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Abstract

In this paper we consider groups in which every subgroup has finite index in the nth term of its normal
closure series, for a fixed integer n. We prove that such a group is the extension of a finite normal
subgroup by a nilpotent group, whose class is bounded in terms of n only, provided it is either periodic
or torsion-free.

2000 Mathematics subject classification: primary 20E15, 20F19.

A subgroup Hofa group G is said to be almost subnormal if it has finite index in some
subnormal subgroup of G. This occurs when H has finite index in some term HGn,
n > 0, of its normal closure series in G; recall that HG0 = G and HGn = H"G"~'.

A finite-by-nilpotent group has every subgroup almost subnormal, and for finitely
generated groups the converse holds (see [8, 6.3.3]). Note that, if a group G has a
finite normal subgroup N such that G/N is nilpotent of class n, then each subgroup
H of G has finite index in HGn. For n — 1, the converse is settled by a well-known
theorem of Neumann [10]: a group G, in which every subgroup H has finite index
in its normal closure HG, is finite-by-abelian. Later, Lennox [7] considered the case
in which n is larger than 1 and there is also a bound on the indices. He proved
that there exists a function fi such that if \HG-n : H\ < c for every subgroup H of
a group G, where n and c are fixed integer, then the /x(n + c)-th term yM(n+C)(G)
of the lower central series of G is finite of order at most c!. Recall that a theorem
by Roseblade states that a group G in which H = HGn for every subgroup H, is
nilpotent and yP(n)+i(G) = 1, for a well-defined function p. Recently, Casolo and
Mainardis in [2, 3] gave a description of the structure of groups with all subgroups
almost subnormal, proving, in particular, that such groups are finite-by-soluble.

© 2004 Australian Mathematical Society 1446-7887/04 $A2.00 -I- 0.00

165

https://doi.org/10.1017/S1446788700013549 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013549


166 Eloisa Detomi [2]

In this paper we consider the class An,n > 1, of groups G in which \Ha" : H\ is

finite for every subgroup H of G, but no bound on the indices \HGn : H\is assumed.

In particular, we give a generalization of Neumann's theorem to periodic A„-groups:

THEOREM 1. There exists a function S ofn, such that if G is a torsion group with
the property that \Ha" : H\ < oo for every subgroup H of G, then ys^)(G) isfinite.

We then consider torsion-free groups. By a result due to Casolo and Mainardis
[2], torsion-free A „-groups have every subgroup subnormal and so they turn out to
be nilpotent, by a recent result by Smith [14] (see also Casolo [1]). Here, we give a
different proof of their nilpotency and, in particular, a bound on their nilpotency class,
thus generalizing Neumann's theorem to torsion-free An-groups:

THEOREM 2. There exists a function r\ ofn such that each torsion-free group G in
which \HG'n : H\ < oo for every subgroup H, is nilpotent of class at most r]{n).

This also gives a different proof of Roseblade's theorem for torsion-free groups
with all subgroups subnormal of bounded defect.

Finally, we observe that Smith in [13] gives examples of A2-groups which are not
finite-by-nilpotent. Thus, Theorem 1 and Theorem 2 are no longer true if we drop
the assumptions that G is either periodic or torsion-free. Also, Casolo and Mainardis,
in [2], construct a non-hypercentral A2-group. On the other hand, in Proposition 13
we shall prove that locally nilpotent An-groups are hypercentral, partially answering
the question posed in[8, page 191]. Recall that Heineken-Mohamed groups [6] are
example of groups in which every subgroups is almost subnormal but they do not
belong to any of the classes An.

1. A+-groups

In order to achieve our result on periodic An-groups, we find it convenient to study
a larger class of groups. We denote by A+ the class of all groups G in which there
exists a finite subgroup F with the property that every subgroup H containing F has
finite index in the wth term HGn of its normal closure series. By abuse of notation,
we shall denote the above by (G, F) e A+. Note that An c A+ but An ^ A+.
Indeed, the group described in [4, Proposition 4] is a periodic A \ -group but it is not
finite-by-nilpotent, and so, by Theorem 1, it does not belong to An.

Also, we denote by 11+ the class of all groups G in which there exists a finite
subgroup F such that every subgroup of G containing F is subnormal of defect at
most n in G. Clearly, 11+ c A+, but il+ ^ A+, since Smith's groups [13] are
locally nilpotent A2-groups which are not finite-by-nilpotent while, for il^-groups,
the following holds:
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THEOREM 3 (Detomi [4]). There exists a function fi{ri) ofn, such that if G belongs
to il+ and it is either a locally nilpotent group or a torsion group with n(G) finite,
then Yp(n)(G) is finite. In particular, if G is locally nilpotent, then G is nilpotent and
its nilpotency class is bounded by a function depending on n and \F\.

Here n(G) denotes the set of primes dividing the orders of the elements of G.
The following are two known result which we include without proofs. If N is a

subgroup (normal subgroup) with finite index in G, then we write N </ G (N </ G).

LEMMA 4. Let G be a countable residually finite group and let H be a finite
subgroup ofG. Then H = f]N</GHN.

LEMMA 5. Let G be a group and let F be a finitely generated subgroup of a
subgroup H of G. If[G,n V] < V for every finitely generated subgroup V of H such
that F < V, then [G,n H] < H.

We establish an elementary property of periodic A+-groups:

LEMMA 6. A periodic A* -group is locally finite and finite-by-soluble.

PROOF. Let (G, F) e A+. Then F <f FG-n gives that FG-a is finite and that
every section FG-'/FG'i+i belongs to An. Since, by the already mentioned result by
Casolo-Mainardis, every An-group is finite-by-soluble, the group G has a finite series
in which each factor is finite or soluble.

Let X be a finitely generated subgroup of G. Clearly X has a finite series with finite
or soluble factors. Hence, since a finitely generated torsion soluble group is finite and
a subgroup with finite index in a finitely generated group is finitely generated, each
factor in this series of X is finite, and so X is finite. This proves that G is locally
nilpotent.

Now, since G has a finite series with finite or soluble factors, to prove that G is
finite-by-soluble, it is sufficient to show that soluble-by-finite periodic A+-groups are
finite-by-soluble.

Let (G, F) e A+ be a torsion group and let A be a soluble normal subgroup with
finite index in G. We can assume that A <G, since A c has finite index in G. Let r be
a left transversal to A in G and set H = (z, F). As H has finite index in K = HGn, K
is finitely generated and hence finite, by the local finiteness of G. Note that G = A K.

We proceed by induction on the defect d of subnormality of K in G. If K is normal
in G, then G/K = A/A D K is soluble, and we are done. If d > 1, then, as K has
defect of subnormality bounded by d — 1 in K °, we can apply the induction hypothesis
to KG, obtaining that some term of the derived series of K G is finite (and normal in G).
Therefore, as G/KG = A/A D KG is soluble, we get that G is finite-by-soluble, which
is the desired conclusion. •
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With the same argument as in [4, Lemma 9], it is easy to see that:

LEMMA 7. Let G e A + be a locally finite group. If there exists a subgroup A with
finite index in G such that ym+i(A) is finite, then ynm+\(G) is finite.

Roughly speaking, the next proposition says that periodic A ̂ -groups are near to
being il+-groups.

PROPOSITION 8. Let G be a countable residually finite torsion group and let G e
A+. Then there exists a subgroup A with finite index in G such that A € il+.

PROOF. Assume that the lemma is false and let G be a counterexample. Proceeding

recursively we construct

(a) a descending chain {/if,- | i € N} of subgroups with finite index in G,
(b) an ascending chain {F,\ i e N} of finitely generated subgroups of P|~o ^ " anc*
(c) a sequence of elements {xt e [AT,_i,,, F,]\Af, | 1 < i € N}.

Set Ko = G and let Fo be a finite subgroup of G such that \HG-n : H\ < oo
whenever Fo < H < G.

Suppose we have already defined F,, AT,, and *,- e [Kt-\,n F,]\A",. As F, is a
finitely generated subgroup of AT, </ G, and as G is a counterexample, there exists
a subgroup F, < H < AT, which is not subnormal of defect less or equal to n
in Kh that is, [Khn H] ^ H. So, by Lemma 5, there exists a finitely generated
subgroup F,+i of H with F, < Fi+i and [Kt,n Fi+\] ^ Fi+i. Let us fix an element
JC1+I e [Khn F,+i]\F,+i . Since, by Lemma 6, G is locally finite, we can apply
Lemma 4 to the finitely generated, hence finite subgroup F,+1, and so we get that
JC,-+I ^ Fi+]N for a suitable subgroup N <f AT,. Then we set Ki+i = Fi+]N, so that
F,+i < Ki+] <f G and ^:,+i 6 [Kitn F1+1]\A",+1. Note that Ki+\ contains all the
subgroups Fo, . . . , Fi+l.

Now we consider the subgroups K — p|(.gN Kt and W = (Ff | i e N). Since
H > Fo, by assumption we have that H has finite index in HGn. So, the chain
[HGn n K(}i€N, stretching from HG" to H, is finite and there exists an integer i
such that HCn n Kt = HGn D Kj for every; > i. But, since [G,n H] < HGn and
Fi+\ < H H AT,, we get that

*,+, e [Khn F/+1] < [Kitn H n AT,-] < [G,n H] n K,

< HGnnKi = HGnnKi+u

that is xi+\ 6 AT,+), in contradiction to our construction. •

THEOREM 9. There exists a function S(n) of n, such that if G is a periodic A+-
group and if either G is locally nilpotent or n(G) is finite, then ys(n)(G) is finite. In
particular, if G is locally nilpotent then G is nilpotent.
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PROOF. Set 5(1) = 2 and define recursively 8(n) = 2n(P(n) - 1) + 28(n - 1) + 1,
where yS is the function defined in Theorem 3.

Assume first that G is countable. We shall proceed by induction on n. Let F
be a finite subgroup of G such that every subgroup H containing F has finite index
in HGn.

If n = 1 then \FG : F\ < oo and FG is finite. Since G/FG e Au the quotient
G'FG/FG is finite by Neumann's theorem. Hence G = Yi{G) is finite.

Let now n > 1 and let X be a finitely generated subgroup of G with X > F.
Because G is locally finite, X is finite. Observe that, for every subgroup H of XG

containing X, we have HG = XG and so I//*0-""1 : / / | < oo. Thus XG belongs
to A+_, and by the inductive hypothesis we get that Ynn-\)(XG) is finite. Now, by a
theorem of Hall it follows that ^u(n-\)-iiXG) has finite index in XG. Thus, the index
of CG(XG/Z;2S(n-i)-2(XG)) in G is finite and, denoting by R = f]N< GN the finite
residual of G, we obtain that [R, XG] < %2s<.n-\)-2(XG). In particular,

[R,2S(n-\)X ] < L ^ . X y2S(n-l)-2X J = !•

Therefore, if we take s = 28 (n — 1) elements in G, say JCI, . . . ,xs, and we consider
the finitely generated subgroup X = (xi, ... , xs, F), then we get [R, x\, ... ,xs] <
[R,s XG] = 1, which implies R < fc,(G).

Now, as G/R € A+ is a countable residually finite torsion group, by Proposition 8
it follows that there exists a subgroup A with finite index in G, such that A/R e il+.
Also, A//? satisfies the assumptions of Theorem 3 and so y^(n)(A//?) is finite. By
Lemma 7 it follows that ynWn)_1)+i(G//?) is finite and then Hall's theorem gives
that ?2n(/j(n)-i)(G//?) has finite index in G/R. Therefore, as R < £,(G), clearly
&n(p(n)-i)+s(G) has finite index in G and, by a theorem of Baer (see [12, 14.5.1]), we
conclude that y2/.(/*(n)-i)+j+i(G) is finite. This proves that ys(n)(G) is finite, for every
countable group G satisfying the assumption of the theorem.

For the general case, we assume, contrary to our claim, that there exists a group G,
satisfying the assumption of the theorem, such that ys(n)(G) is not finite.

Let T be a countable and not finite subset of yS(n)(G). Then we can find a countable
set of commutators .x, = [ y M , . . . , y ^ , , ] , / e N, yjti e G, such that T < (*,- | i € N).
Let Y = (F, V;,, \ j = I, ..., 8(n), i 6 N). As Y is a countable A+-group, by
the first part of the proof, yS(n) (Y) is finite. Thus T c ySM (Y) is finite, against our
assumption.

Finally, if G is locally nilpotent, since every finite normal subgroup is contained
in some term of the upper central series (by a theorem of Mal'cev and McLain [12,
12.1.6]), it follows that G is nilpotent, and the proof is complete. •

As a consequence, we get the announced result on periodic An-groups:

PROOF OF THEOREM 1. Let G be a periodic An-group. By a result of Casolo and
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Mainardis [3], there exists a finite normal subgroup N of G such that G/N has every
subgroup subnormal. In particular, G/N is locally nilpotent. Now Theorem 9 gives
that ys(n)(G/N) is finite and, as N is finite, the result follows. •

2. Torsion-free An -groups

First we observe some basic properties of isolators in locally nilpotent groups.
Recall that the isolator of a subgroup H in a group G is defined to be the set IG(H) =
{x 6 G | x" e H for some 1 < n e N}. If G is a locally nilpotent group then IG(H)
is a subgroup of G and if G is also torsion-free then yn(Ic(H)) < idYniH)) (see, for
example, [5, 9]).

LEMMA 10. Let G be a locally nilpotent group and let H < G. Then

(1) ifIG(H) is finitely generated, then \IG(H) : H\ < oo;
(2) if G is torsion-free and H is cyclic, then IG(H) is locally cyclic.

PROOF. (1) As K = IG(H) is a finitely generated nilpotent group, H is subnormal
in K, say H — HKn for an integer n, and every section fjKj/HKj+1 is finitely
generated and nilpotent, for / = 1, . . . , n — 1. Furthermore, by definition of Ic(H),
each HK'/HKl+l is periodic and hence finite. Thus, H has finite index in K.

(2) Let K be a finitely generated subgroup of IG(H). AS H is cyclic, we can
assume that H < K. Since K is torsion-free and nilpotent, it has a central series with
infinite cyclic factors (see [12, 5.2.20]). So, if K is not cyclic, there is a cyclic normal
subgroup N of K with infinite index in K. Now, since, by (1), H has finite index
in K, then H n N £ 1. Therefore, as // is cyclic, |A"/A |̂ < \NH/N\ = \H/H n W|
is finite, a contradiction. •

We state now a consequence of a well-known argument by Robinson (see [12,
5.2.5]). Recall that the Hirsch length of a polycyclic group G is the number of infinite
factors in a series of G with cyclic factors.

LEMMA 11. Let H be a nilpotent group of class c. If H/H' can be generated by r
elements, then the Hirsch length h of H is bounded by a function g(c, r) ofc and r.

The already mentioned theorem of Mal'cev and McLain [12, 12.1.6] states that each
principal factor of a locally nilpotent group is central. The following consequence is
well known, but we include the easy proof for the convenience of the reader:

LEMMA 12. Let G be a locally nilpotent group and let N be a finitely generated
normal subgroup of G. Then there exists an integer n such that N <^n{G). Moreover,
ifN is torsion-free with Hirsch length h, then N <

https://doi.org/10.1017/S1446788700013549 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013549


[7] On groups with all subgroups almost subnormal 171

PROOF. The theorem of Mal'cev and McLain implies that if N is finite then it
is contained in £m(G) for an integer m bounded by the composition length of /V\
Also, when N is torsion-free with Hirsch length h, we get that N/Np is finite and
so N/Np < Zh(G/Np) for every prime p\ therefore [N,hG] < r\p

N" = * by a

residual property of torsion-free finitely generated nilpotent groups (see for example
[11, page 170]). Since the torsion subgroup of a finitely generated normal subgroup
of G is finite, the lemma follows. •

PROPOSITION 13. Let G be a locally nilpotent An-group. Then G is hypercentral.

PROOF. By an already cited result of Casolo and Mainardis, An-groups are finite-by-
soluble and so G is soluble. It is sufficient to prove that G has a non trivial centre. We
proceed by induction on the derived length of G. Let A be the centre of G'; by inductive
assumption, A ^ 1. Let H be a finitely generated subgroup of G. As \HG" : H\
is finite, HG" is finitely generated and so nilpotent; in particular, [A,n H] is finitely
generated. Since A = f(G'), [A,n H]» = [A,n H*] < [A,n H[H, (g)]] = [A,n H]for
g € G, and so [A, „ H] is normal in G. Thus Proposition 12givesthat[A,n H] < £*(G)
for some k > 1. So, if [A,n H] £ 1, then f (G) + 1. Otherwise, [A,B H] = 1 for
any finitely generated subgroup of G; thus A < £n(G) and we again conclude that

,6 1. D

A group G is said n-Engel if [x,n y] — 1 for all x, y e G. We recall that a torsion-
free soluble n-Engel group G with positive derived length d is nilpotent of class at
most nd~l (see [11, 7.36]).

Our interest on Engel groups is motivated by the following fact:

LEMMA 14. A torsion-free An-group is (n + l)-Engel.

PROOF. Let G be a torsion-free A „-group and let 1 ^ x e G. By the definition
of the class An, (x) has finite index in {x)G-n, so that (JC)G" is a finitely generated
subgroup of lc({x)). By the already mentioned result in [2], every subgroup of G
is subnormal, so that G is locally nilpotent. Thus, by Lemma 10, (x)G'n is cyclic,
so that {x) char{jr)c>", and hence (x) is subnormal of defect at most n in G, that is
[G,nx] < (x). Therefore, [G,n+iJt] = [G,nx,x] = 1, as claimed. •

Now we are in a position to prove the announced result on torsion-free An-groups.

PROOF OF THEOREM 2. Let G e An be a torsion-free group. As already noted, by
a result in [2], G is locally nilpotent.

Note that, if there exists a function r](n) such that y, ( n ) + i ( / / ) — 1, for every finitely
generated subgroup H of G, then yn(n)+1(G) = 1. Hence, without loss of generality,
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we can assume that G is a finitely generated group. In particular, we get that G is
nilpotent and every subgroup of G is finitely generated.

Proceeding by induction on n, we prove that there exists a function r](n) such that
every torsion-free finitely generated An-group has nilpotency class at most r)(n).

If n = 1, then Neumann's theorem gives that G' is finite. Hence, since G is
torsion-free, G is abelian, and so we can set t](l) = 1.

Let now n > 1 and let H be a subgroup of G. Set HGl = //, for every /, so that,
by the definition of the class An, we have

H <f Hn< //„_, < • • • < H2 < Hx < G.

Note that, for every subgroup K such that H < K < Hu we get KG = HG = Hi
and K <f KKG"~l. Hence H\/H2 € An_\. With the same argument it is easy to
see that the factor //,///,+!, for i = 1 , . . . , n — 1, belongs to An_,-. By the induction
hypothesis, the factor Hi/lHj (Hi+i), being a finitely generated torsion-free An_,-group,
has nilpotency class at most rj(n — /); hence,

/„(„_„+,(//,) < /„,(//,+,) < /<;(//,•+,).

Thus,

for every i, so that

where the last equality is due to the fact that H <f Hn < Ic(H).
In particular, for k = k(n) = £"='(*?(') + 1). the kth term ///^ of the derived

series of Hi is a subgroup of / G (#) , so that IG(Hlk)) < IG(H). Now, by Lemma 14,
Hi/Ic(H[k)) is a soluble torsion-free (n + 1)-Engel group and so Hi/IG{H[k)) is
nilpotent of class at most {n + I)*"1. Thus, for c = c(«) = (n + I)*"1 + 1, we
get that yr(Hi) < lG(H[k)) < lG(H). This proves that yc(H

G) < IG(H), for every
subgroup H of G.

Now take c elements of G, say *i , . . . , j c c , and consider the subgroup H =
(x\,..., xc). Clearly we can write Hi = Wc as a product of the c normal sub-
groups (Xi)G. Since yc((.x,-)c) < /c((*.)) and, by Lemma 10, /G((*,•)) is a cyclic
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group, then [yc((x,)G),*,] = 1. Moreover [yc((Xj)G),xf] = 1 for every g e G.
Thus yc({Xj)G) < £((*,)G) and (x,)c has nilpotency class at most c. Therefore Hx is
generated by c normal nilpotent subgroups of class at most c, and by Fitting's theorem
it follows that H\ is nilpotent with class cl(//i) < c2.

Now, since H is a c-generated torsion-free nilpotent group of class cl(//) <
< c2, Lemma 11 implies that the Hirsch length h(H) of H is bounded by

= g(c , c) =
c — 1

Also, by Lemma 10, \IG(H) : H\ < oo, so that h(Ic(H)) = h(H) < gx.
Therefore, yc{H{) is a finitely generated normal subgroup of G with Hirsch length

h{Yc{H\)) < h(IG(H)) < gi and so, by Proposition 12, yc(//i) < £*,((/). In
particular, [x\,..., xc, y\,..., yg]] = 1 for every y\,... , ygl in G, so that

WG) = 1.

Finally, since c = c(n) and g\ = g\ (n) depend only on n, the result follows on defining
r](n) = c + gi - I. •
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