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The Schrödinger–Poisson system describes standing waves for the nonlinear
Schrödinger equation interacting with the electrostatic field. In this paper, we are
concerned with the existence of positive ground states to the planar
Schrödinger–Poisson system with a nonlinearity having either a subcritical or a
critical exponential growth in the sense of Trudinger–Moser. A feature of this paper
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periodicity hypotheses. The analysis developed in this paper seems to be the first
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2 Z. Liu, V.D. Rădulescu and J. Zhang

1. Introduction

This paper deals with the qualitative analysis of solutions to Schrödinger–Poisson
systems of the type{

iψt − Δψ + E(x)ψ + νφψ = 0, (x, t) ∈ R
2 × R,

Δφ = |ψ|2, (x, t) ∈ R
2 × R,

(1.1)

where ψ : R
2 × R → C is the wave function, E : R

2 → R is an external potential
and ν is a real parameter. The function φ represents an internal potential for a
nonlocal self-interaction of the wave function ψ.

By the standing wave ansatz ψ(x, t) = e−iλtu(x) (with λ ∈ R), problem (1.1)
reduces to the following stationary planar Schrödinger–Poisson system:{

−Δu+ V (x)u+ νφu = 0, x ∈ R
2,

Δφ = u2, x ∈ R
2,

(1.2)

where V (x) = E(x) + λ. In some recent works, local nonlinear terms of the form
f(u) have been added to the right-hand side of the first equation in (1.2). In this
case, the nonlinear term f(u) describes the interaction effect among particles; see
Benci and Fortunato [9]. We shall be concerned in this paper with the case where
f is a continuous function with exponential critical or subcritical growth in the
Trudinger–Moser sense.

The analysis developed in this paper is performed in the case where V (x) is a
finite steep potential well. This is a variation on the infinite potential well, in which
a particle is trapped in a ‘box’ with limited potential ‘walls’. Unlike the infinite
potential well, there is a probability that the particle will be detected outside the
box. The quantum mechanical interpretation contrasts from the classical interpre-
tation in that the particle cannot be detected outside the box if its total energy is
less than the potential energy barrier of the walls. Even when the particle’s energy
is less than the potential energy barrier of the walls, there is a non-zero probability
of the particle surviving outside the box according to the quantum interpretation.

During the last few decades, quantum modelling of semiconductors has become
a very active area of research. The (local or nonlocal) Schrödinger–Poisson system
explains the thermodynamical and electrostatic equilibrium of electrons trapped in
tiny quantum wells. In reality, the interaction of a charge particle with an elec-
tromagnetic field can be characterized by coupling the nonlinear Schrödinger’s
and Poisson’s equations, according to a classical model. Physicists proposed the
Schrödinger–Poisson system to quantify the precise energy levels of electrons in
semiconductor heterostructures; see Nier [39].

The first equation in system (1.2) is referred as the Schrödinger equation while
the second equation in (1.2) is known as the Poisson equation. The Schrödinger
equation plays the role of Newton’s laws and conservation of energy in classical
mechanics, that is, it predicts the future behaviour of a dynamic system. The linear
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Ground state solutions of the planar Schrödinger–Poisson system 3

Schrödinger equation is a central tool of quantum mechanics, which provides a
thorough description of a particle in a non-relativistic setting.

In recent decades, a considerable amount of research has been conducted on
the nature and behaviour of solutions to the Schrödinger–Poisson system. This
is due in part to the fact that this class of nonlinear problems contains a large
number of fundamental physical models including, for instance the interaction of a
charge particle with the electrostatic field in quantum mechanics. In this case, the
unknowns u and φ represent the wave functions associated with the particle and the
electric potential, respectively. Related applications include the study of obstacle
problem, the seepage surface problem or Elenbaas’s equation. In astrophysics, the
Schrödinger–Poisson system has been suggested to model certain theoretical con-
cepts; see Schunck and Mielke [45]. Self-gravitating boson stars, for example, may
be a source of exotic laser interferometer gravitational-wave observatory detections
in addition to the predicted gravitational wave merger signals of black hole and
neutron star binary systems; see Sennett et al. [46].

The structure of the nonlinear Schrödinger equation is much more complicated.
This equation is a prototypical dispersive nonlinear partial differential equation that
has been central for almost four decades now to a variety of areas in mathematical
physics. The relevant fields of application vary from Bose–Einstein condensates
and nonlinear optics (see Byeon and Wang [10]), propagation of the electric field
in optical fibers (see Malomed [36]) to the self-focusing and collapse of Langmuir
waves in plasma physics (see Zakharov [56]) and the behaviour of deep water waves
and freak waves (the so-called rogue waves) in the ocean (see Onorato et al. [41]).
The nonlinear Schrödinger equation also describes various phenomena arising in
the theory of Heisenberg ferromagnets and magnons, self-channelling of a high-
power ultra-short laser in matter, condensed matter theory, dissipative quantum
mechanics, electromagnetic fields (see Avron et al. [6]), plasma physics (e.g., the
Kurihara superfluid film equation). We refer to Sulem and Sulem [49] for a modern
overview, including applications.

Schrödinger also established the classical derivation of his equation, based upon
the analogy between mechanics and optics, and closer to de Broglie’s ideas.
Schrödinger developed a perturbation method, inspired by the work of Lord
Rayleigh in acoustics, and he proved the equivalence between his wave mechan-
ics and Heisenberg’s matrix. The importance of Schrödinger’s perturbation method
was pointed out by Einstein [27], who wrote: ‘The Schrödinger method, which has
in a certain sense the character of a field theory, does indeed deduce the existence
of only discrete states, in surprising agreement with empirical facts. It does so on
the basis of differential equations applying a kind of resonance argument.’

In the literature, in order to overcome the lack of compactness, such problems
have been investigated under periodicity assumptions or various symmetry hypothe-
ses, namely, either in radially symmetric spaces or in axially symmetry spaces. For
instance, Chen and Tang [22] proposed a new approach to recover the compactness
for Cerami sequences, while Tang [51] developed a direct method (the non-Nehari
manifold method) to find a minimizing Cerami sequence for the energy functional
outside the Nehari–Pankov manifold by using the diagonal method. We also refer
to Albuquerque et al. [3], Alves et al. [4], Chen and Tang [20, 21], Sun and Ma
[50], Wen et al. [55], etc. In a nonlocal setting, Tang and Cheng [52] introduced
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an original method to recover the compactness of Palais–Smale sequences. A key of
the present paper is that in our framework, the compactness is recovered by virtue
of the Trudinger–Moser inequality, see Trudinger [53] and Moser [38].

The main novelty in the present paper is that we establish the existence of ground-
states under general hypotheses and without assuming any symmetry or periodicity
restrictions neither for the steep potential nor for the reaction.

1.1. Overview and historical comments

In the present paper, we are concerned with the following planar
Schrödinger–Poisson system{

−Δu+ V (x)u+ νφu = f(u), x ∈ R
2,

Δφ = u2, x ∈ R
2,

(1.3)

where ν ∈ R and f ∈ C(R,R). We assume that V ∈ C(R2,R) satisfies the following
hypotheses:

(V1) V is weakly differentiable and satisfies (∇V (x), x) ∈ L∞(R3) ∪ Lκ(R3) for
κ > 1 and

V (x) +
1
2
(∇V (x), x) � 0, for all x ∈ R

2,

where (·, ·) is the usual inner product in R
2;

(V2) for all x ∈ R
2, V (x) � lim

|y|→+∞
V (y) = V∞ < +∞ and the inequality is strict

in a subset of positive Lebesgue measure;

(V3) inf σ(−Δ + V (·)) > 0, where σ(−Δ + V (·)) denotes the spectrum of the self-
adjoint operator −Δ + V (·) : H1(R2) → L2(R2), that is,

inf σ(−Δ + V (·)) = inf
u∈H1(R2)\{0}

∫
R2(|∇u|2 + V (x)u2) dx∫

R2 u2 dx
> 0.

Condition (V2) expresses that V is a finite steep potential well. Assumptions
of this type have been used in many recent papers for various types of elliptic
problems; we refer only to Rabinowitz [43] for the study of a nonlinear Schrödinger
equation with the nonlinear subcritical growth. The existence of a potential well
rather than simply a local minimum has advantages in several situations. It is, for
example, a crucial requirement when using a Lyapunov function to determine the
stability of a stationary solution of an infinite dimensional dynamical system; see
Ball and Marsden [8, § 4] and Marsden and Hughes [37, § 6.6] for a discussion of
this issue in the context of nonlinear elasticity.

As one of the typical examples of nonlinear Schrödinger equations with nonlocal
nonlinearities, there has been a large amount of literature to Schrödinger–Poisson
systems in dimension three, see [18, 28, 29, 33, 44, 50, 54] and the references
therein. This kind of systems arises in the physical literature as an approximation
of the Hartree–Fock model of a quantum many-body system of electrons under the
presence of the external potential V (x); see [9, 30, 32] and the references therein.
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In the last decade, planar Schrödinger–Poisson systems have attracted a lot of
attention after Stubbe [48] introduced an analytic framework to a system of this
type. Indeed, the second equation in system (1.3) is called the Poisson equation,
which can be solved by

φ(x) = Γ(x) ∗ u2(x) =
∫

R2
Γ(x− y)u2(y) dy,

where Γ is the Newtonian kernel in dimension 2 and is expressed by

Γ(x) =
1
2π

ln |x|, x ∈ R
2\{0}.

And so, formally, problem (1.3) has a variational structure with the associated
energy functional

I(u) =
1
2

∫
R2

(|∇u|2 + V (x)u2
)
dx

+
ν

4

∫
R4

Γ(|x− y|)u2(x)u2(y) dxdy −
∫

R2
F (u) dx,

where F (t) =
∫ t

0
f(τ) dτ . Note that the approaches dealing with higher-dimensional

cases seem difficult to be adapted to the planar case, since Γ(x) = 1
2π ln |x| is sign-

changing and presents singularities both at zero and infinity, and the corresponding
energy functional is not well-defined on H1(R2). Precisely, the energy functional I
involves a convolution term∫

R2

∫
R2

ln(|x− y|)u2(x)u2(y) dxdy

which is not well defined for all u ∈ H1(R2). So the rigorous study of planar
Schrödinger–Newton systems had remained open for a long time. This is why much
less is known in the planar case.

In [48], Stubbe introduced a variational framework for (1.3) with V (x) ≡ 1 by
setting a weighted Sobolev space

X :=
{
u ∈ H1(R2) :

∫
R2

ln(1 + |x|)|u(x)|2 dx < +∞
}
,

endowed with the norm

‖u‖2
X =

∫
R2

(|∇u|2 + V (x)|u|2) dx+
∫

R2
ln(1 + |x|)|u(x)|2 dx,

which yields that the associated energy functional is well-defined and continuously
differentiable on the space X. Cingolani and Weth [23] further developed the above
variational framework to (1.3) with f(x, u) = |u|p−2u, p � 4 and gave a variational
characterization of ground state solutions when V (x) is positive and 1-periodic.
Later, Du and Weth [26] extended the above results to the case p ∈ (2, 4). Chen and
Tang [20] proved that there exists at least a ground state solution to (1.3) in an axi-
ally symmetric functions space, when f satisfies some subcritical polynomial growth
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conditions, see also [7, 14, 21, 55] and so on. Some results on the existence and
multiplicity of nontrivial solutions are obtained in [12, 21, 35] for the subcritical
exponential growth case. In particular, the authors in [35] developed an asymptotic
approximation procedure to set the problem (1.3) in the standard Sobolev space
H1(R2). It is worthy in [11, 17] that a different approach has been also developed
by establishing new weighted versions of the Trudinger–Moser inequality, for which
the problems are well defined in a log-weighted Sobolev space where variational
methods can be applied up to cover the maximal possible nonlinear growth. For
the critical exponential growth case, we also refer to [5, 19, 22], which is introduced
later.

In all of these works, we should point out that, what has been considered on
system (1.3) is the potential V is either autonomous or periodic, see [5, 14, 48], or
axially symmetric, see [19, 20, 22, 55]. So it is quite natural to ask if there exist
nontrivial solutions for planar Schrödinger–Poisson systems without any symmetry
or periodicity assumption on V . The main focus of the present paper is at the
existence of positive solutions to system (1.3) with V satisfying some suitable finite
potential well condition.

2. Main results

As is well known, the classical Sobolev embedding theorem asserts that

W 1,p
0 (Ω) ⊂ Lq(Ω) for 1 � q � p∗ and p < N, (2.1)

where Ω ⊂ R
N is a bounded domain and p∗ = Np/(N − p) is the critical Sobolev

exponent. In the limiting case p = N , the critical Sobolev exponent becomes infinite
and W 1,N (Ω) ⊂ Lq(Ω) for 1 � q <∞. However, one cannot take the limit as q ↗ N

in (2.1), that is, the embedding W 1,N
0 (Ω) ⊂ L∞(Ω) is no longer valid. To fill this

gap, Trudinger [53] discovered a borderline embedding result; see also Pohozaev
[42]. Roughly speaking, this is an exponential-type inequality which asserts that

u ∈W 1,N
0 (Ω) ⇒

∫
Ω

eu2
dx <∞.

This inequality was subsequently sharpened by Moser [38] as follows:

sup
‖∇u‖LN (Ω)�1

∫
Ω

eμ|u|N′
dx

{
� C |Ω| if μ � μN := Nω

1/(N−1)
N

= +∞ if μ > μN ,

where N ′ := N/(N − 1) and μN−1 is the measure of the unit sphere in R
N .

Since we consider planar Schrödinger–Poisson systems involving nonlineari-
ties of exponential growth in the sense of Trudinger–Moser, we first recall the
Trudinger–Moser inequality, in the sense established in [13]; see also [1, 15]. This
inequality plays a crucial role in estimating subcritical or critical nonlinearities of
Trudinger–Moser type.
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Lemma 2.1. [13] If α > 0 and u ∈ H1(R2), then∫
R2

(
eαu2 − 1

)
dx <∞.

Moreover, if u ∈ H1(R2), ‖∇u‖2
2 � 1, ‖u‖2

2 < θ <∞ and α < 4π, then there exists
a constant Cθ,α which depends only on θ, α such that∫

R2

(
eαu2 − 1

)
dx � Cθ,α.

We also recall a notion of criticality which is totally different from the Sobolev
type.

(f 0) There exists α0 > 0 such that

lim
|t|→∞

f(t)
eαt2

= 0, ∀α > α0, lim
|t|→∞

f(t)
eαt2

= +∞, ∀α < α0,

which was introduced by Adimurthi and Yadava [2], see also de Figueiredo et al. [24]
to the planar nonlinear elliptic problems. At present, there have been a large number
of works in the literature to nonlinear elliptic problems involving critical growth
of Trudinger–Moser type. We refer the readers to [4, 16, 40] and the references
therein.

2.1. The subcritical case

For the subcritical exponential growth case, we make the following assumptions
on the nonlinearity f .

(f 1) For every θ > 0, there exists Cθ > 0 such that |f(s)| � Cθ min{1, |s|} eθ|s|2 ,
∀s > 0.

(f 2) f ∈ C(R,R) and f(s) = o(s) as s→ 0, f(s) ≡ 0 for s � 0 and f(s) > 0 for
s > 0.

(f 3) The function f(t)t−F (t)
t3 : t �→ R is nondecreasing in (0,+∞).

(f 4) There exist M0 > 0 and t0 > 0 such that

F (t) � M0|f(t)|, ∀|t| � t0.

Now we state our result about the existence of positive ground state solutions to
problem (1.3).

Theorem 2.2. Assume (V1)–(V3) and (f1)–(f4) hold. Then, for any ν > 0,
problem (1.3) has at least a positive ground state solution u ∈ X satisfying∣∣∣∣

∫
R2

∫
R2

ln |x− y|u2(x)u2(y) dxdy
∣∣∣∣ < +∞. (2.2)
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Remark 2.3. In the present paper, we can also endow X with the norm
(see [19, 20])

‖u‖2
X =

∫
R2

(|∇u|2 + V (x)|u|2) dx+
∫

R2
ln(2 + |x|)|u(x)|2 dx,

from which we can easily see that∫
R2

ln(2 + |x|)|u(x)|2 dx >
∫

R2
ln 2|u(x)|2 dx.

As a clear estimate on bound from below for the term
∫

R2 ln(2 + |x|)|u(x)|2 dx, it
is good for us to develop an energy estimate inequality in analysis. Thus, it seems
possible to improve condition (V3) by relaxing the lower bound of V .

Remark 2.4. In order to obtain the compactness directly, the authors in
[19–22, 55] studied system (1.3) in an axially symmetric space E := X ∩H1

as with

H1
as =

{
u ∈ H1(R2) : u(x) := u(x1, x2) = u(|x1|, |x2|), ∀x ∈ R

2
}
.

This is a natural constraint set, since critical points of the functional I restricted to
E are also critical points of the functional I in X. More importantly, for any axially
symmetric function u ∈ E, by decomposing the convolution term in functional I,
they can obtain an estimate∫

R4
ln(1 + |x− y|)u2(x)u2(y) dxdy � 1

4
‖u‖2

2

∫
R2

ln(1 + |x|)u2 dx, u ∈ E,

which is crucial in proving that I satisfies the Cerami condition at arbitrary energy
level in E. Moreover, compared with [21] where the authors studied the case of
subcritical polynomial growth, and used a monotonicity condition on V :

V ∈ C1(R2,R), t �→ t2[2V (tx)

−∇V (tx) · (tx)] is nondecreasing in (0,∞) for all x ∈ R
2

to prove the existence of ground state solutions of (1.3), this condition is removed in
theorem 2.2. However, we do not provide a minimax characterization of this ground
state energy.

In addition to the difficulties that the quadratic part of I is not coercive on X and
the norm of X is not translation invariant, the boundedness and compactness of
any Cerami sequence {un} associated with functional I are also the main obstacles
that we need to overcome in our arguments. In the autonomous or periodic case,
see [5], some strong compactness lemma can be established with the help of the
translation invariance of I. However, their approaches do not work any more for
the non-autonomous equation (1.3), since it seems difficult to construct a Cerami
sequence satisfying asymptotically some Pohozaev identity due to the lack of the
translation invariance of I.

In contrast to the symmetry or axial symmetry case (see [21]), where one can
establish a new inequality on V1(u) to prove the boundedness of any Cerami
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sequence {un} for functional I, as mentioned in remark 2.4, it becomes tougher to
prove the boundedness of {un} in X for our case without any symmetry assumption
on V . To bypass this obstacle, a new nonlocal perturbation approach is introduced
to prove firstly that any Cerami sequence {un} is bounded in H1(R2). And then by
virtue of Lions’ vanishing lemma combined with estimates on the convolution term,
we can rule out the vanishing case for sequence {un}. Finally, a delicate analysis
on the mountain-pass values corresponding to the functional I and the associated
limit functional I∞ is given to exclude energy bubbling of sequence {un} at infinity.

2.2. The critical case

We now turn our attention to the critical case. In the literature, there have
been a few results on planar Schrödinger–Poisson systems with critical growth of
Trudinger–Moser type. Recently, Alves and Figueiredo [5] investigated the existence
of positive ground state solutions for (1.3) when V (x) ≡ 1 and f satisfies (f0),(f2)
and the following conditions:

(f ’3)
f(t)
t3 is increasing in (0,∞);

(f 5) there exists θ > 2 such that 0 < θF (t) � f(t)t for all t > 0;

(f 6) there exist constants p > 4 and

λ0 > max

{
1,
[
2(p− 2)α0cp
π(p− 4)

](p−2)/2
}

such that f(t) � λ0t
p−1 for t � 0, where cp = infNp

Ip with

Np := {u ∈ X\{0} : I ′p(u)u = 0}
and

Ip(u) =
1
2

∫
R2

(|∇u|2 + u2) dx

+
ν

8π

∫
R4

ln(|x− y|)u2(x)u2(y) dxdy − 1
p

∫
R2

|u|p dx.

Observe from [5] that the monotonicity condition (f ′3) is often used to guarantee
the boundedness of the Palais–Smale sequence {un} associated with I. With the
aid of (f6), the authors established directly an estimate on the norm of sequence
{un} in H1(R2). Then thanks to the Trudinger–Moser inequality, the compactness
was obtained. However, as a global condition, (f6) requires f(t) to be super-cubic
for all t � 0, which seems a little bit strict especially for t > 0 small.

Later, under weaker assumptions than (f ′3) and (f6), Chen and Tang [22] stud-
ied the existence of nontrivial solutions to (1.3) when f(u) is replaced by f(x, u).
Motivated by [24], f(x, u) is required to satisfy the following conditions:

(F1) f(x, t)t > 0 for all (x, t) ∈ R
2 × (R\{0}) and there exist M0 > 0 and t0 > 0

such that

F (x, t) � M0|f(x, t)|, ∀x ∈ R
2, |t| � t0;
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(F2) lim inft→∞
t2F (x,t)

eα0t2 � κ > 2
α2

0ρ2 where ρ ∈ (0, 1/2) such that ρ2 max|x|�ρ V (x)
� 1.

Conditions (F1) and (F2) are devoted to giving a sharp estimate on the minimax
level to guarantee that any Cerami sequence or any minimizing sequence {un} of
the associated functional does not vanish. Moreover, (F1) together with a weaker
monotonicity condition

(f 7) for all x ∈ R
2, the mapping (0,∞) � t �→ f(t) − V (x)t

t3
is non-decreasing,

than (f ′3) can be used to verify that the weak limit of any Cerami sequence {un}
is a nontrivial solution of (1.3) in [22]. It is worth pointing out that the authors in
[22] need to introduce some sort of axially symmetric assumptions on V and f .

Another feature of the present paper is that we study the existence of nontrivial
solutions to system (1.3) without hypotheses (F1) and (F2). Let S2 be the best
constant of Sobolev embedding H1

0 (B1/4(0)) ↪→ L2(B1/4(0)), that is,

S2

(∫
B1/4(0)

u2 dx

)1/2

�
(∫

B1/4(0)

|∇u|2 + V (x)u2 dx

)1/2

, (2.3)

which has been one well-known fact. Moreover, the compactness of the embed-
ding guarantees the achievement of S2, since B1/4(0) is a specific bounded domain.
Recently, one fine bound of constant S2 has been also obtained in Du [25], which
makes possible to give one specific estimate of ν from below in the following result.

Theorem 2.5. Assume that conditions (V2)–(V3) and (f0), (f2), (f7) hold. Then,
for

ν >
α0S4

2

4π ln 2
,

equation (1.3) has at least a positive ground state solution u ∈ X satisfying∣∣∣∣
∫

R2

∫
R2

ln |x− y|u2(x)u2(y) dxdy
∣∣∣∣ < +∞. (2.4)

Essentially, we adopt some ideas used in the subcritical exponential growth case
to prove theorem 2.5. However, instead of the nonlocal perturbation approach used
in theorem 2.2, the boundedness of any Cerami sequence {un} inH1(R2) is obtained
by a contradiction argument combining with Lions’ vanishing lemma.

In order to obtain the existence of weak solutions to the limiting problem and
further to exclude energy bubbling of sequence {un} at infinity, a refined estimate
on the mountain pass value is given under an additional restriction on ν.

Remark 2.6. Different from [19, 22], the potential V and the nonlinearity f are
only required to satisfy some weaker assumptions as in theorem 2.5, and are neither
axially symmetric nor satisfy condition (F1) or (F2). Moreover, the conditions of
theorem 2.5 do not involve (f ′3), (f5) and (f6) in [5] where the authors studied
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system (1.3) in the radially symmetric setting. Indeed, (f7) is weaker than (f ′3).
Since nonlinearity f in theorem 2.5 is very general, the restriction on ν has to be
stated to ensure that the associated mountain pass value is less than π

α0
, so that

the compactness is recovered by virtue of the Trudinger–Moser inequality.

Throughout the paper, we need the following notations. Denote by Ls(R2), s ∈
[1,∞] the usual Lebesgue space with the norm ‖ · ‖s. For any r > 0 and any z ∈ R

2,
Br(z) stands for the ball of radius r centred at z. X∗ denotes the dual space of X.
At last, C,C1, C2, . . . denote various positive generic constants.

3. Preliminary results

Consider the Hilbert space H1(R2) with the norm

‖u‖ :=
(∫

R2
|∇u|2 + V (x)u2 dx

) 1
2

,

which is equivalent to the standard norm inH1(R2) with (V2)–(V3). For any u ∈ X,
we also define

‖u‖� :=
(∫

R2
ln(1 + |x|)u2 dx

) 1
2

and

‖u‖X =
(‖u‖2 + ‖u‖2

�

) 1
2 .

In what follows, we recall a few basic properties about the Newton kernel to problem
(1.3). Define the symmetric bilinear forms

(u, v) �→ B1(u, v) =
1
2π

∫
R4

ln(1 + |x− y|)u(x)u(y) dxdy,

(u, v) �→ B2(u, v) =
1
2π

∫
R4

ln
(

1 +
1

|x− y|
)
u(x)u(y) dxdy,

(u, v) �→ B0(u, v) = B1(u, v) −B2(u, v) =
1
2π

∫
R4

ln(|x− y|)u(x)u(y) dxdy,

where u, v : R
2 → R are measurable functions in the Lebesgue sense. We define on

X the associated functionals

V1(u) = B1(u2, u2) =
1
2π

∫
R4

ln(1 + |x− y|)u2(x)u2(y) dxdy,

V2(u) = B2(u2, u2) =
1
2π

∫
R4

ln
(

1 +
1

|x− y|
)
u2(x)u2(y) dxdy,

u �→ V0(u) = V1(u) − V2(u) =
1
2π

∫
R4

ln(|x− y|)u2(x)u2(y) dxdy.

Observe that

ln(1 + |x− y|) � ln(1 + |x| + |y|) � ln(1 + |x|) + ln(1 + |y|) for x, y ∈ R
2,
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12 Z. Liu, V.D. Rădulescu and J. Zhang

then we have the estimate for u, v, w, z ∈ X

B1(uv,wz) � 1
2π

∫
R4

[ln(1 + |x|) + ln(1 + |y|)]|u(x)v(x)||w(y)z(y)|dxdy

� 1
2π

(‖u‖�‖v‖�‖w‖2‖z‖2 + ‖u‖2‖v‖2‖w‖�‖z‖�). (3.1)

Due to the Hardy–Littlewood–Sobolev inequality, we deduce that

|B2(u, v)| � 1
2π

∫
R4

|u(x)u(y)|
|x− y| dxdy � C‖u‖4/3‖v‖4/3, u, v ∈ X, (3.2)

which implies that

|V2(u)| � C‖u‖4
8/3, u ∈ X. (3.3)

Lemma 3.1. [23] Let {un} be a sequence in L2(R2) such that un → u ∈ L2(R2)\{0}
pointwise almost everywhere on R

2. Moreover, let {vn} be a bounded sequence in
L2(R2) such that supn∈N B1(u2

n, v
2
n) <∞. Then there exist n0 ∈ N and C > 0 such

that ‖vn‖� < C for n � n0. If, moreover,

B1(u2
n, v

2
n) → 0 and ‖vn‖ → 0 as n→ ∞,

then ‖vn‖� → 0 as n→ ∞.

Lemma 3.2. [23] Let {un}, {vn}, {wn} be bounded sequences in X such that un ⇀ u
weakly in X. Then, for every z ∈ X, we have B1(vnwn, z(un − u)) → 0 as n→ ∞.

Lemma 3.3. [23] The following conclusions hold true.

(i) The space X is compactly embedded into Ls(R2) for all s ∈ [2,+∞).

(ii) The functionals V0, V1, V2 are of C1 class on X. Moreover, V ′
i (u)v =

4Bi(u2, uv) for u, v ∈ X and i = 0, 1, 2.

(iii) V2 is continuously differentiable on L
8
3 (R2).

(iv) V1 is weakly lower semicontinuous on H1(R2).

We now recall a version of the Mountain Pass Theorem which plays a crucial role
in proving the existence of nontrivial solutions.

Theorem 3.4. [47] Let X be a real Banach space and let I ∈ C1(X,R). Let S be a
closed subset of X which disconnects (arcwise) X in distinct connected components
X1 and X2. Suppose further that I(0) = 0 and

(i) 0 ∈ X1 and there is α > 0 such that IS � α,

(ii) there is e ∈ X2 such that I(e) � 0.
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Then I possesses a sequence {un} ⊂ X(called as (Ce)c sequence) satisfying

I(un) → c, ‖I ′(un)‖X∗(1 + ‖un‖X) → 0

with c � α > 0 given by c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), where

Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = e}.

4. The subcritical case

Without loss of generality, we assume ν = 1 in this section. We now give more
details to describe the nonlocal perturbation approach mentioned in §2. Since we
do not impose the well-known Ambrosetti–Rabinowitz condition, the boundedness
of the Palais–Smale sequence cannot be obtained easily. In order to overcome this
difficulty, we introduce a perturbation technique developed in [33, 34] to equation
(1.3). Set

λ ∈ (0, 1], r ∈ (max{p, 4},+∞) .

Consider the following modified problem:⎧⎪⎨
⎪⎩−Δu+ V (x)u+ φu+ λ

(∫
R2 u

2 dx
)1
4 u = f(u) + λ|u|r−2u, x ∈ R

2,

Δφ = u2, x ∈ R
2,

(4.1)

whose associated functional is given by

Iλ(u) =
1
2
‖u‖2 +

1
8π

∫
R4

ln(|x− y|)u2(x)u2(y) dxdy +
2λ
5
‖u‖ 5

2
2

−
∫

R2
F (u) dx− λ

r
‖u‖r

r.

Now we provide a Pohozaev type identity for the modified equation (4.1).

Lemma 4.1. Suppose that u ∈ X is a weak solution of (4.1). Then we have the
following identity:

Pλ(u) :=
∫

R2
V (x)u2 dx+

1
2

∫
R2

(∇V (x), x)u2 dx+ V0(u) + λ‖u‖5/2
2 +

1
4
‖u‖4

2

− 2
∫

R2
F (u) dx− 2λ

r
‖u‖r

r = 0.

In the following, we verify the geometry assumption of theorem 3.4 so that we can
get the associated (Ce)cλ

sequence {un,λ} (still denoted by {un}) with cλ � α > 0
and

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)). (4.2)

From the following lemma, we can observe that cλ has an uniform bound inde-
pendently of λ. That is, there exist a, b > 0 such that cλ ∈ [a, b], where a, b do not
depend on λ.
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14 Z. Liu, V.D. Rădulescu and J. Zhang

Lemma 4.2. Assume (V1)–(V3) and (f1)–(f3) hold, then assumption (i) and (ii)
of theorem 3.4 hold true.

Proof. Choosing θ ∈ (0, 4π) and p > 2, it follows from (f1)–(f2) that, for any ε > 0,
there exists Cε > 0 such that

|F (s)| � ε(eθ|s|2 − 1) + Cε|s|p, s ∈ R. (4.3)

By Moser–Trudinger’s inequality (lemma 2.1), we claim that there exists C > 0
(independent of u and ε) such that, for any u ∈ H1(R2) with ‖u‖2 < 1, there holds
that ∫

R2
F (u) dx � εC‖u‖2 + Cε‖u‖p. (4.4)

In fact, due to ex − 1 − x � x(ex − 1) for any x � 0,∫
R2

(eθ|u|2 − 1)dx = θ

∫
R2
u2 dx+

∫
R2

(eθ|u|2 − 1 − θ|u|2) dx

� θ

∫
R2
u2 dx+ θ

∫
R2
u2(eθ|u|2 − 1) dx.

By lemma 2.1 and Hölder’s inequality, for some c > 0 (independent of u), one has∫
R2
u2(eθ|u|2 − 1) dx � c‖u‖2.

So (4.4) follows from (4.3) and Sobolev’s embedding.
Then, we have by (3.3)

Iλ(u) =
1
2
‖u‖2 +

1
4
[V1(u) − V2(u)] +

2λ
5
‖u‖ 5

2
2 −

∫
R2
F (u) dx− λ

r
‖u‖r

r

� 1 − 2εC
2

‖u‖2 − C1‖u‖4 − Cε‖u‖p − C3‖u‖r, (4.5)

which implies that there exist α > 0 and ρ > 0 small such that

Iλ(u) � α, ∀u ∈ S = {u ∈ X : ‖u‖ = ρ}. (4.6)

On the other hand, take e ∈ C∞
0 (R2) such that e(x) ≡ 0 for x ∈ R

2\B 1
4
(0), e(x) ≡ 1

for x ∈ B 1
8
(0), and |∇e(x)| � C. Then we have the following estimate:

Iλ(se) =
s2

2
‖e‖2 +

s4

4
[V1(e) − V2(e)] +

2λs5/2

5
‖e‖ 5

2
2 −

∫
R2
F (se) dx− λsr

r
‖e‖r

r

� s2

2
‖e‖2 − s4

8π

∫
|x|� 1

4

∫
|y|� 1

4

ln
1

|x− y| e2(y) e2(x) dy dx+
2s5/2

5
‖e‖ 5

2
2

� s2

2
‖e‖2 − s4 ln 2

8π

(∫
R2

e2(x) dx
)2

+
2s5/2

5
‖e‖ 5

2
2 . (4.7)

Hence, we can choose t0 > 0 large enough such that Iλ(t0e) < 0. �
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Lemma 4.3. Assume (V1)–(V3) and (f1)–(f4) hold, then any (Ce)cλ
sequence {un}

is bounded in H1(R2).

Proof. Assume {un} is a (Ce)cλ
sequence. Then the following holds:

C � Iλ(un) − 1
4
I ′λ(un)un

=
1
4
‖un‖2 +

3λ
20

‖un‖
5
2
2 +

∫
An∪{R2\An}

(
1
4
f(un)un − F (un)

)
dx

+
r − 4
4r

λ

∫
R2

|un|r dx

� 1
4
‖un‖2 +

3λ
20

‖un‖
5
2
2 −

∫
An

(F (un) − 1
4
f(un)un) dx+

r − 4
4r

λ

∫
R2

|un|r dx,

(4.8)

where An := {x| 1
4f(un)un − F (un) � 0}. Using (f4), the definition of An implies

that there exists T > 0 such that |un| � T for x ∈ An. So, by (f2) there exists
CT > 0 such that

∫
An

(F (un) − 1
4
f(un)un) dx � CT

∫
An

u2
n dx � CT ‖un‖2

2. (4.9)

Observe that for any large B1 > 0, there exists B2 > 0 such that 3
20‖un‖

5
2
2 �

B1‖un‖2
2 −B2. So combining (4.8) and (4.9) we have

C + λB2 � 1
8
‖un‖2 +

∫
R2

[
(λB1 − CT )|un|2 +

r − 4
4r

λ|un|r
]

dx. (4.10)

Let B1 be large enough, then for fixed λ, the following holds:

(λB1 − CT )t2 +
r − 4
4r

λtr � 0

for t � 0. Thus, it follows from (4.10) that ‖un‖ � C for some C (independent
of n). �

Lemma 4.4. Assume (V1)–(V3) and (f1), (f2) and (f4) hold true, if I ′λ,∞(u) = 0
and u ∈ X\{0}, then Iλ,∞(u) = max

t∈(0,+∞)
Iλ,∞(ut), where ut := t2u(tx). Here,

Iλ,∞(u):=
1
2

∫
R2

|∇u|2 dx+
1
2

∫
R2
V∞u2 dx+

1
4
V0(u) +

2λ
5
‖u‖5/2

2

−
∫

R2
F (u) dx− λ

r
‖u‖r

r.
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Proof. By I ′λ,∞(u) = 0, we have

2‖∇u‖2
2 +

∫
R2
V∞u2 dx+ λ‖u‖5/2

2 + V0(u)

− 1
4
‖u‖4

2 − 2
∫

R2
(f(u)u− F (u)) dx− 2(r − 1)λ

r
‖u‖r

r = 0, (4.11)

which comes from 2I ′λ,∞(u)u− Pλ,∞(u) = 0. Here,

Pλ,∞(u) =
∫

R2
V∞u2 dx+ λ‖u‖5/2

2 + V0(u) +
1
4
‖u‖4

2 − 2
∫

R2
F (u) dx− 2λ

r
‖u‖r

r.

Let us define a function χ(t) := Iλ,∞(ut) on [0,+∞). Obviously, χ(0) = 0
and χ(t) > 0 for t > 0 small and χ(t) < 0 for t sufficiently large. Thus,
maxt∈(0,+∞) Iλ,∞(ut) is achieved at some tu > 0. So χ′(tu) = 0 and utu

satisfies
(4.11). Observe that

χ′(t) = 2t3‖∇u‖2
2 + t

∫
R2
V∞u2 dx+ λt3/2‖u‖5/2

2 + t3V0(u) −
∫

R2

(
F (t2u)
t2

)′

t

dx

− t3
(

ln t+
1
4

)
‖u‖4

2 −
2(r − 1)λt2r−3

r
‖u‖r

r

= t3
[
2‖∇u‖2

2 +
1
t

∫
R2
V∞u2 dx+

λ

t3/2
‖u‖5/2

2 + V0(u) −
(

ln t+
1
4

)
‖u‖4

2

−2
∫

R2

(f(t2u)t2u− F (t2u))
t6

dx− 2(r − 1)λt2r−6

r
‖u‖r

r

]
.

From (4.11) we infer that χ′(1) = 0 and χ′(t) > 0 for t < 1 and χ′(t) < 0 for t > 1.
Thus, tu = 1. The proof is complete. �

Motivated by the strategy of proposition 3.1 in [23], we have

Lemma 4.5. Assume (V1)–(V3) and (f1)–(f4) hold, for λ ∈ (0, 1] fixed, there exists
u0 ∈ X\{0} such that I ′λ(u0) = 0 with Iλ(u0) = cλ.

Proof. By using lemmas 4.2 and 4.3, we observe that there exists a (Ce)cλ
sequence

{un} ⊂ X with ‖un‖ � C uniformly for n. The remaining proof will be divided into
three steps.

Step 1. We claim that

lim inf
n→∞ sup

y∈R2

∫
B2(y)

u2
n(x) dx > 0. (4.12)

If (4.12) does not occur, then by Lions’ vanishing lemma (see [31]), we have un → 0
in Ls(R2) for all s > 2. From (f1)–(f2), take θ small enough, we deduce that, for

https://doi.org/10.1017/prm.2023.43 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.43


Ground state solutions of the planar Schrödinger–Poisson system 17

any ε > 0, there exists Cε > 0 such that for p > 2

|f(un)| � ε(eθ|un|2 + 1)|un| + Cε|un|p, (4.13)

from which we have
∫

R2 f(un)un dx = o(1) for large n. Thus, it follows from (4.4)
and (3.3) that

‖un‖2 + V1(un) + λ‖un‖5/2
2 = I ′λ(un)un + V2(un)

+
∫

R2
f(un)un dx+ λ‖un‖r

r + o(1) = o(1),

which yields that un → 0 in H1(R2) and V1(un) → 0 as n→ ∞. Thus, by (4.4) one
has

Iλ(un)=
1
2
‖un‖2+

2λ
5
‖un‖5/2

2 +
1
4
(V1(un)− V2(un)) −

∫
R2
F (un) dx− λ

r
‖un‖r

r → 0

as n→ ∞, which contradicts cλ > a. So the claim is true. Going if necessary to a
subsequence, there exists a sequence {yn} ⊂ R

2 such that vn = un(· + yn) is still
bounded in H1(R2) and vn ⇀ v0 for some non-zero function v0 ∈ H1(R2), and
vn → v0 a.e. in R

2.

Step 2. We claim that {yn} is bounded. Assume by contradiction that |yn| → +∞.
Since {un} is a (Ce)cλ

sequence for Iλ, the following holds:

V1(vn) = V1(un) = o(1) + V2(un) +
∫

R2
f(un)un dx+ λ‖un‖r

r − ‖un‖2 − λ‖un‖
5
2
2 ,

which yields that V1(vn) is bounded uniformly for n due to the boundedness of {un}
in H1(R2). Recalling lemma 3.1, we obtain that ‖vn‖� are also bounded uniformly
for n, and thus {vn} is bounded in X. Up to subsequence, we may assume that
vn ⇀ v0 in X. So, v0 ∈ X. It then follows by lemma 3.3 (i) that vn → v0 in Ls(R2)
for s � 2 as n→ ∞. Observe that for small r > 0, due to yn → +∞, one has

‖un‖2
� =

∫
R2

ln(1 + |x+ yn|)v2
n(x) dx �

∫
Br(0)

ln(1 + |x+ yn|)v2
n(x) dx

� 1
2

∫
Br(0)

ln(1 + |yn|)v2
n(x) dx � C2 ln(1 + |yn|)

with some C2 > 0, and

‖v0(·−yn)‖2
� =

∫
R2

ln(1 + |x+ yn|)v2
0(x) dx

�
∫

Br(0)

[ln(1 + |x|) + ln(1 + |yn|)]v2
0(x) dx

� C3 ln(1 + |yn|)
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for some C3 > 0. In view of the above inequalities, we deduce from the Fatou lemma
that there exists C > 0 such that

‖v0(·−yn)‖2
X � ‖v0‖2 + ‖v0(·−yn)‖2

�

� C(‖un‖2 + ‖v0(·−yn)‖2
�)

� C‖un‖2
X . (4.14)

Define

Ĩλ,n(vn) :=
1
2

∫
R2

|∇vn|2 dx+
1
2

∫
R2
V (x+ yn)v2

n dx

+
1
4
V0(vn) +

2λ
5
‖vn‖5/2

2 −
∫

R2
F (vn) dx− λ

r
‖vn‖r

r.

Therefore, we have for every n,∣∣∣Ĩ ′λ,n(vn)(vn − v0)
∣∣∣ = |I ′λ(un)(un − v0(·−yn))|

� ‖I ′λ(un)‖X∗(‖un‖X + ‖v0(·−yn))‖X), (4.15)

which, together with (4.14), implies that

|Ĩ ′λ,n(vn)(vn − v0)| → 0, as n→ ∞. (4.16)

Based on the fact that vn → v0 in Ls(R2) for s � 2 as n→ ∞, by assumption (V2)
one has ∫

R2
V (x+ yn)vn(vn − v0) dx→ 0, (4.17)

as n→ ∞, and by (4.13) and (3.2) one has∫
R2
f(vn)(vn − v0) dx→ 0, ‖vn‖1/2

2

∫
R2
vn(vn − v0) dx→ 0,

|1
4
V ′

2(vn)(vn − v0)| � |B2(v2
n, vn(vn − v0))| � ‖vn‖3

8/3‖vn − v0‖8/3 → 0,
(4.18)

as n→ ∞. By the definition of Ĩλ,n(vn), we have

B1(v2
n, vn(vn − v0))

= Ĩ ′λ,n(vn)(vn − v0) −
∫

R2
V (x+ yn)vn(vn − v0) dx− ‖∇(vn − v0)‖2

2

+B2(v2
n, vn(vn − v0)) − λ‖vn‖1/2

2

∫
R2
vn(vn − v0) dx+

∫
R2
f(vn)(vn − v0) dx

+ λ

∫
R2

|vn|r−2vn(vn − v0) dx+ o(1). (4.19)

Combining (4.16)–(4.19), we infer that ‖∇(vn − v0)‖2
2 → 0 and B1(v2

n,
vn(vn − v0)) → 0 as n→ ∞, and then vn → v0 in H1(R2). Recalling lemmas 3.1
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and 3.2, we have ‖vn − v0‖� → 0 as n→ ∞. We therefore deduce that vn → v0 in
X.

Note that, for any ϕ ∈ C∞
0 (R2), we have, after passing to a subsequence,∫

R2
V (x+ yn)vnϕdx→

∫
R2
V∞v0ϕdx as n→ ∞.

Thus, from (4.14) and (4.15) we deduce that for any ϕ ∈ C∞
0 (R2)

|I ′λ,∞(v0)ϕ| = |Ĩ ′λ,n(vn)ϕ| + o(1) = |I ′λ(un)ϕ(·−yn)| + o(1)

� ‖I ′λ(un)‖X∗‖ϕ(·−yn)‖X + o(1)

� C‖I ′λ(un)‖X∗‖ϕ‖X + o(1),

which implies that I ′λ,∞(v0) = 0. That is, v0 is a nontrivial critical point of func-
tional Iλ,∞ with Iλ,∞(v0) = cλ. Recalling the definition of cλ and lemma 4.4, we
have

cλ � max
t∈(0,+∞)

Iλ(v0t) < max
t∈(0,+∞)

Iλ,∞(v0t) = Iλ,∞(v0) = cλ, v0t = t2v0(tx),

which is a contradiction. Therefore, {yn} is a bounded sequence.

Step 3. We show that un → u in X. Since we have known from step 2 that {yn} is
a bounded sequence, there exists u0 ∈ H1(R2)\{0} such that un ⇀ u0 in H1(R2)
and un → u0 a.e. in R

2. Arguing as in step 2, we deduce that un → u0 in X. We
conclude that u0 is critical point of Iλ with Iλ(uλ) = cλ. �

4.1. Proof of theorem 2.2

In view of lemma 4.5, for fixed λ ∈ (0, 1], we have I ′λ(uλ) = 0 for some uλ ∈
X\{0}. Choosing a sequence {λn} ⊂ (0, 1] satisfying λn → 0+, there exists a
sequence of nontrivial critical points {uλn

}(still denoted by {un}) of Iλn
with

Iλn
(un) = cλn

. We now show that {un} is bounded in H1(R2). In fact, according
to the definition of I ′λn

(un)un = 0, we have

V0(un) = −(‖∇un‖2
2 +

∫
R2
V (x)u2

n dx) − λn‖un‖5/2
2 + λn‖un‖r

r +
∫

R2
f(un)un dx.

(4.20)
Substituting V0(un) into Pλ(un) = 0 gives

− ‖∇un‖2
2 +

1
2

∫
R2

(∇V (x), x)u2
n +

1
4
‖un‖4

2

+
∫

R2
f(un)un − 2F (un) dx+

r − 2
r

λn‖un‖r
r = 0. (4.21)

We use the same fashion to get

Iλn
(un) =

1
4
‖∇un‖2

2 +
1
4

∫
R2
V (x)u2

n dx

+
∫

R2

1
4
f(un)un − F (un) dx+

3λn

20
‖un‖5/2

2 +
λn(r − 4)

4r
‖un‖r

r. (4.22)
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Putting (4.22) into (4.21), we get

− [4Iλn
(un) −

∫
R2
V (x)u2

n dx+
(

4
r
− 1
)
λn‖un‖r

r

+
∫

R2
4F (un) − f(un)un dx− 3λn

5
‖un‖5/2

2 ]

+
1
2

∫
R2

(∇V (x), x)u2
n +

1
4
‖un‖4

2 +
∫

R2
f(un)un − 2F (un) dx+

r − 2
r

λn‖un‖r
r = 0,

(4.23)
which can be rewritten as

1
4
‖un‖4

2 +
∫

R2
V (x)u2

n dx+
(

2 − 6
r

)
λn‖un‖r

r

+
1
2

∫
R2

(∇V (x), x)u2
n dx+

3λn

5
‖un‖5/2

2

+
∫

R2
2f(un)un − 6F (un)dx = 4Iλn

(un). (4.24)

From condition (f3), we can conclude that f(un)un � 3F (un), see lemma 4.2 in [21].
Thus, (4.24) implies that {un} is bounded in L2(R2) uniformly for n. Moreover,
observe from (4.24) that

∫
R2
V (x)u2

n dx+
1
2

∫
R2

∇V (x) · xu2
n dx � C,

(
2 − 6

r

)
λn‖un‖r

r � C,
3λn

5
‖un‖5/2

2 � C,

∫
R2

2f(un)un − 6F (un) dx � C.

(4.25)

In view of lemma 4.1, we have

2I ′λn
(un)un − Pλn

(un) = 2‖∇un‖2
2

+
∫

R2
(V (x) − 1

2
∇V (x) · x)u2

n dx+ λn‖un‖5/2
2 + V0(u)

− 1
4
‖un‖4

2 − 2
∫

R2
(f(un)un − F (un)) dx− 2(r − 1)λn

r
‖un‖r

r = 0. (4.26)
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For t > 0, from (4.26) we deduce that

Iλn (un) − Iλn (unt) =
1 − t4

2
‖∇un‖2

2 +
1

2

∫
R2

[V (x) − t2V (t−1x)]u2
n dx + λn

2(1 − t5/2)

5
‖un‖5/2

2

+
1 − t4

4
V0(un) +

t4 ln t

4
‖un‖4

2 +

∫
R2

[
F (t2un)

t2
− F (un)

]
dx − (1 − t2(r−1))λn

r
‖un‖r

r

=
1 − t4

4
[2I′λn

(un)un − Pλn (un)] +
1

t2
F (t2un)

]
dx

+
1

4

∫
R2

[
(1 + t4)V (x) − 2t2V (t−1x) +

1 − t4

2
∇V (x) · x

]
u2

n dx

+
1 − t4 + 4t4 ln t

16
‖un‖4

2 +

∫
R2

[
1 − t4

2
f(un)un +

t4 − 3

2
F (un)

+

(
3

20
+

t4

4
− 2t5/2

5

)
λn‖un‖5/2

2 +

[
(r − 1)(1 − t4)

2r
− (1 − t2(r−1))

r

]
λn‖un‖r

r. (4.27)

where unt(x) = t2un(tx). Now we show that {‖∇un‖2} is bounded uniformly for
n. Suppose by contradiction that ‖∇un‖2 → ∞. Take tn = (

√
M/‖∇un‖2)1/2 for

some M > 0 large, then tn → 0. Obviously, t4n ln tn → 0. Letting t = tn in (4.27),
since {un} is bounded in L2(R2) uniformly for n, by (V2) and (f1) and (4.4), we
have for large tn

Iλn
(un) − Iλn

(t2nuntn
)

=
1
4

∫
R2

[
V (x) +

1
2
∇V (x) · x

]
u2

n dx

+
1
16

‖un‖4
2 +

∫
R2

[
1
2
f(un)un − 3

2
F (un)

]
dx,

+
3
20
λn‖un‖5/2

2 +
r − 3
2r

λn‖un‖r
r + o(1). (4.28)

Therefore, it follows from (3.3), (4.4), (4.25), (4.28) and (V1), (f1), the
Gagliardo–Nirenberg inequality that

cλn
= Iλn

(un) � Iλn
(t2nuntn

) + o(1)

=
t4n
2
‖∇un‖2

2 +
t4n
4
V0(un) − t4n ln tn

4
‖un‖4

2 −
1
t2n

∫
R2
F (t2nun) dx

+
1
2

∫
R2
t2nV (t−1

n x)u2
n dx+ λn

2t5/2
n

5
‖un‖5/2

2 − t2r−2
n

r
λn‖un‖r

r + o(1)

� t4n
2
‖∇un‖2

2 −
t4n
4
V2(un) − t2(p−1)

n C‖un‖p
p + o(1)

� M

2
− t4nC

4
‖un‖3

2‖∇un‖2 − t2(p−1)
n C‖un‖2

2‖∇un‖p−2
2 + o(1)

� M

2
− CM

4‖∇un‖2
‖un‖3

2 −
CM (p−1)/2

‖∇un‖2
‖un‖2

2 + o(1), (4.29)
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which, together with the fact that ‖∇un‖2 → +∞, implies a contradiction by letting
M > 0 large enough. Hence, {un} is bounded in H1(R2). Arguing similarly as in
lemma 4.5, we obtain that un → u0 in X. Moreover, by letting n→ +∞, one has
cλn

→ c∗ > a > 0 and Iλn
(un) = c∗ + o(1). Here, a is positive number given in (4.2)

below. For any ϕ ∈ C∞
0 (R2), we have

I ′λn
(un)ϕ = I ′(un)ϕ+ λn‖un‖

1
2
2

∫
R2
unϕdx+ λn

∫
R2

|un|r−2unϕdx = o(1)‖ϕ‖X .

Thus, {un} is a Palais–Smale sequence of I with level c∗. Therefore, arguing as that
in lemma 4.5, there exists a nontrivial u0 ∈ X such that I ′(u0) = 0 and I(u0) = c∗.
Now let us define the set of solutions

S := {u ∈ X\{0} : I ′(u) = 0}.
It is clear that S �= ∅ and S is bounded away from zero. To be precise, a short
estimate yields that for any u ∈ S, the following holds:

‖u‖ � C for some C > 0. (4.30)

We claim that

c∗ := inf
u∈S

I(u) > 0.

For a contradiction, we assume c∗ = 0. Then there exists {un} ⊂ S such that
I(un) → 0 as n→ ∞. In view of (4.24), I(u) � 1

16‖u‖4
2 for all u ∈ S. So, ‖un‖4

2 → 0.
Arguing as above, we have un is bounded in H1(R2) uniformly for n. Using the
Gagliardo–Nirenberg inequality:

‖un‖p
p � Cp‖un‖2

2‖∇un‖p−2
2

we infer that un → 0 in Lp(R2) for p ∈ [2,+∞). By (4.13), we have∫
R2 f(un)undx = o(1) for large n, and furthermore un → 0 in H1(R2) which con-

tradicts (4.30). The claim is true. Take finally a minimizing sequence {un} ⊂ S so
that I(un) → c∗. Similarly to lemma 4.5, there exists u∗ ∈ X so that un → u∗ in
X and I ′(u∗) = 0. It follows that u∗ is a positive ground state solution of problem
(1.3).

5. The critical case

In this section, we are devoted to the proof of theorem 2.5. Differently from the sub-
critical case, we prove the existence of critical point of functional I directly by using
the Mountain-Pass Theorem (see theorem 3.4). It is not hard to check the mountain
pass geometry of I as similar arguments to the subcritical case. Therefore, recalling
theorem 3.4, we can also get the associated (Ce)cmp

sequence {un} with cmp � α >
0 and cmp := inf

γ∈Γ
max

t∈[0,1]
I(γ(t)), where Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = e}.

Now let us verify the (Ce)cmp
sequence {un} contains a bounded subsequence in

H1(R2).
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Lemma 5.1. Assume the conditions of theorem 2.5 hold, then if ν > α0S4
2

4π ln 2 , we have

cmp <
π

α0
, (5.1)

where α0 has been given by assumption (f0).

Proof. Recalling (2.3), there exists ẽ ∈ H1
0 (B 1

4
(0)) such that

‖ẽ‖ = 1 and ‖ẽ‖2 = S−1
2 . (5.2)

Then, similarly to lemma 4.2, for any s > 0 we have

I(sẽ) =
s2

2
‖ẽ‖2 +

s4ν

4
[V1(ẽ) − V2(ẽ)] −

∫
R2
F (sẽ)dx

� s2

2
‖ẽ‖2 − s4ν

8π

∫
|x|� 1

4

∫
|y|� 1

4

ln
1

|x− y| ẽ
2(y)ẽ2(x) dy dx

� s2

2
− s4ν ln 2

8π
S−4

2 . (5.3)

And so,

cmp < max
s∈(0,+∞)

{
s2

2
− s4ν ln 2

8π
S−4

2

}
.

A direct computation shows that

max
s∈(0,+∞)

{
s2

2
− s4ν ln 2

8π
S−4

2

}
=

πS4
2

2 ln 2 · ν .

Thus, the conclusion follows from ν >
α0S4

2
2 ln 2 . �

Lemma 5.2. Assume the conditions of theorem 2.5 hold, then any (Ce)cmp
sequence

{un} is bounded in H1(R2).

Proof. From (f7) we can deduce that (see also lemma 2.3 in [20])

1 − s4

4
f(t)t+ F (st) − F (t) +

(1 − s2)2

4
V (x)t2

=
∫ s

1

[
f(τt) − V (x)τt

(τt)3
− f(t) − V (x)t

t3

]
τ3t4 dτ � 0, ∀t �= 0, s � 0. (5.4)

Then by the definition of I, we have

C � I(un) − 1
4
I ′(un)un

=
1
4
‖∇un‖2

2 +
∫

R2

(
1
4
f(un)un − F (un) +

1
4
V (x)u2

n

)
dx, (5.5)
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which implies that {‖∇un‖2} is bounded uniformly for n. In view of lemma 5.1,
there exists ε0 > 0 small such that

cmp <
π

α0
(1 − 5ε0) =: c̃ <

π

α0
. (5.6)

We now prove the boundedness of {un} in H1(R2). Suppose by contradiction
that ‖un‖ → ∞. Set vn =

√
4c̃un/‖un‖, then ‖vn‖2 = 4c̃ and ‖∇vn‖ = o(1). So,

we have vn ⇀ v in H1(R2) and vn → v a.e. in R
2 after passing to a subsequence.

Furthermore, we have either {vn} is vanishing, i.e.,

lim
n→∞ sup

y∈R2

∫
B2(y)

v2
n(x) dx = 0 (5.7)

or non-vanishing, i.e., there exist δ > 0 and a sequence {yn} ⊂ R
2 such that

lim
n→∞

∫
B2(yn)

v2
n(x) dx > δ. (5.8)

If (5.7) occurs, then it follows from Lions’ vanishing lemma (see [31]) that vn → 0
in Ls(R2) for all s > 2.

Moreover, a straightforward computation shows by assumption (f7) and (5.4)
that

I(u) � I(tu) +
1 − t4

4
I ′(u)u, ∀u ∈ X, t � 0. (5.9)

It then follows from (3.3) and (f7) that

I(un) � I(vn) +
1 − 16c̃2‖un‖−4

4
I ′(un)un

� 1
2
‖vn‖2 +

ν

4
V0(vn) −

∫
R2
F (vn) dx+ o(1)

� 1
2
‖vn‖2 −

∫
R2

1
4
(
f(vn)vn + V (x)v2

n

)
dx+ o(1). (5.10)

Since ‖∇vn‖ = o(1), by (f0) and Trudinger–Moser’s inequality, for any ε > 0 there
exists Cε > 0 such that∫

R2
f(vn)vn dx � ε

∫
R2
u2

n dx+ Cε

∫
R2

(eα0v2
n − 1)vn dx

� εC‖vn‖2 + Cε

[∫
R2

(e
4
3 α0v2

n − 1) dx
] 3

4

‖vn‖4

= εC‖vn‖2 + Cεo(1),

which implies by the arbitrariness of ε that

lim
n→∞

∫
R2
f(vn)vn dx = 0,

which, together with (5.10), implies a contradiction due to (5.6) because if
‖∇vn‖2

2 → 0, then
∫

R2 V (x)v2
n dx→ 4c̃. Thus non-vanishing must hold, namely rela-

tion (5.8) holds true. Since ‖∇vn‖ = o(1) and ‖vn‖2 = 4c̃, in view of (5.10), the
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Trudinger–Moser inequality implies that there exists C > 0 such that

V1(vn) � C. (5.11)

Therefore, from (f1), (f7), (3.3), (5.8), (5.10) and (5.11) we infer that for n large

o(1) =
I ′(un)un

‖un‖4
= νV1(vn) − νV2(vn) −

∫
R2

f(un)un

‖un‖4
dx+ o(1)

� C −
∫

R2

f(
√

4c̃‖un‖vn)v4
n√

4c̃‖un‖3v3
n

dx+ o(1)

� C −
∫

B2(yn)

f(
√

4c̃‖un‖vn)v4
n√

4c̃‖un‖3v3
n

dx+ o(1) = −∞. (5.12)

This is a contradiction and the conclusion follows. �

Lemma 5.3. Assume the conditions of theorem 2.5 hold, there exists u0 ∈ X\{0}
such that I ′(u0) = 0 with I(u0) = cmp.

Proof. Assume that {un} is a (Ce)cmp
sequence of functional I, then we have from

lemma 5.2 that there exists M > 0 such that ‖un‖ � M uniformly for n. Similarly
to lemma 4.5, the proof of this lemma will be also divided into three steps.

Step 1. We show that

lim inf
n→∞ sup

y∈R2

∫
B2(y)

u2
n(x) dx > 0. (5.13)

Otherwise, it follows from Lions’ vanishing lemma (see [31]) that un → 0 in Ls(R2)
for all s > 2. By recalling (5.5) and lemma 5.1, there exists ε0 > 0 small such that

‖∇un‖2
2 � 4cmp <

4π
α0

(1 − 5ε0). (5.14)

In view of (f0), for s ∈ (1, 2) and some M1 > 0, we have

|f(u)|s � C[eα0(1+ε0)su2 − 1], |u| � M1. (5.15)

By choosing s ∈ (1, 2) such that

(1 + ε0)(1 − 5ε0)s < 1,

we infer from lemma 2.1, (5.14) and (5.15), Hölder’s inequality that

∫
|un|�M1

f(un)un dx �
(∫

|un|�M1

|f(un)|s dx

)1/s

‖un‖s′

� C

(∫
R2

[eα0(1+ε0)su2
n − 1] dx

)1/s

‖un‖s′

� C‖un‖s′ = o(1). (5.16)
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Here, s′ = s
s−1 ∈ (2,+∞). So, for any ε > 0, by (f2), there exist M̄ε > 0 small and

Cε > 0 such that∫
R2
f(un)un dx �

∫
|un|�M̄ε

εu2
n dx+

∫
M̄ε�|un|�M1

f(un)un dx

+
∫
|un|�M1

f(un)un dx � εC + Cε

∫
M̃ε�|un|�Mε

|un|p dx+ ε

� εC + Cεo(1) + ε, p ∈ (2,∞). (5.17)

Thus,

lim
n→∞

∫
R2
f(un)un dx = 0. (5.18)

Thus, it follows from (5.18) and (3.3) that

‖un‖2 + νV1(un) = I ′λ(un)un + νV2(un) +
∫

R2
f(un)un dx+ o(1) = o(1), (5.19)

which implies that un → 0 in H1(R2), V1(un) → 0. Moreover,

∫
R2
F (un) dx � 1

4

∫
R2

(
f(un)un + V (x)u2

n

)
dx = o(1), (5.20)

and then

lim
n→∞ I(un) = 0 = cmp

which contradicts cmp > 0. So (5.13) holds true. After passing to a subsequence,
there exists a sequence {yn} ⊂ R

2 such that vn = un(· + yn) is still bounded in
H1(R2) and vn ⇀ v0 ∈ H1(R2)\{0} and vn → v0 a.e. in R

2.

Step 2. We claim that {yn} is bounded. Assume by contradiction that yn → +∞.
In view of (5.17), we can easily see that

∫
R2 f(un)un dx � C uniformly for n. So,

by the definition of I, we have

ν

4
V1(vn) =

ν

4
V1(un)

= I(un) +
ν

4
V2(un) +

∫
R2
F (un) dx− 1

2
‖un‖2

� I(un) +
ν

4
V2(un) +

∫
R2

1
4
(
f(un)un + V (x)u2

n

)
dx− 1

2
‖un‖2,

which implies that V1(vn) is bounded uniformly for n, due to the boundedness of
{un} in H1(R2). It follows from lemma 3.1 that ‖vn‖� is also bounded in n, and so
{vn} is bounded in X. Up to subsequence, there exists v0 ∈ X such that vn ⇀ v0 in
X and vn → v0 in Ls(R2) for s � 2 as n→ ∞. Arguing as in lemma 4.5, we obtain
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that

|Ĩ ′(vn)(vn − v0)| → 0, as n→ ∞. (5.21)

where

Ĩ(vn) :=
1
2

∫
R2

|∇vn|2 dx+
1
2

∫
R2
V (x+ yn)v2

n dx+
ν

4
V0(vn) −

∫
R2
F (vn) dx.

Based on the fact that vn → v0 in Ls(R2) for s � 2 as n→ ∞, by assumption (V2)
and (3.2) one has∫

R2
V (x+ yn)vn(vn − v0) dx→ 0,

∣∣∣∣14V ′
2(vn)(vn − v0)

∣∣∣∣→ 0, as n→ ∞. (5.22)

Arguing similarly as (5.16) and (5.17), we have∫
R2
f(vn)(vn − v0) dx→ 0, as n→ ∞. (5.23)

By the definition of Ĩ(vn), we have

B1(v2
n, vn(vn − v0)) + ‖∇(vn − v0)‖2

2

= Ĩ ′(vn)(vn − v0) −
∫

R2
V (x+ yn)vn(vn − v0) dx

+B2(v2
n, vn(vn − v0)) +

∫
R2
f(vn)(vn − v0) dx+ o(1). (5.24)

Combining (5.21)–(5.24), we infer that ‖∇(vn − v0)‖2
2 → 0 and B1(v2

n, vn(vn −
v0)) → 0 as n→ ∞, and then vn → v0 in H1(R2). Recalling lemma 3.1, we have
‖vn − v0‖� → 0 as n→ ∞. We therefore deduce that vn → v0 in X.

Furthermore, similarly to the proof of lemma 4.5, we obtain that v0 is a nontrivial
critical point of functional I∞ and

I∞(v0) = lim
n→∞ I(vn) = cmp,

where

I∞(v0) :=
1
2

∫
R2

|∇v0|2 dx+
1
2

∫
R2
V∞v2

0 dx+
ν

4
V0(v0) −

∫
R2
F (v0) dx.

Using the conditions of theorem 2.5, like (5.9) we can also estimate

I∞(u) � I∞(tu) +
1 − t4

4
I ′∞(u)u, ∀u ∈ X, t � 0,

which yields

I∞(v0) � max
t�0

I∞(tv0). (5.25)

Recalling the definition of cmp, we have

cmp � max
t∈(0,+∞)

I(tv0) < max
t∈(0,+∞)

I∞(tv0) � I∞(v0) = cmp,

which is a contradiction. Therefore, {yn} is a bounded sequence.
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Step 3. We show that un → u in X and then u is critical point of I with I(u) = cmp.
The proof is the same as that in lemma 4.5, and we omit it. �

5.1. Proof of theorem 2.5

Similarly to theorem 2.2, let us define the set of solutions

S̃ := {u ∈ X\{0} : I ′(u) = 0}.

By lemma 5.3, S̃ �= ∅. For u ∈ S̃ by (f0), for any ε > 0 there exists Cε > 0 such that

‖u‖2 � ‖u‖2 + νV1(u)

� ε

∫
R2
u2 dx+ Cε

∫
R2

(eα0u2 − 1)u3 dx+ νV2(u)

� ε‖u‖2 + Cε

(∫
R2

e2α0u2 − 1)
) 1

2

‖u‖3
6 + νC‖u‖4

� ε‖u‖2 + CεC‖u‖3 + νC‖u‖4,

which implies that there exists C > 0 such that ‖u‖ � C for any u ∈ S̃.
We claim that

c̃∗ := inf
u∈S̃

I(u) > 0. (5.26)

Assume by contradiction that c̃∗ = 0 and {un} ⊂ S̃ satisfies I(un) → 0 as n→
∞. Recalling lemma 5.2, we deduce that {un} is bounded in H1(R2) uni-
formly for n, and then by (5.5), I(un) � 1

4‖∇un‖2
2. Obviously, ‖∇un‖2

2 → 0.
By the Gagliardo–Nirenberg inequality, we have un → 0 in Lp(R2) for p > 2.
The Trudinger–Moser inequality implies

∫
R2 f(un)undx = o(1) as n→ ∞. And so

using I ′(un) = 0 and (3.3), we have V1(un) → 0 and un → 0 in H1(R2) which is
impossible. (5.26) holds true. It is easy to obtain from lemma 5.1 that c̃∗ < π

α0
.

Finally, let {un} ⊂ S̃ be a minimizing sequence, hence I(un) → c̃∗ ∈
(
0, π

α0

)
. By

lemma 5.2, we know that {un} is bounded in H1(R2). Similar to the proof of lemma
5.3, there exists ũ∗ ∈ X such that un → ũ∗ in X and I ′(ũ∗) = 0 and I(ũ∗) = c̃∗.
Thus, ũ∗ is a positive ground state solution of problem (1.3). The proof is now
complete.
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