J. Austral. Math. Soc. 23 (Series A) (1977), 421-430.

DIMENSION AND FINITE CLOSURE

W. F. GROSS¹

(Received 7 June 1976)

Abstract

If \mathfrak{M} is a model with dimension and finite closure, then $T(\mathfrak{M})$ is \aleph_0 -categorical. If \mathfrak{M} is atomic, has dimension and finitely many algebraic elements, then \mathfrak{M} has finite closure or a finite basis. If \mathfrak{M} has finite closure, satisfies the Exchange Lemma, and one-one maps between independent subsets are elementary, then \mathfrak{M} has dimension.

In Crossley & Nerode (1974, p. 44), the authors assume that the theories which they treat are \aleph_0 -categorical, but note that it is sufficient, for their purposes, to consider a complete theory T for which each $B_n(T)$ is atomistic and every model has finite closure. A large part of their work concerns models with dimension. We show, in Section 1, that for a complete theory T with an infinite model which can be covered by finitely many minimal formulae, in particular with a model with dimension, T must be \aleph_0 -categorical for its model to have finite closure. We also show, in Section 2, that if a model is atomic, has dimension and finitely many algebraic elements, then it has either a finite basis or finite closure.

If \mathfrak{M} has dimension, then \mathfrak{M} satisfies the Exchange Lemma and one-one maps between independent subsets of \mathfrak{M} are elementary (see Propositions 1 and 3). We show, in Section 3, that if \mathfrak{M} has these two properties and finite closure, then \mathfrak{M} has dimension. No form of the axiom of choice is used.

Section 0 gives the notation and conventions we follow, as well as the necessary definitions and propositions from Crossley & Nerode (1974).

0

MODELS. For a model, \mathfrak{M} , we use \mathfrak{M} to denote the domain of \mathfrak{M} , if no ambiguity arises. We use a, b, etc. to denote elements of \mathfrak{M} and A, B etc. to

¹Sections of this paper were part of a thesis submitted for the degree of Doctor of Philosophy at Monash University and under the supervision of Professor J. N. Crossley.

denote subsets of \mathfrak{M} . $T(\mathfrak{M})$ denotes the complete theory of \mathfrak{M} . We do not assume that the language of a model is countable but we do assume that the language contains a symbol for equality and that $\mathfrak M$ is a normal model. Thus we can define in the language quantifiers $\exists^{< k} v_0 \cdots$ meaning "there exist < k $v_0 \cdots$ and $\exists^k v_0 \cdots$ meaning "there exist exactly $k v_0 \cdots$ ". $\chi(v_0, \cdots, v_n)$ will always denote a formula of the language of \mathfrak{M} with all its free variables among v_0, \dots, v_n . For $a_0, \dots, a_n \in \mathfrak{M}$ we write $\mathfrak{M} \models \chi(v_0, \dots, v_n)[a_0, \dots, a_n]$ or $\mathfrak{M} \models \chi[a_1, \dots, a_n]$ if a_0, \dots, a_n satisfies χ in \mathfrak{M} . If T is a complete theory, $B_n(T)$ denotes the boolean algebra of equivalence classes of formulae of the language of T with all their free variables among v_0, \dots, v_{n-1} , where $\chi(v_0, \dots, v_{n-1}), \psi(v_0, \dots, v_{n-1})$ are equivalent if $T \vdash \forall v_0, \dots, v_{n-1}(\chi \leftrightarrow \psi)$. We use χ to denote the equivalence class containing χ as no ambiguity arises. A model \mathfrak{M} is *atomic*, if for every *n*-tuple (a_0, \dots, a_{n-1}) of \mathfrak{M} there is an atom χ of $B_n(T(\mathfrak{M}))$ such that $\mathfrak{M} \models \chi[a_0, \cdots, a_{n-1}]$. We say \mathfrak{M} is covered by the formulae $\chi_1(v_0), \dots, \chi_n(v_0)$ if $\mathfrak{M} \models \forall v_0(\chi_1 \lor \dots \lor \chi_n)$. a is a solution of $\chi(v_0)$ if $\mathfrak{M} \models \chi[a].$

ALGEBRAIC CLOSURE. We follow chapters 4 and 6 of Crossley & Nerode (1974). *a is algebraic over* A if for some $a_1, \dots, a_n \in A$, $\chi(v_0, \dots, v_n)$ and natural number k,

$$\mathfrak{M} \models (\exists^{$$

a is algebraic if it is algebraic over ϕ . The algebraic closure of A, cl A, is the set of all elements of \mathfrak{M} algebraic over A. Clearly $A \subseteq cl A$. \mathfrak{M} has finite closure if cl A is finite whenever A is finite. A is independent if for all $a \in A$, $a \notin cl(A \setminus \{a\})$. We write (a_1, \dots, a_n) is independent if $\{a_1, \dots, a_n\}$ is independent and the a_i are distinct. A is a basis of \mathfrak{M} if A is independent and $\mathfrak{M} = cl A$. $\phi(v_0)$ is a minimal formula for \mathfrak{M} if ϕ has infinitely many solutions in \mathfrak{M} and for each $\psi(v_0, \dots, v_n)$ and $a_1, \dots, a_n \in \mathfrak{M}$ either $\phi(v_0)$ & $\psi(v_0, a_1, \dots, a_n)$ or $\phi(v_0)$ & $\neg \psi(v_0, a_1, \dots, a_n)$ has finitely many solutions in \mathfrak{M} . Clearly if $\phi(v_0)$ is minimal and $\psi(v_0)$ has only finitely many solutions then $\phi \lor \psi$ and ϕ & $\neg \psi$ are minimal. Min (\mathfrak{M}) is the set of solutions of minimal formulae. \mathfrak{M} has dimension if for some minimal formula ϕ , $\mathfrak{M} \models \phi[a]$ for every non-algebraic element, a, of \mathfrak{M} . If \mathfrak{M} , \mathfrak{M}' have the same language \mathscr{L} , $A \subseteq \mathfrak{M}$, $A' \subseteq \mathfrak{M}'$ and $p: A \to A'$, then p is an elementary monomorphism if for all $a_0, \dots, a_n \in A$ and for all $\chi(v_0, \dots, v_n) \in \mathscr{L}$

 $\mathfrak{M} \models \chi[a_0, \cdots, a_n]$ if and only if $\mathfrak{M}' \models \chi[pa_0, \cdots, pa_n]$

(p is one-one as \mathscr{L} contains equality and \mathfrak{M} is a normal model).

We use the following propositions.

423

PROPOSITION 1. (Crossley & Nerode (1974), Lemma 6.4(ib)). (Exchange Lemma) For any model, \mathfrak{M} , if $\{a_1, \dots, a_n\} \subseteq \mathfrak{M}$ is independent but $\{a_1, \dots, a_{n+1}\}$ is not, and $a_{n+1} \in Min(\mathfrak{M})$, then $a_{n+1} \in cl\{a_1, \dots, a_n\}$.

PROPOSITION 2. (Crossley & Nerode (1974), Lemma 6.4(ii)). For any model \mathfrak{M} , suppose $A, B \subseteq Min(\mathfrak{M})$, $cl A \subseteq cl B$ and A is independent. Then

(a) $card A \leq card B$

(b) there is a subset B_0 of B such that $A \cup B_0$ is independent and $cl(A \cup B_0) = cl B$.

An obvious and trivial modification of the proof of Crossley & Nerode (1974), Lemma 6.9, gives:

PROPOSITION 3. Let $\mathfrak{M}, \mathfrak{M}'$ be models of a complete theory $T, A \subseteq Min(\mathfrak{M}), B \subseteq \mathfrak{M}'$ independent sets and $p: A \to B$ a one-one map such that for $a \in A$ there is some minimal formula, $\phi(v_0)$ for \mathfrak{M} such that $\mathfrak{M} \models \phi[a]$ and $\mathfrak{M}' \models \phi[p(a)]$. Then p is an elementary monomorphism.

1

We can prove our first result immediately.

THEOREM 4. Suppose a complete theory T has an infinite model \mathfrak{M} with finite closure which is covered by minimal formulae ϕ_1, \dots, ϕ_n . Then $B_m(T)$ is finite for all m and T is \aleph_0 -categorical.

PROOF. We may assume that $\mathfrak{M} \models \bigwedge_{i \neq j} \forall v_0 \neg (\phi_i(v_0) \& \phi_j(v_0))$. For if, for $i \neq j$, $\mathfrak{M} \models (\phi_i \& \phi_j)[a]$ for infinitely many *a* then replace ϕ_i (say) with $\phi_i \lor \phi_j$ and delete ϕ_j . Now $\mathfrak{M} \models (\phi_i \& \neg \phi_j)[a]$ for finitely many *a*, so $\phi_j \lor (\phi_i \& \neg \phi_j)$ (i.e. $\phi_i \lor \phi_j$) is again minimal. If $\mathfrak{M} \models (\phi_i \& \phi_j)[a]$ for finitely many *a* and i < j replace ϕ_j with $\phi_j \& \neg \phi_j$, which is again minimal. In both cases the new ϕ 's cover \mathfrak{M} , so a simple induction validates the assumption.

Let $D_i = \{a \in \mathfrak{M} : \mathfrak{M} \models \phi_i[a]\}$. By the definition of a minimal formula each D_i is infinite.

Suppose $m \in \omega$. Then there is an independent subset C of \mathfrak{M} such that card $C \cap D_i = m$ for all *i*, for if not, let r be the least m for which it fails. Then r > 0, and there is an independent C' such that card $C' \cap D_i = r - 1$. As cl C' is finite and D_1 is infinite, there is $c_1 \in D_1$ such that $c_1 \notin \text{cl } C'$. So by Proposition 1, $C' \cup \{c_1\}$ is independent. Thus we can construct by induction C" such that card $C' \cap D_i = r$ for $i = 1, \dots, n$, contradicting the choice of r.

If $\chi \in B_m(T)$, $\chi \neq 0$, then $T \vdash \exists v_1, \dots, v_m \chi(v_1, \dots, v_m)$. So there are $a_1, \dots, a_m \in \mathfrak{M}$ such that $\mathfrak{M} \models \chi[a_1, \dots, a_m]$.

By Proposition 2 there is an independent set $A = \{a'_1, \dots, a'_m\} \subseteq$

 $\{a_1, \dots, a_m\}$ such that $cl\{a_1, \dots, a_m\} = clA$. Thus $\{a_1, \dots, a_m\} \subseteq clA$. As card $D_i \cap A \leq m$ there is a one-one map $p: A \to C$ which satisfies the hypothesis of Proposition 3 and so is elementary.

As $\{a_1, \dots, a_m\} \subseteq cl A$, for $i = 1, \dots, m$, there are formulae $\psi_i(v_0, \dots, v_m)$, $\sigma_i(v_0, \dots, v_m)$ and natural numbers k_i such that

$$\sigma_i(v_0,\cdots,v_{m'})=(\psi_i(v_0,\cdots,v_{m'}) \& \exists^{<\kappa_i}v_0\psi_i(v_0,\cdots,v_{m'}))$$

and

$$\mathfrak{M} \vDash \sigma_i [a_i, a'_1, \cdots, a'_{m'}].$$

Hence $\mathfrak{M} \models (\exists u_1, \dots, u_m(\chi(u_1, \dots, u_m) \& \wedge_{i=1}^m \sigma_i(u_i, v_1, \dots, v_m)))[a'_1, \dots, a'_m]$ and so

$$\mathfrak{M} \models (\exists u_1, \cdots, u_m(\chi(u_1, \cdots, u_m) \& \bigwedge_{i=1}^m \sigma_i(u_i, v_1, \cdots, v_m))) [p(a'_1), \cdots, p(a'_m)].$$

As $p(a'_i) \in C$, there exist $c_1, \dots, c_m \in cl C$ such that $\mathfrak{M} \models \chi[c_1, \dots, c_m]$. The map $q: B_m(T) \to \mathcal{P}((cl C)^m)$ given by

$$q(\chi) = \{(c_1, \cdots, c_m) \in (\operatorname{cl} C)^m : \mathfrak{M} \models \chi[c_1, \cdots, c_m]\}$$

is one-one, for suppose $\chi_1, \chi_2 \in B_m(T)$ and $\chi_1 \neq \chi_2$. Then we may assume $\chi_1 \And \neg \chi_2 \neq 0$. So by the above, there are $c_1, \dots, c_m \in C$ such that $\mathfrak{M} \models \chi_1 \And \neg \chi_2[c_1, \dots, c_m]$ and therefore $q(\chi_1) \neq q(\chi_2)$. But $\mathscr{P}((\operatorname{cl} C)^m)$ is finite as $\operatorname{cl} C$ is, whence $B_m(T)$ is finite.

So by Ryll-Nardzewski (1959), T is \aleph_0 -categorical. We note that this direction of Ryll-Nardzewski's proof does not require the axiom of choice. \Box

Regarding the converse of Theorem 4, if $\mathfrak{M} \models T$ and $B_m(T)$ is finite for all m, indeed just for m = 1, then \mathfrak{M} can have at most finitely many minimal formulae, as it has only finitely many inequivalent 1-place formulae. However (Q, \leq) is a model of an \aleph_0 -categorical theory and has no minimal formulae.

COROLLARY 5. If T is a complete theory with a model \mathfrak{M} with dimension and finite closure, then $B_m(T)$ is finite for each m and T is \aleph_0 -categorical.

PROOF. As \mathfrak{M} has finitely many algebraic elements, $v_0 = v_0$ is a minimal formula which covers \mathfrak{M} . \Box

COROLLARY 6. If T is a complete theory with a model \mathfrak{M} with dimension and finite closure then every model \mathfrak{N} of T has dimension and finite closure.

PROOF. By Corollary 5, $B_m(T)$ is finite for each *m* and so by Crossley & Nerode (1974), Lemma 5.9, \Re has finite closure. Furthermore \Re is atomic.

425

As \mathfrak{M} has dimension and finite closure, $v_0 = v_0$ is a minimal formula for \mathfrak{M} . We will show $v_0 = v_0$ is a minimal formula for \mathfrak{N} .

Let $a_1, \dots, a_n \in \mathfrak{N}$ and $\chi(v_0, \dots, v_n)$ be any formula. Let $\psi(v_0, \dots, v_{n-1})$ be the atom satisfied by a_1, \dots, a_n and let $b_1, \dots, b_n \in \mathfrak{M}$ satisfy ψ . As $v_0 = v_0$ is a minimal formula for \mathfrak{M} ,

$$\mathfrak{M} \vDash \exists^{$$

for some finite k, where σ is χ or $\neg \chi$. Hence

$$T \vdash \forall v_1, \cdots, v_n (\psi(v_1, \cdots, v_n) \rightarrow \exists^{$$

as ψ is an atom and so

$$\mathfrak{N} \models \exists^{$$

So $v_0 = v_0$ is minimal for \mathfrak{N} whence \mathfrak{N} has dimension. \Box

2

We first prove a theorem from which our second claim follows readily:

THEOREM 7. Suppose \mathfrak{M} is an atomic model of a complete theory T and $\phi(v_0)$ is a minimal formula for \mathfrak{M} . Then for all n such that \mathfrak{M} contains an independent set with $\geq n + 1$ solutions of ϕ , there is a formula ρ_{n+1} , an atom of $B_{n+1}(T)$, such that for any model \mathfrak{M}' of T:

$$\mathfrak{M}' \models \rho_{n+1}[a'_0, \cdots, a'_n] \quad if and only if$$
$$(a'_0, \cdots, a'_n) \quad is independent and \quad \mathfrak{M}' \models \phi[a'_i] \quad i = 0, \cdots, n.$$

PROOF. Suppose $(a_0, \dots, a_n) \subseteq \mathfrak{M}$ is independent and $\mathfrak{M} \models \phi[a_i]$ $i = 0, \dots, n$. Then the a_i are distinct. As \mathfrak{M} is atomic, there is an atom ρ_{n+1} of $B_{n+1}(T)$ such that $\mathfrak{M} \models \rho_{n+1}[a_0, \dots, a_n]$. We show that it has the desired property.

Suppose $(a'_0, \dots, a'_n) \subseteq \mathfrak{M}'$ is independent and $\mathfrak{M}' \models \phi[a'_i] \quad i = 0, \dots, n$. Then by Proposition 3, $p: a_i \mapsto a'_i$ is elementary whence $\mathfrak{M}' \models \rho_{n+1}[p(a_0), \dots, p(a_n)]$ which is precisely $\mathfrak{M}' \models \rho_{n+1}[a'_0, \dots, a'_n]$.

Conversely, suppose $\mathfrak{M}' \models \rho_{n+1}[a'_0, \cdots, a'_n]$ and (a'_0, \cdots, a'_n) is dependent. We may assume, without loss of generality, that $a'_0 \in cl\{a'_1, \cdots, a'_n\}$. So there is a formula $\psi(v_0, \cdots, v_n)$ and natural number k, such that

$$\mathfrak{M}' \vDash (\psi(v_0, \cdots, v_n) \& \exists^{$$

So $T \vdash \exists v_0, \cdots, v_n(\rho_{n+1} \& \psi \& \exists^{<k} v_0 \psi).$

But ρ_{n+1} is an atom of $B_{n+1}(T)$.

So
$$T \vdash \forall v_0, \cdots, v_n(\rho_{n+1} \rightarrow (\psi \& \exists^{$$

But $\mathfrak{M} \models \rho_{n+1}[a_0, \cdots, a_n]$, so $\mathfrak{M} \models (\psi \& \exists^{<k} v_0 \psi)[a_0, \cdots, a_n]$.

Hence $a_0 \in cl\{a_1, \dots, a_n\}$ which contradicts the independence of (a_0, \dots, a_n) . So (a'_0, \dots, a'_n) is independent.

It remains to show that $\mathfrak{M}' \vDash \phi[a'_i] \ i = 0, \cdots, n$.

$$\mathfrak{M} \models \left(\rho_{n+1} \And \bigwedge_{i=0}^{n} \phi(v_i)\right) [a_0, \cdots, a_n].$$

Hence $T \vdash \forall v_0, \dots, v_n \ (\rho_{n+1} \rightarrow \bigwedge_{i=0}^n \phi(v_i))$ as ρ_{n+1} is an atom of $B_{n+1}(T)$, and so $\mathfrak{M}' \models \bigwedge_{i=0}^n \phi(v_i)[a'_0, \dots, a'_n]$ as $\mathfrak{M}' \models \rho_{n+1}[a'_0, \dots, a'_n]$. \Box

COROLLARY 8. Suppose \mathfrak{M} is an atomic model of a complete theory T, $\phi(v_0)$ is a minimal formula and $D = \{a : \mathfrak{M} \models \phi[a]\}$. If there are arbitrarily large finite independent subsets of D, then for any finite $A \subseteq D$, $D \cap c \mid A$ is finite.

PROOF. Suppose for some $A \subseteq D$, that A is finite but $D \cap cl A$ is infinite. Let $A = \{a_1, \dots, a_n\}$. We may assume that A is independent, for by Proposition 2, there is an independent $A' \subseteq A$ such that cl A' = cl A (No choice is needed as A is finite). By Theorem 7 and the hypothesis there is an atom of $B_{n+1}(T)$, $\rho_{n+1}(v_0, \dots, v_n)$, such that for $d_i \in D$, $\mathfrak{M} \models \rho_{n+1}[d_0, \dots, d_n]$ if and only if (d_0, \dots, d_n) is independent. By Proposition 1, if (d_1, \dots, d_n) is independent, $\mathfrak{M} \models \rho_{n+1}[d_0, \dots, d_n]$ if and only if $d_0 \notin cl\{d_1, \dots, d_n\}$.

As $D \cap cl A$ is infinite then $\phi(v_0) \& \neg \rho_{n+1}(v_0, a_1, \dots, a_n)$ has infinitely many solutions in \mathfrak{M} , and as ϕ is minimal, $\phi(v_0) \& \rho_{n+1}(v_0, a_1, \dots, a_n)$ has finitely many solutions, d_1, \dots, d_k say.

Hence $D \subseteq cl\{a_1, \dots, a_n, d_1, \dots, d_k\}$ and $\{a_1, \dots, a_n, d_1, \dots, d_k\} \subseteq$ Min (\mathfrak{M}) . So if $\{a'_1, \dots, a'_m\} \subseteq D$ is independent, by Proposition 2,

$$m = \operatorname{card} \{a'_1, \cdots, a'_m\} \leq \operatorname{card} \{a_1, \cdots, a_n, d_1, \cdots, d_k\} \leq n + k$$

which contradicts the hypothesis of the corollary.

Hence $D \cap cl A$ is finite for all finite $A \subseteq D$. \Box

The main result of this section is:

COROLLARY 9. If \mathfrak{M} is an atomic model with dimension and finitely many algebraic elements then \mathfrak{M} has a finite basis or finite closure.

PROOF. The following are clear, as is the deduction of Corollary 9 from them and Corollary 8.

If \mathfrak{M} has dimension and $cl \phi$ is finite there is a minimal formula ϕ for which $D = \mathfrak{M}$. If \mathfrak{M} does not have a finite basis then it has arbitrarily large independent subsets. \Box

We can find atomic models with dimension and finitely many algebraic elements with a finite basis but not finite closure ((Z, S) where S(n) = n + 1)and with no finite basis but finite closure ((N, =)). Models with a finite basis and finite closure are finite and so do not have dimension, as we require a minimal formula to have infinitely many solutions.

If we do not assume that \mathfrak{M} is atomic, then Corollary 9 is false. If we take $\mathfrak{M} = (V, +, f_{\lambda})_{\lambda \in F}$ where V is an infinite dimensional vector space over an infinite field F, and $f_{\lambda}: v \mapsto \lambda v$ is a unary function, then \mathfrak{M} has dimension but neither a finite basis nor finite closure, as algebraic closure is closure in the usual vector space sense. \mathfrak{M} is not atomic, for if $\{a_0, \dots, a_n\}$ is independent, $\mathfrak{M} \models a_0 \neq \lambda_1 a_1 + \dots + \lambda_n a_n$ for all $\lambda_1, \dots, \lambda_n \in F$, whereas $B_{n+1}(T)$ is generated by $\{\lambda_0 v_0 = \lambda_1 v_1 + \dots + \lambda_n v_n: \lambda_i \in F\}$ as $T(\mathfrak{M})$ admits elimination of quantifiers. Hence there is no atom satisfied by (a_0, \dots, a_n) .

Combining Corollaries 5 and 9 we obtain:

COROLLARY 10. If T is a complete theory with an atomic model with dimension but no finite basis and finitely many algebraic elements then T is \aleph_0 -categorical.

3

THEOREM 11. Suppose \mathfrak{M} has the following properties.

(1) \mathfrak{M} has finite closure.

(2) If $\{a_1, \dots, a_n\} \subseteq \mathbb{M}$ is independent and $\{a_1, \dots, a_{n+1}\}$ is not, then $a_{n+1} \in \operatorname{cl}\{a_1, \dots, a_n\}$. (\mathbb{M} satisfies the Exchange Lemma).

(3) If $A, B \subseteq \mathfrak{M}$ are independent and $p: A \rightarrow B$ is one-one, then p is elementary.

Then \mathfrak{M} has dimension.

PROOF. We prove the following by induction on n:

(4) If $\{a_1, \dots, a_m\}$ is independent, $b_1, \dots, b_n \in cl\{a_1, \dots, a_m\}$ then there exist c_1, \dots, c_p such that $\{a_1, \dots, a_m, c_1, \dots, c_p\}$ is independent and for any formula $\psi(v_1, \dots, v_{m+n+p+1})$ and for any $d_1, d_2 \notin cl\{a_1, \dots, a_m, c_1, \dots, c_p\}$,

$$\mathfrak{M} \models \psi[a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p, d_1]$$
 if, and only if,

 $\mathfrak{M} \models \psi[a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p, d_2].$

Suppose n = 0. If $d_1, d_2 \notin cl\{a_1, \dots, a_m\}$ then, by (2), $\{a_1, \dots, a_m, d_1\}$ and $\{a_1, \dots, a_m, d_2\}$ are independent, and (4) holds by (3).

Suppose (4) holds for some *n* and $b_{n+1} \in cl\{a_1, \dots, a_m\}$. Then $b_{n+1} \in cl\{a_1, \dots, a_m, b_1, \dots, b_n, c_1, \dots, c_p\}$ and there is a formula $\chi_0(v_0, \dots, v_{m+n+p})$ and a natural number $k_0 \ge 1$, such that

$$\mathfrak{M} \models \chi_0 \And \exists^{k_0} v_0 \chi_0 [b_{n+1}, a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p].$$

We construct sequences $k_0 > k_1 > \cdots > k_q \ge 1$, $\chi_0, \cdots, \chi_q, c_{p+1}, \cdots, c_{p+q}$, such that for any formula $\psi(v_1, \cdots, v_{m+n+p+q+2})$ and $d_1, d_2 \not\in cl\{a_1, \cdots, a_m, c_1, \cdots, c_{p+q}\}$

(5)
$$\begin{aligned} \mathfrak{M} &\models \psi \left[a_1, \cdots, a_m, b_1, \cdots, b_{n+1}, c_1, \cdots, c_{p+q}, d_1 \right] & \text{if, and only if,} \\ \mathfrak{M} &\models \psi \left[a_1, \cdots, a_m, b_1, \cdots, b_{n+1}, c_1, \cdots, c_{p+q}, d_2 \right]. \end{aligned}$$

If (5) holds with q = 0, we are done. If not, there is a formula $\psi(v_1, \dots, v_{m+n+p+2})$ and $d_1, d_2 \notin cl\{a_1, \dots, a_m, c_1, \dots, c_p\}$ such that

(6)
$$\mathfrak{M} \models \psi[a_1, \cdots, a_m, b_1, \cdots, b_{n+1}, c_1, \cdots, c_p, d_1]$$

and

(7)
$$\mathfrak{M} \models \neg \psi[a_1, \cdots, a_m, b_1, \cdots, b_{n+1}, c_1, \cdots, c_p, d_2].$$

Put $c_{p+1} = d_1$ and put

$$\chi_1(v_0, \cdots, v_{m+n+p+2}) = \chi_0(v_0, \cdots, v_{m+n+p}) \& \psi(v_1, \cdots, v_{m+n}, v_0, v_{m+n+1}, \cdots, v_{m+n+p+2}).$$

By (2), $\{a_1, \dots, a_m, c_1, \dots, c_{p+1}\}$ is independent. Clearly

$$\mathfrak{M} \models \chi_1[b_{n+1}, a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_{p+1}].$$

And

(8)
$$\mathfrak{M} \models \exists v_0(\chi_0 \And \neg \chi_1)[a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_{p+1}]$$

for suppose otherwise. Then

$$\mathfrak{M} \vDash \forall v_0(\chi_0 \rightarrow \chi_1) [a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p, d_1]$$

whence, by (4),

$$\mathfrak{M} \models \forall v_0(\chi_0 \rightarrow \chi_1) [a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p, d_2].$$

But $\mathfrak{M} \models \chi_0[b_{n+1}, a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p]$ and so

$$\mathfrak{M} \models \chi_1[b_{n+1}, a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_p, d_2]$$

and therefore

 $\mathfrak{M} \models \psi[a_1, \cdots, a_m, b_1, \cdots, b_{n+1}, c_1, \cdots, c_p, d_2]$

which contradicts (7). Thus (8) holds and

 $\mathfrak{M} \models \exists^{k_1} v_0 \chi_1 [v_0, a_1, \cdots, a_m, b_1, \cdots, b_n, c_1, \cdots, c_{p+1}]$

where $1 \leq k_1 < k_0$.

We can choose χ_i , c_i is a similar fashion until (5) holds, which is when (4) holds for n + 1.

Thus (4) holds for all n.

Now suppose $b_1, \dots, b_n \in \mathfrak{M}$ and $\psi(v_0, \dots, v_n)$ is any formula. Using (2), we can choose $a_1, \dots, a_m \in \{b_1, \dots, b_n\}$ such that $\{a_1, \dots, a_m\}$ is independent and $b_1, \dots, b_n \in \operatorname{cl}\{a_1, \dots, a_m\}$. By (4), there exist c_1, \dots, c_p such that for all $\chi(v_0, \dots, v_n)$ and $d_1, d_2 \notin \{a_1, \dots, a_m, c_1, \dots, c_p\}$ $\mathfrak{M} \models \chi[d_1, b_1, \dots, b_n]$ if, and only if $\mathfrak{M} \models \chi[d_2, b_1, \dots, b_n]$.

If $\psi(v_0, b_1, \dots, b_n)$ has infinitely many solutions in \mathfrak{M} , then $\mathfrak{M} \models \psi[d, b_1, \dots, b_n]$ for some $d \notin cl\{a_1, \dots, a_m, c_1, \dots, c_p\}$ as $cl\{a_1, \dots, a_m, c_1, \dots, c_p\}$ is finite by (1). Hence $\mathfrak{M} \models \psi[d, b_1, \dots, b_n]$ for all $d \notin cl\{a_1, \dots, a_m, c_1, \dots, c_p\}$ and $\mathfrak{M} \models \neg \psi[d, b_1, \dots, b_n]$ for at most $d \in$ $cl\{a_1, \dots, a_m, c_1, \dots, c_p\}$. Thus $\neg \psi(v_0, b_1, \dots, b_n)$ has finitely many solutions, and so $v_0 = v_0$ is a minimal formula.

Therefore \mathfrak{M} has dimension. \Box

Conditions (2) and (3) are not sufficient for \mathfrak{M} to have dimension. Consider the model $\mathfrak{N} = (Z \times Z, <, S)$ where

$$(n_1, m_1) < (n_2, m_2)$$
 if $n_1 = n_2$ and $m_1 < m_2$

and

$$S((n, m)) = (n, m + 1).$$

It is easy to see the following:

(a) $cl\{(n_1, m_1), \dots, (n_l, m_l)\} = \{n_1, \dots, n_l\} \times Z.$

(b) $\{(n_1, m_1), \dots, (n_l, m_l)\}$ is independent if and only if n_1, \dots, n_l are distinct, and therefore (2) holds.

(c) If $A, B \subseteq \Re$ are finite and independent and $p: A \to B$ is one-one, then p extends to an automorphism of \Re and so is elementary. Therefore (3) holds.

(d) \Re has no algebraic elements and $v_0 < a_1$, $\neg v_0 < a_1$ both have infinitely many solutions in \Re . Thus \Re does not have dimension.

By Corollary 5, if \mathfrak{M} satisfies (1), (2) and (3), then $B_n(T(\mathfrak{M}))$ is finite for each *n*, and so \mathfrak{M} is atomic. However Theorem 11 does not hold if we replace (1) by " \mathfrak{M} is atomic", for the model \mathfrak{N} provides a counter-example.

$$\psi(v_{11}, \cdots, v_{1k_1}, \cdots, v_{l_1}, \cdots, v_{lk_l})$$

$$= \bigwedge_{i_1 \neq i_2} \left(\neg (v_{i_1 1} < v_{i_2 1}) \& \neg (v_{i_2 1} < v_{i_1 1}) \& \bigwedge_{i=1, \cdots, l} \bigwedge_{j_2 < j_1} v_{i_j_1} = S^{j_1 - j_2}(v_{i_j_2}) \right)$$

is a formula satisfied by

$$((n_1, m_{11}), \cdots, (n_1, m_{1k_1}), \cdots, (n_l, m_{l1}), \cdots, (n_l, m_{kl}))$$

where n_1, \dots, n_l are distinct, and is an atom, as can be seen by extending the map $a_{ij} \mapsto a'_{ij}$, where $\mathfrak{N} \models \psi(a_{11}, \dots, a_{lk_l})$ and $\mathfrak{N} \models \psi(a'_{11}, \dots, a'_{lk_l})$, to an automorphism of \mathfrak{N} .

References

J. N. Crossley and Anil Nerode (1974), Combinatorial Functors (Springer-Verlag, 1974).

C. Ryll-Nardzewski (1959), 'On theories categorical in power N₀', Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 7, 545-548.

Department of Mathematics, University of Tasmania, Hobart, Australia.

430