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Abstract

The actions, anomalies and quantization conditions allow the M2-brane and the M5-brane to support,
in a natural way, structures beyond spin on their world-volumes. The main examples are twisted string
structures. This also extends to twisted stringc structures which we introduce and relate to twisted string
structures. The relation of the C-field to Chern–Simons theory suggests the use of the string cobordism
category to describe the M2-brane.
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1. Introduction

In [17] we described various geometric and topological structures related to the M2-
brane (or membrane) and the M5-brane (or fivebrane) in M-theory. Some of these
structures have already been established there. Other structures were merely outlined
and hence deserve more detailed and careful elaboration. In addition, there are other
structures not covered in that work. This is the first in a series of papers which will
establish this. We shall expand on the structures eluded to in [17] and uncover new
structures. As the paper [17] was the starting point of our investigation, we will refer
to it as part I. Subsequent works will be numbered accordingly, making the current
note number II.

Consider the C-field in M-theory with field strength G4. In [18] the flux quantization
condition in M-theory on a spin 11-manifold Y11 (see [23])

G4 −
1
2λ = a ∈ H4(Y11; Z) (1.1)
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was recast as defining (essentially) a twisted string structure (see [22]) on Y11. Here
a is the characteristic class of an E8 bundle on Y11 and λ is half the first Pontryagin
class 1

2 p1(TY11) of the tangent bundle TY11 of Y11. A model for G4 in terms of twisted
differential cohomology was given in [18].

In [17] the C-field ‘potential’ C3 was identified as (essentially) the string class
corresponding to the string structure. It is known that the C-field couples electrically
to the M2-brane, that is, the action of the membrane contains a term

∫
W3 C3. Here

W3 is the membrane world-volume, that is, an oriented spin 3-manifold. The C-field
also couples magnetically to the M5-brane. That is, the fivebrane world-volumeW6

will couple to C6 which is the potential corresponding to the Hodge dual ∗11G4 with
respect to the metric gY on Y11. Thus it is natural to consider the questions of existence
and consequences of string structures on the world-volumesW3 andW6, rather than
just on the target spacetime Y11, and we shall do so in this note.

The embedding of the world-volumes of the M-branes in spacetime Y11 allows the
decomposition of the tangent bundle of Y11 into the tangent bundle of the M-branes and
the corresponding normal bundle. Almost all of the structures that we are considering
satisfy a two-out-of-three principle. That is, if two of the bundles above admit a given
structure, then so does the third. For example, if we establish that Y11 and the normal
bundle have such structures, then so does the M-brane world-volume. However, the
situation is not quite this simple since we are seeking an intrinsic characterization of
such structures.

Since we discover our results via the quantization of flux and require the partition
functions to be well defined, we are dealing with quantum rather than classical
statements following Witten’s work (see [23–25]). Hence we obtain a characterization
not only of the existence of such structures, but also of how they occur. Furthermore,
‘world-volumes’ need to be interpreted in the appropriate sense as they can mean
extended world-volumes, that is, higher-dimensional manifolds obtained from the
original world-volumes by extending through a circle, taking a bounding manifold
or considering disk bundles. The corresponding normal bundles are modified
accordingly. We have the following theorem.

T 1.1. Consider the M-branes as spin manifolds inside a spin 11-manifold Y11.

(1) The tangent bundle and the normal bundle to the M2-brane each admit a
twisted string structure. Furthermore, the M2-brane world-volume supports a
(differential) string cobordism invariant.

(2) The (extended) tangent bundle and the normal bundle to the M5-brane each
admit a twisted string structure.

By the extended tangent bundle of a manifold we mean the tangent bundle of the
disk bundle over that manifold.

In addition to (twisted) string structures, we find that stringc structures, as defined
in [6], appear on the world-volumes. We see that such structures are closely related to
twisted string structures. In addition, we find that a twisted version of stringc structures
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is also relevant. Thus we are led to define such structures and study some of their
elementary properties.

P 1.2. Consider a stringc structure of a bundle E. Let ` be the Chern class of
the line bundle defining the spinc structure and let Qα

1 (E; `) denote the twisted stringc

class Q1(E; `) − α where α is an integral cocycle of degree four.

(1) Under a change of spinc structure, a stringc structure changes by

Q1(E; ` + 2m) = Q1(E; `) − 2`m − 2m2.

(2) Twisted stringc structures are not quite multiplicative. For a fixed α they satisfy

Qα
1 (E ⊕ E′; ` + `′) = Qα

1 (E; `) + Qα
1 (E′; `′) − ``′.

Now we consider the application of twisted stringc structures to M-branes.

T 1.3. Consider the M-branes as spinc manifolds inside a spinc 11-
manifold Y11. Then the tangent bundle and the normal bundle of the M-branes each
admit a twisted stringc structure.

There are geometric refinements of the string structure discussed in [4, 5, 15, 21].
Differential refinements are discussed in [4] in the untwisted case. They were
discussed in the twisted case in [18]. The relation of the C-field to Chern–Simons
theory suggests the string cobordism category in which we should define the partition
function for the M2-brane. It also suggests the use of a string cobordism invariant,
providing further support to ideas presented in [17] from a complementary point
of view.

The organization of this paper is very simple. In Section 2 we review the twisted
string structures that we apply to the world-volumes (and normal bundles) of the
M5-brane and the M2-brane in Sections 2.3 and 2.6, respectively. We also extend
the discussion to the differential case for the M2-brane in Section 2.6.1. Then, in
Section 3, we consider twisted stringc structures. We introduce the basic notions
in Section 3.1 and provide the descriptions for the M2-brane and the M5-brane in
Sections 3.9 and 3.10, respectively. We will use the notation λ or Q1 for the first spin
characteristic class, Qα

1 for the corresponding twisted class and λc or Q1(−; `) for the
class in the spinc case.

2. Twisted string structures

2.1. String structure. The first Pontryagin class p1 for a spin bundle E is divisible
by two since p1(E) ≡ w2(E)2 mod 2 where w2(E) is the second Stiefel–Whitney class
of E. This allows the definition of the first spin characteristic class Q1 = λ = 1

2 p1 which
is universally a generator of H4(B Spin; Z). For two vector bundles E and E′ admitting
spin structures, the first spin characteristic class is additive (see [20]):

Q1(E ⊕ E′) = Q1(E) ⊕ Q1(E′). (2.1)
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Note that this is an improvement over the corresponding formula for the Pontryagin
classes (see [14])

p1(E ⊕ E′) = p1(E) + p1(E′) mod 2-torsion (2.2)

in the sense that the 2-torsion is automatically taken care of.
A string structure on a bundle E or space X, originally defined via loop spaces

(see [7, 12]), is a lift of the structure group from spin to string, the 3-connected cover
of spin. That is, the classifying map f : X→ B Spin(n) of the natural spin bundle on
an n-manifold X is lifted to a map f ′ : X→ B String(n) via the fibration

K(Z, 3)→ B String(n)→ B Spin(n).

2.2. Twisted string structure. Recall from [18, 22] that a twisted string structure
on a brane ι : M→ X with spin structure classifying map f : M→ B Spin(n) consists
of a 4-cocycle α : X→ K(Z, 4) and a homotopy η between f ∗λ = λ(M) and ι∗[α] as
indicated in the following diagram:

M
f //

ι

��

B Spin(n)

λ

��
X α

// K(Z, 4)

η
u} rrrrrrrrrrr

rrrrrrrrrrr

(2.3)

Thus M has a twisted string structure when

1
2 p1(M) + ι∗[α] = 0 ∈ H4(M; Z).

2.3. Twisted string structure and the M5-brane. In [18] the flux quantization
condition in M-theory (1.1) is interpreted essentially as an obstruction to the existence
of a twisted string structure, and the role of the corresponding higher connection is
highlighted in [17]. The M5-brane six-dimensional world-volumeW6 admits a map
to the target 11-dimensional spacetime Y11. The tangent bundle then splits as

TY11|W6 = TW6 ⊕ NW6

where NW6 is the corresponding normal bundle.

2.4. Flux quantization and twisted string structure on the M5-brane. Now we
consider the topological part of the M5-brane world-volume action. Such an action
is best described topologically via a lift to an eight-dimensional disk bundle over

the original world-volume (see [10, 24]), that is, there is a bundle D2→ X8 πD

−→W6

described as follows.
Let M7 be a spin 7-manifold, which is a circle bundle over W6 and which has a

C-field C3. Then we have an E8 bundle on M7. Let X8 be an oriented 8-manifold
with boundary M7 over which C3 extends. Such an oriented 8-manifold always exists
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because the cobordism group Ω
Spin
7 (K(Z, 4)) = 0 vanishes since K(Z, 3) ∼ E8 in this

range of dimensions. The action includes the term

S 8 =

∫
X8

G4 ∪G4 −G4 ∪ λ. (2.4)

In [24] the action functional was derived using the Chern–Simons construction.
For an element x ∈ H4(W6; Z), the construction of the partition function requires the
definition of a Z2-valued function Ω(x) = (−1)h(x). Here h(x) is an action functional
which we desire to be even, that is, zero when taken mod 2. We form the eight-
dimensional manifold X8 as above, that is, a disk bundle over W6. The element
x extends to z = u ∪ x on X8 where u ∈ H1(S 1; Z). For z = G4/2π, the action is well
defined modulo 2π and is given by

I(C3) = 2π
∫

X8
z ∪ z. (2.5)

The Chern–Simons construction requires a division by one half as then the
construction will give a line bundle L over the intermediate Jacobian

T = H3(W6; R)/H3(W6; Z).

In this case, c1(L) is equal to the symplectic form ω on T via geometric quantization.
The inability to define I(C3)/2 in general is caused by the fact that the intersection

form on H4(X8; Z) is not always even. If this were the case, then the evenness of z2

would allow the division by two and hence allow I(C3)/2 to be well defined modulo 2π.
The mechanism for getting around this problem that was proposed in [24] is as follows.
For any a ∈ H4(X8; Z) we have that a2 ≡ a · λmod 2. This is equivalent to the statement
that

1
8

∫
X8

((
a −

1
2
λ
)2

−
1
4
λ2

)
∈ Z. (2.6)

This means that the flux quantization condition holds on the eight-dimensional
manifold X8. This manifold is the disk bundle over the world-volume of the M5-brane
[G4/2π] = 1

2λ − a. The effect is then to modify the action (2.5) to

Ĩ(C3) = π

∫
X8

(
z2 −

1
4
λ2

)
(2.7)

(see [24]). Now (1/2π)Ĩ(C3) is well defined mod 2π since a is integral and z = 1
2λ − a.

Thus it can be used to define the line bundle L with c1(L) = ω.
At the level of the six-dimensional world-volumeW6, a similar condition seems to

arise. The dimensional reduction of the action (2.4) along the disk, that is, integration
over the fiber of the two-disk bundle πD : X8→W6, gives

S 6 =

∫
W6

C3 ∪ h3 − b2 ∪ λ (2.8)
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where dC3 = G4 modulo exact terms and h3 = πD
∗G4. Now, applying the variational

principle naively to the small B-field b2 gives

G4 − λ = 0 ∈ H4(W6; Z). (2.9)

However, we note several ambiguities here. First, the action (2.8) is not complete
as there are, inevitably, other terms. Second, there is a subtlety related to the self-
duality of the theory (see [24]). Third, the process of dimensional reduction on the
disk assumes that λ(X8) = λ(W6). Fourth, there will be contributions to the M5-brane
world-volume from π∗(Θ), the integration over the fiber of the S 4 bundle over W6

of the dual Θ of the C-field (see [8]). This process of dimensional reduction of the
disk overW6 is mathematically similar to that of taking Y11 itself to be a disk bundle
and such a process involves ambiguities of division by two as we see in the discussion
leading to [8, Equation (11.11)].

Now consider a modification of the action (2.5). When X8 is spin, the value of the
integral

h(x) =

∫
X8

(z ∪ z + λ ∪ z) (2.10)

is always even. The term λ ∪ z in (2.10) means that, instead of quantizing the torus T
that parametrizes flat C-fields onW6 modulo gauge transformations, one is quantizing
another torusT ′. The torusT ′ parametrizes, up to gauge transformations, C-fields that
are no longer flat, but instead have curvature 1

2λ (see [24, 25]). The new torus T ′ is
isomorphic (not canonically) to the original torus T via the map C3 7→C3 + C′3 where
C′3 is any C-field of curvature 1

2λ. The transformation is

h(x)
z 7→ z−

1
2 λ //

∫
X8

z ∪ z. (2.11)

We see that this is simply the shift corresponding to a twisted string structure, where
T corresponds to the cocycle (to be viewed as a twist) and T ′ is shifted by the class
that is being twisted by the cocycle.

The above argument is strengthened, from another angle, by Witten’s proposal
(see [25]) that G4|W6 = θ where θ is a torsion class onW6. This was verified in [8]. In
this more general case, which includes torsion explicitly, we would still have a twisted
string structure, except that now the twist is formed out of the original twist and the
new class θ.

2.5. Twisted string structure on the normal bundle of the M5-brane. Now we
consider the normal bundle of the M5-brane. As was indicated in [18], when the
cocycle α represents the characteristic class of some bundle E2 a twisted string
structure on E1 can be viewed as the string structure on a difference bundle E1 − E2.
Hence, we define the class

Qα
1 (E) = Q1(E) − α. (2.12)
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This class satisfies the additivity condition

Qα
1 (E ⊕ E′) = Qα

1 (E) + Qα
1 (E′). (2.13)

This formula can be established using (2.1) and the additivity of cocycles as follows:

(λ + α)(E ⊕ E′) = λ(E ⊕ E′) + α(E ⊕ E′)

= λ(E) + λ(E′) + α(E) + α(E′)

= (λ + α)(E) + (λ + α)(E′).

(2.14)

Now if we take spacetime Y11 to be spin, then the flux quantization condition (1.1)
will give spacetime a twisted string structure. The above additivity condition (2.13),
when applied to the split tangent bundle via the embedding of the M5-brane, will then
imply that the normal bundle to the M5-brane will also admit a twisted string structure.

2.6. Twisted string structure and the M2-brane. The first spin characteristic class
is multiplicative, as we saw in (2.1). This means that, in general, if any two of the
three bundles E, E′ and E ⊕ E′ are string, then so is the third. Applying this to the
M2-brane we have that, if the normal bundle admits a spin structure, then so does
the target space Y11. This is because, for dimension reasons, the M2-brane world-
volume trivially admits a string structure. Nevertheless, there are very interesting
consequences of requiring the M2-brane to have a string structure (see [17]). On the
other hand, one could also investigate the same question for the normal bundle of the
embedding ofW3 in Y11 which is also considered in [17]. Instead, what we shall do
here is to consider differential refinements via a discussion which is complementary to
that given in [17].

2.6.1. Differential refinement of string structure on the M2-brane. Consider the
M2-brane with world-volume W3 which is a three-dimensional, connected, closed
spin manifold. Then W3 has a canonical topological string structure. A topological
string structure αtop is, by definition, a trivialization of the spin characteristic class

Q1 = 1
2 p1(T M) ∈ H4(M; Z).

Since MSpin3 = 0 we can find a spin-zero bordism Z4 ofW3.
An oriented 3-manifold is always spin. In addition to such a manifold admitting

a string structure for dimension reasons, one can also get a canonical string structure
via a trivialization of the tangent bundle. In fact, the main example used in [23] is S 3

which is parallelizable. The physical significance of a string structure for the M2-brane
is highlighted in [17].

A geometric refinement α of αtop trivializes the class Q1 at the level of differential
forms. A chosen connection ∇W on the tangent bundle TW3 gives rise to a connection
on the Spin(3)-principal bundle given by the spin structure. We choose an extension
∇Z of ∇W fromW3 to Z4. The existence of such a connection allows for a geometric
string structure (see [4, 15, 21]). A topological string structure αtop onW3 gives rise to
a 3-form Cα which satisfies the condition dCα = 1

2 p1(∇W). The Chern–Simons aspect
is described in [19].
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2.7. Change of string structure. The set of topological string structures on W3

is a torsor under H3(W3; Z) � Z. The action of x ∈ H3(W3; Z) can be written as
(x, αtop) 7→ αtop + x. Then∫

W3
Cαtop+x =

∫
W3

Cαtop + 〈x, [W3]〉 ∀x ∈ H3(W3; Z) (2.15)

where 〈x, [W3]〉 is the pairing of the cohomology class x with the fundamental
homology class [W3] ofW3.

2.8. String bordism invariant. We will make use of a string cobordism invariant
defined in [5], namely,

dZ(W3, α) :=
1
2

∫
Z4

p1(∇Z) −
∫
W3

Cα. (2.16)

This expression a priori takes values in R but it turns out that (see [5]):

(1) dZ is an integer;
(2) furthermore, dZ is independent of the choice of connections and geometric data

of the string structure;
(3) the corresponding class

d(W3, αtop) := [dZ(W3, αtop] ∈MString3 � Z24 (2.17)

is a string bordism invariant so that the map d : MString3→ Z24 which takes
[W3, αtop] to d(W3, αtop) is an isomorphism.

From (2.15), the invariant for a shifted topological string structure then takes the
form

dZ(W3, αtop + x) = dZ(W3, αtop) − 〈x, [W3]〉. (2.18)

2.9. A generator for MString3. Let S denote the sphere spectrum. There is a unit
map from S to any other spectrum. Thus let ε : S→ MString be the unit of the ring
spectrum MString. This is an isomorphism in degree three, that is, MString3 � S3 �
Z24 (see [11]). The sphere S 3 ∈ R4, when considered as the boundary of the disk
D4 ∈ R4, has a preferred orientation, spin structure and string structure αtop. Let
orS 3 ∈ H3(S 3; Z) be the orientation class of S 3. A generator g ∈ MString3 is given
in [5] by

g := [S 3, αtop − orS 3 ] ∈MString3. (2.19)

We now have from (2.18) that d(g) = [1] ∈ Z24 which has order 24 so that g ∈MString3

is a generator.

2.10. M2-brane and 2-framing. Consider a membrane with world-volume W3

which is a compact, connected, oriented 3-manifold. At the beginning of this section
we considered M2-branes with parallelizable world-volumes. Now we consider a
variation. The double of the tangent bundle 2TW3 = TW3 ⊕ TW3 has a natural spin
structure arising from uniquely lifting the structure group to Spin(6) via the following
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diagram of Lie groups:

Spin(6)

��
SO(3)

diag
//

22

SO(3) × SO(3) // SO(6)

(2.20)

A 2-framing of a closed oriented 3-manifoldW3 is a spin-trivialization of the double
2TW3 of its tangent bundle (see [1]). Let Z4 be an oriented zero-bordism of W3.
Then the 2-framing α at the boundary ∂Z4 �W3 gives rise to a trivialization of the
spin bundle 2TZ4. This trivialization refines the spin class 1

2 p1(2TZ4) ∈ H4(Z4; Z) to
a relative cohomology class 1

2 p1(2TZ4, α) ∈ H4(Z4,W3; Z). Then the quantity

σ(α) := 3 sign(Z4) − 〈 1
2 p1(2TZ4, α), [Z4,W3]〉 ∈ Z (2.21)

gives an integer parametrized by α and does not depend on Z4 (see [1]). The canonical
2-framing α0 is one for which σ(α0) = 0.

A canonical 2-framing gives rise to a canonical string structure (see [5]). Let αtop

be any topological string structure onW3. The combination

σ(W3, αtop) := 3 sign(Z4) − 2dZ(W3, αtop) ∈ Z (2.22)

is independent of the choice of Z4 and has a cohomology class

σ(W3) := [3 sign(Z4) − 2dZ(W3, αtop)] = [sign(Z4)] ∈ Z2 (2.23)

which is also independent of the choice of string structure αtop. ThusW3 has a unique
topological string structure αtop

0 characterized by σ(W3, α
top
0 ) ∈ Z2.

2.11. Eta invariant and an expression intrinsic onW3. An expression for d which
does not depend on the bordism Z4 is given in [5]. We will apply this expression to our
situation. Let S (W3) be the spin bundle ofW3 and let V →W3 be a real E8 vector
bundle with a metric and connection. Then we can form the Dirac operator DW3 ⊗ V
which acts on sections of the bundle S (W3) ⊗R V . A taming of DW3 ⊗ V is a self-
adjoint operator T acting on section of S (W3) ⊗ V and given by a smooth integral
kernel such that D′ = DW3 ⊗ V + T is invertible. The taming is physically a mass term
which acts as a regulator in the (Pauli–Villars) regularization. This modified operator
is what is used for the eta-invariant.

By the Atiyah–Singer index theorem (see [2]), the index of D′ is given by

Ind(Z4) = −
1
24

∫
Z4

p1(∇Z) + η(W3), (2.24)

so that the following equality of cohomology classes holds in R/Z:[1
2

∫
Z4

p1(∇Z)
]

= [12η(W3)]. (2.25)
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We choose a geometric refinement α of the topological string structure αtop based on
the spin connection induced by ∇W. Then a formula for the string bordism invariant
which is intrinsic onW3 is given by

d(W3, α) =

[
12η(W3) −

∫
W3

Cα

]
∈ Z24. (2.26)

This is our proposed (part of the) topological action for the M2-brane which detects the
string structures. Such a quantity would a priori appear in the partition function after
multiplication by an integer between 0 and 23. However, the coefficient 1 is favored
by the M2-brane action and hence by the partition function. See [17] for more on the
partition function, in which one should sum over string structures. It is possible that
the other factors appear when one considers M2-brane multi-instantons.

2.12. The q-expansions. Consider the series

θW(x, q) := exp
[ ∞∑

k=2

2
(2k)!

G2k x2k
]
∈ Q[[q]][[x]]

where the G2k are the Eisenstein series and

Θ := KθW ∈ Q[[q]][[p1, p2, . . .]]

is the power series corresponding to θW . In [5] a string bordism invariant which
involves a q-expansion is defined using Φ̃ := Θ((eG2 p1 − 1)/p1). For k = 1 this is
given by

b =

∫
W3

Cα ∧ Φ̃[0], (2.27)

where Φ̃[0] = G2, the first Eisenstein series, is not a modular form. Since

G2 = − 1
24 + q + · · · ,

the result is in Z24 ⊕ Z[[q]]. Indeed, for q = 0 this gives − 1
24

∫
W3 Cα (see also [17]).

3. (Twisted) stringc structures

3.1. Spinc structures in terms of spin structures. There is a nice geometric
criterion for the existence of a spinc structure (see [13]). Since U(1) = SO(2), there
is a natural map

fs : SO(n) × U(1)→ SO(n + 2).

This map extends, via the Whitney sum, to a map of bundles. The group Spinc(n) can
then be defined as the pullback by fs of the covering map Spin(n + 2)→ SO(n + 2) as
we see in the following diagram:

Spinc(n)

��

// Spin(n + 2)

��
SO(n) × U(1)

fs // SO(n + 2)

(3.1)
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This implies that a manifold M is spinc, that is, T M has a spinc structure, if and only
if there is a complex line bundle L over M such that T M ⊕ L has a spin structure.

A spinc manifold M has a two-dimensional class c ∈ H2(M; Z) which reduces mod
2 to w2(M). On such a manifold p1 − c2 is divisible by 2 and there is an integral
characteristic class λ such that 2λ = p1 − c2. More generally, if M is spinc, let J be
a real two-dimensional vector bundle with Euler class c and let E = T M ⊕ J. Then
w2(E) = 0 and λ(E) is the corresponding string class for E with

2λ(E) = p1(E) = p1(T M) − c2. (3.2)

In the spinc case, λ(E) is the string class. This is simply the stringc structure.

3.2. Remark on coefficients. The quantization condition G4 −
1
2λ ∈ H4(Y11; Z) also

holds when λ is replaced by any integer multiple of 1
2λ, that is, for 1

2λ replaced by
1
2 (2k + 1)λ for any integer k. In this paper we have chosen k = 0 as required by the
index theorem calculations to cancel membrane anomalies as in [23]. Note also that
in the discussion leading to (3.2), p1 − c2 can be replaced by p1 − (2m + 1)c2 where m
is any integer. Indeed, this is compatible with the discussion in [6] where m is chosen
in a dimension-dependent way so as to get a generalized Witten genus. Since we shall
not deal with modular forms in this note, we shall not make such distinctions.

3.3. (Twisted) stringc structures in terms of string structures. From the above
discussion, it seems natural to define a string structure corresponding to a spinc

structure via one corresponding instead to a spin structure. That is, to characterize
whether a bundle E1 admits a stringc structure we form another bundle E2 = E1 ⊕ LR
over the same space X and apply the string construction to E2. The condition λ(E2) = 0
then translates to the condition λ(E1) − 1

2 c2 = 0.
If we take the first bundle E1 to be the tangent bundle T X and E = E2, then we form

the Whitney sum of bundles via the standard diagonal inclusion. Let T X
πT
−→ X and

LR
πL
−→ X be the two indicated vector bundles on X. Let ∆ : X→ X × X be the diagonal

map. The Whitney sum T X ⊕ LR of the two bundles T X and LR is the pullback of the
Cartesian product of T X and LR via ∆, that is,

E = T X ⊕ LR //

��

T X × LR

π

��
X

∆ // X × X

(3.3)

Similarly, we can provide a definition for the twisted stringc structure. In this case we
have a homotopy between λ(E2) and α,

E2
f //

α
((PPPPPPPPPPPPPP B Spin(n)

λ

��
K(Z, 4)

η}� ����
(3.4)
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so that
λ(E2) + α = 0 ∈ H4(X; Z)

which translates to the condition that

λ(E1) + α − 1
2 c2 = 0 ∈ H4(X; Z). (3.5)

This is the condition for the bundle E1 to admit a twisted stringc structure.

3.4. Stringc structures directly. We can also give a definition of a stringc structure
as a special case of a twisted string structure. Note that, in general, the latter has a twist
given by a degree-four integral cocycle, while the former has a composite cocycle 1

2 c2

which lives in the wedge of K(Z, 2) with itself. There is a map from K(Z, 2) ∧ K(Z, 2)
to K(Z, 4) given by the cup product. We characterize a stringc structure via the diagram

X
f //

c(X)

�� α

%%JJJJJJJJJJJJJJJJJJJJJJJJJ B Spinc(n)

Q1

��

K(Z, 2)

∧

��
K(Z, 2) ∧ K(Z, 2) ∪ // K(Z, 4)

η1u} rrrrrrr
rrrrrrr

u} η2

rrrrrrr
rrrrrrr

(3.6)

The first homotopy η1 gives the relation

Q1 + α = 0 ∈ H4(X; Z),

and the second homotopy η2 gives

α + 1
2 c2 = 0 ∈ H4(X; Z).

Combined, the two homotopies then give

Q1 −
1
2 c2 = 0 ∈ H4(X; Z). (3.7)

This identifies a stringc structure as a special case of a twisted string structure. Note
that diagram (3.6) should be modified to account for the division of c2 by 2. This is
already done in [18] for the case of twisted string structure, and the current case is
analogous.

3.5. Q1 for a spinc vector bundle. Let E be a real vector bundle admitting a
spinc structure. This means that w2(E) is the reduction mod 2 of an integral class
` ∈ H2(X; Z), that is, ρ2(`) = w2(E). For L a complex line bundle with c1(L) = `,
define the first spinc characteristic class

Q1(E; `) = Q1(E − L) ∈ H4(X; Z). (3.8)

Then 2Q1(E; `) = p1(E) − `2 and the mod 2 reduction is ρ2(Q1(E; `)) = w4(E).
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3.6. Change in spinc structure. Now consider the change in the spinc structure.
Recall that we defined a twisted string structure as the untwisted string structure of a
difference bundle. We can do the same for a stringc structure because, as we have seen
above, a stringc structure can be seen essentially as a specialization of a twisted string
structure. For example, take the original line bundle L and tensor it with a square of a
line bundle L of Chern class c1(L) = m ∈ H2(X; Z) so that c1(L ⊗ L2) = ` + 2m. Then
the spin class changes as

Q1(E; ` + 2m) = Q1(E − L ⊗ L2)

= Q1(E; `) − 2`m − 2m2.

3.7. Q1 for a complex vector bundle. Let E be a complex vector bundle. Then E
admits a spin structure if and only if the first Chern class c1(E) is divisible by 2, that
is, if and only if c1(E) = 2n for some integer n. The first spin class is

Q1(E) = 2n2 − c2(E). (3.9)

We now consider the stringc case. The twisting by a line bundle can be ‘untwisted’
in the following sense. Noting that p1 = c2

1 + 2c2, if E is a complex vector bundle with
c1(E) = `, then Q1(E; `) = −c2(E).

3.8. Differential refinement of twisted stringc structures. As in the case of twisted
string structure, a twisted stringc structure can be refined. The cocycle, the Chern
class of the line bundle and the representative for the string class admit refinements
as in [4, 18]. Therefore, we can similarly obtain a refinement of the twisted stringc

structure with expressions similar to those in the twisted string case.

3.9. Twisted stringc structures and the M2-brane. M-theory is mostly studied on
spin manifolds. However, one can also study the theory on spinc manifolds. This has
been discussed extensively in [16]. In this case, there is a global gravitino anomaly in
the 11-dimensional supergravity description which can be shown to cancel. Examples
of this are considered in [9].

Furthermore, since G4 couples to the gravitino, there is a correction to the flux
quantization which is given in [3] in the case of torus bundles. In general, when
dealing with M-theory one needs to go beyond the supergravity approximation. Hence
it is possible that the would-be gravitini need to be replaced by membranes. We leave
the explicit investigation of this to future work.

On the other hand, we can consider M2-branes with world-volumes admitting a
spinc structure. SinceW3 is a three-dimensional compact oriented manifold, it is spin
and, hence, also spinc. By embedding the M2-brane in spacetime, we get a splitting

TY11|W3 = TW3 ⊕ NW3.

Now spinc structures satisfy a two-out-of-three principle, so that the normal bundle
NW3 will also be spinc. Then the derivation of the flux quantization will be analogous
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to the spin case of [23], as was outlined in [16], and will involve index theory on the
normal bundle. The result is

G4 + 1
2λ + 1

4 c2
1(L) ∈ H4(Y11; Z) (3.10)

where L is the complex line bundle associated with the spinc structure (see [16] for
details).

In fact, the condition is really derived from the same condition on the normal bundle
together with the triviality of the condition on W3. In this setting we can interpret
(3.10) as defining a twisted stringc structure on the normal bundle NW3. Therefore,
we find twisted stringc structures on both the M2-brane world-volume and its normal
bundle.

3.10. Twisted stringc structures and the M5-brane. Consider the bounding 8-
manifold X8 as a spinc manifold with a fixed spinc structure. The manifold X8 has
a two-dimensional class c ∈ H2(X8; Z) which reduces mod 2 to w2(X8) and which
is the Euler class of a two-dimensional vector bundle E2. Furthermore, p1 − c2 is
divisible by 2 so that, as above, there is an integral class λc (or Q1(−; `)) such that
2λc = p1 − c2. Consider the trivial rank-three bundle E3 = X8 × R3 and consider the
rank-five Whitney sum bundle E5 = E2 ⊕ E3 over X8. Consider the unit sphere bundle
S (E5) over X8 which is a 12-dimensional spin manifold Z12 and denote the projection
by πE : Z12→ X8.

Let x ∈ H4(X8; Z) and u ∈ H4(Z12; Z) be such that π∗(u) = 1 and u ∪ u = 0. This u
can be constructed as the Poincaré dual of a section of π. Now consider an E8 bundle
E over Z12 with degree-four characteristic class a = u + π∗(x). The spinc characteristic
class on Z12 is taken to be the pullback of the corresponding class on X8, that is,
λc(Z12) = π∗(λc(X8)). The index of the Dirac operator for spinors coupled to the E8

bundle is then (see [25])

i(E) =

∫
X8

(x ∪ x + λc(X8) ∪ x). (3.11)

We are now in a situation similar to that of equation (2.10), except that λ is replaced
by λc. Hence, we get

1
2λ

c(X10) + x = 0 ∈ H4(X8; Z) (3.12)

which is a condition for the existence of a twisted stringc structure. More properly,
and precisely, we seek a condition as in [25], under which i(E) is zero when taken
mod 2. A necessary condition to ensure that this occurs is to require the twisted stringc

condition. We can again consider the situation onW6 rather than on X8. We get the
same condition if we go through the analysis leading to equation (2.9).

3.11. Geometric refinement. Note that we can get a geometric string structure on
the M5-brane. We have done this explicitly for the M2-brane in Section 2.6.1, and
the extension to the M5-brane is somewhat similar. However, there are effects which
deserve careful treatment and will be discussed fully elsewhere.
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3.12. M5-brane and MString. The above discussion at the end of Section 2.6.1 on
2-framing for the M2-brane also makes a tantalizing connection to the M5-brane in a
special case. To see this, consider the M5-brane with world-volumeW6 =W3 ×W3.
A physically appropriate example is to take W3 = S 3 and W6 = S 3 × S 3. Then the
trivialization of 2TW3 can be viewed as a trivialization of TW6 by the isomorphism.
On the other hand, a trivialization of the spin bundle gives rise to a canonical
topological and, hence geometric, string structure (see [4]).
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