BULL. AUSTRAL. MATH. SOC. VOL. 25 (1982), 177-185.

47A30 (47BIO, 47B20)

A HILBERT-SCHMIDT NORM INEQUALITY ASSOCIATED WITH THE FUGLEDE-PUTNAM THEOREM

Takayuki Furuta

Dedicated in deep sorrow to the memory of the late Professor Teishirô Saitô

The familiar Fuglede-Putnam theorem asserts that AX = XBimplies $A^*X = XB^*$ when A and B are normal. We prove that A and B^* be hyponormal operators and let C be a hyponormal commuting with A^* and also let D^* be a hyponormal operator commuting with B respectively, then for every Hilbert-Schmidt operator X, the Hilbert-Schmidt norm of AXD + CXB is greater than or equal to the Hilbert-Schmidt norm of $A^*XD^* + C^*XB^*$. In particular, AXD = CXB implies $A^*XD^* = C^*XB^*$. If we strengthen the hyponormality conditions on A, B^* , C and D^* to quasinormality, we can relax Hilbert-Schmidt operator of the hypothesis on X to be every operator and still retain the inequality under some suitable hypotheses.

1. Introduction

An operator means a bounded linear operator on a separable infinite dimensional Hilbert space H. Let B(H) and C_2 denote the class of all bounded linear operators acting on H and the Hilbert-Schmidt class in B(H) respectively. C_2 forms a two-sided ideal in the algebra B(H) and C_2 is itself a Hilbert space for the inner product

Received 2 September 1981.

$$(X, Y) = \sum (Xe_j, Ye_j) = \operatorname{Tr}(Y^*X) = \operatorname{Tr}(XY^*)$$

where $\{e_j\}$ is any orthonormal basis of H and Tr(T) denotes the trace. In what follows, $||T||_2$ denotes the Hilbert-Schmidt norm.

An operator T is called *quasinormal* if T commutes with T^*T , subnormal if T has a normal extension and hyponormal if $[T^*, T] \ge 0$ where [S, T] = ST - TS. The inclusion relation of the classes of nonnormal operators listed above is as follows:

Normal \subsetneq Quasinormal \subsetneq Subnormal \subsetneq Hyponormal ;

the above inclusions are all proper [6, Problem 160, p. 101].

In [2], Berberian shows the following result.

THEOREM A [2]. If A and B^* are hyponormal, then AX = XB implies $A^*X = XB^*$ for an operator X in the Hilbert-Schmidt class.

On the other hand, in [3] we have shown Theorem B which is an extension of the Fuglede-Putnam theorem.

THEOREM B [3]. If A and B^* are subnormal and if X is an operator such that AX = XB, then $A^*X = XB^*$.

Recently Weiss has obtained the following result.

THEOREM C [11]. Let $\{A_1, A_2\}$ and $\{B_1, B_2\}$ denote commuting pairs of normal operators and let $X \in B(H)$. Then

$$\|A_1 X B_1 + A_2 X B_2\|_2 = \|A_1^* X B_1^* + A_2^* X B_2^*\|_2 .$$

In this paper we prove Theorem 1 which is an extension of Theorem A and also we prove a slightly stronger Theorem 2 by integrating Theorem B and Theorem C.

2.

First of all we show the following theorem.

THEOREM 1. Let A and B^* be hyponormal on H. Let C be a hyponormal commuting with A^* and also D^* be a hyponormal commuting with B respectively. Then

(i)

(*)
$$||AXD+CXB||_2 \ge ||A*XD*+C*XB*||_2$$

holds for every X in the Hilbert-Schmidt class. Equality in (*) holds for every X in the Hilbert-Schmidt class when A, B, C and D are all normal.

(ii) If X is an operator in the Hilbert-Schmidt class such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. Define an operator T on C_{2} as follows:

$$TX = AXD + CXB$$

Then, if we view C_2 as an underlying Hilbert space, then T^* exists and T^* is given by the formula $T^*X = A^*XD^* + C^*XB^*$ since we easily see from

$$(T^*X, Y) = (X, TY) = (X, AYD+CYB) = Tr(XD^*Y^*A^*) + Tr(XB^*Y^*C^*)$$

= Tr(A^*XD^*Y^*) + Tr(C^*XB^*Y^*) = Tr((A^*XD^*+C^*XB^*)Y^*)
= (A^*XD^*+C^*XB^*, Y) .

Also

$$(T*T-TT*)X = A^{*}(AXD+CXB)D^{*} + C^{*}(AXD+CXB)B^{*} - A(A^{*}XD^{*}+C^{*}XB^{*})D - C(A^{*}XD^{*}+C^{*}XB^{*})B$$
$$= (A^{*}AXDD^{*}-AA^{*}XD^{*}D) + (C^{*}CXBB^{*}-CC^{*}XB^{*}B) + A^{*}CXBD^{*} - AC^{*}XB^{*}D + C^{*}AXDB^{*} - CA^{*}XD^{*}B$$
$$= (A^{*}A-AA^{*})XDD^{*} + AA^{*}X(DD^{*}-D^{*}D) + (C^{*}C-CC^{*})XBB^{*} + CC^{*}X(BB^{*}-B^{*}B) + (A^{*}CXBD^{*}-CA^{*}XD^{*}B) + (C^{*}AXDB^{*}-AC^{*}XB^{*}D)$$

and the fifth and the sixth terms in the formula above are both zero since the hypotheses $CA^* = A^*C$ and $D^*B = BD^*$ hold, so that

(1)
$$(T*T-TT*)X = (A*A-AA*)XDD* + AA*X(DD*-D*D) + (C*C-CC*)XBB* + CC*X(BB*-B*B)$$
.

Left and right multiplication acting on C_2 as the Hilbert space by a positive operator is itself a positive operator. Since $T^*T - TT^*$ is the sum of four positive operators by the hyponormality of A, B^*, C and D^* , T is hyponormal. Therefore

$$\|TX\|_{2} \geq \|T*X\|_{2};$$

that is,

$$\|AXD+CXB\|_{2} \geq \|A^{*}XD^{*}+C^{*}XB^{*}\|_{2}$$

and the proof of equality easily follows by (1) and (2). If an operator T is hyponormal, then -T is also hyponormal, so the proof of *(ii)* easily follows by (*) in *(i)*.

COROLLARY 1. Let A and B^* be hyponormal on H. Let C be a normal commuting with A and also let D be a normal commuting with B respectively. Then

(i)

(*)
$$||AXD+CXB||_2 \ge ||A^*XD^*+C^*XB^*||_2$$

holds for every X in the Hilbert-Schmidt class. Equality in (*) holds for every X in the Hilbert-Schmidt class when A and B are both normal.

(ii) If X is an operator in the Hilbert-Schmidt class such that AXD = CXB, then A*XD* = C*XB*.

Proof. The hypotheses CA = AC and DB = BD imply $CA^* = A^*C$ and $DB^* = B^*D$, that is, $D^*B = BD^*$ by the original Fuglede-Putnam theorem [1], [6], [7], [8], so the proof follows by Theorem 1.

REMARK 1. We remark that Weiss [10, Theorem 4] shows the case of the equality in (i) of Corollary 1 when A = B is normal and C = D = I the identity operator on H, by a different method and also Corollary 1 is an extension of Theorem A.

3.

If we strengthen the hyponormality conditions to quasinormality, then we can relax the Hilbert-Schmidt operator of the hypothesis on X to be every operator in B(H) in Theorem 1 and still retain the inequality under some suitable hypotheses.

DEFINITION 1. Let N_T denote a normal extension on $H \oplus H$ of a subnormal operator T on H. In fact, for every subnormal operator T, there exists a normal extension N_T on $H \oplus H$ whose restriction to $H \oplus \{0\}$ is T [5].

LEMMA. Let A and B* be subnormal on H. Let C be subnormal such that N_C commutes with N_A and also D* be subnormal such that N_{D*} commutes with N_{R*} respectively. Then

(i)

$$\|AXD+CXB\|_{2} \geq \|A^{*}XD^{*}+C^{*}XB^{*}\|_{2}$$

holds for every X in B(H). Equality in (**) holds for every X in B(H) when A, B, C and D are all normal.

(ii) If X is an operator such that AXD = CXB , then $A^{\ast}XD^{\ast}$ = $C^{\ast}XB^{\ast}$.

Proof. By Definition 1, N_A and N_C are given by

$$N_A = \begin{pmatrix} A & A_{12} \\ 0 & A_{22} \end{pmatrix} \text{ and } N_C = \begin{pmatrix} C & C_{12} \\ 0 & C_{22} \end{pmatrix}$$

acting on $H \oplus H$ whose restriction to $H \oplus \{0\}$ are A and C respectively and also N_{B^*} and N_{D^*} are given by the same reason as follows on $H \oplus H$;

$$N_{B*} = \begin{pmatrix} B^* & B_{12} \\ 0 & B_{22} \end{pmatrix}$$
 and $N_{D*} = \begin{pmatrix} D^* & D_{12} \\ 0 & D_{22} \end{pmatrix}$.

For X acting on H, we consider $\begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}$ acting on $H \oplus H$. $\{N_A, N_C\}$ and $\{N_{D^*}^*, N_{B^*}^*\}$ are commuting pairs of normal operators on $H \oplus H$. Then, by Theorem C, we have

$$\begin{split} \left\| \begin{pmatrix} A & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D & 0 \\ D_{12}^{*} & D_{22}^{*} \end{pmatrix}^{+} \begin{pmatrix} C & C_{12} \\ 0 & C_{22} \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} B & 0 \\ B_{12}^{*} & B_{22}^{*} \end{pmatrix} \right\|_{2} \\ & = \left\| \begin{pmatrix} A^{*} & 0 \\ A_{12}^{*} & A_{22}^{*} \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D^{*} & D_{12} \\ 0 & D_{22} \end{pmatrix}^{+} \begin{pmatrix} C^{*} & 0 \\ C_{12}^{*} & C_{22}^{*} \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} B^{*} & B_{12} \\ 0 & B_{22} \end{pmatrix} \right\|_{2} ; \end{split}$$

that is,

$$\left\| \begin{pmatrix} AXD + CXB & 0 \\ 0 & 0 \end{pmatrix} \right\|_{2} = \left\| \begin{pmatrix} A^{*}XD^{*} + C^{*}XB^{*} & A^{*}XD_{12} + C^{*}XB_{12} \\ A_{12}^{*}XD^{*} + C_{12}^{*}XB^{*} & A_{12}^{*}XD_{12} + C_{12}^{*}XB_{12} \end{pmatrix} \right\|_{2}$$

so that

182

$$(3) ||AXD+CXB||_{2}^{2} = ||A^{*}XD^{*}+C^{*}XB^{*}||_{2}^{2} + ||A^{*}XD_{12}+C^{*}XB_{12}||_{2}^{2} + ||A_{12}^{*}XD^{*}+C_{12}^{*}XB^{*}||_{2}^{2} + ||A_{12}^{*}XD_{12}+C_{12}^{*}XB_{12}||_{2}^{2}$$

whence we have

$$\left\|AXD+CXB\right\|_{2} \geq \left\|A*XD*+C*XB*\right\|_{2}$$

which is the desired norm inequality (**). When A, B, C and D are all normal, then $A_{12} = 0$, $B_{12} = 0$, $C_{12} = 0$ and $D_{12} = 0$ in (3), so that equality in (**) holds and the proof is complete.

We remark that the sum of second, third and fourth of the right hand in (3) can be considered as a "perturbed terms" measures the deviation of subnormality from normality.

DEFINITION 2. Let $[S, T]_*$ denote the following "*-commutator":

 $[S, T]_* = ST - TS^* ;$

this *-commutator is completely different from the usual commutator [S, T] .

DEFINITION 3. Let S_T denote the positive square root of $[T^*, T]$ for the hyponormal operator T.

THEOREM 2. Let A and B* be quasinormal on H. Let C be a quasinormal such that commutes with A and satisfies $[A, S_C]_* = [C, S_A]_*$ and also let D* be a quasinormal such that commutes with B* and satisfies $[B^*, S_{D^*}]_* = [D^*, S_{B^*}]_*$ respectively. Then

(i)

$$(**) ||AXD+CXB||_{2} \ge ||A*XD*+C*XB*||_{2}$$

holds for every X in B(H). Equality in (**) holds for every X in B(H) when A, B, C and D are all normal.

(ii) If X is an operator such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. Let A = UP be the polar decomposition of A, where U is a partial isometry and P is a positive operator such that $P^2 = A^*A$. A

normal extension N_A of A can be written as follows [6, p. 308],

$$N_A = \begin{pmatrix} A & S(A) \\ 0 & A^* \end{pmatrix}$$

acting on $H \oplus H$, where $S(A) = (I-UU^*)P$. Since A is quasinormal, then A = UP = PU [6, Problem 108]. As UU^* is projection and P commutes with U and U^* , then

(4)
$$S(A) = (I - UU^{*})P = [(I - UU^{*})P^{2}]^{\frac{1}{2}}$$
$$= (P^{2} - UPU^{*}P)^{\frac{1}{2}} = (A^{*}A - AA^{*})^{\frac{1}{2}} = S_{A}$$

Similarly normal extensions of C, B^* and D^* are also given as follows:

$$N_C = \begin{pmatrix} C & S_C \\ 0 & C^* \end{pmatrix}, \quad N_{B^*} = \begin{pmatrix} B^* & S_{B^*} \\ 0 & B \end{pmatrix} \text{ and } N_{D^*} = \begin{pmatrix} D^* & S_{D^*} \\ 0 & D \end{pmatrix}$$

Hypotheses imply that $\{N_A, N_C\}$ and $\{N_{D^*}^*, N_{B^*}^*\}$ are pairs of commuting normal operators, so that the desired relations follow by the lemma.

COROLLARY 2. Let A and B^* be quasinormal on H. Let C be a normal commuting with A and also D be a normal commuting with B respectively. Then

(i)

$$\|AXD+CXB\|_{2} \geq \|A^{*}XD^{*}+C^{*}XB^{*}\|_{2}$$

holds for every X in B(H). Equality in (**) holds for every X in B(H) when A, B, C and D are all normal.

(ii) If X is an operator such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. Take $N_C = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$ in the proof of Theorem 2 since C is normal. Then the hypothesis CA = AC implies $CA^* = A^*C$ by the original Fuglede-Putnam theorem [1], [6], [7], [8], so that we have $CS_A^2 = S_A^2C$; that is, $CS_A = S_A C$ holds, whence N_A in the proof of Theorem 2 commutes with $N_C = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$ since (4) holds. Similarly $N_{D^*}^* = \begin{pmatrix} D^* & 0 \\ 0 & D^* \end{pmatrix}$ commutes with $N_{B^*}^*$ in the proof of Theorem 2, so that the proof is complete by the lemma.

REMARK 2. If we strengthen on X to be in Hilbert-Schmidt class in Corollary 2, then we can relax quasinormality of the hypotheses on A and B^* to hyponormality and still retain the inequality; that is, just Corollary 1.

COROLLARY 3. Let A and B* be hyponormal satisfying $[A^*, S_A]_* = 0$ and $[B, S_{B^*}]_* = 0$ respectively. Let C be a hyponormal which commutes with A and satisfies $[C^*, S_C]_* = 0$ and $[A, S_C]_* = [C, S_A]_*$ and also let D* be a hyponormal which commutes with B* and satisfies $[D, S_{D^*}]_* = 0$ and $[B^*, S_{D^*}]_* = [D^*, S_{B^*}]_*$ respectively. Then

(i)

$$(**) ||AXD+CXB||_2 \ge ||A*XD*+C*XB*||_2$$

holds for every X in B(H). Equality in (**) holds for every X in B(H) when A, B, C and D are all normal.

(ii) If X is an operator such that AXD = CXB, then $A^*XD^* = C^*XB^*$.

Proof. The hypotheses imply that A, B^*, C and D^* are all subnormal and $N_A = \begin{pmatrix} A & S_A \\ 0 & A^* \end{pmatrix}$ and similarly N_{B^*}, N_C and N_{D^*} are also given in the similar forms [4, Theorem 1]. As stated in the proof of Theorem 2, the hypotheses imply that $\{N_A, N_C\}$ and $\{N_{D^*}^*, N_{B^*}^*\}$ are pairs of commuting normal operators, so that the proof is complete by the lemma.

Can quasinormality be replaced by subnormality (or further hyponormality) in Theorem 2 and Corollary 2? Partial and modest answers to this question are cited in [2], [3], [9]. Theorem 1 is a modest result and Corollary 3 is im this direction.

https://doi.org/10.1017/S0004972700005190 Published online by Cambridge University Press

References

- [1] S.K. Berberian, "Note on a theorem of Fuglede and Putnam", Proc. Amer. Math. Soc. 10 (1959), 175-182.
- [2] S.K. Berberian, "Extensions of a theorem of Fuglede and Putnam", Proc. Amer. Math. Soc. 71 (1978), 113-114.
- [3] Takayuki Furuta, "On relaxation of normality in the Fuglede-Putnam theorem", Proc. Amer. Math. Soc. 77 (1979), 324-328.
- [4] Takayuki Furuta, Kyoko Matsumoto and Nobuhiro Moriya, "A simple condition on hyponormal operators implying subnormality", Math. Japon. 21 (1976), 399-400.
- [5] Paul R. Halmos, "Shifts on Hilbert spaces", J. Reine Angew. Math. 208 (1961), 102-112.
- [6] Paul R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, New Jersey; Toronto; London; 1967).
- [7] C.R. Putnam, "On normal operators in Hilbert space", Amer. J. Math. 73 (1951), 357-362.
- [8] M. Rosenblum, "On a theorem of Fuglede and Putnam", J. London Math. Soc. 33 (1958), 376-377.
- [9] Joseph G. Stampfli & Bhushan L. Wadhwa, "An asymmetric Putnam-Fuglede theorem for dominant operators", Indiana Univ. Math. J. 25 (1976), 359-365.
- [10] Gary Weiss, "The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I", Trans. Amer. Math. Soc. 246 (1978), 193-209.
- [11] Gary Weiss, "The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II", J. Oper. Theory 5 (1981), 3-16.

Department of Mathematics, Faculty of Science, Hirosaki University, Bunkyo-Cho 3, 036 Aomori, Japan.