DIMENSION AND FINITE CLOSURE

W. F. GROSS ${ }^{1}$

(Received 7 June 1976)

Abstract

If \mathfrak{M} is a model with dimension and finite closure, then $T(\mathfrak{P})$ is \boldsymbol{N}_{0}-categorical. If \mathfrak{M} is atomic, has dimension and finitely many algebraic elements, then \mathfrak{D} has finite closure or a finite basis. If \mathfrak{W} has finite closure, satisfies the Exchange Lemma, and one-one maps between independent subsets are elementary, then \mathfrak{P} has dimension.

In Crossley \& Nerode (1974, p. 44), the authors assume that the theories which they treat are N_{0}-categorical, but note that it is sufficient, for their purposes, to consider a complete theory T for which each $B_{n}(T)$ is atomistic and every model has finite closure. A large part of their work concerns models with dimension. We show, in Section 1, that for a complete theory T with an infinite model which can be covered by finitely many minimal formulae, in particular with a model with dimension, T must be \boldsymbol{K}_{0}-categorical for its model to have finite closure. We also show, in Section 2, that if a model is atomic, has dimension and finitely many algebraic elements, then it has either a finite basis or finite closure.

If \mathfrak{M} has dimension, then \mathfrak{M} satisfies the Exchange Lemma and one-one maps between independent subsets of \mathfrak{M} are elementary (see Propositions 1 and 3). We show, in Section 3, that if \mathfrak{M} has these two properties and finite closure, then \mathfrak{M} has dimension. No form of the axiom of choice is used.

Section 0 gives the notation and conventions we follow, as well as the necessary definitions and propositions from Crossley \& Nerode (1974).

0

Models. For a model, \mathfrak{M}, we use \mathfrak{M} to denote the domain of \mathfrak{M}, if no ambiguity arises. We use a, b, etc. to denote elements of \mathfrak{M} and A, B etc. to

[^0]denote subsets of $\mathfrak{M} . T(\mathfrak{M})$ denotes the complete theory of \mathfrak{M}. We do not assume that the language of a model is countable but we do assume that the language contains a symbol for equality and that \mathfrak{M} is a normal model. Thus we can define in the language quantifiers $\exists^{<k} v_{\theta} \cdots$ meaning "there exist $<k$ $v_{0} . . "$ and $\exists^{k} v_{0} \cdots$ meaning "there exist exactly $k v_{0} \cdots " . \chi\left(v_{0}, \cdots, v_{n}\right)$ will always denote a formula of the language of \mathfrak{M} with all its free variables among v_{0}, \cdots, v_{n}. For $a_{0}, \cdots, a_{n} \in \mathfrak{M}$ we write $\mathfrak{M} \vDash \chi\left(v_{n}, \cdots, v_{n}\right)\left[a_{0}, \cdots, a_{n}\right]$ or $\mathfrak{M} \vDash \chi\left[a_{1}, \cdots, a_{n}\right]$ if a_{0}, \cdots, a_{n} satisfies χ in \mathfrak{M}. If T is a complete theory, $B_{n}(T)$ denotes the boolean algebra of equivalence classes of formulae of the language of T with all their free variables among v_{0}, \cdots, v_{n-1}, where $\chi\left(v_{0}, \cdots, v_{n-1}\right), \psi\left(v_{0}, \cdots, v_{n-1}\right)$ are equivalent if $T \vdash \forall v_{0}, \cdots, v_{n-1}(\chi \leftrightarrow \psi)$. We use χ to denote the equivalence class containing χ as no ambiguity arises. A model \mathfrak{M} is atomic, if for every n-tuple $\left(a_{0}, \cdots, a_{n-1}\right)$ of \mathfrak{M} there is an atom χ of $B_{n}\left(T(\mathfrak{M})\right.$) such that $\mathfrak{M} \vDash \chi\left[a_{0}, \cdots, a_{n-1}\right]$. We say \mathfrak{M} is covered by the formulae $\chi_{1}\left(v_{0}\right), \cdots, \chi_{n}\left(v_{11}\right)$ if $\mathfrak{M} \vDash \forall v_{0}\left(\chi, \vee \cdots \vee \chi_{n}\right)$. a is a solution of $\chi\left(v_{0}\right)$ if $\mathfrak{M} \vDash \chi[a]$.

Algebraic Closure. We follow chapters 4 and 6 of Crossley \& Nerode (1974). a is algebraic over A if for some $a_{1}, \cdots, a_{n} \in A, \chi\left(v_{n}, \cdots, v_{n}\right)$ and natural number k,

$$
\mathfrak{M} \vDash\left(\exists^{<k} v_{0} \chi\left(v_{0}, \cdots, v_{n}\right) \& \chi\left(v_{0}, \cdots, v_{n}\right)\right)\left[a, a_{1}, \cdots, a_{n}\right]
$$

a is algebraic if it is algebraic over ϕ. The algebraic closure of $A, \mathrm{cl} A$, is the set of all elements of \mathfrak{M} algebraic over A. Clearly $A \subseteq \operatorname{cl} A . \mathfrak{M}$ has finite closure if $\operatorname{cl} A$ is finite whenever A is finite. A is independent if for all $a \in A$, $a \notin \operatorname{cl}(A \backslash\{a\})$. We write $\left(a_{1}, \cdots, a_{n}\right)$ is independent if $\left\{a_{1}, \cdots, a_{n}\right\}$ is independent and the a_{i} are distinct. A is a basis of \mathfrak{M} if A is independent and $\mathfrak{M}=\operatorname{cl} A . \phi\left(v_{0}\right)$ is a minimal formula for \mathfrak{M} if ϕ has infinitely many solutions in \mathfrak{M} and for each $\psi\left(v_{0}, \cdots, v_{n}\right)$ and $a_{1}, \cdots, a_{n} \in \mathfrak{M}$ either $\phi\left(v_{0}\right) \&$ $\psi\left(v_{0}, a_{1}, \cdots, a_{n}\right)$ or $\phi\left(v_{0}\right) \& \neg \psi\left(v_{0}, a_{1}, \cdots, a_{n}\right)$ has finitely many solutions in \mathfrak{M}. Clearly if $\phi\left(v_{0}\right)$ is minimal and $\psi\left(v_{0}\right)$ has only finitely many solutions then $\phi \vee \psi$ and $\phi \& \neg \psi$ are minimal. Min (\mathfrak{M}) is the set of solutions of minimal formulae. \mathfrak{M} has dimension if for some minimal formula $\phi, \mathfrak{M} \vDash \phi[a]$ for every non-algebraic element, a, of \mathfrak{M}. If $\mathfrak{M}, \mathfrak{M}^{\prime}$ have the same language \mathscr{L}, $A \subseteq \mathfrak{M}, A^{\prime} \subseteq \mathfrak{M}^{\prime}$ and $p: A \rightarrow A^{\prime}$, then p is an elementary monomorphism if for all $a_{0}, \cdots, a_{n} \in A$ and for all $\chi\left(v_{n}, \cdots, v_{n}\right) \in \mathscr{L}$
$\mathfrak{M} \vDash \chi\left[a_{0}, \cdots, a_{n}\right] \quad$ if and only if $\mathfrak{P}^{\prime} \vDash \chi\left[p a_{0}, \cdots, p a_{n}\right]$
(p is one-one as \mathscr{L} contains equality and \mathfrak{M} is a normal model).
We use the following propositions.

Proposition 1. (Crossley \& Nerode (1974), Lemma 6.4(ib)). (Exchange Lemma) For any model, \mathfrak{M}, if $\left\{a_{1}, \cdots, a_{n}\right\} \subseteq \mathfrak{M}$ is independent but $\left\{a_{1}, \cdots, a_{n+1}\right\}$ is not, and $a_{n+1} \in \operatorname{Min}(\mathfrak{M})$, then $a_{n+1} \in \operatorname{cl}\left\{a_{1}, \cdots, a_{n}\right\}$.

Proposition 2. (Crossley \& Nerode (1974), Lemma 6.4(ii)). For any model \mathfrak{M}, suppose $A, B \subseteq \operatorname{Min}(\mathfrak{M}), \mathrm{cl} A \subseteq \mathrm{cl} B$ and A is independent. Then
(a) card $A \leqq c \operatorname{ard} B$
(b) there is a subset B_{0} of B such that $A \cup B_{0}$ is independent and $\operatorname{cl}\left(A \cup B_{0}\right)=\operatorname{cl} B$.

An obvious and trivial modification of the proof of Crossley \& Nerode (1974), Lemma 6.9, gives:

Proposition 3. Let $\mathfrak{M}, \mathfrak{M}^{\prime}$ be models of a complete theory $T, A \subseteq$ $\operatorname{Min}(\mathfrak{P}), B \subseteq \mathfrak{M}^{\prime}$ independent sets and $p: A \rightarrow B$ a one-one map such that for $a \in A$ there is some minimal formula, $\phi\left(v_{0}\right)$ for \mathfrak{M} such that $\mathfrak{P} \vDash \phi[a]$ and $\mathscr{M}^{\prime} \vDash \phi[p(a)]$. Then p is an elementary monomorphism.

1

We can prove our first result immediately.
Theorem 4. Suppose a complete theory T has an infinite model \mathfrak{M} with finite closure which is covered by minimal formulae $\phi_{1}, \cdots, \phi_{n}$. Then $B_{m}(T)$ is finite for all m and T is \boldsymbol{N}_{0}-categorical.

Proof. We may assume that $\mathfrak{M} \vDash \wedge_{i \neq j} \forall v_{0} \neg\left(\phi_{i}\left(v_{0}\right) \& \phi_{j}\left(v_{0}\right)\right)$. For if, for $i \neq j, \mathfrak{M} \vDash\left(\phi_{i} \& \phi_{j}\right)[a]$ for infinitely many a then replace ϕ_{i} (say) with $\phi_{i} \vee \phi_{i}$ and delete ϕ_{j}. Now $\mathfrak{M} \vDash\left(\phi_{i} \& \neg \phi_{j}\right)[a]$ for finitely many a, so $\phi_{i} \vee\left(\phi_{i} \& \neg \phi_{j}\right)$ (i.e. $\left.\phi_{i} \vee \phi_{j}\right)$ is again minimal. If $\mathfrak{M} \vDash\left(\phi_{i} \& \phi_{i}\right)[a]$ for finitely many a and $i<j$ replace ϕ_{j} with $\phi_{j} \& \neg \phi_{i}$, which is again minimal. In both cases the new ϕ 's cover \mathfrak{M}, so a simple induction validates the assumption.

Let $D_{i}=\left\{a \in \mathfrak{M}: \mathfrak{M} \vDash \phi_{i}[a]\right\}$. By the definition of a minimal formula each D_{i} is infinite.

Suppose $m \in \omega$. Then there is an independent subset C of \mathfrak{M} such that card $C \cap D_{i}=m$ for all i, for if not, let r be the least m for which it fails. Then $r>0$, and there is an independent C^{\prime} such that card $C^{\prime} \cap D_{i}=r-1$. As cl C^{\prime} is finite and D_{1} is infinite, there is $c_{1} \in D_{1}$ such that $c_{1} \notin \mathrm{cl} C^{\prime}$. So by Proposition 1, $C^{\prime} \cup\left\{c_{1}\right\}$ is independent. Thus we can construct by induction $C^{\prime \prime}$ such that card $C^{\prime \prime} \cap D_{i}=r$ for $i=1, \cdots, n$, contradicting the choice of r.

If $\chi \in B_{m}(T), \chi \neq 0$, then $T \vdash \exists v_{1}, \cdots, v_{m} \chi\left(v_{1}, \cdots, v_{m}\right)$. So there are $a_{1}, \cdots, a_{m} \in \mathfrak{M}$ such that $\mathfrak{M} \vDash \chi\left[a_{1}, \cdots, a_{m}\right]$.

By Proposition 2 there is an independent set $A=\left\{a_{1}^{\prime}, \cdots, a_{m}^{\prime}\right\} \subseteq$
$\left\{a_{1}, \cdots, a_{m}\right\}$ such that $\operatorname{cl}\left\{a_{1}, \cdots, a_{m}\right\}=\operatorname{cl} A$. Thus $\left\{a_{1}, \cdots, a_{m}\right\} \subseteq \operatorname{cl} A$. As card $D_{i} \cap A \leqq m$ there is a one-one map $p: A \rightarrow C$ which satisfies the hypothesis of Proposition 3 and so is elementary.

As $\left\{a_{1}, \cdots, a_{m}\right\} \subseteq \mathrm{cl} A$, for $i=1, \cdots, m$, there are formulae $\psi_{i}\left(v_{0}, \cdots, v_{m}\right)$, $\sigma_{i}\left(v_{0}, \cdots, v_{m}\right)$ and natural numbers k_{i} such that

$$
\sigma_{i}\left(v_{1}, \cdots, v_{m}\right)=\left(\psi_{i}\left(v_{0}, \cdots, v_{m}\right) \& \exists^{<k_{i}} v_{0} \psi_{i}\left(v_{1}, \cdots, v_{m}\right)\right)
$$

and

$$
\mathfrak{M} \vDash \sigma_{i}\left[a_{i}, a_{i}^{\prime}, \cdots, a_{m}^{\prime}\right]
$$

Hence $\mathfrak{M} \vDash\left(\exists u_{1}, \cdots, u_{m}\left(\chi\left(u_{1}, \cdots, u_{m}\right) \& \wedge_{i=1}^{m} \sigma_{i}\left(u_{i}, v_{1}, \cdots, v_{m}\right)\right)\right)\left[a_{1}^{\prime}, \cdots, a_{m}^{\prime}\right]$ and so

$$
\mathfrak{M} \vDash\left(\exists u_{1}, \cdots, u_{m}\left(\chi\left(u_{1}, \cdots, u_{m}\right) \& \hat{i}^{m} \sigma_{i}\left(u_{i}, v_{1}, \cdots, v_{m}\right)\right)\right)\left[p\left(a_{i}^{\prime}\right), \cdots, p\left(a_{m}^{\prime}\right)\right]
$$

As $p\left(a_{i}^{\prime}\right) \in C$, there exist $c_{1}, \cdots, c_{m} \in \operatorname{cl} C$ such that $\mathfrak{M} \vDash \chi\left[c_{1}, \cdots, c_{m}\right]$.
The map $q: B_{m}(T) \rightarrow \mathscr{P}\left((\mathrm{cl} C)^{m}\right)$ given by

$$
q(\chi)=\left\{\left(c_{1}, \cdots, c_{m}\right) \in(\mathrm{clC} C)^{m}: \mathfrak{W} \vDash \chi\left[c_{1}, \cdots, c_{m}\right]\right\}
$$

is one-one, for suppose $\chi_{1}, \chi_{2} \in B_{m}(T)$ and $\chi_{1} \neq \chi_{2}$. Then we may assume $\chi_{1} \& \neg \chi_{2} \neq 0$. So by the above, there are $c_{1}, \cdots, c_{m} \in C$ such that $\mathfrak{M} \vDash \chi_{1} \& \neg \chi_{2}\left[c_{1}, \cdots, c_{m}\right]$ and therefore $q\left(\chi_{1}\right) \neq q\left(\chi_{2}\right)$. But $\mathscr{P}\left((\mathrm{cl} C)^{m}\right)$ is finite as $\mathrm{cl} C$ is, whence $B_{m}(T)$ is finite.

So by Ryll-Nardzewski (1959), T is \boldsymbol{N}_{n}-categorical. We note that this direction of Ryll-Nardzewski's proof does not require the axiom of choice.

Regarding the converse of Theorem 4 , if $\mathfrak{M} \vDash T$ and $B_{m}(T)$ is finite for all m, indeed just for $m=1$, then \mathfrak{M} can have at most finitely many minimal formulae, as it has only finitely many inequivalent 1-place formulae. However (Q, \leqq) is a model of an \boldsymbol{N}_{0}-categorical theory and has no minimal formulae.

Corollary 5. If T is a complete theory with a model \mathfrak{M} with dimension and finite closure, then $B_{m}(T)$ is finite for each m and T is \boldsymbol{N}_{0}-categorical.

Proof. As \mathfrak{M} has finitely many algebraic elements, $v_{0}=v_{0}$ is a minimal formula which covers \mathfrak{M}.

Corollary 6. If T is a complete theory with a model \mathfrak{M} with dimension and finite closure then every model \mathfrak{P} of Thas dimension and finite closure.

Proof. By Corollary $5, B_{m}(T)$ is finite for each m and so by Crossley \& Nerode (1974), Lemma $5.9, \mathfrak{R}$ has finite closure. Furthermore \mathfrak{N} is atomic.

As \mathfrak{M} has dimension and finite closure, $v_{0}=v_{0}$ is a minimal formula for \mathfrak{M}. We will show $v_{0}=v_{0}$ is a minimal formula for \mathfrak{R}.

Let $a_{1}, \cdots, a_{n} \in \mathfrak{R}$ and $\chi\left(v_{0}, \cdots, v_{n}\right)$ be any formula. Let $\psi\left(v_{0}, \cdots, v_{n-1}\right)$ be the atom satisfied by a_{1}, \cdots, a_{n} and let $b_{1}, \cdots, b_{n} \in \mathfrak{M}$ satisfy ψ. As $v_{0}=v_{0}$ is a minimal formula for \mathfrak{M},

$$
\mathfrak{M} \vDash \exists^{<k} v_{0} \sigma\left(v_{0}, \cdots, v_{n}\right)\left[b_{1}, \cdots, b_{n}\right]
$$

for some finite k, where σ is χ or $\neg \chi$. Hence

$$
T \vdash \forall v_{1}, \cdots, v_{n}\left(\psi\left(v_{1}, \cdots, v_{n}\right) \rightarrow \exists^{<k} v_{0} \sigma\left(v_{0}, \cdots, v_{n}\right)\right)
$$

as ψ is an atom and so

$$
\mathfrak{N} \vDash \exists^{<k} v_{0} \sigma\left(v_{0}, \cdots, v_{n}\right)\left[a_{1}, \cdots, a_{n}\right] .
$$

So $v_{0}=v_{0}$ is minimal for \mathfrak{R} whence \mathfrak{R} has dimension.

2

We first prove a theorem from which our second claim follows readily:
Theorem 7. Suppose \mathfrak{M} is an atomic model of a complete theory T and $\phi\left(v_{0}\right)$ is a minimal formula for \mathfrak{M}. Then for all n such that \mathfrak{M} contains an independent set with $\geqq n+1$ solutions of ϕ, there is a formula ρ_{n+1}, an atom of $B_{n+1}(T)$, such that for any model \mathfrak{M}^{\prime} of T :
$\mathfrak{M}^{\prime} \vDash \rho_{n+1}\left[a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right] \quad$ if and only if

$$
\left(a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right) \quad \text { is independent and } \quad \mathbb{P}^{\prime} \vDash \phi\left[a_{i}^{\prime}\right] \quad i=0, \cdots, n .
$$

Proof. Suppose $\left(a_{0}, \cdots, a_{n}\right) \subseteq \mathfrak{M}$ is independent and $\mathfrak{M} \vDash \phi\left[a_{i}\right] i=$ $0, \cdots, n$. Then the a_{i} are distinct. As \mathfrak{M} is atomic, there is an atom ρ_{n+1} of $B_{n+1}(T)$ such that $\mathfrak{M} \vDash \rho_{n+1}\left[a_{0}, \cdots, a_{n}\right]$. We show that it has the desired property.

Suppose $\left(a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right) \subseteq \mathfrak{M}^{\prime}$ is independent and $\mathfrak{M}^{\prime} \vDash \phi\left[a_{i}^{\prime}\right] i=0, \cdots, n$. Then by Proposition 3, $p: a_{i} \mapsto a_{i}^{\prime}$ is elementary whence $\mathfrak{M}^{\prime} \vDash \rho_{n+1}\left[p\left(a_{0}\right), \cdots, p\left(a_{n}\right)\right]$ which is precisely $\mathfrak{M}^{\prime} \vDash \rho_{n+1}\left[a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right]$.

Conversely, suppose $\mathfrak{M}^{\prime} \vDash \rho_{n+1}\left[a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right]$ and $\left(a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right)$ is dependent. We may assume, without loss of generality, that $a_{0}^{\prime} \in \operatorname{cl}\left\{a_{1}^{\prime}, \cdots, a_{n}^{\prime}\right\}$. So there is a formula $\psi\left(v_{0}, \cdots, v_{n}\right)$ and natural number k, such that

$$
\mathfrak{M}^{\prime} \models\left(\psi\left(v_{0}, \cdots, v_{n}\right) \& \exists^{<k} v_{0} \psi\left(v_{0}, \cdots, v_{n}\right)\right)\left[a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right] .
$$

So

$$
T \vdash \exists v_{0}, \cdots, v_{n}\left(\rho_{n+1} \& \psi \& \exists^{<k} v_{0} \psi\right)
$$

But ρ_{n+1} is an atom of $B_{n+1}(T)$.
So

$$
T \vdash \forall v_{0}, \cdots, v_{n}\left(\rho_{n+1} \rightarrow\left(\psi \& \exists^{<k} v_{0} \psi\right)\right)
$$

But

$$
\mathfrak{M} \vDash \rho_{n+1}\left[a_{0}, \cdots, a_{n}\right], \quad \text { so } \quad \mathfrak{M} \vDash\left(\psi \& \exists^{<k} v_{0} \psi\right)\left[a_{0}, \cdots, a_{n}\right]
$$

Hence $a_{0} \in \operatorname{cl}\left\{a_{1}, \cdots, a_{n}\right\}$ which contradicts the independence of $\left(a_{0}, \cdots, a_{n}\right)$. So ($a_{0}^{\prime}, \cdots, a_{n}^{\prime}$) is independent.

It remains to show that $\mathfrak{M}^{\prime} \vDash \phi\left[a_{i}^{\prime}\right] i=0, \cdots, n$.

$$
\mathfrak{M} \vDash\left(\rho_{n+1} \& \bigwedge_{i=0}^{n} \phi\left(v_{i}\right)\right)\left[a_{0}, \cdots, a_{n}\right] .
$$

Hence $T \vdash \forall v_{0}, \cdots, v_{n}\left(\rho_{n+1} \rightarrow \wedge_{i=0}^{n} \phi\left(v_{i}\right)\right)$ as ρ_{n+1} is an atom of $B_{n+1}(T)$, and so $\mathfrak{M}^{\prime} \vDash \wedge_{i=0}^{n} \phi\left(v_{i}\right)\left[a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right]$ as $\mathfrak{M}^{\prime} \vDash \rho_{n+1}\left[a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right]$.

Corollary 8. Suppose \mathfrak{M} is an atomic model of a complete theory T, $\phi\left(v_{0}\right)$ is a minimal formula and $D=\{a: \mathfrak{M} \vDash \phi[a]\}$. If there are arbitrarily large finite independent subsets of D, then for any finite $A \subseteq D, D \cap \operatorname{cl} A$ is finite.

Proof. Suppose for some $A \subseteq D$, that A is finite but $D \cap \mathrm{cl} A$ is infinite. Let $A=\left\{a_{1}, \cdots, a_{n}\right\}$. We may assume that A is independent, for by Proposition 2, there is an independent $A^{\prime} \subseteq A$ such that $\operatorname{cl} A^{\prime}=\operatorname{cl} A$ (No choice is needed as A is finite). By Theorem 7 and the hypothesis there is an atom of $B_{n+1}(T), \rho_{n+1}\left(v_{0}, \cdots, v_{n}\right)$, such that for $d_{i} \in D, \mathfrak{M} \models \rho_{n+1}\left[d_{0}, \cdots, d_{n}\right]$ if and only if $\left(d_{0}, \cdots, d_{n}\right)$ is independent. By Proposition 1 , if $\left(d_{1}, \cdots, d_{n}\right)$ is independent, $\mathfrak{M} \vDash \rho_{n+1}\left[d_{0}, \cdots, d_{n}\right]$ if and only if $d_{0} \notin \operatorname{cl}\left\{d_{1}, \cdots, d_{n}\right\}$.

As $D \cap \mathrm{cl} A$ is infinite then $\phi\left(v_{0}\right) \& \neg \rho_{n+1}\left(v_{0}, a_{1}, \cdots, a_{n}\right)$ has infinitely many solutions in \mathfrak{M}, and as ϕ is minimal, $\phi\left(v_{0}\right) \& \rho_{n+1}\left(v_{0}, a_{1}, \cdots, a_{n}\right)$ has finitely many solutions, d_{1}, \cdots, d_{k} say.

Hence $D \subseteq \operatorname{cl}\left\{a_{1}, \cdots, a_{n}, d_{1}, \cdots, d_{k}\right\} \quad$ and $\quad\left\{a_{1}, \cdots, a_{n}, d_{1}, \cdots, d_{k}\right\} \subseteq$ $\operatorname{Min}(\mathfrak{M})$. So if $\left\{a_{1}^{\prime}, \cdots, a_{m}^{\prime}\right\} \subseteq D$ is independent, by Proposition 2,

$$
m=\operatorname{card}\left\{a_{1}^{\prime}, \cdots, a_{m}^{\prime}\right\} \leqq \operatorname{card}\left\{a_{1}, \cdots, a_{n}, d_{1}, \cdots, d_{k}\right\} \leqq n+k
$$

which contradicts the hypothesis of the corollary.
Hence $D \cap \operatorname{cl} A$ is finite for all finite $A \subseteq D$.
The main result of this section is:
Corollary 9. If \mathfrak{M} is an atomic model with dimension and finitely many algebraic elements then \mathfrak{M} has a finite basis or finite closure.

Proof. The following are clear, as is the deduction of Corollary 9 from them and Corollary 8.

If \mathfrak{M} has dimension and $\mathrm{cl} \phi$ is finite there is a minimal formula ϕ for which $D=\mathfrak{M}$. If \mathfrak{M} does not have a finite basis then it has arbitrarily large independent subsets.

We can find atomic models with dimension and finitely many algebraic elements with a finite basis but not finite closure ((Z, S) where $S(n)=n+1$) and with no finite basis but finite closure $((N,=))$. Models with a finite basis and finite closure are finite and so do not have dimension, as we require a minimal formula to have infinitely many solutions.

If we do not assume that \mathfrak{M} is atomic, then Corollary 9 is false. If we take $\mathfrak{M}=\left(V,+, f_{\lambda}\right)_{\lambda \in F}$ where V is an infinite dimensional vector space over an infinite field F, and $f_{\lambda}: v \mapsto \lambda v$ is a unary function, then \mathfrak{M} has dimension but neither a finite basis nor finite closure, as algebraic closure is closure in the usual vector space sense. \mathfrak{M} is not atomic, for if $\left\{a_{0}, \cdots, a_{n}\right\}$ is independent, $\mathfrak{M} \vDash a_{0} \neq \lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n}$ for all $\lambda_{1}, \cdots, \lambda_{n} \in F$, whereas $B_{n+1}(T)$ is generated by $\left\{\lambda_{0} v_{0}=\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}: \lambda_{i} \in F\right\}$ as $T(\mathcal{M})$ admits elimination of quantifiers. Hence there is no atom satisfied by $\left(a_{0}, \cdots, a_{n}\right)$.

Combining Corollaries 5 and 9 we obtain:
Corollary 10. If T is a complete theory with an atomic model with dimension but no finite basis and finitely many algebraic elements then T is \boldsymbol{N}_{0}-categorical.

3

ThEOREM 11. Suppose \mathfrak{M} has the following properties.
(1) \mathfrak{M} has finite closure.
(2) If $\left\{a_{1}, \cdots, a_{n}\right\} \subseteq \mathfrak{M}$ is independent and $\left\{a_{1}, \cdots, a_{n+1}\right\}$ is not, then $a_{n+1} \in \operatorname{cl}\left\{a_{1}, \cdots, a_{n}\right\}$. (M satisfies the Exchange Lemma).
(3) If $A, B \subseteq \mathfrak{M}$ are independent and $p: A \rightarrow B$ is one-one, then p is elementary.

Then \mathfrak{M} has dimension.
Proof. We prove the following by induction on n :
(4) If $\left\{a_{1}, \cdots, a_{m}\right\}$ is independent, $b_{1}, \cdots, b_{n} \in \operatorname{cl}\left\{a_{1}, \cdots, a_{m}\right\}$ then there exist c_{1}, \cdots, c_{p} such that $\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\}$ is independent and for any formula $\psi\left(v_{1}, \cdots, v_{m+n+p+1}\right)$ and for any $d_{1}, d_{2} \notin \operatorname{cl}\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\}$,

$$
\begin{aligned}
& \mathfrak{M} \vDash \psi\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}, d_{1}\right] \text { if, and only if, } \\
& \mathfrak{M} \vDash \psi\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}, d_{2}\right] .
\end{aligned}
$$

Suppose $n=0$. If $d_{1}, d_{2} \notin \mathrm{cl}\left\{a_{1}, \cdots, a_{m}\right\}$ then, by (2), $\left\{a_{1}, \cdots, a_{m}, d_{1}\right\}$ and $\left\{a_{1}, \cdots, a_{m}, d_{2}\right\}$ are independent, and (4) holds by (3).

Suppose (4) holds for some n and $b_{n+1} \in \operatorname{cl}\left\{a_{1}, \cdots, a_{m}\right\}$. Then $b_{n+1} \in$ $\operatorname{cl}\left\{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}\right\}$ and there is a formula $\chi_{0}\left(v_{0}, \cdots, v_{m+n+p}\right)$ and a natural number $k_{0} \geqq 1$, such that

$$
\mathfrak{M} \vDash \chi_{0} \& \exists^{k_{0}} v_{0} \chi_{0}\left[b_{n+1}, a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}\right] .
$$

We construct sequences $k_{0}>k_{1}>\cdots>k_{q} \geqq 1, \chi_{0}, \cdots, \chi_{q}, c_{p+1}, \cdots, c_{p+q}$, such that for any formula $\psi\left(v_{1}, \cdots, v_{m+n+p+q+2}\right)$ and $d_{1}, d_{2} \notin \operatorname{cl}\left\{a_{1}, \cdots, a_{m}\right.$, $\left.c_{1}, \cdots, c_{p+q}\right\}$

$$
\mathfrak{M} \vDash \psi\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n+1}, c_{1}, \cdots, c_{p+q}, d_{1}\right] \quad \text { if, and only if, }
$$

$$
\begin{equation*}
\mathfrak{M} \vDash \psi\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n+1}, c_{1}, \cdots, c_{p+a}, d_{2}\right] \tag{5}
\end{equation*}
$$

If (5) holds with $q=0$, we are done. If not, there is a formula $\psi\left(v_{1}, \cdots, v_{m+n+p+2}\right)$ and $d_{1}, d_{2} \notin \operatorname{cl}\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\}$ such that

$$
\begin{equation*}
\mathfrak{M} \vDash \psi\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n+1}, c_{1}, \cdots, c_{p}, d_{1}\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{M} \vDash \neg \psi\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n+1}, c_{1}, \cdots, c_{p}, d_{2}\right] \tag{7}
\end{equation*}
$$

Put $c_{p+1}=d_{1}$ and put

$$
\begin{aligned}
\chi_{1}\left(v_{0},\right. & \left.\cdots, v_{m+n+p+2}\right) \\
& =\chi_{0}\left(v_{0}, \cdots, v_{m+n+p}\right) \& \psi\left(v_{1}, \cdots, v_{m+n}, v_{0}, v_{m+n+1}, \cdots, v_{m+n+p+2}\right)
\end{aligned}
$$

By (2), $\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p+1}\right\}$ is independent. Clearly

$$
\mathfrak{M} \vDash \chi_{1}\left[b_{n+1}, a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p+1}\right] .
$$

And

$$
\begin{equation*}
\mathfrak{M} \vDash \exists v_{0}\left(\chi_{0} \& \neg \chi_{1}\right)\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p+1}\right] \tag{8}
\end{equation*}
$$

for suppose otherwise. Then

$$
\mathfrak{M} \vDash \forall v_{0}\left(\chi_{0} \rightarrow \chi_{1}\right)\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}, d_{1}\right]
$$

whence, by (4),

$$
\mathfrak{M} \vDash \forall v_{0}\left(\chi_{0} \rightarrow \chi_{1}\right)\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}, d_{2}\right] .
$$

But $\mathfrak{M} \vDash \chi_{0}\left[b_{n+1}, a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}\right]$ and so

$$
\mathfrak{M} \vDash \chi_{1}\left[b_{n+1}, a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p}, d_{2}\right]
$$

and therefore

$$
\mathfrak{M} \vDash \psi\left[a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n+1}, c_{1}, \cdots, c_{p}, d_{2}\right]
$$

which contradicts (7). Thus (8) holds and

$$
\mathfrak{M} \vDash \exists^{k_{1}} v_{0} \chi_{1}\left[v_{0}, a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{p+1}\right]
$$

where $1 \leqq k_{1}<k_{0}$.
We can choose χ_{i}, c_{i} is a similar fashion until (5) holds, which is when (4) holds for $n+1$.

Thus (4) holds for all n.
Now suppose $b_{1}, \cdots, b_{n} \in \mathfrak{M}$ and $\psi\left(v_{0}, \cdots, v_{n}\right)$ is any formula. Using (2), we can choose $a_{1}, \cdots, a_{m} \in\left\{b_{1}, \cdots, b_{n}\right\}$ such that $\left\{a_{1}, \cdots, a_{m}\right\}$ is independent and $b_{1}, \cdots, b_{n} \in \operatorname{cl}\left\{a_{1}, \cdots, a_{m}\right\}$. By (4), there exist c_{1}, \cdots, c_{p} such that for all $\chi\left(v_{0}, \cdots, v_{n}\right)$ and $d_{1}, d_{2} \notin\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\} \mathfrak{M} \vDash \chi\left[d_{1}, b_{1}, \cdots, b_{n}\right]$ if, and only if $\mathfrak{M} \vDash \chi\left[d_{2}, b_{1}, \cdots, b_{n}\right]$.

If $\psi\left(v_{0}, b_{1}, \cdots, b_{n}\right)$ has infinitely many solutions in \mathfrak{M}, then $\mathfrak{M} \vDash \psi\left[d, b_{1}, \cdots, b_{n}\right] \quad$ for some $\quad d \notin \operatorname{cl}\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\} \quad$ as $\operatorname{cl}\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\}$ is finite by (1). Hence $\mathfrak{M} \vDash \psi\left[d, b_{1}, \cdots, b_{n}\right]$ for all $d \notin \operatorname{cl}\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\}$ and $\mathfrak{M} \vDash \neg \psi\left[d, b_{1}, \cdots, b_{n}\right]$ for at most $d \in$ $\mathrm{cl}\left\{a_{1}, \cdots, a_{m}, c_{1}, \cdots, c_{p}\right\}$. Thus $\neg \psi\left(v_{0}, b_{1}, \cdots, b_{n}\right)$ has finitely many solutions, and so $v_{0}=v_{0}$ is a minimal formula.

Therefore \mathfrak{M} has dimension.
Conditions (2) and (3) are not sufficient for \mathfrak{M} to have dimension. Consider the model $\mathfrak{P}=(Z \times Z,<, S)$ where

$$
\left(n_{1}, m_{1}\right)<\left(n_{2}, m_{2}\right) \quad \text { if } \quad n_{1}=n_{2} \quad \text { and } \quad m_{1}<m_{2}
$$

and

$$
S((n, m))=(n, m+1)
$$

It is easy to see the following:
(a) $\operatorname{cl}\left\{\left(n_{1}, m_{1}\right), \cdots,\left(n_{l}, m_{1}\right)\right\}=\left\{n_{1}, \cdots, n_{l}\right\} \times Z$.
(b) $\left\{\left(n_{1}, m_{1}\right), \cdots,\left(n_{1}, m_{1}\right)\right\}$ is independent if and only if n_{1}, \cdots, n_{l} are distinct, and therefore (2) holds.
(c) If $A, B \subseteq \mathfrak{N}$ are finite and independent and $p: A \rightarrow B$ is one-one, then p extends to an automorphism of \mathfrak{N} and so is elementary. Therefore (3) holds.
(d) \mathfrak{N} has no algebraic elements and $v_{0}<a_{1}, \neg v_{0}<a_{1}$ both have infinitely many solutions in \mathfrak{R}. Thus \mathfrak{R} does not have dimension.

By Corollary 5, if \mathfrak{M} satisfies (1), (2) and (3), then $B_{n}(T(\mathfrak{M})$) is finite for each n, and so \mathfrak{M} is atomic. However Theorem 11 does not hold if we replace (1) by " \mathfrak{M} is atomic", for the model \mathfrak{R} provides a counter-example.

$$
\begin{aligned}
\psi & \left(v_{11}, \cdots, v_{1 k_{1}}, \cdots, v_{i 1}, \cdots, v_{l k_{i}}\right) \\
& =\wedge_{i_{1} \neq i_{2}}\left(\neg\left(v_{i_{1} 1}<v_{i_{2} 1}\right) \& \rightarrow\left(v_{i_{2} 1}<v_{i_{1} 1}\right) \& \bigwedge_{i=1, \cdots, l} \wedge_{i_{2}<j_{1}} v_{i i_{1}}=S^{j_{2}-j_{2}}\left(v_{i_{2}}\right)\right)
\end{aligned}
$$

is a formula satisfied by

$$
\left(\left(n_{1}, m_{11}\right), \cdots,\left(n_{1}, m_{1 k_{1}}\right), \cdots,\left(n_{l}, m_{i 1}\right), \cdots,\left(n_{1}, m_{k l}\right)\right)
$$

where n_{1}, \cdots, n_{1} are distinct, and is an atom, as can be seen by extending the map $a_{i j} \mapsto a_{i j}^{\prime}$, where $\mathfrak{R} \vDash \psi\left(a_{11}, \cdots, a_{i k_{1}}\right)$ and $\mathfrak{l} \vDash \psi\left(a_{11}^{\prime}, \cdots, a_{i k}^{\prime}\right)$, to an automorphism of \mathfrak{R}.

References

J. N. Crossley and Anil Nerode (1974), Combinatorial Functors (Springer-Verlag, 1974).
C. Ryll-Nardzewski (1959), 'On theories categorical in power \boldsymbol{N}^{\prime}, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 7, 545-548.

Department of Mathematics, University of Tasmania, Hobart, Australia.

[^0]: 'Sections of this paper were part of a thesis submitted for the degree of Doctor of Philosophy at Monash University and under the supervision of Professor J. N. Crossley.

