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Abstract

Adaptive actors must be able to use probabilities as decision weights. In a computerized multi-attribute task, the authors

examined the decisions of children (5–6 years, n = 44; 9–10 y., n = 39) and adults (21–22 y., n = 31) in an environment that

fosters the application of a weighted-additive strategy that uses probabilities as weights (WADD: choose option with highest

sum of probability-value products). Applying a Bayesian outcome-based strategy classification procedure from adult research,

we identified the utilization of WADD and several other strategies (lexicographic, equal weight, naïve Bayes, guessing, and

saturated model) on the individual level. As expected based on theory, the prevalence of WADD-users in adults was high. In

contrast, no preschoolers could be classified as users of probability-sensitive strategies. Nearly one-third of third-graders used

probability-sensitive strategies.
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1 Introduction

Individuals use different strategies when searching and eval-

uating information for decision making. The economist Her-

bert Simon introduced this notion to decision research in the

mid-20th century (Simon, 1955). Still, decision researchers

did not begin to study the application of decision strategies

systematically until some years later. A groundbreaking de-

velopment in research methodology paved the way for such

studies – information-board technology (Payne, 1976). In an

important paper, Payne, Bettman and Johnson (1988) intro-

duced the Mouselab, in which monetary gambles were dis-

played in a matrix on a computer screen that crossed options

(the choice alternatives) with attribute dimensions. Dimen-

sions differed with regard to the probability that outcomes

(certain amounts of money) could occur. Individuals could

inspect the outcomes by opening cells in the matrix with the

computer mouse. The gathering of information was tracked

by the computer. These search data were subsequently used

to identify strategies of information acquisition.

Using the Mouselab, decision processes are inferred from

search movements, i.e., the course and amount of inspected

information. However, inspecting a certain piece of infor-
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mation does not necessarily imply that it is actually used

in subsequent preference formation and choice. With the

advance of formal modelling, it became possible to iden-

tify strategies without search data (Glöckner & Witteman,

2010, for overviews). In outcome-based strategy classifica-

tion (Bröder, 2010), the researcher varies patterns of infor-

mation in such a way that each decision strategy predicts

a distinct choice sequence over a series of decision trials.

Participant’s choices can then be compared to the strategy

predictions. These and other sophisticated techniques have

been frequently applied in decision research on adults (e.g.,

Bröder 2003; Glöckner & Betsch, 2008; Jekel, Glöckner,

Bröder & Maydych, 2014; Lee, 2016) and adolescents (e.g.,

van Duijvenvoorde, Jansen, Visser & Huizenga, 2010) and

have significantly advanced our understanding of strategy

application in adults. For children, however, empirical evi-

dence is scarce. In most studies using an information-board,

classification of strategies rarely reached the standards of

research on adults (but see Mata, Helversen & Rieskamp,

2011). In this paper, we apply the outcome-based classifica-

tion method to preschoolers and compare their performance

with third-graders and adults in order to gain insight into

the development of strategy application in a probabilistic,

multi-dimensional environment. Specifically, we focus on

the application of a weighted-additive (WADD) strategy that

uses probabilities as weights for values.

1.1 Strategies

Subjective expected utility theory (Edwards, 1954) implies

that actors should choose the option with the highest ex-

pected utility. Accordingly, for each outcome of an option,

the decision maker assesses its subjective value and subjec-
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tive probability of occurrence. Then, each value is weighted

by its probability. Those products are then summed over

all outcome dimensions to determine the expected utility for

a particular option. The option with the highest expected

utility is then chosen. The manner in which information is

integrated can be described by a so-called weighted-additive

rule (WADD, Payne et al., 1988).1 WADD is one of the most

complex decision making strategies (Shah & Oppenheimer,

2008) because it is responsive to the relative importance of

outcomes (via weighting) and considers all available infor-

mation (adding all value-probability products). It underlies

the integration rule in the utility maximization approach in

economic theory (e.g., von Neumann & Morgenstern, 1947).

As such, it is part of an approach that is considered a norma-

tive model (Simon, 1983). Consequently, WADD has often

been used as a comparison standard in early process tracing

studies and modelling of adaptive decision making (Payne,

Bettmann & Johnson, 1993).

It is important to note, however, that WADD, as a rule

for information search and integration, is not the rational or

normative benchmark per se. There are other rules rooted

in probability theory that also allow individuals to improve

or even optimize decision accuracy. Naïve Bayes, for ex-

ample, also takes the relative importance of all outcomes

into account. In contrast to WADD, naïve Bayes transforms

probabilities of outcomes into log-odds. For each option, the

model then sums the log-odds of outcomes that support the

option. The model finally chooses the option with the highest

sum of log-odds. Naïve Bayes is the optimal solution when

options are equally likely a-priori and cues are conditionally

independent. However, due to the complex transformations

of the outcome probabilities required, naïve Bayes is likely

not a psychologically plausible model of human decision

making. Still, proxy models may exist that closely mimic

naïve Bayes (e.g., Jekel, Glöckner, Fiedler & Bröder, 2012;

Lee & Cummins, 2004).

A simpler way to reach a decision is to apply an equal-

weight rule (EQW, Payne et al., 1988), which does not require

the weighting of outcomes because it ignores probabilities.

Formally, this can be expressed by setting weights equal to

one. Outcome values are summed for each option; and the

option with highest sum is chosen. Lexicographic strategies

(LEX, Fishburn, 1974; see also the take-the-best strategy,

e.g., Gigerenzer, 2004) ignore portions of the outcome infor-

mation and do not require integration (weighting, adding). A

LEX user begins by inspecting the most important attribute

dimension. In a probabilistic environment, the rank order

of the dimensions follows their probability. Accordingly,

the most likely outcome values are compared first. The op-

tion with the highest value on that probability dimension is

then chosen. Only in the case of ties does the individual

1WADD with weights corrected for chance-level (Jekel & Glöckner,

2018; Rieskamp, 2018) make the same predictions for the tasks used in this

study and are, therefore, not separately discussed.

inspect outcomes on the subordinate probability dimension.

In this research, we focus on WADD but also assess a num-

ber of other strategies such as EQW, LEX, and naïve Bayes

(NB). Moreover, we include some lower benchmark strate-

gies in the classification such as guessing and a saturated

model (Hilbig, 2011) that allows for testing whether none

of the other models in the set can best describe participants’

choices. The saturated model allows us to detect system-

atic decision making that is not captured by one of the other

models.

1.2 How the environment affects strategy use

In the 1970s (e.g., Payne, 1976), psychologists began to study

how the environment and features of the decision task influ-

ence the way in which individuals make decisions. To date,

a large body of evidence indicates that (adult) humans are

adaptive decision makers, i.e., they tune information search

and processing to context demands. For the purpose of this

research, it is sufficient to briefly discuss two factors – weight

structure and feedback in the environment. Both factors are

of paramount importance in terms of understanding context-

contingent decision making (e.g., Payne et al., 1993).

In probabilistic environments, weights are represented by

the probabilities of outcomes or the validity of cues. Cues,

for instance, can be testers that predict the quality of products

(e.g., Glöckner & Betsch, 2008). The validity represents the

probability that the tester makes a correct prediction (good

vs. poor quality) regarding the outcome of an option (prod-

uct). In non-probabilistic environments, in which outcomes

occur with certainty, weights are determined by the decision

maker’s goals and preferences. One attribute of an option

(e.g., the color of a bike) may be more important than an-

other (e.g., whether the bike has a bell). (Klayman, 1985,

studied such a task in children.)

Decision tasks differ with respect to the dispersion of

weights. If dispersion is high, weights differ relatively

strongly. If dispersion is low, weights tend to converge.

Weight dispersion has important implications for the selec-

tion of strategies. If dispersion is low, outcomes of an option

can compensate for each other. In such a compensatory en-

vironment with low weight dispersion, individuals should

use a compensatory strategy such as WADD that considers

all relevant information. We will illustrate this briefly with

the following example. Assume that an individual decides

between two options. There are three cues that predict the

outcomes of the options. The three cues differ with regard to

their validity (p = .71; .71; .86), i.e., the probability that they

predict outcomes correctly. Dispersion of these validities is

low; thus, “low”-validity cues (p = .71) can compensate

for the “high”-validity cue (p = .86). Compensation be-

comes evident if one reflects the arithmetic underlying the

WADD rule. Assume, for example, that the high-validity cue

predicts an outcome value 1 for option A and an outcome
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value 0 for option B. Assume also that the two low-validity

cues jointly predict the opposite (0 for A, 1 for B). Applying

WADD, we can calculate the overall expected values (EV)

for the options as follows:

Option A: EV = 0 + 0 + 1× 0.86 = 0.86

Option B: EV = 1× 0.71 + 1× 0.71 + 0 = 1.42

Due to its higher expected value, a WADD-user should

choose Option B in this example, because the low-validity

cues together compensate for the prediction of the high-

validity cue.

It is not generally necessary to use WADD to achieve high

decision accuracy. For instance, in an environment in which

the dispersion of probabilities is so high that the low-validity

cues cannot compensate for the predictions of a high-validity

cue, even simple rules such as focusing on only the high-

validity cue (i.e., LEX) can yield ideal results (Payne et al.,

1988; see also Gigerenzer & Gaissmaier, 2011).

Another important factor is the presence and structure of

feedback. Feedback, i.e., the actual outcome experienced af-

ter choosing an option, may reinforce choice options (Betsch

& Haberstroh, 2005; Betsch et al., 2001), information search

strategies, and one’s ultimate choice (Bröder & Schiffer,

2006; Rieskamp & Otto, 2006) or even all three (Bröder

et al., 2013). Results show that adult decision makers (e.g.,

Rieskamp & Otto, 2006) and older children (Mata et al.,

2011) are sensitive to feedback and can be trained to routinely

apply a certain strategy contingent upon the reinforcement

schedule.

In this research, we used a compensatory environment

(fostering use of WADD) and additionally reinforced WADD

application by using feedback.

1.3 WADD application in children

In general, WADD describes a rule for information inte-

gration. On the formal side, the arithmetic equivalents are

multiplication and addition. According to folk wisdom and

empirical evidence, mental arithmetic is exhausting. Its mas-

tery requires years of school education and practice. Unfor-

tunately, some individuals continue to have difficulties with

arithmetic throughout adulthood. Thus, the backbone posi-

tion of the bounded rationality approach appears to be a tru-

ism, assuming that the application of WADD requires work-

ing knowledge of arithmetic. Especially when the amount of

relevant information is large, WADD could overtax our think-

ing abilities. Due to such limitations, decision makers are

assumed to instead apply simple strategies that reduce or even

avoid such effortful integration of information (Gigerenzer

& Gaissmaier, 2011; Shah & Oppenheimer, 2008). From

the viewpoint of bounded rationality, it seems rather odd to

expect young children to apply WADD because they suffer

from cognitive constraints (e.g., age dependent limitations of

working memory, Cowan, 2016) and lack pertinent formal

knowledge (Piaget & Inhelder, 1951) that motivate them to

weight values with probabilities.

Acknowledging findings from other fields of cognition,

however, we face a strikingly different notion. Research on,

for instance, spatial perception (e.g., Cheng, Shettleworth,

Huttenlocher & Rieser, 2007), categorization of biological

motion (Troje, 2002), understanding irony (e.g., Gibbs &

Colston, 2007), implicit attitude formation (Betsch, Plessner,

Schwieren & Gütig, 2001), and intuitive decision making

(Betsch & Glöckner, 2010) provide evidence that the human

mind is capable of performing integration and weighting op-

erations without noticeable effort in an astoundingly narrow

time frame (see Betsch, Ritter, Lang & Lindow, 2016, for an

overview).

Several developmental studies provide additional support

for this notion. For instance, Streri, Coulon and Guellaï

(2012) reviewed evidence from studies on face-voice inte-

gration in infants and concluded that integration abilities

are already developed at birth. Ebersbach (2009) investi-

gated whether children are able to combine width, height,

and length when estimating the volume of objects and found

that even five- to six-year-olds were able to integrate these

dimensions in a multiplicative-like fashion. Schlottmann

(2001) studied evaluative judgments in four- to six-year-old

children and showed that children integrate probability and

value in accordance with WADD. Finally, in a multidimen-

sional, non-probabilistic decision task, Lindow, Lang and

Betsch (2017) demonstrated that the majority of children

(6–12 years old) applied a WADD rule for information inte-

gration. Notably, the prevalence of WADD use appears to

decrease with age. Younger children (around 9 years) are

more likely to apply complex integrative rules than older

children (up to 17 years), who in turn begin to apply simpler

rules and heuristics (Jansen, van Duijvenvoorde & Huizenga,

2012; Mata, et al., 2011).

Yet, this is only half the story. In a non-probabilistic task,

Bereby-Meyer, Assor and Katz (2004) showed that even 8–9

year olds preferred simple strategies (such as lexicographic

rules) over more demanding ones. In a series of studies with

a probabilistic inference task, Betsch and colleagues (Betsch

et al., 2014, 2016) found that the majority of children under

the age of ten were reluctant to use probabilities as weights in

their decisions as required by the WADD rule. Preschoolers,

in particular, tended to apply maladaptive strategies such as

arbitrary switching between options and change after fail-

ure (Lang & Betsch, 2018). As a caveat, the environment

employed by Betsch and colleagues did not encourage the

application of WADD. The dispersion of weights was large

and, hence, yielded a non-compensatory environment. Feed-

back reinforced not specific strategies but rather the validity

of the cues (Betsch et al., 2014). Moreover, the design of

the pay-off structure did not allow the authors to classify

strategies on a level comparable to those regularly reached

in decision studies with adults.
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1.4 Research goal and hypothesis

As a crucial test for children’s capability to apply a WADD

rule, we thus studied their decisions in a compensatory prob-

abilistic environment in which WADD use was reinforced

by the feedback distribution structure. In doing so, we ap-

plied strategy classification methods from adult research to

a young age group (preschoolers) in a probabilistic envi-

ronment. Our research goal was to obtain insights into the

development of WADD application in children (5–6 y.; 9–10

y.) as compared to an adult control group.

It is necessary at this point to briefly discuss some aspects

of our method. We applied an open information board in

which all pieces of information can be inspected directly and

remain visible until the participant has reached a decision

(a so-called open board, Glöckner & Betsch, 2008). Ac-

cordingly, individuals do not have to store information in

memory. Otherwise, children’s memory capacities would

likely have been overtaxed – a condition that obstructs the

use of complex strategies such as WADD. Moreover, there

are no time constraints. Participants are free to ponder their

decisions as long as they wish. Hence, the decision envi-

ronment in our study is (i) compensatory (low dispersion of

probabilities), (ii) reinforces WADD, and (iii) is character-

ized by the absence of external constraints.

According to models of adaptive decision making and

strategy use, these are conditions that, together, increase the

likelihood that (adult) decision makers will apply compen-

satory strategies that rely on multiple information and utilize

probabilities as decision weights (e.g., the model of adaptive

decision making, Payne et al., 1993; and Shah & Oppen-

heimer, 2008, for a discussion). WADD is not the only strat-

egy that uses probabilities and aggregates information in a

compensatory fashion. Naïve Bayes, for example, fulfills the

same criteria and was also considered in our strategy clas-

sification approach. For simplicity, however, we predicted

that WADD should be the dominant strategy applied by de-

cision makers. This assumption represents the theoretically

derived hypothesis that we tested in this research.

Due to mixed prior evidence, we can only speculate re-

garding the development of WADD use to date. Referring

to the bounded rationality approach and Piaget’s model of

cognitive development (Piaget & Inhelder, 1951), one may

expect that the younger children are, the more they lack the

computational abilities and conceptual prerequisites (e.g.,

a concept of chance and probability) necessary to perform

WADD. Cognitive theories on information integration (e.g.,

Betsch et al., 2016, for an overview) and post-Piagetian

developmental research (e.g., Schlottmann & Wilkening,

2012), however, jointly suggest that children, from an early

age, have the ability to intuitively integrate information in a

weighted-additive fashion. To our knowledge, it is not pos-

sible to come up with clear, theoretically derived predictions

on the development of WADD use based on the literature to

date. Therefore, we consider our research to be exploratory

regarding the question of the age at which children begin to

systematically use WADD in an environment that fosters its

application.

2 Method

2.1 Participants

Children (German native speakers) were recruited at one ele-

mentary school and nine daycare centers, located in middle-

class areas, which had previously signed contracts with the

university agreeing to participate in research. Parents signed

informed consent forms prior to our approaching the chil-

dren. Adults were students with different majors at the

University of Erfurt who were sampled from our lab sub-

ject pool via ORSEE (Greiner, 2004).2 The study lasted

approximately 45 minutes including the breaks between the

different blocks.

The sample consisted of 44 preschoolers (61.4% female;

Mage = 68.5 months, SD = 2.3), 39 elementary schoolers

(53.8% female; Mage = 112.1, SD = 8.0), and 31 adults

(87.1% female, Mage = 271.7 months, SD = 34.3). Five

participants did not pass the manipulation check (i.e., they

rated one of the low validity cues to be smarter than the high

validity cue after the learning session). Following prior pro-

cedures (e.g., Betsch et al., 2014), they were excluded from

further analyses. One additional participant was excluded

from further analyses due to not following instructions. The

final sample (n = 108) included 39 preschoolers (66.7% fe-

male; Mage = 68.6, SD = 2.2), 38 elementary schoolers

(52.6% female; Mage = 112.3, SD = 8.1), and 31 adults

(87.1% female; Mage = 271.7, SD = 34.3).

2.2 Information board approach

Since the introduction of the “Mouselab” to decision re-

search (Payne et al., 1988), information boards have become

the standard tool in adult research to study strategies of in-

formation search and decision making. In child decision

research, information boards were most frequently applied

in the domain of multi-attribute decisions under certainty

(i.e., non-probabilistic). In such multi-attribute decisions,

the options (e.g., bicycles; Klayman, 1985) are described

on different attributes (e.g., color). Attribute weights vary

with regard to their subjective importance. The majority of

these studies assessed general tendencies in search behavior

(e.g., attention, search focus, amount of information consid-

ered) and do not classify specific strategies (Avond, 1997;

Ball, Mann & Stamm, 1994; Davidson, 1991a, 1991b, 1996;

Davidson & Hudson, 1988; Gregan-Paxton & Roedder-John,

2An online recruitment tool for lab studies is accessible at http://www.

orsee.org/web/.
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Figure 1: Mousekids. The screenshot on the left shows the last trial of the learning session after all smart circles had been

assigned to the animals. An animal received a smart circle if it made a correct prediction. Numbers of smart circles represent

cue validities. In the example, the last cue’s prediction was correct because the predicted outcome (treasure) was actually

contained in the house above. The screenshot on the right shows one trial from the test session with prediction pattern 4

(Figure 2). In this example, the participant has chosen the third option by opening the door of the house on the right at the

top row, which contained a treasure as predicted by the high validity cue (horse, p = .86).

1995, 1997; Howse, Best & Stone, 2003; Klayman, 1985;

but see Lindow, Lang & Betsch, 2017, for a strategy clas-

sification approach). Note that, in all these studies, tasks

were non-probabilistic, i.e., the outcomes of the options on

the multiple attribute dimensions always occurred with cer-

tainty.

In contrast, we present our participants with a probabilistic

environment. Compared to research with adults, informa-

tion board studies with probabilistic environments are rare

in child research (Betsch et al., 2013; 2014; 2016; Lang &

Betsch, 2018; Mata et al., 2011). “Mousekids”, the tool,

which we describe next, is structurally equivalent to infor-

mation boards from adult research on probabilistic inference

(e.g., Bröder, 2003; Glöckner & Betsch, 2008; Newell &

Shanks, 2003). Specifically, cues make binary predictions

of the outcome of the options. The cues differ with regard

to their validity, i.e., the probability that their predictions

are correct. For example, Glöckner and Betsch (2008) pre-

sented participants with a task in which products (options)

were described by testers (cues) which differed with regard

to the probability (validity) that they predicted the quality of

the product correctly.

2.3 Mousekids

Mousekids (Figure 1) is a computerized research tool for

studying multiple-cue decision making in a child-friendly

probabilistic environment (Betsch et al., 2016). There is

open access to the software package online.3 Mousekids is

an analog of the Treasure Hunt Game, a non-computerized

3http://www.uni-erfurt.de/en/psychologie/professuren/soe-psych/penk/

mousekids/

information board used to study probabilistic inference deci-

sions in children (Betsch & Lang, 2013; Betsch et al., 2014).

In this study, we apply an open-board version of the tool.

In an open board, all information contained in the matrix is

visible right from the start of each decision trial. Compared

to closed boards, which require the sequential opening of the

cells in the matrix, open boards foster exhaustive consider-

ation and integration of all given information (Glöckner &

Betsch, 2008). Accordingly, an open board should facilitate

application of WADD, especially in children.

A Mousekid session consisted of two parts – learning and

testing. In the test session (Figure 1), participants repeat-

edly chose between three houses (options) containing either

a treasure or a spider. For each chosen house covering a

treasure, participants received a treasure point. The goal of

the game was to collect as many treasure points as possible.

Participants based their decisions on the predictions of the

animals representing the cues. The animals gave binary pre-

dictions: treasure or spider. The validity of each cue was

depicted by a series of circles next to the picture of the ani-

mal. The relative number of circles equaled the validity of

the cue. The animals in the top two rows scored five of seven

circles, so that their cue validity was p = .71. The score of

the animal in the bottom row was six, i.e., this cue’s validity

was p = .86.

Prior to testing, participants were trained on cues’ validi-

ties in a learning session (left part of Figure 1). This session

comprised seven learning trials per cue. In each trial, the an-

imal predicted the content of the house (treasure vs. spider).

Participants opened the house by touching the screen and

then inspected its content. If the animal had predicted the

content correctly, the participant assigned a “smart circle”
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Figure 2: The six types of prediction patterns used in the decision trials of the study. Rows contain the predictions of the

three cues differing in cue validity (p = .71; .71; .86). Each cue makes outcome predictions (1 = treasure; 0 = spider) for the

three options depicted at the top of each column.

(“Schlaupunkt” in the German instructions) to the animal

by touching a blank circle, which then turned red on the

computer screen. The number of colored circles was said

to indicate “how smart” an animal was in terms of making

correct predictions.

Prior to the learning session, the participant selected three

out of a pool of eight animals (cat, dog, elephant, giraffe,

lion, hippo, horse, mouse). The animal selected first was

then placed in the top row of the board, the second in the

middle, and the third in the bottom row. The animal in the

bottom row always had the highest cue validity. The location

of the animals was determined to prevent the confounding

effects of liking and reading habits (see Betsch et al., 2014,

for a discussion).

In the test session, participants worked on 80 target trials

(in addition to three practice trials at the beginning). Target

trials presented variations of six types (T1–6) of prediction

patterns (Figure 2) designed to apply outcome-based mea-

sures of strategy classification. The systematic application

of each strategy under consideration (WADD, EQW, LEX,

NB, and benchmark models) predicts a unique distribution

of choices across these patterns. For example, in T1 an

individual would choose O1 if applying WADD (Expected

Value O1 = 1× 0.71 + 1× 0.71 + 0 = 1.42; EV O2 = 0 +

1× 0.86 + 0 = 0.86; EV O3 = 0 + 0 + 1× 0.86 = 0.86), and

O3 if applying LEX (i.e., following the predictions of the

cue with the highest validity). An equal weight (EQW) rule

neglects the validities of the cues and chooses the option

with the highest sum of positive predictions. In T1, results

of WADD and EQW application converge. A user of EQW

would also choose O1 because two cues jointly suggest this

choice, whereas only a single cue suggests choice of one of

the other options. For naïve Bayes, the log-Odds for O3 (i.e.,

log(.86/.14) = 1.82) is higher than the sum of log-Odds for

O1 (i.e., 2× log(.71/.29) = 1.79) and the log-Odds for O2

(i.e., log(.71/.29) = 0.90). There is also the possibility that

application of a strategy yields ties. E.g., in T3, WADD

and EQW suggest choice of O1 or O3. In such types of

patterns, application of WADD or EQW should result in an

even distribution of choices over O1 and O3. Table 1 shows,

as examples, choices expected for WADD, LEX, EQW, and

NB over the six types of prediction patterns.

The classification method, described in Appendix A, com-

pared expected and observed choices to determine the poste-

rior probability that the data was produced by an individual

using a certain strategy. Each pattern was shown in three

variants, so that each of the options was favored by the pre-

dictions equally often. The type of patterns and their variants

were parallelized over blocks of trials and positions, so that

each occurred four or five times in each block in counter-

balanced positions. Moreover, we ensured that none of the

patterns or their variations occurred in two successive trials.

None of the patterns were used for the three non-target trials

at the beginning of the test session. These free-shot trials
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Table 1: Choices over the six types of prediction patterns

for fourexample strategies.

T1 T2 T3 T4 T5 T6

WADD 1 2 1 or 3 3 2 1

LEX 3 1 or 3 2 3 2 1 or 2

EQW 1 2 1 or 3 1 or 2 or 3 1 or 2 1 or 3

NB 3 1 or 3 2 3 2 1

Note: WADD = weighted additive, LEX = lexicographic,

EQW = equal weight, NB = naïve Bayes. T1 to T6: Types of

prediction patterns (Figure 2). Cell entries indicate predicted

choices of option 1,2 or 3 in Figure 2.

used patterns in which cues made joint predictions – for

example, all cues predicted that option 1 hides the treasure.

Just as in recent research applying the Mousekid tool (e.g.,

Betsch et al., 2016; Lang & Betsch, 2018), individuals re-

ceived feedback after each choice. Specifically, they opened

the chosen house by touching its symbol on the screen, after

which either a treasure or a spider appeared. Importantly,

and in contrast to the prior studies, we reinforced strategies

instead of cues. Specifically, the structure of the feedback

was designed to reinforce the application of WADD in order

to provide ideal conditions for the use of this rule. Strat-

egy reinforcement through feedback is a technique that is

widely used in adult research on adaptive decision making

(e.g. Rieskamp & Otto, 2006; Bröder & Schiffer, 2006) but

rarely in research on child decision making (but see Mata et

al., 2011). Due to arithmetic constraints, it is not possible to

reinforce a strategy and, at the same time, ideally maintain

the described validity of the cues in the feedback distribution.

We only briefly illustrate this problem in an example with

prediction pattern Type 1. First assume that feedback would

reinforce the validities of cues. Accordingly, the participant

should actually find a treasure (the outcome referred to by

“1” in Figure 2) in 86% of her O3 choices. This is what

happened in prior studies (e.g., Betsch et al., 2014, 2016).

In the present research, however, we wish to strongly rein-

force WADD application. In T1, WADD application should

result in O1 choices. Accordingly, the O1 choices should

yield treasures more often than choices of the other options.

Thus, dominantly reinforcing WADD entails that the rein-

forcement rate of the cues will diverge from their absolute

initial validity.

In our case, we structured the feedback to reach a rein-

forcement rate of 90% for WADD, 73% for LEX, 65% for

EQW. This reinforcement of WADD entails a decrease in the

absolute validity of the cues in experienced feedback. Nev-

ertheless, we made sure that relative validity, i.e. the rank

order of the cues’ validity, was reproduced. Over the entire

set of 80 test trials, the validity of the cues in the feedback

was p = .59 for the first and the second cue and p = .66 for

the third, high validity cue. We ensured that the described

validity of the cues learned by participants in the learning

session was visually present in the form of smart circles next

to the cues in each decision trial (Figure 1).

2.4 Procedure for children

The experimenter met the child at his or her primary school

or daycare center. Both sat down next to each other at a

table in front of a touch screen monitor (19”) connected to

an IBM compatible laptop in a separate, quiet room. The

experimenter first explained that the purpose of the game is

to find treasures, and then stated: “But you don’t have to find

the treasures on your own; somebody will be helping you.

Look, do you see the animals on the screen? You are allowed

to choose three of them to help you find the treasures. Now,

please choose three animals that you would like to play the

game with. To do so, tap the chosen animal on the screen

and then you tap the grey box.” The experimenter super-

vised the child in the operation of the touchscreen computer

throughout the session.

After choosing the animals, the experimenter continued

with the learning session and told the child: “Now I will

explain to you how we can find out how smart the animals

are. Do you see the house up there? Maybe there is a

treasure in the house and maybe not. The animals will tell

you whether there is a treasure hidden there or not. But the

animals are not always right. Therefore, we are going to

check how often they are right.”

Following these instructions, the experimenter began the

21 learning trials with the animal at the top. In each trial, the

child opened the box next to the animal’s picture by sliding

the box to the right with their finger. A picture of either a

treasure or a spider was visible behind the box. The child

then opened the door to the house in the same manner to

determine whether the prediction of the cue was correct.

If this was the case (i.e., the animal said “spider”; and the

house actually contained a spider), the child was instructed

to bestow a smart circle to the animal by tapping one of

the circles in the row to the left of the animal. By doing

so, the touched circle on the screen turned red. After seven

trials, the experimenter pointed out the number of smart

circles gained by the animal (e.g., 5 out of 7, if p = .71)

and continued to the next animal. After having finished the

learning session with all three animals, the child was asked

which of the animals is the smartest. This question served

as the manipulation check for learning the cue validities.

Then, the experimenter proceeded to the next screen,

which depicted the test session board and explained the goal

of the game (find as many treasures as possible), pay-offs

(one house contains a treasure), and actions (coloring trea-

sure points after success). During three warm-up trials,

which did not count toward a participant’s overall perfor-

mance, the experimenter verbalized the prediction of the
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animals in different order and checked whether the child

understood the board. After the child had inspected the ani-

mals’ predictions, the experimenter asked the child to make

a choice (i.e., by opening one house at the top of the board).

If the chosen house contained a treasure, the experimenter

said: “Oh great, you got a treasure point. Now, you can

tap one circle at the top of the screen to award yourself the

treasure point.” If the house contained a spider, she said:

“Ugh, a spider. Well, let’s see whether you find a treasure

next time.”

The test session comprised four blocks of trials consisting

of 20 trials each (80 trials total). Breaks between blocks, in

which children were allowed to have a drink of juice, lasted

4-min each. During the break following the 40th trial, the

experimenter engaged the child in a motoric game. After the

break, the child was reminded of the game’s goal, i.e., to find

as many treasures as possible, and that animals’ predictions

should be considered before making a choice. In addition,

the child was again asked to state how many smart circles

were assigned to each animal.

After completing the 80th trial, the experimenter com-

mended the child for “earning so many treasure points,”

irrespective of the actual yield. The child then received a

personalized certificate depicting their performance on the

treasure hunt game as a reward.

2.5 Procedure for adults

As in prior studies (Betsch et al., 2014; 2016), all procedures

and instructions were identical across age groups with two

exceptions. First, we told adult participants that they served

as a control group to children who participated in the same

game. Second, the breaks between the blocks of trails in the

test session did not involve motoric games. Instead, adults

were asked to walk through the room to pick up an object

from another table. Adults’ payment was contingent upon

performance (number of treasures found) and resulted in an

average payment of 4 Euros.

3 Results

We applied a Bayesian outcome-based strategy classification

method (Lee, 2016) to classify the decision strategy of each

participant individually ( Appendix A).4 This outcome-based

classification method compares choice-predictions of strate-

gies (WADD, EQW, LEX, NB, Guessing, and Saturated) for

each pattern type (Figure 2) to individuals’ observed choices.

An individual is classified as a user of a certain strategy if

the posterior probability that his/her choices accord with that

4In all of our prior studies, we did not find evidence that decision making

systematically changes over blocks of trials (e.g., trials before and after a

break). Therefore, strategy classification is based on the entire set of test

trials.
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Figure 3: Percentage of participants classified by strategy

for each age group (i.e., preschoolers, elementary schoolers,

and adults) according to a Bayesian outcome-based strategy

classification (Lee, 2016). Guess = guessing, EQW = equal

weight, LEX = lexicographic strategy, NB = naïve Bayes,

WADD = weighted addititive, Saturated = saturated model.

For details on posterior probabilities of classifications, see

Appendix C.

particular strategy exceeds the posteriors for the other strate-

gies – with the restriction that the total error likelihood of

the parameter priors (i.e., the likelihood of choosing one of

the two options not predicted by the strategy) is not greater

than .33. Note that this restriction requires the individual

to be quite systematic in the application of only one strat-

egy. The likelihood that an individual will be sorted into the

‘unclassified’ (i.e., saturated model) or ‘guessing’ category

increases with the number of errors in strategy application,

switches between multiple strategies, and choices that follow

a strategy that is not considered in classification.

According to models of adaptive decision making, we

hypothesized that a compensatory strategy such as WADD

should be the dominant strategy in our compensatory envi-

ronment.5 In support of this hypothesis, 74% of adults are

classified as WADD users. Moreover, 13% of adults could

be classified as NB users, which is also a compensatory strat-

egy (Figure 3). For preschoolers, the hypothesis is clearly

not supported: Not a single preschooler used WADD or NB

systematically. For elementary schoolers, 39% are classified

either as WADD users (21%) or NB users (18%). Thus, the

5We refrain from conducting inferential statistics here because the the-

oretically derived hypothesis regarding WADD use is clearly supported in

adults and refuted in preschoolers due to the striking differences in propor-

tions.
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use of a compensatory strategy that is sensitive to validities

increases with age group. Thirteen percent of elementary

schoolers are classified as users of the non-compensatory

LEX strategy. Although LEX is sensitive to probabilities

(because it prioritizes cues according to their validity), LEX

is a maladaptive strategy in our compensatory environment.

Many preschoolers (44%) guess between options. A high

percentage of preschoolers (41%) can be best described by

a saturated model, which indicates that those children use

one or several strategies that were not included in the model

comparison (see Lang & Betsch, 2018, for a classification

of non-adaptive strategies that preschoolers tend to use).

An additional detailed analysis shows that 31% of those

preschoolers can be described by an equal weight model

that considers the position of the information on the screen

(see Appendix B for details). Altogether, these results show

that adults dominantly apply an appropriate compensatory

strategy that is sensitive to validities (WADD or NB) in a

compensatory environment, whereas young children below

the age of seven and 61% of the older children fail to do

so. We provide more detailed descriptive statistics on the

posterior probabilities for strategy-classifications and poste-

rior distributions of the probability of an application error in

strategy use in Appendix C.

A competent decision maker is capable of using proba-

bilities as decision weights. Post-Piagetian developmental

research suggests that the utilization of probabilities begins

at an early age. In the present study, however, no preschoolers

could be classified as users of a probability sensitive strategy

(WADD, LEX or NB). Notably, 52% of our 9-10 year old ele-

mentary schoolers systematically used a probability sensitive

strategy (LEX:13%; WADD: 21%; NB: 18%). This is the

highest portion we ever found in studies with the Mousekids

tool (e.g., approximately 30% of individuals who followed

the high validity cue, e.g., Betsch et al., 2016).

Another important observation refers to children’s capa-

bility of integrating information from multiple sources. Even

when probabilities are neglected, children may base their

decision on the entire set of predictions available in the in-

formation board, for instance, by applying an EQW rule. Al-

though 35% of all children are classified as EQW users, only

18% of preschoolers are classified as such. Notably, EQW is

the only systematic strategy detected in preschoolers in this

study. It is still possible that preschoolers used other strate-

gies in a systematic fashion. Lang & Betsch (2018) and

Betsch and colleagues (2018) identified a number of such

strategies – however, they were all maladaptive from a nor-

mative perspective (e.g., switching among options, change

after failure, etc.) and were, therefore, not considered in this

study. In comparison to prior studies with the Mousekids

tool, we extended the number of trials from less than 30

(e.g., Betsch et al., 2016) to 80 in order to increase the reli-

ability of the classification procedure. Thus, one may argue

that decision accuracy might have decreased over trials in

Table 2: Accuracy scores (number of treasure points) for

each of the four decision blocks. (Standard deviations are in

parentheses.)

Block 1 Block 2 Block 3 Block 4 Overall

Preschoolers (n=39)

10.90 10.15 9.74 10.67 41.46

(2.26) (1.86) (1.76) (2.16) (4.13)

Elementary schoolers (n=38)

11.92 12.58 13.00 13.61 51.11

(2.67) (3.15) (3.27) (2.77) (9.80)

Adults (n=31)

16.39 17.06 17.35 16.77 67.58

(2.03) (2.28) (1.58) (2.01) (6.26)

Overall (n=108

12.83 13.0 13.07 13.45 52.35

(3.28) (3.73) (3.85) (3.39) (12.70)

children, and the youngest age group in particular, due to

decreasing motivation over trials.

As a measure of motivation, we determined accuracy

scores (number of treasure points) for each of the four deci-

sion blocks. Inspection of Table 2 reveals that accuracy does

not notably decrease over blocks, indicating that participants

did become less motivated across trials.6 Thus, we were

justified in using the entire set of choices for classification.

To further illustrate the striking differences between age

groups, we more closely examined the types of prediction

patterns in our task set separately. In two additional analyses,

we focused on patterns T4 and T6.

T4 is the only pattern in which each cue makes only

one positive prediction and all predictions differ (Figure 2).

Thus, this is an ideal pattern with which to check whether

individuals are sensitive to differences in cue validities. Nor-

matively, a decision maker should weight predictions or se-

lect cues in accordance with the rank order of cue validities.

The high-validity cue predicts a treasure hidden in the third

house (prediction “1” for O3 in Figure 2). Consequently, one

should expect that decision makers choose O3. Figure 4 de-

picts mean choice-frequencies separately for each age group.

Adults almost always choose O3. Elementary schoolers less

frequently choose O3 compared to adults; still, O3 is the

6Observations are corroborated by results from a GLM analysis, in

which the main effect for the repeated-measurement factor block is small

(FPillai-Spur (3, 103) = 1.72, p = .17, η2
par t ial

= .048). We even found a

slight increase in accuracy in elementary schoolers, which drives an age-

by-block-interaction effect (FPillai-Spur (6, 208) = 3.88, p < .01, η2
par t ial

=

.10). Finally, the analysis indicated a strong main effect for age, reflecting

the observation that accuracy increases with age (F (2, 105) = 115.89, p <

.01, η2
par t ial

= .69).
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Figure 4: Choice frequencies in type 4 prediction pattern.

Error bars show 95% CI.

dominantly preferred choice in this age group. Preschool-

ers, however, differ strikingly in their choices. They choose

O3 less frequently than O1 and O2. According to this ob-

servation, a GLM analysis produced a moderately strong

age-by-choice interaction effect (FPillai-Spur (4, 210) = 29.37,

p < .01, η2
partial

= .36). Moreover, the main effect for

the repeated-measurement factor choice was also strong, re-

flecting the observation that frequencies of O1-choices differ

markedly between age groups (FPillai-Spur (2, 104) = 98.32,

p < .01, η2
partial

= .65; note that the between effect for age

cannot be computed because the sum of choice frequencies

is constant.)

T6 (Figure 5) is another interesting candidate for assess-

ing probabilistic decision making. In contrast to patterns

discussed above, this pattern is quite complex. Some cues

make multiple positive predictions, resulting in ties. Nev-

ertheless, the application of WADD, NB, and LEX7 will

jointly result in O1-choices. An EWQ-rule would result in

an even distribution of O1 and O3 choices. None of the

strategies, however, would lead to a dominance of O2 or O3

choices. Figure 4 displays the mean frequencies of choices

by age groups. Evidently, adults show a strong preference for

O1. O1 is also the dominantly chosen option in elementary

schoolers, although they less frequently choose O1 as com-

pared to adults. This pattern reverses for preschoolers, who

predominantly choose O3 – a behavioral tendency that is not

predicted by any of the three strategies. In a GLM-ANOVA,

7Due to the tie in the high-validity-cue’s predictions (it predicts “trea-

sure” in O1 and O2), a LEX user should proceed with considering predic-

tions on another cue that discriminates between O1 and O2. Discriminating

predictions for these two options under consideration are provided by the

second cue; they favor O1.
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Figure 5: Choice frequencies in in type 6 prediction pattern.

Error bars show 95% CI.

these observations manifest themselves in a strong interac-

tion effect between age and choice (FPillai-Spur (4, 210) =

28.31, p < .01, η2
partial

= .35). Again, the main effect for

the repeated-measurement factor “choice” was also strong

(FPillai-Spur (2, 104) = 93.48, p < .01, η2
partial

= .64).

A high proportion of preschoolers’ choices (41%) did not

resemble our tested models, indicating that we did not hit all

potential variants of strategies (Hilbig, 2011) that might be

used by children. A closer post-hoc inspection of the choices

of some preschoolers revealed that they might have applied a

strategy that is sensitive to prediction patterns in the matrix.

We re-ran the Bayesian analysis as described in Appendix

A with a new strategy (EQW*). Analyses revealed that

differential application of EQW* could account for choices

in approximately 36% of all preschoolers (see Appendix B

for the more detailed post-hoc explanation). It is possible that

children used other strategies that are not usually considered

in the decision-making literature. Lang and Betsch (2018)

found that preschoolers are able to systematically apply a

couple of non-adaptive strategies (e.g., switching between

options). It is surely a promising line of future research to

consider the use of non-adaptive strategies. This research,

however, focuses on WADD application, and, hence we do

not consider such variants further.

4 Discussion

Models of adaptive decision making (e.g., Payne et al., 1993)

predict that the application of linear strategies of informa-

tion integration such as the weighted additive rule (WADD)

should be most prevalent in compensatory environments.
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The absence of constraints that hinder information acquisi-

tion (e.g., time pressure, access costs) and strategy contin-

gent feedback should further promote WADD application.

To investigate the development of WADD use, we exposed

children and adults to a compensatory, probabilistic deci-

sion environment in which the dispersion of cue validities

(i.e., the probabilities that cue-predictions are correct) was

low. Decision time was unconstrained. An open information

board format further encouraged individuals to use WADD,

as all cue predictions could be directly inspected and did not

have be stored in memory before making a decision. More-

over, we reinforced WADD by feedback. Altogether, these

environmental characteristics set up a task that ideally fosters

the application of WADD.

In support of our hypothesis, the majority of adult par-

ticipants were classified as WADD users (74%). In striking

contrast to this finding, WADD was not the dominant strat-

egy in children. No preschoolers (6 y.) and only 21% of

the elementary schoolers (9–10 y.) could be classified as

users of the WADD rule. More than half of the elementary

schoolers (52%) were systematically sensitive to differences

in probabilities in their decisions as evidenced by the sum of

WADD, NB, and LEX users. In preschoolers, however, we

were unable to identify individuals who based their decisions

on probabilistic information. The only systematic decision

behaviour in the six-year olds in our sample was consistent

with an equal weight rule (EQW), which bases decisions on

all prediction values without weighting.8

Why did only so few children apply a WADD rule in

our study? One might be tempted to attribute this finding to

global deficits in children, such as insensitivity to probabilis-

tic information, deficits in learning from probabilistic out-

come distributions (feedback), immature general cognitive

abilities (e.g., IQ, executive functioning), specific cognitive

deficits in applying rules of weighted aggregation of infor-

mation, or simply a lack of task comprehension. There is

evidence, however, that children reveal a sensitivity to prob-

abilities from an early age on (e.g., Denison & Xu, 2014).

Preschoolers as young as 4 year old are sensitive to prob-

abilistic outcome distributions (e.g., Pasquini, Corriveau,

Koenig & Harris, 2007). In a series of studies, Lehmann and

Betsch (2018) did not find support for the notion that perfor-

mance in the Mousekids tool covaries with various measures

of cognitive ability (e.g., memory span, executive function-

ing, selective attention, etc.). Most research from various

areas of cognition suggests that humans from an early age on

are capable of integrating multiple pieces of information in

a linear fashion, as required by the WADD rule (see Betsch,

Ritter, Lang & Lindow, 2016, for an overview; but see, e.g.,

8Note that there is still the possibility that children used sets of strategies

(toolboxes) and switched among the strategies contained in the set (as

suggested by Betsch et al., 2018; Scheibehenne, Rieskamp & Wagenmakers,

2013). Our study and the classification method was not designed to identify

such toolboxes.

Jansen & van der Maas, 2002, for conflicting evidence). In

spatial perception and categorization, for example, children

and even animals (e.g., snails, Gallistel, 1980) are capable of

performing weighted integration procedures “in a near opti-

mal fashion” (Cheng, Shettleworth, Huttenlocher & Rieser

2007, p. 625). In an evaluative judgment task, preschoolers

(5–6 y.) were able to integrate probabilities and values in

line with the predictions of models involving multiplication

(Schlottmann, 2001) similar to the WADD rule. In other

studies using a paradigm similar to our study, preschoolers

could also apply weighting operations – unfortunately, they

did not use probabilities as weights but rather an experimen-

tally induced “lure” that was irrelevant from a normative

perspective (Betsch & Lang, 2013; Betsch et al., 2014, Exp.

2). Finally, the possibility that children do not understand

the treasure hunt task in our Mousekid tool has been ruled

out by applying measures of task comprehension (Betsch,

Lehmann, Lindow & Buttelmann, 2018). Hence, none of

these factors alone provides a plausible account for the ob-

served reluctance in children to apply a WADD rule.

Deficits in the application of WADD thus presumably orig-

inate elsewhere. In the following, we suggest an explanation

that presumes an interaction between task features, mental

representation, and the status of conceptual knowledge in

children. Specifically, we suspect that in our task the for-

mation of a subjectively meaningful mental representation

that properly reflects the informational structure of the given

information is impaired in children due to their lack of de-

veloped explicit conceptions of probability.

Several features of the stimulus environment can either

help or hinder the formation of representations that foster

accuracy in task performance. In an illuminating paper,

Wohlwill (1968) described three important task dimensions:

redundancy, selectivity, and contiguity. We will briefly il-

lustrate these dimensions using the example of the marble

task – which Schlottmann (2001) used to demonstrate that

even preschoolers can integrate probabilities and values in a

multiplicative-like fashion, as predicted by utility theory.

Redundancy can be conceptualized as the degree of inter-

correlation of cues predicting a criterion. In her marble task,

Schlottmann (2001) visualized the probability and value of

outcomes in the following manner (see also Schlottmann &

Wilkening, 2012, p. 62). A marble was shaken in a tube with

two clusters of colored segments (e.g., blue, yellow). Above

each cluster, the potential gain was depicted (crayons). Value

was manipulated by varying the number of crayons above

each cluster (e.g., 6 for blue, 1 for yellow). Probability (e.g.,

80% chance of winning if the marble stops in the blue clus-

ter) was manipulated by varying the number of segments in a

cluster (e.g., 4 segments in the blue, 1 segment in the yellow

cluster). In this particular example, probability representa-

tion is redundant. Two cues, cluster size and the number

of segments in the cluster, are correlated. Thus, these two

cues jointly reference probability. Selectivity refers to the
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amount of irrelevant information that is contained in the task

and should not affect the response. The graphical presen-

tation in the marble task contains only relevant information

– i.e., the number of crayons representing value and cluster

size/segment number representing probability. Contiguity

refers to the spatial and temporal separation of relevant in-

formation. In the marble task, contiguity between proba-

bility and value is high. The crayons are depicted directly

above the right and left cluster in the tube. The blue and the

yellow clusters represent the two potential outcomes of the

task. As such, the outcomes contain all relevant information

in a contiguous arrangement – values (number of crayons)

and probability (size/number of segments).

According to Wohlwill (1968), perceptual tasks are char-

acterized by a high degree of redundancy and contiguity and

a low demand for selectivity. Individuals can respond to such

tasks intuitively without the need of having formal concep-

tions and processes properly developed. The less a task con-

tains such facilitative features (absence of redundancy, low

contiguity, high selectivity), the more the individual must

rely on conception to respond in a coherent manner. Al-

though our paradigm contains many child-friendly features

(e.g., an enjoyable task, animals as advice givers, learning

and graphical presentation of cue validities, etc.) it is not

a purely perceptual task. Most importantly, the matrix for-

mat, typical for all information board studies, spreads out

decision criteria and options and hence decreases contiguity.

Unlike Schlottmann’s marble task, in which options, out-

comes, and probabilities are depicted closely together and

function somewhat as a combined cue, our task sorts options

and probabilities into margins of the board and outcomes

into the grid. This presentation format requires some ac-

tive structuring to link options, outcomes, and probabilities

together and form an accurate mental representation. An-

other feature relates to selectivity. Advice givers (animals)

do not simply make predictions regarding the target outcome

(e.g., house A contains a treasure). Instead, they also make

non-focal predictions (e.g., house B and house C contain a

spider). Although the non-focal information is not irrelevant

per-se, it is not necessary to make correct decisions, although

it does increase the informational input. A more selective

environment that depicts only the information necessary and

sufficient for making a decision might enhance the likelihood

that children form accurate representations of the stimulus

input.

Analysing our task on Wohlwill’s dimensions gives rise

to another interpretation that is, admittedly, a bit farfetched

given the current state of empirical evidence. Mousekids is

not purely a perceptual task. Thus, it cannot be coherently

solved without the help of conception. As such, deficits in

performance (i.e., application of WADD) may allow us to

draw conclusions regarding the state of conception in the

children in our sample. Failing to classify any preschool-

ers as users of a probability-sensitive strategy (WADD, NB,

LEX) may be taken as evidence that conceptions of prob-

ability and their role as weights in decision making are in-

sufficiently developed in this age group. In our task, these

conceptions might be necessary to properly encode prob-

abilistic information and form a meaningful representation

that associates outcome values with weights. The still low

percentage of WADD, NB, and LEX users in nine to ten year-

olds indicates that it takes a long time for these conceptions

to be consolidated.

From what age are children capable of adapting to proba-

bilistic environments? With our discussion above, we aimed

at showing that empirical evidence should take into account

the interaction of levels of cognitive processing and task fea-

tures. Cognitive ability can be assessed on different levels.

Mastering a perceptual task does not necessarily imply that

the individual is capable of solving a structurally similar

task that lacks the facilitative features fitting into formats

of intuitive processing. Comparing evidence across studies

cannot be achieved by statistical means only as, for instance,

by subjecting data to meta-analysis. Rather, we must anal-

yse tasks and paradigms on the qualitative level to detect

potential origins of improved or impaired performance. In-

sights from these analyses should result in research endeav-

ours that systematically compare and vary features of our

paradigms to determine when decision makers in the course

of their cognitive development overcome what Schlottmann

and Wilkening (2012, p. 77) have nicely termed being “at

the mercy of circumstance”.

Taken together, our research indicates that, before school

age, children fail to apply a WADD rule to a task in which

multiple probabilities and values are presented in a dissoci-

ated fashion.
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