodic point is
divisible by the period of some receptive point. A mixing sofic shift is inclusive if
and only if every periodic point is receptive.

1. Definitions and background
Let a finite set of n elements, {1, 2 , . . . , «} say, be given the discrete topology. The
(full) n-shift is the homeomorphism obtained by furnishing the set Yl^z U> 2 , . . . , n}f

with the product topology and the left shift transformation. A subshift S is the
restriction of some n-shift to a closed shift-invariant subset. We shall use the same
symbol to denote the underlying space of a subshift and the restriction of the left
shift transformation to this space. We will also often refer to a subshift as a shift.
The alphabet A(S) of the subshift S is the subset of {1,2, . . . , n} consisting of those
elements that appear in some point of S. An element of A(S) is a symbol of S. If
Ci, c2,. • •, c, e A(S) are such that the string C = cxc2.. • c, appears in some point
of S, then C is a word or block of S, whose length I may be denoted by \C\. We
also use the terms S-word and S-block. We let Bt(S) denote the set of S-words of
length / (the l-blocks of S), while B(S) denotes the set of all S-words. If A is an
/-block, then A" is the n/-block formed by repeating A n times. We use A°° to
denote an infinite string of symbols formed by repeating A; A°° may extend infinitely
to either side or both, by context.

Any subshift is obtained from some n-shift by discarding from the domain all
sequences in which any of a given collection of words occurs. In general, the collection
may be countably infinite. If a subshift S may be obtained by disallowing only a
finite collection of words, then S is a subshift of finite type (SFT). If every word in
the forbidden collection has length less than or equal to k +1, then S is k-step.
Equivalently, S is -a fc-step SFT if the points in S are all the sequences x such that,
for every ieZ,xt... xi+k e Bk+1(S). A 1-step SFT S, say with alphabet {1, 2 , . . . , k},
may be determined by a k by k matrix with entries in {0,1} such that Ai; = 1 if and
only if ijeB2(S). Similarly, S is determined by the graph whose vertices are the
elements of A(S): there is an arc from i to ; in the graph if and only if ijeB2(S).
If ijeB2(S), then i is a predecessor of j , and / is a follower of i.

If S and T are subshifts, and (f> is a continuous map such that <f>S = T#, then <j>
is shift-commuting, <f> is a code, and we write <j>: S -* T. If <j> is surjective, then T is
a factor of 5, S is a cover (or lift or extension) of T, </> is a factor map and we write
tf>: S\ T, or just S[ T. If <f> is bijective, then 5 and T are isomorphic or conjugate,
and <j> is a conjugacy. If <f>i and <f>2 are conjugacies, while i//1 and i/»2 are shift-
commuting maps such that <j>2*}>\ = 4i2(t>u then if)x and i/>2 are isomorphic. Typically
isomorphic maps are interchangeable for our purposes, and we announce an
exchange with the incantation 'by recoding, we may assume.. . ' . The n-block
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presentation S[n] of a subshift S is the subshift whose alphabet is Bn(S) and whose
domain is

{x: There exists x e S such that for all ieZ, x, = x,.. . xj+n_i}.

S[n] is conjugate to S by the natural map. If S is a fc-step SFT and nsfc, then S w

is a 1-step SFT. A k-block map <f> from S to T is denned by a map $ from Bk(S)
to A(T) by (<£x)n = <j>(xn... xn+k_x). The Curtis-Hedlund-Lyndon Theorem asserts
that any continuous shift-commuting <f> is a block map composed with some power
of the shift; so, by recoding we may assume that <j> is a 1-block map.

An SFT S is irreducible if for any S-words A and C, there is an S-word B such
that ABC is an S-word. If for given A and C, there exists JV such that this B may
be chosen to have any length greater than or equal to N, then S is topologically
mixing. If this AT may be chosen uniformly for all A and C, then N+1 is a transition
length for S. Every mixing SFT (MSFT) has a transition length. If S is an irreducible
SFT, then there exists a positive integer k, the (ergodic) period of S, and k sets
Eu...,Ek (the cyclically moving subsets of S- see [1, § 3]) with the following
properties:

(1) k is the greatest common divisor of the periods of the periodic points of S;
(2) the restriction of Sk to each Et is an MSFT;
(3) S is a disjoint union of the £,;
(4) for each Eh SEt = Ei+1, where the subscripts are interpreted mod k.

If E is one of the cyclically moving subsets, it is easy to see that a shift-commuting
map Sk\E -» Tk has a unique extension <f> to all of S such that <p:S^T.

The topological entropy of a subshift S, /i(S), is

lim-log|BB(S)|.
n fl

If S is an SFT, then also
.. 1

If S | T, then h(S) > Jt(T). Any SFT contains an irreducible SFT of equal entropy.
For more on subshifts and SFT's, see [1] and [2]. (These references use the symbol
cr for the shift map on any domain; subshifts are distinguished by the symbol which
names the domain.)

A subshift is sofic if it is a factor of an SFT([8]). If T is sofic, then there is a
1-step SFT S and a factor map </>:SlT with the following properties (see [3]):

(1) <f> is 1-block;
(2) 0 is bounded-to-one: that is, there exists N such that no point of T has more

than N preimages;
(3) <(> is 1-1 a.e.: that is, any doubly transitive point of T has a unique preimage;
(4) T has a magic word: that is, there exists a word W = w1... wk and a number

/, 1 < / < k, such that for any x, x in S, if

(<f>x)i+l... {<l>x)i+k = W
then x,+1 = x1+,;

(5) if T is mixing, then S is mixing.
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In the sequel, magic words are defined implicitly with respect to some fixed 0
satisfying the properties above; the particular </> never matters. A magic word W
has a very useful intersection property, which we use repeatedly in § 3: if BW and
WC are T-words, then BWC is a T-word. (To see this, notice that if # takes
h ... b'M ...w'k to BW and w'[... w'ic'l • • • c" to WC, then w', = w",; since
S is 1-step, b\... biW[... Wjw"+l... w'kc" ... c" is in B{S).) Any word containing
a magic word must be a magic word, so most long T-words must be magic words.
From these observations, Marcus ([7]) proved a theorem which is fundamental to
all our sofic results. We find it convenient to use a slight specialization of his
theorem. Given a sofic shift T, fix a magic word W, and let Tk be the (k — 1) step
SFT whose fc-blocks are those T-words 2>i... bk such that W occurs in b2 . . . bk.
Then Tk is a subshift of T and lim ft(Tfc) = h(T).,

If T is mixing, then for large enough k, Tk is also mixing. To see this, recall that
<f>:Si T is a 1-block map and S is mixing. Thus if N is a transition length for S,
then it is also a transition length for T: so there exist B in -BJV-I(T) and C in BN(T)
such that WBW and WCW are in B(T). Now suppose fc>JV + 2|W|. Then the
periodic orbits denned by WB and WC (which exist by the intersection property
of magic words) must be in Tk. That is, the greatest common divisor of the periods
of the periodic points of Tk is 1; if Tk is irreducible, then it must be mixing. But
any word of Tk occurs in some word of the form WEW; and if WEtW, WE2We
B(Tk), then WEX WBWE2WeB{Tk), again by the intersection property. So Tk is
irreducible.

The zeta function of a transformation S is

=1 n

where Nn{S) = \{x: S"x = x}\. For SFT's and sofic shifts, the zeta function is a
computable invariant from which the periodic counts Nn(S) (and thus also irn(S))
can be recovered.

2. The main result
In the following lemma, we construct a bounded-to-one cover of T by 'blowing up'
an orbit of period / into fc orbits whose periods are M , , JM2,..., JMk.

(2.1) COVERING LEMMA. Suppose T is an irreducible SFT of positive entropy with
TJ(T)> 0, and Mu ..., Mk are positive integers. Then there is an irreducible SFT S
such that the following conditions hold:

(a) there is a factor map <f>:Sl T, and h(S) = h(T);
(b) if T is mixing, then S is mixing;
(c) TTJ(S) = 77)(T) whenever j # JM, for any M, and yV J;

(e) if N = JMi for some M, > 1, then
TTN(S) = 7rN(T)+N\{i: JMf = N}\.

Proof. We must suffer some notation. Let A = a x . . . aj in Bj(T) define an orbit
with least period / in T. Recoding if necessary, we may assume the J symbols
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a i , . . . , a} are distinct, and T is 1-step. Given x in T, let x(a... fS) be the (possibly
infinite) substring of x using {JC,: a < i < /3}; for example, x(0 ... +00) = X!X2x3...,
and x(l... 4) = x2x3. Let A°° denote the twosidedly infinite string formed by
concatenating A. We say x(a... p) is periodic-A if it occurs in A°°; for example,
if A = 123, then the block 31 is periodic-A, and so is the left-infinite
string... 312312312312. We say x(a... 13) is A-maximal if it is periodic-A, non-
trivial (that is, p> ar + 1), and {i: y<f <S}g{/: a<i<p} implies x(y... S) is not
periodic-A.

Now add to the alphabet of T new symbols ar(t), for l < r < / c and l< f< /M, .
For each such r, define a block Ar of length JMr by

Ar = ar(l)ar(2)...ar{JMr).

Each of the blocks Ar will define a new periodic orbit.
Two facts follow from the irreducibility and positive entropy of T. First, there is

at least one symbol at from A which has a predecessor not equal to at^ (if i = 1,
then by ai_1 we mean a}). Second, fixing a sufficiently large L, for each such a, we
may partition the set of blocks of length L which may precede a, but do not end
in aj_i into k non-empty sets Cr(aj), l<r<fe.

We now define S. A sequence x is in S if and only if it can be formed from some
x in T (this x we call the 'parent' of x) subject to the following three rules:

(1) x, = x, if x j ^ { a , : l s / s / } ;
(2) if x(a... p) is A-maximal in x, with a<I<p and x7 = ah then

(i) x (a . . . p) is Ar-maximal in x for some r, and
(ii) x7 = ar(f) for some f = i mod / ;

(3) if x(a... p) is A-maximal in x, with a finite and xa+1 = ah then
(i) xa+i = ar(i), where r is determined by requiring

(ii) xa-L+1 ...xae CMi).

The required factor map <f> is the natural 1-block map: ar(t)>-+ a, if i = t mod /. The
map </> takes Jc to its (unique) parent x. In forming x from x, all we have done is
to replace stretches periodic in A with stretches periodic in some Ar Condition
2(ii) ensures that a new symbol can replace only one symbol from T, so that the
map (x-» parent of x) is a well-defined 1-block map. Conditions 2 and 3 ensure
that only finitely many x can be formed from a given x, because they specify uniquely
which Ar-maximal string may replace an A-maximal string which is not left-infinite
in x. In particular, these conditions imply that </> is a bijection between the periodic
points of S and those of T, except for the k +1 orbits defined by A and the Ar

Because for each r there is some non-empty Cr(ai), all of the new orbits actually
appear in S (many variations of the construction will also guarantee this.) We leave
to the reader the verifications that <f>: SI T, S is an (L-step) irreducible SFT,
h(S) = h(T) and S is mixing if T is mixing. •

Remarks. Adler and Marcus showed in [1] that, given an MSFT U, there is an MSFT
T with a fixed point such that h(T) = h(U). Given non-negative integers au...,am

one can apply the covering lemma finitely many times to this T to produce an
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MSFT S such that h(S) = h(T) and TT,(S) = iat if 1 < i < n. That is, for any allowed
entropy, any finite periodic pattern will occur in some MSFT of that entropy.

For the record, we note some properties of the factor map <f> of (2.1) which we
shall not need in this paper. The map <j> is right closing ([4], [7]) and 1-1 a.e. If
only one new orbit is added (that is, k = 1 in the statement of the lemma), then <f>
is right-resolving ([1]).

We call a block bx... bk j-periodic if 1 < i < / + / < fe implies x, = xi+j.

(2.2) LEMMA (Krieger). Let S be a subshift. Given k> N> 1, there is a closed open
set F such that

(1) the sets S'F, 0 < i < N, are disjoint, and
(2) if xeS and X-k... xk is not a j-periodic block for any j < N, then

xe LJ ST.

Proof. Given k>N>l, enumerate the allowed (2fe + l)-blocks which are not j -
periodic for any / < N as C , , . . . , CL. LetiJ, ={x: X-k... xk = Q}. LetF, = £,. Given
Fj, let

Fj+i = Fj u (Ej+1 ~ U S'Fj).

Set F = FL. •

The simplicity of Krieger's lemma is perhaps deceptive. The set F, whose definition
typically requires many more than 2 k coordinates, incorporates a tremendous
amount of combinatorial information.

(2.3) LEMMA. (1) Suppose x and y are twosidedly infinite sequences with periods j
and k, respectively, and for some i the blocks x , . . . xi+j+k-i and yt... yi+j+k-i are
equal. Then x = y.

(2) Suppose x , . . . x, is a block with / — i s 2N — 3. Then there is at most one sequence
x with period strictly less than N such that

Xi . . . X[ = Xj . . . X\.

Proof. (1) Using the assumed equality and the periodicities of x and y, we find

That is, Xi+j+k = yi+j+k- An induction shows x, = y, for all f > i. Similarly, x, = y, for
all t<i.

(2) Suppose there are two such x, and apply (1) for a contradiction. •

Recall that <f>: S->T means that <f> is a continuous, shift-commuting map from S
to T, while s —'-> T means that the period of any periodic point of S is divisible
by the period of some periodic point of T.

(2.4) EXTENSION LEMMA. Suppose that S, S and T are subshifts satisfying the
following conditions:

(1) r is a mixing subshift of finite type;
(2) S is a subshift of S;
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(3) there is a map <£: S-* T;

(4) S-^T.

Then <£ extends to a map <j>: S^T.

Proof. Recoding if necessary, presume <£ is 1-block and T is 1-step with transition
length TV. Use Krieger's lemma to find fe > 27V and a closed open set F <= S such
that the following conditions hold:

(1) the sets S'F, 0 < i<7V, are disjoint;
(2) for any integer i, if x e S and x&\J_N<j<N S'F, then x,_fc... xi+k is a /-periodic

block for some /<7V;
(3) the number fc is large enough to ensure that, if / is less than TV and a /-periodic

string of length 2fc+l occurs in some x in S, then that string defines a /-periodic
orbit which actually occurs in S (the existence of k follows from compactness).

We pause to visualize (as in [6]) a segment of x:

•\i\fVV\fWWil\Jj-
FIGURE 1

The wavy part is /-periodic, /<TV. The bars are markers placed at points of entry
into F: there is a bar at xt if S'xeF. Then (1) above tells us that in a sequence of
symbols from S, there are at least TV — 1 unmarked symbols between successive
markers. Similarly, (2) above tells us that if x e S and a string of length 27V-1 from
x has no markers, then that string is occurring in x within a 'wavy' string of length
>2fc + l.

We will define the code <f> in three parts.

I. Code between nearby markers. The 1-block map <£ induces for each i a map
<£,:B,(S)^B,(T). First, extend <£,: A(S)^A(T) arbitrarily to 0,: A(S)-* A(T).
Then, if N<i<2N, extend <& to ^ i B ^ S J ^ B ^ T ) , requiring only that the first
symbol of <f>i(bx... bt) be <M^i) and that the last be <f>i(bi). This is possible because
TV is a transition length for T and i > N. Now we can define <j> between nearby
markers. If S'x e F and S'x e F, where N < / - i < 27V-1, then

(<f>x)i. . . ( 0 * ) ; = 4>j-i+l(Xi. . . Xj).

II. Periodic code. Since S * T, there is a shift-commuting map p of points in S

of period less than TV to points in T such that px = 4>x if x e S. We will let p determine
<f> inside periodic strings at locations at least TV symbols from a marker.

So, suppose S'xg'{J_N<j<N S'F. By (3) above and lemma 2.3, there is a unique
point xeS with period less than TV such that xt = x, if i — N<j<i + N: we define

III. Transition code. Finally we define transitions between the periodic and aperiodic
stretches. For each pair (a,b) from A{T)xA{T) choose from BN+i(T) a block

a, b) which begins with a and ends with b.
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Suppose S'xeF, but Si+'x£F if 0<j<2N. Then we have already given the
'periodic' definition for (<t>x)i+N. We define

(<f>x)i... (4>x)i+N=^(<f>i(Xi), (<l>x)i+N) if xt... xi+N^BN+i(S)

— 4>N+i(Xi • • • xi+N) if x , : . . . x i + N e BN+l(S).

Similarly, suppose S'xeF, but SM&F H0<j<2N. Then we define

= tj>N+1(Xi-N... xt) if Xi-N... x,-.eBN+1(S).

The definition of </> is now complete. Since k> N, the above definitions overlap on
at most a single coordinate, where they must agree. Since T is a 1-step SFT, <j> is
well defined: the assembly of blocks from the code for 4>x must produce a point
which is actually in T. The construction ensures that <f> = <f> on S. •

Remark. The method of the extension lemma is flexible. For example, if in the
lemma $ is injective, h(S) < h(T) and for all j , w;-(S) s irt{T), then we can extend
<£ to an embedding <f> by coding markers into the image as Krieger did in [5].
Analogously, if in the lemma we add the assumptions that 5 is a proper subshift,
S is sofic and h(S)> h(T), then we can extend 4> to a surjection <f>:SlT with the
help of Marcus' result.

(2.5) THEOREM (Main result). Suppose S and Tare irreducible subshifts of finite type,
S - ^ T and h(S)>h(T). Then SIT.

Proof. First suppose S and T are also mixing. Since h(S)> h(T), it follows that

lim (T7)(S) - ITJ(T)) = +oo.

So, we may use the covering lemma finitely many times to find an SFT S such that
S | T, h(S) = h(T) and for all /, w,-(S) < TT,(S). By Krieger's Embedding Theorem,
we may assume S is a subshift of S. Apply the extension lemma to extend S~l T to
S|T.

If S and T need not be mixing, let k and / be the ergodic periods of S and T.
Pick a prime p greater than / such that S has a point of period pk. Since S » T,

some multiple of / must divide pk, hence / divides k.
Let E and F be cyclically moving subsets for S and T. Since I divides k, the

restriction of Tk to F is well-defined and mixing. So by the first paragraph of the
proof, we can find 4>:(Sk\E)i(Tk\F). Then there is a unique extension of </> to the
full domain of S which factors S onto T. •

Theorem 2.5 fails if the requirement of irreducibility is relaxed for either S or T.

(2.6) COROLLARY (Lifting MSFT's). Suppose S and T are subshifts satisfying the
following conditions:

(1) Tis a mixing SFT;
(2) S contains an SFT S such that h(S)>h(T), (for example, S is sofic and

h(S)>h(TJ);
(3) S-^-> T.

Then SIT.
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Proof. By restriction to an irreducible SFT of equal entropy, we may assume S is

irreducible. Since S > T, we know S * T; so §i T. Use the extension lemma
to extend to S | T. •

In (2.6), S need not even be transitive. However, example 3.5 shows that the mixing
constraint on T cannot be relaxed.

(2.7) COROLLARY. Suppose S and U are irreducible SFT's with equal and positive
entropy. Then the following conditions are equivalent.

(1) Every factor of U of lower entropy is also a factor of S.
(2) Whenever TTJ(S)> 0, there is some j dividing J such that TTJ( U) > 0.

Proof. (1) => (2). Suppose 777 (S) > 0 and there is no j dividing / for which TT,-( U) > 0.
Pick some SFT T such that U [T and h(T)<h(U). Now apply the covering lemma
to find an SFT f such that TiT,h(T) = h(T), U - ^ f but 7r,-(f) = 0 if j divides
/. Then Ui t but S cannot factor onto f.

(2)=>(1). Suppose £ / |T where h{T)<h(U). We must show S | T ; this is not
immediate from (2.5), because T might be sofic. It suffices to intercept the factor
map U\T to produce an SFT f such that h(T)<h(U) and U[TlT: then by
(2.5), Si f. We leave this as an exercise. O

For help in the classification of MSFT's, one might look to the classes of lower-
entropy factors or subshifts for invariants. Krieger's Embedding Theorem show ;̂
that the class of subshifts can tell us no more than we already know from the zeta
function. Corollary 2.7 shows the same for the lower-entropy factors.

In the next section, we find the sofic situation is more complicated.

3. The sofic situation
We begin by considering examples which limit the extension of previous results to
sofic shifts. The following example is due essentially to Brian Marcus; we have
modified his example to control the zeta function.

(3.1) Example. We exhibit a mixing sofic shift with finite-type zeta function lacking
periodically allowed finite-type subshifts and extensions.

Let T be the strictly sofic shift on alphabet {au a2, b} in which the following
blocks are disallowed:

(1) aflj, for 1< i , ;<2;
(2) ajb"aj, for n ¥i mod 2, 1 < i, j< 2.

Let U be the SFT on alphabet {a, b} in which the block aa is disallowed. Then
Ti U by the 1 -block map ai>-^a,b>-*b. This factor map is a bijection on the periodic
points, so T and U have the same zeta function.

Now suppose (j>:S^ T, where S is an irreducible SFT with a fixed point {x, say,
with xn = 1 for all n): we claim cj> must map all of S onto the fixed point of T. Let
y be the fixed point of T; clearly <f>x = y. If the image contains another point, then
the irreducibility of S implies the existence of blocks B, C, D, E and positive integers
;', k for which the following hold:

(1) d> maps the orbit l^Bl^Cl00 to the orbit b^DtiEb™;
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(2) <j> maps l^Bl^Cl00 to
(3) some a, occurs in D and in E.

This is a contradiction, because £)Z>y£ and Db'+1E cannot both occur in T. •
(3.2) Example. We show that two mixing sofic shifts with the same zeta function
may have different lower-entropy factors.

We describe sofic 5 and S by the following diagrams:

B,

(~J(123)*

FIGURE 2

The diagrams indicate what blocks may follow other blocks. There Bx and B2 are
distinct blocks on new letters, of length 5, say.

The zeta functions of S and S are the same. Basically, we have two distinct
six-blocks, 121212 and 123123; one may occur between Bt's 2n times, the other
3n times, n & 1. All periodic orbits of 5 and S except (12)°° and (123)°° occur by
such sandwiching, and can be put in a natural 1-1 correspondence.

Now obtain T, h(T) < h(S), from S by identifying B, and B2 as B. Suppose Si T.
Clearly (12)°°-»(12)°°. For a large k, then, an orbit (12)ooB1(12)'cB,(12)<x:> must go
to some orbit (12)OOC(12);C(12)O°, where B occurs in C and / > 0 , and also
(12)o0B1(12)k+6

JBi(12)o° must go to (12)OOC(12);+6C(12)°O.
But this is a contradiction, since / can increase only by increments of 9. •

In the examples, factor and embedding maps into mixing sofic shifts were ruled out
by contradictory congruence conditions on allowed periodic block counts. In fact,
nothing else can go wrong. To make this claim precise, we define a class of periodic
points (receptive points) on which such congruence pathology is ruled out. Suppose
a point x has least period / for a mixing sofic shift S, and set A = x0 •.. */-i. We
say x is receptive if there exist magic words Wt and W2 such that the blocks W1A"W2

are allowed for n > 1. (There is an equivalent condition, less useful for coding: given
5-blocks E and F, there exist blocks E and F such that EEAnFF is an S-block if
« 2 1.) It is not enough to assume that there exist blocks B and C not periodic-A
such that BA"C is allowed for n > l . For example, there might still exist a block
D such that BA"CD is allowed only for odd n. Difficulties of this sort are ruled
out by the intersection property of magic words.

(3.3) THEOREM (Lifting Mixing Sofic Shifts). Suppose S and Tare subshifts satisfy-
ing the following conditions:

(1) T is mixing sofic;

https://doi.org/10.1017/S0143385700002133 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002133


Lower entropy factors 551

(2) S contains an SFT S such that h(S)>h(T), (for example, S is sofic and
h(S)>h(T));

(3) if ITJ(S) > 0, then T contains a receptive point whose period divides j .
Then Si T.

Proof. As in corollary 2.6, we will find a subshift S of S and a map <j>: Si T, which
we will extend to <f>: S i T. Because T need not be finite type, we must work harder
to ensure the blocks obtained in T by linking up blocks from the code are actually
allowed for T.

First we find <£. Pick an MSFT [/such that U[T and h(U) = h(T). Find an
irreducible SFT S in S such that S-^-* U and h(S) > h(U). Then §i Ui T gives
<£:SlT. Recoding, we may assume S is 1-step and <£ is 1-block. The proof of
theorem 2.5 shows that we may assume the map S~i U maps each cyclically moving
subset of S onto U. Consequently, since U is mixing, there is a positive integer
N(S) for which the following condition holds. Suppose aeA(S), BeB(T) and
1>N(S); then there are blocks Bu B2, d and C2 in B(S) such that

(ii) aCiBl and B2C2a are in B(S); and
(iii) C\ and C2 have length I.
Let W be a magic word in T. Let N(T) be a transition length for T. Let

JV = max {N(S), N(T) + \W\}. Choose k large enough so that we may define a
marking set F = F{N, k) satisfying the conditions (1), (2) and (3) stated in the proof
of the extension lemma (2.4). For later convenience, we also require k>6N.

To see how the pieces of the code <f> will fit together, use the following picture
of a sample segment of some sequence x from S.

T T T 2 J T $ T
' i l l I 11 I I 111 I'I I I JJ-l'lIIIIH+4— H+Hl i l l l l l M i l l i n g — W t i t t

*
FIGURE 3

The vertical bars mark the coordinates x, such that S'xeF. The wavy stretches
represent blocks of length greater than 2k which are /-periodic for some j<N. We
call Xi... Xj a marker block in x i f S'xeF, S'xeF and S'x^F for i<t<j. In the

picture, an asterisk appears below marker blocks from B(S). We will use several
rules to define the code; symbols above marker blocks indicate where the different
rules are used. The marker blocks without symbols overhead are coded by rule W.

There will be three fundamental rules: 4>, p and W. Rule <$> is used on long
marker-free stretches of symbols from A(S), and on marker blocks in B(S) flanked
on each side by a marker block or wavy stretch from S; this rule agrees with <£ and
guarantees <j> is an extension of $. Rule W is used on all sufficiently short marker
blocks for which rule <j> (or a transition rule) is not used. Rule p is used inside long
marker-free stretches which do not occur in S; this rule ensures points of small
period in S ~ 5 are mapped to receptive points.
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A transition code is u?ed on a marker block from B(S) which is flanked by blocks
to which rules <$> and W apply. Another transition code is used on initial and terminal
segments of long marker-free stretches within which rule p is used. We guarantee
that the blocks we get in T by gluing together the fundamental-rule blocks with
the transition blocks are well-defined by coding appropriate magic words into the
transition blocks.

Notice that if x0... x2k is /-periodic for some j<N, but x-l... x2k is not, then
S'x e F for at least three / such that 0 < i < 6N; this is because k > 6JV. That is, we
see at least two marker blocks inside a 'wavy' stretch by the left boundary of the
stretch; the same is true on the right. This convenience ensures that we never have
to code a transition between rule p and rule </>. Similarly, the statement of the
transition rule between rule W and rule </> is simplified, because this rule will apply
only to marker blocks flanked by marker blocks of length less than 2N.

We now define the code </>.

I. Rule <j>. Recall <$> is 1-block. We define (<f>x)i = <j>(Xi) if one of the following
conditions hold.
Condition 1. There exists an integer / such that the following hold:

(i) KKI + 2N;
(ii) xI...xI+2N<=B(S);
(iii) S'xffF if Kt<I + 2N.

Condition 2. There are integers a<b<c<d such that the following hold:
(i) b^isc;
(ii) xa...xdeB(S);
(iii) SbxeF and ScxeF;
(iv) SaxeF or
(v) SdxeF or

II. Rule p. Let p be a shift-commuting map from the points 0> in S ~ S of period
less than N to receptive points in T. Given R > N, let M = 2R + N. Suppose there
are integers i, I and / for which the following conditions hold:

(i) /-/>M;
(ii) I + R<i<J-R;
(iii) S
(iv) x,

Then we define (<£x), = {px)h where x is the unique point in SP such that Xj... x3 =
Xj... Xj. (Because k satisfies condition (3) from the extension lemma, x exists; by
lemma 2.3, x is unique.)

This rule determines the code inside long periodic strings of 5 ~ S at locations
more than i? symbols from a marker. The number R, determined below, is large
enough to ensure room for a transitional code between rule p and rule W.

III. Rule W. For each I>JV, pick a block C, of length l-\W\ such that WQWe
B(T); this is possible because N>N(T) + \W\. Then we define (<£*),•... (<£*);-i =
WCj-i if Xj... Xj is a marker block in x satisfying the following conditions:

(i) j-i<M;
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(ii) rule </> is not used to define ( $ * ) , . . .
(iii) if i-2N<h<i and xh... x, is a marker block in x, then rule <f> is not used

to define (<t>x)h... (<t>x)r,

(iv) if j< l<j+2N and x ; . . . x, is a marker block in x, then rule <f> is not used
to define (4>x)j... (<t>x)t.

The intersection property of magic words guarantees that blocks assembled in T
by concatenating pieces of the code from rule W must actually occur in T.
IV. Transition between rule W and rule <£. Because N^N(S), for each aeA(S)
and / > N w e may choose a word E(j, a) of length j from J5(S) such that E(j,a)ae
Bj+1(S) and 0(£(;', a)a) begins with W. Define

(<£x),.. • (4>x)j-i = 4>{E{j-i, xj))

if there exist integers to and / such that the following hold:
(i) h<i<j<l, with l-h<6N;
(ii) xh... xh Xj... Xj and xl.... x, are marker blocks in x,
(iii) x h . .
(iv) x,. .
(v) Rule </> is used to determine (</>x);. • • (<t>x)i-

This defines transitions from rule W to rule <̂ . The transition from rule <̂  to rule
W is similar.

V. Transition between rule p and rule W. Pick one representative y from each of
the receptive orbits in the image of p, and let A = y0... yj_t, where ; is the least
period of y. By hypothesis, there exist magic words Wl and W2, depending on y,
such that WlA"W2 is allowed for all positive n. We may assume that Wl and W2

have the same length L for each of these y. Also, for each / between \W\ + L + N(T)
and | W\ + L + N{T) + N, we may choose blocks D, and E, such that WD,Wt eB,(T)
and W2E,We B,(T). We will code the following picture:

rule: W T p T W

inS:

inT: AAW2E,

FIGURE 4

Then the intersection property of the magic words will guarantee that rules W and
p are hooked up in a well defined way. The point of the variable length C's and
D's is to let us finish the transition in synchrony with A.

So, suppose S'x e F, but S'xg'F for i < t < i + M, and x f . . . xi+N ^B{S). Let x be
the point in SP such that x , . . . xi+M ~ xt... xi+M. From the orbit of px, pick the
distinguished y and A = y 0 . . . y;_i chosen above. Pick the least t such that

(i) \W\ + L+N(t)<ts\W\ + L + N(T) + N, and
(ii) (px),...(px)l+H1=A.
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Then define

(4>x)t...(4>x)i+t-l=WC,W1,

and

(4>x),... (</>x)i+R = (px), ... (px)i+R.

This codes the transition from rule W to rule p. The transition from rule p to rule
W is similar. Let R = l(W) + 2N+L, and we have room for the transitions. Since
M = 2R + N, the definitions are consistent, and at least one copy of A must appear
between Wt and W2 in the image of an application of the transition rule V. •

The previous theorem lets us characterize those mixing sofic shifts which behave
like MSFT's with respect to higher-entropy sofic extensions. We say a sofic shift T
is receptive if whenever S is sofic with h(S)>h(T) and S-^-* T, then SIT. For
example, the even system of Weiss ([8]) is the sofic shift obtained from the 2-shift
(on symbols 1 and 2, say) by disallowing the blocks 21fc2 for which k is odd. This
shift is receptive because it contains a receptive fixed point.

(3.4) COROLLARY. Suppose Tis a mixing sofic shift. Then the following conditions
are equivalent.

(1) T is receptive.
(2) / / TTj( T) > 0, then T has a receptive point with period dividing j .

Proof. (2)=>(1). Apply theorem 3.3.
(1)=>(2). Suppose 7Tj(r)>0 and if k<J divides / then nk(T) = 0. We must

show T has a receptive point of period J. Construct an MSFT f such that h(f)>
_ per _ _

h(T), T » T and TTJ{T)>0. (For example, obtain T from any MSFT with a
fixed point and entropy greater than h{T) by repeated use of the covering lemma.)

So, T[ T. We may assume the factor map <t> is one-block and T is one-step. If
C is a block for T, we denote <f>C by C. Find 7-blocks A, A defining orbits of period
/. Find W so that W is a magic word for T. Find blocks E, F so that WEAFW is
allowed for f. Hence WEA"FW is allowed for f and so WEA"FW is allowed for
T for all n > 1. But WE and FW are magic words. •
Corollary 2.7 extends to mixing receptive sofic shifts; in this case, to prove SIT
given U[T, adjust the proof of theorem 3.3. (The new wrinkle is that, where
receptive points in T were used in the proof of (3.3), we now use points in T which
are images of appropriate receptive points in U.) In particular, two mixing receptive
sofic shifts with the same zeta function have the same factors of lower entropy.

The following example shows one way in which (2.4), (2.6), (3.3) and (3.6) may
fail if the range shift T is not assumed to be mixing.

(3.5) Example. We will exhibit a transitive sofic shift S such that there can be no
continuous shift-commuting map <j> from S into any irreducible SFT T with ergodic
period two. With the covering lemma, it is easy to construct such a T for which

(i) S - ^ * T and h(S) > h{ T), or

(ii) for all /, TTJ(S) < Wj(T) and h(S) < h(T).
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Thus conditions on periodic points and entropy fail to ensure the existence of various
maps into non-mixing SFT's.

Let the graph in figure 5 give the allowed transitions for an irreducible period-two
SFT U on the five symbols 1", 3,2", \b and 2b.

Some symbols are repeated in the graph for clarity. Define S as the factor obtained
by the following 1-block map: la, 16>-»1; 2", 2(>>-»2; 3-»3. This map identifies the
orbits (r26)°° and (1*2")°° but collapses no other points. In S, we see blocks like
3(12)"13 and 3(21)"23, and every periodic point has even period.

Suppose T is an irreducible, period-two SFT and <f>:S-*T. By taking the inverse
image of the cyclically moving subsets of T, we find that S must be a disjoint union
of clopen, S2-invariant sets X, and X2 such that S(Xi) = X2 and S(X2) = Xl. We
may suppose the point y of the orbit (12)°° with l's on even coordinates is in Xt,
and Sy e X2. Since y cannot be an accumulation point of X2, and Sy cannot be an
accumulation point of X1; there must be some positive integer N for which the
following hold:

(1) if n s N, x e X1 and xt... xi+2n_i = (12)", then i is even;
(2) if n > N, x 6 X2 and xt... xi+2n^ = (12)", then i is odd.

This contradicts S = Xx u X2. For example, no point of the orbit (3(12)N 13(21)N2)°°
can satisfy (1) or (2). •

(3.6) THEOREM (Embeddings into Sofic Shifts). Suppose S and Tare subshifts which
satisfy the following conditions:

(1) S is mixing sofic;
(2) for every j , S has at least TTJ(T) receptive points of least period j ;
(3) h(S)>h(T).

Then T is isomorphic to a subshift of S.

Proof. Since S is mixing and h{S) > h(T), S contains an MSFT U such that h(U)>
h(T) and U contains a magic word. We could apply Krieger's Theorem to embed
T in U and be done, except that U might be short a finite number of periodic
points. So it suffices to show, given an MSFT U in S containing a magic word W,
and a receptive point y not in U, that there is an MSFT U in S which contains U
and y.

Let A = y0 . . . yj-\, where / is the (least) period of y. Because y is receptive,
there are magic words Wu W2 such that WxA

nW2e B(S) for n > l . Let U be
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JV-step. Pick blocks C, D such that WCWU W2DWeB(S). Pick

M > max {/, N, | WCWj, | W2£W|}.

Pick B, £ e BSM(U) such that 5W, WE e B(U). Now define a ( 5 M - l)-step SFT U
by letting B5M(U) be the union of BSM(U) and all 5M-blocks which occur in the
word

Q = BWCW1A
5MW2DWE.

Then C? is an MSFT containing y arid [/. We must check that U is a subshift of S.
Let Q = <?i... qk. Suppose x e U, F e B5M(U) ~ BSM (U) and F is not periodic-A.

Then there is a unique / such that <jr7... qI+SM^ = F. Also, if x, . . . JC(+5M-, = F, then
x,_! = <?/-! and xt+5M = <5f/+5M- Therefore, if F occurs in x, then F occurs in x within
one of two blocks:

(1) a block GWCWiA', where GeB(U), A' is periodic-A and |A' | , |G|>3M
(this block is the smallest sub-block <?,... qf of BWCW^5™ such that ; ' - i>5M,
qt... <?,+5M-i £BSM(U) and q>_5M+i • • • <7y is periodic-A);

(2) a block A"Vy2£)WH, where HeB(U),A" is periodic-A and |A"|, |H|>3M
(obtained similarly from the right side of Q).
Consequently, if two A-maximal stretches of length > M occur in xe U, with no
such intervening stretches, then the intervening stretch occurs in x within a word
A" W2DWXWCWi A', for some [/-word X of length greater than M (hence greater
than N). From the intersection property of magic words and the fact that U is an
JV-step SFT contained in S, we see that such a word must be in B(S). Similarly, all
[/-words are S-words, and U is a subshift of 5. •

Theorem 3.6 lets us characterize those mixing sofic shifts which behave like MSFT's
with respect to embeddings. We say that a subshift S is inclusive if it satisfies
Krieger's Embedding Theorem: that is, if T is a subshift with h(T) < h(S) and for
all j , TTJ(T) < TTJ(S), then T is isomorphic to a subshift of S. For example, the even
system of Weiss is not inclusive: (exactly) one of its periodic points is not receptive.
If 5 is mixing sofic with no congruence constraints on the iteration of periodic
blocks, then S must be inclusive; but this condition is not necessary for S to be
inclusive. For example, let S be the subshift of the 3-shift denned by excluding all
blocks 21n2 for which n is odd.

(3.7) COROLLARY. Suppose S is a mixing sofic shift. Then the following conditions
are equivalent.

(1) S is inclusive.
(2) Every periodic point of S is receptive.

Proof. (2)=>(1). Apply (3.6).
(1) =» (2). Suppose x is periodic for 5. We must show that x is receptive. It suffices

to show that x is contained in some MSFT contained in S for which there is some
allowed block W which is a magic word for S. Trivially, we may suppose h(S)>
0 - otherwise 5 is just a fixed point.

Let / be the minimal period of x, and let y be a point of minimal period K such
that y, . . . yK is a magic word for S. Construct T an MSFT such that
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h(T)<h(S), 7rJ(r) = 77J(S), nK(T) = TTK(S) and for all ;, 7ry(r)s ^(S). (For
example, obtain T from any MSFT with a fixed point and entropy less than h(S) by
repeated use of the covering lemma.) Since S is inclusive, T is isomorphic to a subshift
of S; but the embedding of T into S must contain x and y. •
The theorems (3.3) and (3.6) provide sufficient but not necessary conditions. Can
the existence of a factor map/embedding between mixing sofic shifts of unequal
entropy be characterized in terms of some tractable conditions on the periodic
points?

I am grateful to Bruce Kitchens and Brian Marcus for encouragement and instruc-
tion. Especially I thank Doug Lind, who has guided me in ergodic theory, and
suggested numerous improvements to an earlier version of this paper.
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