DIMENSION AND FINITE CLOSURE

W. F. GROSS

(Received 7 June 1976)

Abstract

If \(M \) is a model with dimension and finite closure, then \(T(M) \) is \(\aleph_0 \)-categorical. If \(M \) is atomic, has dimension and finitely many algebraic elements, then \(M \) has finite closure or a finite basis. If \(M \) has finite closure, satisfies the Exchange Lemma, and one-one maps between independent subsets are elementary, then \(M \) has dimension.

In Crossley & Nerode (1974, p. 44), the authors assume that the theories which they treat are \(\aleph_0 \)-categorical, but note that it is sufficient, for their purposes, to consider a complete theory \(T \) for which each \(B_n(T) \) is atomistic and every model has finite closure. A large part of their work concerns models with dimension. We show, in Section 1, that for a complete theory \(T \) with an infinite model which can be covered by finitely many minimal formulae, in particular with a model with dimension, \(T \) must be \(\aleph_0 \)-categorical for its model to have finite closure. We also show, in Section 2, that if a model is atomic, has dimension and finitely many algebraic elements, then it has either a finite basis or finite closure.

If \(M \) has dimension, then \(M \) satisfies the Exchange Lemma and one-one maps between independent subsets of \(M \) are elementary (see Propositions 1 and 3). We show, in Section 3, that if \(M \) has these two properties and finite closure, then \(M \) has dimension. No form of the axiom of choice is used.

Section 0 gives the notation and conventions we follow, as well as the necessary definitions and propositions from Crossley & Nerode (1974).

0

MODELS. For a model, \(M \), we use \(M \) to denote the domain of \(M \), if no ambiguity arises. We use \(a, b \), etc. to denote elements of \(M \) and \(A, B \) etc. to
denote subsets of \mathcal{M}. $T(\mathcal{M})$ denotes the complete theory of \mathcal{M}. We do not assume that the language of a model is countable but we do assume that the language contains a symbol for equality and that \mathcal{M} is a normal model. Thus we can define in the language quantifiers $\exists^k v_0 \cdots$ meaning "there exist $< k$ v_0, \cdots" and $\exists^* v_0 \cdots$ meaning "there exist exactly k v_0, \cdots". $\chi(v_0, \cdots, v_n)$ will always denote a formula of the language of \mathcal{M} with all its free variables among v_0, \cdots, v_n. For $a_0, \cdots, a_n \in \mathcal{M}$ we write $\mathcal{M} \models \chi(a_0, \cdots, a_n)$ or $\mathcal{M} \models \chi[a_1, \cdots, a_n]$ if a_0, \cdots, a_n satisfies χ in \mathcal{M}. If T is a complete theory, $B_n(T)$ denotes the boolean algebra of equivalence classes of formulae of the language of T with all their free variables among v_0, \cdots, v_n. (v_0, \cdots, v_n) will always denote a formula of the language of \mathcal{M} with all its free variables among v_0, \cdots, v_n. We use χ to denote the equivalence class containing χ as no ambiguity arises. A model \mathcal{M} is atomic, if for every n-tuple (a_0, \cdots, a_{n-1}) of \mathcal{M} there is an atom x of $B_n(T(\mathcal{M}))$ such that $\mathcal{M} \models \chi[a_0, \cdots, a_{n-1}]$. We say \mathcal{M} is covered by the formulae $\chi_1(v_0), \cdots, \chi_n(v_0)$ if $\mathcal{M} \models \forall v_0 (\chi_1 \lor \cdots \lor \chi_n)$. a is a solution of $\chi(v_0)$ if $\mathcal{M} \models \chi[a]$.

Algebraic Closure. We follow chapters 4 and 6 of Crossley & Nerode (1974). a is algebraic over A if for some $a_1, \cdots, a_n \in A$, $\chi(v_0, \cdots, v_n)$ and natural number k, $\mathcal{M} \models (\exists^k v_0 \chi(v_0, \cdots, v_n) \land \chi(v_0, \cdots, v_n)) [a, a_1, \cdots, a_n]$. a is algebraic if it is algebraic over ϕ. The algebraic closure of A, $\text{cl} A$, is the set of all elements of \mathcal{M} algebraic over A. Clearly $A \subseteq \text{cl} A$. \mathcal{M} has finite closure if $\text{cl} A$ is finite whenever A is finite. A is independent if for all $a \in A$, $a \not\in \text{cl}(A \setminus \{a\})$. We write (a_1, \cdots, a_n) is independent if $\{a_1, \cdots, a_n\}$ is independent and the a_i are distinct. A is a basis of \mathcal{M} if A is independent and $\mathcal{M} = \text{cl} A$. $\phi(v_0)$ is a minimal formula for \mathcal{M} if ϕ has infinitely many solutions in \mathcal{M} and for each $\psi(v_0, \cdots, v_n)$ and $a_1, \cdots, a_n \in \mathcal{M}$ either $\phi(v_0) \land \psi(v_0, a_1, \cdots, a_n)$ or $\phi(v_0) \land \neg \psi(v_0, a_1, \cdots, a_n)$ has finitely many solutions in \mathcal{M}. Clearly if $\phi(v_0)$ is minimal and $\psi(v_0)$ has only finitely many solutions then $\phi \lor \psi$ and $\phi \land \neg \psi$ are minimal. $\text{Min}(\mathcal{M})$ is the set of solutions of minimal formulae. \mathcal{M} has dimension if for some minimal formula ϕ, $\mathcal{M} \models \phi[a]$ for every non-algebraic element, a, of \mathcal{M}. If $\mathcal{M}, \mathcal{M}'$ have the same language \mathcal{L}, $A \subseteq \mathcal{M}$, $A' \subseteq \mathcal{M}'$ and $p : A \to A'$, then p is an elementary monomorphism if for all $a_0, \cdots, a_n \in A$ and for all $\chi(v_0, \cdots, v_n) \in \mathcal{L}$

$$\mathcal{M} \models \chi[a_0, \cdots, a_n] \text{ if and only if } \mathcal{M}' \models \chi[p a_0, \cdots, p a_n]$$

(p is one-one as \mathcal{L} contains equality and \mathcal{M} is a normal model). We use the following propositions.
PROPOSITION 1. (Crossley & Nerode (1974), Lemma 6.4(1b)). (Exchange Lemma) For any model, \mathcal{M}, if $\{a_1, \ldots, a_n\} \subseteq \mathcal{M}$ is independent but $\{a_1, \ldots, a_{n-1}\}$ is not, and $a_{n+1} \in \text{Min} (\mathcal{M})$, then $a_{n+1} \in \text{cl}\{a_1, \ldots, a_n\}$.

PROPOSITION 2. (Crossley & Nerode (1974), Lemma 6.4(ii)). For any model \mathcal{M}, suppose $A, B \subseteq \text{Min} (\mathcal{M})$, $\text{cl} A \subseteq \text{cl} B$ and A is independent. Then

(a) $\text{card} A \leq \text{card} B$

(b) there is a subset B_0 of B such that $A \cup B_0$ is independent and $\text{cl} (A \cup B_0) = \text{cl} B$.

An obvious and trivial modification of the proof of Crossley & Nerode (1974), Lemma 6.9, gives:

PROPOSITION 3. Let $\mathcal{M}, \mathcal{M}'$ be models of a complete theory T, $A \subseteq \text{Min} (\mathcal{M})$, $B \subseteq \mathcal{M}'$ independent sets and $p : A \rightarrow B$ a one-one map such that for $a \in A$ there is some minimal formula, $\phi (v_0)$ for \mathcal{M} such that $\mathcal{M} \models \phi [a]$ and $\mathcal{M}' \models \phi [p(a)]$. Then p is an elementary monomorphism.

1

We can prove our first result immediately.

THEOREM 4. Suppose a complete theory T has an infinite model \mathcal{M} with finite closure which is covered by minimal formulae ϕ_1, \ldots, ϕ_n. Then $B_m (T)$ is finite for all m and T is \aleph_0-categorical.

PROOF. We may assume that $\mathcal{M} \models \bigwedge_{i \neq i} \forall v_0 \neg (\phi_i (v_0) \& \phi_j (v_0))$. For if, for $i \neq j$, $\mathcal{M} \models (\phi_i \& \phi_j)[a]$ for infinitely many a then replace ϕ_i (say) with $\phi_i \lor \phi_j$ and delete ϕ_j. Now $\mathcal{M} \models (\phi_i \& \neg \phi_i)[a]$ for finitely many a, so $\phi_i \lor (\phi_i \& \neg \phi_i)$ (i.e. $\phi_i \lor \phi_j$) is again minimal. If $\mathcal{M} \models (\phi_i \& \phi_j)[a]$ for finitely many a and $i < j$ replace ϕ_j with $\phi_i \& \neg \phi_i$, which is again minimal. In both cases the new ϕ's cover \mathcal{M}, so a simple induction validates the assumption.

Let $D_i = \{a \in \mathcal{M} : \mathcal{M} \models \phi_i [a]\}$. By the definition of a minimal formula each D_i is infinite.

Suppose $m \in \omega$. Then there is an independent subset C of \mathcal{M} such that $\text{card} C \cap D_i = m$ for all i, for if not, let r be the least m for which it fails. Then $r > 0$, and there is an independent C' such that $\text{card} C' \cap D_i = r - 1$. As C' is finite and D_i is infinite, there is $c_i \in D_i$ such that $c_i \notin \text{cl} C'$. So by Proposition 1, $C' \cup \{c_i\}$ is independent. Thus we can construct by induction C'' such that $\text{card} C'' \cap D_i = r$ for $i = 1, \ldots, n$, contradicting the choice of r.

If $\chi \in B_n (T)$, $\chi \neq 0$, then $T \models \exists v_1, \ldots, v_m \chi (v_1, \ldots, v_m)$. So there are $a_1, \ldots, a_m \in \mathcal{M}$ such that $\mathcal{M} \models \chi [a_1, \ldots, a_m]$. By Proposition 2 there is an independent set $A = \{a_1', \ldots, a_m'\} \subseteq \mathcal{M}$
\{a_1, \ldots, a_m\} such that \(\text{cl}\{a_1, \ldots, a_m\} = \text{cl} A\). Thus \(\{a_1, \ldots, a_m\} \subseteq \text{cl} A\). As \(\text{card} D \cap A \leq m\) there is a one-one map \(p : A \to C\) which satisfies the hypothesis of Proposition 3 and so is elementary.

As \(\{a_1, \ldots, a_m\} \subseteq \text{cl} A\), for \(i = 1, \ldots, m\), there are formulae \(\psi_i(v_1, \ldots, v_m)\), \(\sigma_i(v_1, \ldots, v_m)\) and natural numbers \(k_i\) such that

\[
\sigma_i(v_1, \ldots, v_m) = (\psi_i(v_1, \ldots, v_m) & \exists^{k_i} v_0 \psi_i(v_1, \ldots, v_m))
\]

and

\[
\mathcal{M} \models \sigma_i[a_1, \ldots, a_m].
\]

Hence \(\mathcal{M} \models (\exists u_1, \ldots, u_m (\chi(u_1, \ldots, u_m) & \land \bigwedge_{i=1}^m \sigma_i(u_1, v_1, \ldots, v_m))) [a_1, \ldots, a_m] \)

and so

\[
\mathcal{M} \models (\exists u_1, \ldots, u_m (\chi(u_1, \ldots, u_m) & \land \bigwedge_{i=1}^m \sigma_i(u_1, v_1, \ldots, v_m))) [p(a_1'), \ldots, p(a_m')].
\]

As \(p(a_i') \in C\), there exist \(c_1', \ldots, c_m \in \text{cl} C\) such that \(\mathcal{M} \models \chi[c_1, \ldots, c_m]\).

The map \(q : B_m(T) \to \mathcal{P}(\text{cl} C)^m\) given by

\[
q(\chi) = \{(c_1, \ldots, c_m) \in (\text{cl} C)^m : \mathcal{M} \models \chi[c_1, \ldots, c_m]\}
\]

is one-one, for suppose \(\chi_1, \chi_2 \in B_m(T)\) and \(\chi_1 \neq \chi_2\). Then we may assume \(\chi_1 & \neg \chi_2 \neq 0\). So by the above, there are \(c_1, \ldots, c_m \in C\) such that \(\mathcal{M} \models \chi_1 & \neg \chi_2[c_1, \ldots, c_m]\) and therefore \(q(\chi_1) \neq q(\chi_2)\). But \(\mathcal{P}(\text{cl} C)^m\) is finite as \(\text{cl} C\) is, whence \(B_m(T)\) is finite.

So by Ryll-Nardzewski (1959), \(T\) is \(\mathfrak{K}_n\)-categorical. We note that this direction of Ryll-Nardzewski's proof does not require the axiom of choice. \(\square\)

Regarding the converse of Theorem 4, if \(\mathcal{M} \models T\) and \(B_m(T)\) is finite for all \(m\), indeed just for \(m = 1\), then \(\mathcal{M}\) can have at most finitely many minimal formulae, as it has only finitely many inequivalent 1-place formulae. However \((Q, \leq)\) is a model of an \(\mathfrak{K}_n\)-categorical theory and has no minimal formulae.

Corollary 5. If \(T\) is a complete theory with a model \(\mathcal{M}\) with dimension and finite closure, then \(B_m(T)\) is finite for each \(m\) and \(T\) is \(\mathfrak{K}_n\)-categorical.

Proof. As \(\mathcal{M}\) has finitely many algebraic elements, \(v_0 = v_0\) is a minimal formula which covers \(\mathcal{M}\). \(\square\)

Corollary 6. If \(T\) is a complete theory with a model \(\mathcal{M}\) with dimension and finite closure then every model \(\mathcal{N}\) of \(T\) has dimension and finite closure.

Proof. By Corollary 5, \(B_m(T)\) is finite for each \(m\) and so by Crossley & Nerode (1974), Lemma 5.9, \(\mathcal{N}\) has finite closure. Furthermore \(\mathcal{N}\) is atomic.
As \mathcal{M} has dimension and finite closure, $v_0 = v_0$ is a minimal formula for \mathcal{M}. We will show $v_0 = v_0$ is a minimal formula for \mathcal{M}.

Let $a_1, \cdots, a_n \in \mathcal{M}$ and $\chi(v_0, \cdots, v_n)$ be any formula. Let $\psi(v_0, \cdots, v_{n-1})$ be the atom satisfied by a_1, \cdots, a_n and let $b_1, \cdots, b_n \in \mathcal{M}$ satisfy ψ. As $v_0 = v_0$ is a minimal formula for \mathcal{M},

$$\mathcal{M} \models \exists^k v_0 \sigma(v_0, \cdots, v_n)[b_1, \cdots, b_n],$$

for some finite k, where σ is χ or $\neg \chi$. Hence

$$T \vdash \forall v_1, \cdots, v_n (\psi(v_1, \cdots, v_n) \rightarrow \exists^k v_0 \sigma(v_0, \cdots, v_n))$$

as ψ is an atom and so

$$\mathcal{M} \models \exists^k v_0 \sigma(v_0, \cdots, v_n)[a_1, \cdots, a_n].$$

So $v_0 = v_0$ is minimal for \mathcal{M} whence \mathcal{M} has dimension. \(\square\)

We first prove a theorem from which our second claim follows readily:

Theorem 7. Suppose \mathcal{M} is an atomic model of a complete theory T and $\phi(v_0)$ is a minimal formula for \mathcal{M}. Then for all n such that \mathcal{M} contains an independent set with $\geq n + 1$ solutions of ϕ, there is a formula ρ_{n+1}, an atom of $B_{n+1}(T)$, such that for any model \mathcal{M}' of T:

$$\mathcal{M}' \models \rho_{n+1}[a_0', \cdots, a_n'] \text{ if and only if } (a_0', \cdots, a_n') \text{ is independent and } \mathcal{M}' \models \phi[a_i'] \text{ } i = 0, \cdots, n.$$

Proof. Suppose $(a_0, \cdots, a_n) \subseteq \mathcal{M}$ is independent and $\mathcal{M} \models \phi[a_i] \text{ } i = 0, \cdots, n$. Then the a_i are distinct. As \mathcal{M} is atomic, there is an atom ρ_{n+1} of $B_{n+1}(T)$ such that $\mathcal{M} \models \rho_{n+1}[a_0, \cdots, a_n]$. We show that it has the desired property.

Suppose $(a_0', \cdots, a_n') \subseteq \mathcal{M}'$ is independent and $\mathcal{M}' \models \phi[a_i'] \text{ } i = 0, \cdots, n$. Then by Proposition 3, $p : a_i \mapsto a_i'$ is elementary whence $\mathcal{M}' \models \rho_{n+1}[p(a_0), \cdots, p(a_n)]$ which is precisely $\mathcal{M}' \models \rho_{n+1}[a_0', \cdots, a_n']$.

Conversely, suppose $\mathcal{M}' \models \rho_{n+1}[a_0', \cdots, a_n']$ and (a_0', \cdots, a_n') is independent. We may assume, without loss of generality, that $a_0' \in \text{cl} \{a_1', \cdots, a_n'\}$. So there is a formula $\psi(v_0, \cdots, v_n)$ and natural number k, such that

$$\mathcal{M}' \models (\psi(v_0, \cdots, v_n) \& \exists^k v_0 \psi(v_0, \cdots, v_n))[a_0', \cdots, a_n'].$$

So

$$T \vdash \exists v_0, \cdots, v_n (\rho_{n+1} \& \psi \& \exists^k v_0 \psi).$$
\[T \vdash \forall v_0, \ldots, v_n (\rho_{n+1} \rightarrow (\psi \land \exists^k v_0 \psi)). \]

But \(\rho_{n+1} \) is an atom of \(B_{n+1}(T) \).

So \[M \models \rho_{n+1}[a_0, \ldots, a_n], \quad \text{so} \quad M \models (\psi \land \exists^k v_0 \psi)[a_0, \ldots, a_n]. \]

Hence \(a_0 \in \text{cl}\{a_1, \ldots, a_n\} \) which contradicts the independence of \((a_0, \ldots, a_n) \).

So \((a_0', \ldots, a_n') \) is independent.

It remains to show that \(M' \models \phi[a'] \) \(i = 0, \ldots, n \).

\[M' \models \left(\rho_{n+1} \land \bigwedge_{i=0}^{n} \phi(v_i) \right)[a_0, \ldots, a_n]. \]

Hence \(T \vdash \forall v_0, \ldots, v_n (\rho_{n+1} \rightarrow \bigwedge_{i=0}^{n} \phi(v_i)) \) as \(\rho_{n+1} \) is an atom of \(B_{n+1}(T) \), and so \(M' \models \bigwedge_{i=0}^{n} \phi(v_i)[a_0', \ldots, a_n'] \) as \(M' \models \rho_{n+1}[a_0', \ldots, a_n'] \). \(\square \)

Corollary 8. Suppose \(M \) is an atomic model of a complete theory \(T \), \(\phi(v_0) \) is a minimal formula and \(D = \{ a : M \models \phi(a) \} \). If there are arbitrarily large finite independent subsets of \(D \), then for any finite \(A \subseteq D \), \(D \cap \text{cl} A \) is finite.

Proof. Suppose for some \(A \subseteq D \), that \(A \) is finite but \(D \cap \text{cl} A \) is infinite. Let \(A = \{ a_1, \ldots, a_n \} \). We may assume that \(A \) is independent, for by Proposition 2, there is an independent \(A' \subseteq A \) such that \(\text{cl} A' = \text{cl} A \) (No choice is needed as \(A \) is finite). By Theorem 7 and the hypothesis there is an atom of \(B_{n+1}(T) \), \(\rho_{n+1}(v_0, \ldots, v_n) \), such that for \(d \in D \), \(M \models \rho_{n+1}[d_0, \ldots, d_n] \) if and only if \((d_0, \ldots, d_n) \) is independent. By Proposition 1, if \((d_1, \ldots, d_n) \) is independent, \(M \models \rho_{n+1}[d_0, \ldots, d_n] \) if and only if \(d_0 \not\in \text{cl}\{d_1, \ldots, d_n\} \).

As \(D \cap \text{cl} A \) is infinite then \(\phi(v_0) \land \neg \rho_{n+1}(v_0, a_1, \ldots, a_n) \) has infinitely many solutions in \(M \), and as \(\phi \) is minimal, \(\phi(v_0) \land \rho_{n+1}(v_0, a_1, \ldots, a_n) \) has finitely many solutions, \(d_1, \ldots, d_k \) say.

Hence \(D \subseteq \text{cl}\{a_1, \ldots, a_n, d_1, \ldots, d_k\} \) and \(\{a_1, \ldots, a_n, d_1, \ldots, d_k\} \subseteq \text{Min}(M) \). So if \(\{a_1', \ldots, a_m'\} \subseteq D \) is independent, by Proposition 2,

\[m = \text{card}\{a_1', \ldots, a_m'\} \leq \text{card}\{a_1, \ldots, a_n, d_1, \ldots, d_k\} \leq n + k, \]

which contradicts the hypothesis of the corollary.

Hence \(D \cap \text{cl} A \) is finite for all finite \(A \subseteq D \). \(\square \)

The main result of this section is:

Corollary 9. If \(M \) is an atomic model with dimension and finitely many algebraic elements then \(M \) has a finite basis or finite closure.
PROOF. The following are clear, as is the deduction of Corollary 9 from them and Corollary 8.

If \(\mathcal{M} \) has dimension and \(\text{cl} \phi \) is finite there is a minimal formula \(\phi \) for which \(D = \mathcal{M} \). If \(\mathcal{M} \) does not have a finite basis then it has arbitrarily large independent subsets. \(\square \)

We can find atomic models with dimension and finitely many algebraic elements with a finite basis but not finite closure \(((Z, S))\) where \(S(n) = n + 1 \) and with no finite basis but finite closure \(((N, =))\). Models with a finite basis and finite closure are finite and so do not have dimension, as we require a minimal formula to have infinitely many solutions.

If we do not assume that \(\mathcal{M} \) is atomic, then Corollary 9 is false. If we take \(\mathcal{M} = (V, +, f_\lambda)_{\lambda \in F} \) where \(V \) is an infinite dimensional vector space over an infinite field \(F \), and \(f_\lambda : v \mapsto \lambda v \) is a unary function, then \(\mathcal{M} \) has dimension but neither a finite basis nor finite closure, as algebraic closure is closure in the usual vector space sense. \(\mathcal{M} \) is not atomic, for if \(\{a_0, \cdots, a_n\} \) is independent, \(\mathcal{M} \models a_0 \neq \lambda_1 a_1 + \cdots + \lambda_n a_n \) for all \(\lambda_1, \cdots, \lambda_n \in F \), whereas \(B_{n+1}(T) \) is generated by \(\{\lambda_0 v_0 = \lambda_1 v_1 + \cdots + \lambda_n v_n : \lambda_i \in F\} \) as \(T(\mathcal{M}) \) admits elimination of quantifiers. Hence there is no atom satisfied by \((a_0, \cdots, a_n) \).

Combining Corollaries 5 and 9 we obtain:

Corollary 10. If \(T \) is a complete theory with an atomic model with dimension but no finite basis and finitely many algebraic elements then \(T \) is \(N_0 \)-categorical.

3

Theorem 11. Suppose \(\mathcal{M} \) has the following properties.

1. \(\mathcal{M} \) has finite closure.
2. If \(\{a_1, \cdots, a_n\} \subseteq \mathcal{M} \) is independent and \(\{a_1, \cdots, a_{n+1}\} \) is not, then \(a_{n+1} \in \text{cl}\{a_1, \cdots, a_n\} \). (\(\mathcal{M} \) satisfies the Exchange Lemma).
3. If \(A, B \subseteq \mathcal{M} \) are independent and \(p : A \to B \) is one-one, then \(p \) is elementary.

Then \(\mathcal{M} \) has dimension.

Proof. We prove the following by induction on \(n \):

4. If \(\{a_1, \cdots, a_m\} \) is independent, \(b_1, \cdots, b_n \in \text{cl}\{a_1, \cdots, a_m\} \) then there exist \(c_1, \cdots, c_p \) such that \(\{a_1, \cdots, a_m, c_1, \cdots, c_p\} \) is independent and for any formula \(\psi(v_1, \cdots, v_{m+n+p+1}) \) and for any \(d_1, d_2 \notin \text{cl}\{a_1, \cdots, a_m, c_1, \cdots, c_p\} \),

\[
\mathcal{M} \models \psi[a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p, d_1] \text{ if, and only if,}
\]

\[
\mathcal{M} \models \psi[a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p, d_2].
\]
Suppose \(n = 0 \). If \(d_1, d_2 \not\in \text{cl}\{ a_1, \ldots, a_m \} \) then, by (2), \{ a_1, \ldots, a_m, d_1 \} and \{ a_1, \ldots, a_m, d_2 \} are independent, and (4) holds by (3).

Suppose (4) holds for some \(n \) and \(b_{n+1} \in \text{cl}\{ a_1, \ldots, a_m \} \). Then \(b_{n+1} \in \text{cl}\{ a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_p \} \) and there is a formula \(\chi_0(v_0, \ldots, v_{m+n+p}) \) and a natural number \(k_0 \geq 1 \), such that
\[
\mathcal{M} \models \chi_0 \land \exists v_0 \chi_0[b_{n+1}, a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_p].
\]

We construct sequences \(k_0 > k_1 > \cdots > k_q \geq 1 \), \(\chi_0, \ldots, \chi_q, c_{p+1}, \ldots, c_{p+q} \), such that for any formula \(\psi(v_1, \ldots, v_{m+n+p+1}) \) and \(d_1, d_2 \not\in \text{cl}\{ a_1, \ldots, a_m, c_1, \ldots, c_p \} \)
\[
\mathcal{M} \models \psi[a_1, \ldots, a_m, b_1, \ldots, b_{n+1}, c_1, \ldots, c_p, d_1]
\]
if, and only if,
\[
\mathcal{M} \models \psi[a_1, \ldots, a_m, b_1, \ldots, b_{n+1}, c_1, \ldots, c_p, d_2].
\]
(5)

If (5) holds with \(q = 0 \), we are done. If not, there is a formula \(\psi(v_1, \ldots, v_{m+n+p+1}) \) and \(d_1, d_2 \not\in \text{cl}\{ a_1, \ldots, a_m, b_1, \ldots, b_{n+1}, c_1, \ldots, c_p \} \) such that
\[
\mathcal{M} \models \psi[a_1, \ldots, a_m, b_1, \ldots, b_{n+1}, c_1, \ldots, c_p, d_1]
\]
and
\[
\mathcal{M} \models \neg \psi[a_1, \ldots, a_m, b_1, \ldots, b_{n+1}, c_1, \ldots, c_p, d_2].
\]
(7)

Put \(c_{p+1} = d_i \) and put
\[
\chi_1(v_0, \ldots, v_{m+n+p+2}) = \chi_0(v_0, \ldots, v_{m+n+p}) \land \neg \psi(v_1, \ldots, v_{m+n+p}, v_0, v_{m+n+1}, \ldots, v_{m+n+p+1}).
\]

By (2), \{ a_1, \ldots, a_m, c_1, \ldots, c_{p+1} \} is independent. Clearly
\[
\mathcal{M} \models \chi_1[b_{n+1}, a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_{p+1}].
\]
And
\[
\mathcal{M} \models \exists v_0(\chi_0 \land \neg \chi_1)[a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_{p+1}]
\]
for suppose otherwise. Then
\[
\mathcal{M} \models \forall v_0(\chi_0 \rightarrow \chi_1)[a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_p, d_1]
\]
whence, by (4),
\[
\mathcal{M} \models \forall v_0(\chi_0 \rightarrow \chi_1)[a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_p, d_2].
\]
But \(\mathcal{M} \models \chi_0[b_{n+1}, a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_p] \) and so
\[
\mathcal{M} \models \chi_1[b_{n+1}, a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_p, d_2]
\]
and therefore
\[\mathcal{M} \models \psi[a_1, \ldots, a_m, b_1, \ldots, b_{n+1}, c_1, \ldots, c_p, d_2] \]

which contradicts (7). Thus (8) holds and
\[\mathcal{M} \models \exists^{k} v_0 \chi[v_0, a_1, \ldots, a_m, b_1, \ldots, b_m, c_1, \ldots, c_{p+1}] \]

where \(1 \leq k_i < k_0 \).

We can choose \(\chi, c_i \) is a similar fashion until (5) holds, which is when (4) holds for \(n + 1 \).

Thus (4) holds for all \(n \).

Now suppose \(b_1, \ldots, b_n \in \mathcal{M} \) and \(\psi(v_0, \ldots, v_n) \) is any formula. Using (2), we can choose \(a_1, \ldots, a_m \in \{b_1, \ldots, b_n\} \) such that \(\{a_1, \ldots, a_m\} \) is independent and \(b_1, \ldots, b_n \in \text{cl}\{a_1, \ldots, a_m\} \). By (4), there exist \(c_1, \ldots, c_p \) such that for all \(\chi(v_0, \ldots, v_n) \) and \(d_1, d_2 \notin \{a_1, \ldots, a_m, c_1, \ldots, c_p\} \) \(\mathcal{M} \models \chi[d_1, b_1, \ldots, b_n] \) if, and only if \(\mathcal{M} \models \chi[d_2, b_1, \ldots, b_n] \).

If \(\psi(v_0, b_1, \ldots, b_n) \) has infinitely many solutions in \(\mathcal{M} \), then \(\mathcal{M} \models \psi[d, b_1, \ldots, b_n] \) for some \(d \notin \text{cl}\{a_1, \ldots, a_m, c_1, \ldots, c_p\} \) as \(\text{cl}\{a_1, \ldots, a_m, c_1, \ldots, c_p\} \) is finite by (1). Hence \(\mathcal{M} \models \psi[d, b_1, \ldots, b_n] \) for all \(d \notin \text{cl}\{a_1, \ldots, a_m, c_1, \ldots, c_p\} \) and \(\mathcal{M} \models \neg \psi[d, b_1, \ldots, b_n] \) for at most \(d \in \text{cl}\{a_1, \ldots, a_m, c_1, \ldots, c_p\} \). Thus \(\neg \psi(v_0, b_1, \ldots, b_n) \) has finitely many solutions, and so \(v_0 = v_0 \) is a minimal formula.

Therefore \(\mathcal{M} \) has dimension. \(\square \)

Conditions (2) and (3) are not sufficient for \(\mathcal{M} \) to have dimension. Consider the model \(\mathcal{N} = (Z \times Z, <, S) \) where

\[(n_1, m_1) < (n_2, m_2) \text{ if } n_1 = n_2 \text{ and } m_1 < m_2 \]

and

\[S((n, m)) = (n, m + 1). \]

It is easy to see the following:

(a) \(\text{cl}\{(n_1, m_1), \ldots, (n_t, m_t)\} = \{n_1, \ldots, n_t\} \times Z. \)

(b) \(\{(n_1, m_1), \ldots, (n_t, m_t)\} \) is independent if and only if \(n_1, \ldots, n_t \) are distinct, and therefore (2) holds.

(c) If \(A, B \subseteq \mathcal{N} \) are finite and independent and \(p: A \rightarrow B \) is one-one, then \(p \) extends to an automorphism of \(\mathcal{N} \) and so is elementary. Therefore (3) holds.

(d) \(\mathcal{N} \) has no algebraic elements and \(v_0 < a_1, \neg v_0 < a_1 \) both have infinitely many solutions in \(\mathcal{N} \). Thus \(\mathcal{N} \) does not have dimension.

By Corollary 5, if \(\mathcal{W} \) satisfies (1), (2) and (3), then \(B_*(T(\mathcal{W})) \) is finite for each \(n \), and so \(\mathcal{W} \) is atomic. However Theorem 11 does not hold if we replace (1) by "\(\mathcal{M} \) is atomic", for the model \(\mathcal{W} \) provides a counter-example.
\[\psi(v_{11}, \ldots, v_{1k}, \ldots, v_{l1}, \ldots, v_{lk}) \]

\[= \bigwedge_{i_1 \neq j_2} \left(\neg (v_{i_1} < v_{j_2}) \land \neg (v_{i_2} < v_{j_1}) \land \bigwedge_{i = 1, \ldots, j_2 \leq j_1} v_{i_2} = S^{h^2}(v_{i_1}) \right) \]

is a formula satisfied by

\[((n_1, m_{11}), \ldots, (n_1, m_{1k}), \ldots, (n_l, m_{11}), \ldots, (n_l, m_{kl})) \]

where \(n_1, \ldots, n_l \) are distinct, and is an atom, as can be seen by extending the map \(a_i \mapsto a'_i \), where \(\mathfrak{N} \models \psi(a_{11}, \ldots, a_{ik}) \) and \(\mathfrak{N} \models \psi(a'_{11}, \ldots, a'_{ik}) \), to an automorphism of \(\mathfrak{N} \).

References

Department of Mathematics,
University of Tasmania,
Hobart, Australia.