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Abstract

The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-
dependent predator–prey system involving two discrete delays. A delay parameter is
chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic
solutions is determined by using the centre manifold theorem and the normal form
theory introduced by Hassard et al. Some of the bifurcation properties including the
direction, stability and period are given. Finally, our theoretical results are supported by
some numerical simulations.
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1. Introduction

Differential equations which include parameters are common for modelling in
dynamical systems (see [2, 4, 6, 13–15, 20]). Furthermore, studying solutions and their
behaviour that depends on a parameter is crucial to understand biological systems. In
order to reflect dynamical behaviour of models that depend on the past history of the
system, it is often necessary to incorporate time delays into these models [4, 6, 15, 20].
The response of a biological system to a particular input is often not immediate but is
delayed. For example, in the pharmacokinetics model, there may be a delay before the
drug enters the blood stream [2].

Exploring the dynamical behaviours of models involving time delays has attracted
very much interest in mathematical biology, medicine, ecology, economics and so
on. In past decades, many theoreticians and experimentalists have paid great attention
to differential equations with delay which has significant biological and physical

1TOBB University of Economics and Technology, Faculty of Arts and Sciences, Department of
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meaning. More specifically, they concentrated on the stability of solutions and Hopf
bifurcation occurrence (see [1, 5, 7–12, 17–19, 21–27] and the references therein).
In delay differential equations, periodic solutions can arise through the local Hopf
bifurcation. Several methods for analysing the nature of Hopf bifurcations have been
described in the literature. Integral averaging has been used by Chow and Mallet-Paret,
the Fredholm alternative has been used by Iooss and Joseph, the implicit function
theorem by Hale and Lunel, multi-scale expansion by Nayfeh et al. and the centre
manifold projection by Hassard et al., Stépán and Kalmár-Nagy (see [4] and the
references therein). The centre manifold theory is one of the rigorous mathematical
tools to study bifurcations of delay differential equations [13, 14].

In this paper, we consider the following ratio-dependent Michaelis–Menton type
(see [3, 16]) delayed predator–prey system

dN(t)
dt

= r1N(t) − εP(t)N(t)

dP(t)
dt

= P(t)
(
r2 − θ

P(t − τ2)
N(t − τ1)

)
,

(1.1)

where r1, r2, ε, θ are positive constants and τ1 and τ2 are the delay terms which are
also positive. Here, N(t) and P(t) represent population densities of prey and predators
at time t, respectively, and N(t − τ1) and P(t − τ2) represent the juveniles of prey and
predators who were born at time t − τ1 and time t − τ2, respectively, and survive at
time t. In this particular model, the prey population has a propensity for unbounded
exponential growth, r1N,which is limited by predation: the effect of the predators upon
the prey population is measured by the functional response term, εPN. The predator
population is logistic with time delay and its carrying capacity is proportional to the
mature prey population; in other words, the predator selects its prey to be mature. Also,
the predator population is limited by the number of mature prey per predator rather
than by the number of prey (see [16, 27] for further discussion). We have incorporated
two delay terms in the model which is more suitable for the real world. For example,
some predator species need some time, say τ2, for the ability of predation, that is,
predators must be mature enough to capture prey. Predators capture only the adult
prey with a certain maturation time, say τ1, that is, prey must be mature enough to be
captured.

The model (1.1) for τ1 = τ2 = 0 was considered by Zhou et al. [27]. They first
determined stability conditions for a positive equilibrium point of the system. Later,
they added a new term, which is called the Allee effect, into the model and analysed
the impact of it on the dynamics of this predator–prey system. Following this work,
Çelik analysed Hopf bifurcations of equation (1.1) for two cases, namely, (i) τ1 , 0,
τ2 = 0 in [8] and (ii) τ1 = 0, τ2 , 0 in [7].

Our aim in this paper is to give a detailed Hopf bifurcation analysis of equation
(1.1) for the first case τ1 = τ2 = τ. The second case, in which τ1 , τ2 is to be studied
later since the corresponding characteristic equation of the linearized system is very
complex to find its roots. In this study, we chose τ as bifurcation parameter. We
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investigate the linear stability and the existence of Hopf bifurcation by analysing
the associated characteristic equation, and determine the required conditions on
parameters. In other words, we use the Hopf bifurcation theorem [13, 14] to investigate
the effect of delay on solutions of equation (1.1) and to show that when τ passes
through a certain critical value, the positive equilibrium loses its stability and a Hopf
bifurcation occurs. Furthermore, when τ takes a sequence of critical values, the system
(1.1) undergoes a Hopf bifurcation near positive equilibrium at these critical values
of τ. We determine the direction of the bifurcation, and the stability and the period
of the bifurcating periodic solutions by using the centre manifold theorem and the
normal form theory introduced by Hassard et al. [14]. Finally, we give some numerical
simulations in order to support our theoretical results.

This paper is organized as follows. In Section 2, stability analysis of a constant
equilibrium point and existence of Hopf bifurcation is investigated. In Section 3, the
bifurcation properties including direction, stability and period of the periodic solutions
are studied. Finally, in Section 4, we consider a predator–prey model involving two
delays and simulate it using MATLAB to show the effect of the delay term and support
our theoretical results.

2. Stability analysis and Hopf bifurcation

In this section, we consider equation (1.1) when τ1 = τ2 = τ, and investigate stability
of equilibrium points and conditions on the parameters to show existence of Hopf
bifurcation. From now on, we will consider the following model

dN(t)
dt

= r1N(t) − εP(t)N(t)

dP(t)
dt

= P(t)
(
r2 − θ

P(t − τ)
N(t − τ)

)
.

(2.1)

When there is no time delay, that is τ1 = τ2 = 0, the positive equilibrium point of
the system (1.1) is asymptotically stable (see [27] for details). The system (2.1) has
a unique positive equilibrium point, namely, E∗ = (N∗, P∗), where N∗ = r1θ/r2ε and
P∗ = r1/ε. From a biological point of view, we only consider the positive equilibrium
points. Note that this equilibrium point is also the equilibrium point of equation (1.1).
From the equilibria conditions, we know that

r1 − εP∗ = 0 and r2 − θ
P∗

N∗
= 0.

If one shifts the equilibrium point E∗ = (N∗, P∗) to (0, 0) by using linear
transformations, namely, x(t) = N(t) − N∗ and y(t) = P(t) − P∗, the equations become

dx(t)
dt

= −εN∗y(t) − εx(t)y(t)
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dy(t)
dt

= θ
(P∗)2

(N∗)2 x(t − τ) − θ
P∗

N∗
y(t − τ) −

θ

N∗
y(t)y(t − τ)

+ θ
P∗

(N∗)2 x(t − τ)y(t − τ) + θ
P∗

(N∗)2 x(t − τ)y(t) − θ
(P∗)2

(N∗)3 x2(t − τ) + H.O.T.,

(2.2)

where H.O.T . denotes the higher-order terms, so that the system (2.2) is linearly equal
to

dx(t)
dt

= −εN∗y(t)

dy(t)
dt

= θ
P∗2

N∗2
x(t − τ) − θ

P∗

N∗
y(t − τ).

(2.3)

Characteristic equation associated with equation (2.3) is

λ2 + r2λe−λτ + be−λτ = 0, (2.4)

where r2 = θ(P∗/N∗) and b = r2P∗ε. If τ = 0, that is, when there is no time delay,
equation (2.4) will be

λ2 + r2λ + b = 0. (2.5)

The eigenvalues associated with equation (2.5) are λ1,2 = (−r2 ±

√
r2

2 − 4b)/2. Since
r2 and b are positive values, one has the following lemma, which was given in [27]
and [7] before.

Lemma 2.1. The roots λ1,2 = (−r2 ±

√
r2

2 − 4b)/2 of equation (2.5) have always
negative real parts, that is, the equilibrium point of the system (2.1) with τ = 0 is
asymptotically stable.

Now, let us take τ , 0. We shall investigate the roots of the transcendental equation
(2.4) since the stability of the equilibrium point (0,0) of the linear system (2.3) depends
on the locations of the roots of the characteristic equation (2.4).

Lemma 2.2. The transcendental equation (2.4) has one purely imaginary root.

Proof. Let λ = iw be a root of the characteristic equation (2.4) with w > 0. Substituting
this into (2.4) and separating real and imaginary parts yields the following equations

− w2 + r2w sin wτ + b cos wτ = 0, (2.6)

r2w cos wτ − b sin wτ = 0. (2.7)

By taking square of (2.6) and (2.7) and then adding them up, one obtains

w4 − r2
2w2 − b2 = 0. (2.8)

From (2.8), it follows that

w2
± =

r2
2 ±

√
r4

2 + 4b2

2
.
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Since w2 must be positive, one concludes

w2
+ =

r2
2 +

√
r4

2 + 4b2

2
so that

w(1)
+ =

√√
r2

2 +

√
r4

2 + 4b2

2
.

Now, substituting w(1)
+ into both (2.6) and (2.7) one calculates a sequence of the

critical values of τ defined by

τk =
1

w(1)
+

{
cos−1

( b

(w(1)
+ )2

)}
+

2kπ

w(1)
+

(k = 0, 1, 2, 3, . . .).

This completes the proof. �

Note. One may see easily that the purely imaginary root iw(1)
+ is simple.

Now, suppose that λk(τ) = αk(τ) + iwk(τ), where w0 denotes the root of equation
(2.4) near τ = τk satisfying αk(τk) = 0 and wk(τk) = w0 := w(1)

+ for k = 0, 1, 2, 3, . . . .
Then, we have the following transversality condition.

Lemma 2.3. The following transversality conditions are satisfied

dReλk(τk)
dτ

> 0 (k = 0, 1, 2, 3, . . .),

that is, the system (2.1) undergoes a Hopf bifurcation at the positive equilibrium point
(N∗, P∗) when τ = τk (k = 0, 1, 2, 3, . . .).

Proof. Differentiating equation (2.4) with respect to τ,

dλ
dτ

=
r2λ

2e−λτ + bλe−λτ

2λ + r2e−λτ − r2λe−λτ − bτe−λτ
.

Now, one can obtain (
Re

(dλ
dτ

)−1)
= Re

[ 2
w2

0

+
r2

iw0(r2iw0 + b)
−

τ

iw0

]
(
Re

(dλ
dτ

)−1)
λ=iw0

=

√
r4

2 + 4b2

w4
0

> 0.
�

From Lemma 2.3, d(Reλ)/dτ > 0 is satisfied at τ0, when the root crosses the
imaginary axis from left to right as τ increases. From Cooke and Grossman’s
article [11], if there is one imaginary root, then one can say that an unstable zero
solution never becomes stable. If it is stable for τ = 0, then it becomes unstable at the
smallest value of τ, for which an imaginary root exists.
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Lemma 2.4. The following statements hold.

(1) The equilibrium point (N∗, P∗) is asymptotically stable for τ = 0.
(2) The equilibrium point (N∗, P∗) is asymptotically stable for τ < τ0 and

unstable τ > τ0, where τ0 = (1/w0){cos−1(b/w2
0)}. Furthermore, the system (2.1)

undergoes a Hopf bifurcation at (N∗, P∗) when τ = τ0.

Proof. From Lemma 2.1, statement (1) is clear. For statement (2), we have shown
that when τ = τ0, equation (2.1) has a pair of purely imaginary roots ±iw0, which are
simple. So, only we need to show that all remaining roots have negative real parts and
equation (2.4) has at least one root with a strictly positive real part, when τ > τ0.

We know that τ0 is the first value of τ, at which the equation (2.4) has a pair of
purely imaginary roots. Moreover, when τ = 0

λ2 + r2λ + b = 0

has roots λ1,2 = (−r2 ±

√
r2

2 − 4b)/2. Obviously, both λ1 and λ2 have negative real
parts when b > 0. By Rouche’s theorem, as τ varies, the sum of the multiplicities of
the roots of equation (2.4) in the open right half-plane can change only if a root appears
on or crosses the imaginary axis. Since τ0 is the minimal positive value of τ such that
equation (2.4) has a pair of purely imaginary roots, we can see that all of its roots
with τ ∈ [0, τ0) have strictly negative real parts. Suppose equation (2.4) with τ = τ0
has a root with positive real part, say λ(τ) = α(τ) + iw(τ), where α(τ0) > 0. Since α(τ)
is continuous for τ ∈ δ(τ0), a neighbourhood of τ0, we have α(τ) > 0 for τ < τ0 and
close to τ0. It follows that equation (2.4) has a root with positive real part for τ < τ0,
τ ∈ δ(τ0), which contradicts the above discussion. �

3. Direction and stability of the Hopf bifurcation

In this section, we determine some of the properties of the Hopf bifurcation, namely,
its direction, stability and period by applying the normal form theory and the centre
manifold theory presented in Hassard et al. [14]. Following the procedure in [9], we
compute the coordinates of centre manifold C0 at µ = 0.

Let q(θ) and q∗(s) be the eigenvectors of adjoint operators A and A∗ (defined in the
Appendix), respectively. Define

z(t) = 〈q∗, xt〉, w(t, θ) = xt − 2Re{z(t)q(θ)},

where xt(θ) = x(t + θ) for θ ∈ [−1, 0). On the centre manifold, we have

w(t, θ) = w(z(t), z(t), θ) = w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ · · ·

where z and z are local coordinates for the centre manifold C0 in the direction of q and
q∗, respectively. For xt ∈ C0, since µ = 0,

ż(t) = 〈q∗, ẋt〉 = 〈q∗, Axt + Rxt〉

= iω0〈q∗, xt〉 + q∗(0) f0(z, z) ≡ iω0z(t) + g(z, z),
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where

g(z, z) = q∗(0) f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · · .

Here f0(z, z) denotes f (z, z) at µ = 0.
Here, the first four coefficients will be used for determining properties of the

bifurcation and are of the form

g20 = 2Dτk


−εαα∗ −

θ

N∗
α2e−iω0 + θ

P∗

(N∗)2αe−2iω0

+θ
P∗

(N∗)2αe−iω0 − θ
(P∗)2

(N∗)3 e−2iω0

 ,

g11 = Dτk



−εαα∗ − εαα∗ −
θ

N∗
ααeiω0 −

θ

N∗
ααe−iω0

+θ
P∗

(N∗)2α + θ
P∗

(N∗)2α

+θ
P∗

(N∗)2αe−iω0 + θ
P∗

(N∗)2αeiω0 − 2θ
(P∗)2

(N∗)3


,

g02 = 2Dτk


−εαα∗ −

θ

N∗
α2eiω0 + θ

P∗

(N∗)2αe2iω0

+θ
P∗

(N∗)2αeiω0 − θ
(P∗)2

(N∗)3 e2iω0


and

g21 = 2Dτk



−εαα∗
w(1)

20 (0)
2

− εα∗
w(2)

20 (0)
2

− εαα∗
w(1)

20 (0)
2

− εαα∗w(1)
11 (0)

−εα∗w(2)
11 (0) −

θ

N∗
α

w(2)
20 (0)
2

eiω0 −
θ

N∗
α

w(2)
20 (−1)

2

−
θ

N∗
αw(2)

11 (0)e−iω0 −
θ

N∗
αw(2)

11 (−1)

+θ
P∗

(N∗)2α
w(1)

20 (−1)
2

eiω0 + θ
P∗

(N∗)2

w(2)
20 (−1)

2
eiω0

+θ
P∗

(N∗)2αw(1)
11 (−1)e−iω0 + θ

P∗

(N∗)2 w(2)
11 (−1)e−iω0

+θ
P∗

(N∗)2α
w(2)

20 (−1)
2

+ θ
P∗

(N∗)2

w(2)
20 (0)
2

eiω0

+θ
P∗

(N∗)2αw(1)
11 (−1) + θ

P∗

(N∗)2 w(2)
11 (0)e−iω0

−θ
(P∗)2

(N∗)3 2w(1)
11 (−1)e−iω0 − θ

(P∗)2

(N∗)3 w(1)
20 (−1)eiω0



,
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where the terms w(i)
11(θ) and w(i)

20(θ) (for i = 1, 2 and θ = −1, 0) and D are calculated in
the Appendix. Now, using these coefficients we can evaluate the following values

c1(0) =
i

2ωτk

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re{c1(0)}
Re{λ′(τk)}

, (3.1)

β2 = 2Re{c1(0)}

and

T2 = −
Im{c1(0)} + µ2Im{λ

′

(τk)}
ωτk

.

Finally, using the quantities above, some properties of Hopf bifurcation can be
determined, which are given by the following theorem.

Theorem 3.1. The quantity µ2 determines the direction of Hopf bifurcation: if µ2 > 0,
then Hopf bifurcation is supercritical and the bifurcating periodic solutions exist for
τ > τ0; and if µ2 < 0, then Hopf bifurcation is subcritical and the bifurcating periodic
solutions exist for τ < τ0. Here β2 determines the stability of the bifurcating periodic
solutions: bifurcating periodic solutions are stable if β2 < 0; unstable if β2 > 0. In
addition T2 determines the period of the bifurcating solution: the period increases if
T2 > 0 and decreases if T2 < 0.

In the following section, we will give a numerical example to verify the theoretical
results.

4. Numerical simulations
In this section, we simulate a predator–prey model by using MATLAB to support

our theoretical results. As an example, we consider equation (2.1) by setting the
parameters as r1 = 0.45, r2 = 0.1, ε = 0.03, θ = 0.05, that is,

dN(t)
dt

= 0.45N(t) − 0.03P(t)N(t)

dP(t)
dt

= P(t)
(
0.1 − 0.05

P(t − τ)
N(t − τ)

)
.

(4.1)

The system (4.1) has only one positive equilibrium point, namely, E∗ = (N∗, P∗) =

(7.5, 15). When there is no time delay, that is, τ = 0, the equilibrium point E∗ =

(7.5, 15) is asymptotically stable. From the results in Section 2, we find

w0 =

√√
r2

2 +

√
r4

2 + 4b2

2
= 0.2242, τ0 =

1
w0

{
cos−1

( b
w2

0

)}
= 1.7631.

So, by Lemma (2.4), the equilibrium point E∗ is asymptotically stable when τ ∈ [0, τ0)
and unstable when τ > 1.7631. Hopf bifurcation occurs when τ = τ0 = 1.7631.

Next, we determine the direction of the Hopf bifurcation and the stability and the
period of the periodic solution of the system (4.1). Using the formulae obtained
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Figure 1. The trajectories of prey and predator densities versus time with the initial conditions N0 = 50,
P0 = 25 when τ = 1.7 < τ0 in (a) and (b). The phase portrait of prey density versus predator density for
the same parameters when τ = 1.7 < τ0 in (c).
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Figure 2. The trajectories of prey and predator densities versus time with the initial conditions N0 = 50,
P0 = 25 when τ = τ0 = 1.7631 in (a) and (b). The phase portrait of prey density versus predator density
for the same parameters when τ = τ0 = 1.7631 in (c).

for µ2, β2 and T2 in Section 3, we compute these values as

µ2 = 0.1259 > 0, β2 = −0.0070 < 0, T2 = 0.0091 > 0.

These values show that since µ2 > 0, Hopf bifurcation is supercritical and the
bifurcating periodic solution exists, when τ crosses τ0 from left to the right. Finally,
since β2 < 0, the bifurcating periodic solution is stable with the increasing period. For
simulations, initial conditions are taken as (N0, P0) = (50, 25) and the MATLAB DDE
(Delay Differential Equations) solver is used to simulate the system (4.1).

Figure 1 clearly shows that the equilibrium point E∗ is asymptotically stable when
τ ∈ [0, 1.7631). Here, we take τ = 1.7 < τ0 for simulations in Figure 1. From Figure 2,
one can see that when τ = τ0, a bifurcating periodic solution occurs. Figure 3 shows
that for the values of τ > τ0 (we take, for example, τ = 1.77 > τ0 for simulations in
Figure 2) the equilibrium point is unstable.

5. Conclusions and remarks

Former studies show that time delay affects dynamics of population models and
plays an important role in stability analysis [1, 5, 7–12, 17–19, 21–27]. In this paper,
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Figure 3. The trajectories of prey and predator densities versus time with the initial conditions N0 =

50, P0 = 25 when τ = 1.77 > τ0 in (a) and (b). The phase portrait of prey density versus predator density
for the same parameters when τ = 1.77 > τ0 in (c).

we give a detailed Hopf bifurcation analysis of a ratio-dependent predator–prey system
involving two discrete time delays. The system is defined by two differential equations
in equation (1.1). We have included two delay terms in the model, which is more
suitable than the model involving a single delay for the real world problems. For
example, some predator species need some time, say τ2, for the ability of predation,
that is, predators must be mature enough to capture. Also, predators capture only
the adult prey with a certain maturation time, say τ1, that is, prey must be mature
enough to be captured. In other words, the predator selects its prey from within mature
prey. For the model, choosing the delay parameter τ as bifurcation parameter, we
investigated necessary conditions on parameters at which the Hopf bifurcation occurs.
Using the normal form theory and the centre manifold theorem given by Hassard
and Kazarinoff [14], the formulae that determine direction, period and stability of
the periodic solution are obtained. Finally, we supported our theoretical results via
some numerical simulations. We showed that when the bifurcation parameter τ
passes through a sequence of critical bifurcation values, the stability of the positive
equilibrium point of equation (1.1) changes from stable to unstable, so that the Hopf
bifurcation occurs at this critical value. The sign of µ2 given by (3.1) determines
whether it is a supercritical or a subcritical bifurcation.

Appendix

In Section 2, we have shown that the system (2.1) undergoes a Hopf bifurcation at
the equilibrium point when τ = τ0. In Section 3, we have summarized the bifurcation
properties. The appendix involves the details of these calculations. In order to compute
the properties of the Hopf bifurcation, we use the method on the normal form theory
and the centre manifold theory presented by Hassard and Kazarinoff [14].

We first begin with normalizing the delay via t→ τt and transforming equation (2.1)
by using x1(t) = N(t) − N∗, x2(t) = P(t) − P∗, τ = τk + µ. This leads to the following
functional differential equation system in C = C([−1, 0],R2)

x′(t) = Lµ(xt) + f (µ, xt), (A.1)
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where x(t) = (x1(t), x2(t))T ∈ R2, and Lµ : C −→ R2, f : R × C → R2 are given,
respectively, by

Lµ(φ) = (τk + µ)
[
0 −a12
0 0

] [
φ1(0)
φ2(0)

]
+ (τk + µ)

[
0 0

a21 −a22

] [
φ1(−1)
φ2(−1)

]
,

where a12 = εN∗, a21 = θ((P∗)2/(N∗)2), a22 = θ(P∗/N∗) and

f (µ, φ) = (τk + µ)
[

f11
f12

]
, (A.2)

where
f11 = −εφ1(0)φ2(0),

and

f12 = −
θ

N∗
φ2(0)φ2(−1) + θ

P∗

(N∗)2φ1(−1)φ2(−1)

+ θ
P∗

(N∗)2φ1(−1)φ2(0) − θ
(P∗)2

(N∗)3φ
2
1(−1),

where φ = (φ1, φ2) ∈ C.
By the Riesz representation theorem, there exists a matrix-valued function η(θ, µ) :

[−1, 0] −→ R4 whose components have bounded variation and for θ ∈ [−1, 0]

Lµφ =

∫ 0

−1
dη(θ, 0)φ(θ). (A.3)

We can choose

η(θ, µ) = (τk + µ)
[
0 −a12
0 0

]
δ(θ) + (τk + µ)

[
0 0

a21 −a22

]
δ(θ + 1),

where δ is the Dirac delta function. For φ ∈ C1([−1, 0], define

A(µ)φ =


dφ(θ)

dθ
if θ ∈ [−1, 0)

∫ 0

−1
dη(µ, s) φ(s) if θ = 0

and

R(µ)φ =

{
0 if θ ∈ [−1, 0)
f (µ, φ) if θ = 0.

Then system (A.1) is equivalent to

ẋt = A(µ)xt + R(µ)xt, (A.4)

where xt(θ) = x(t + θ) for θ ∈ [−1, 0). For ψ ∈ C1([−1, 0], (R2)∗), define

A∗ψ(s) =


−

dψ(s)
ds

if s ∈ (0, 1]

∫ 0

−1
dηT (µ, t)ψ(−t) if s = 0
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and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ) dη(θ)φ(ξ) dξ, (A.5)

where η(θ) = η(θ, 0). Then, A(0) and A∗(0) are adjoint operators. Suppose that q(θ)
and q∗(s) are eigenvectors of A and A∗, corresponding to λ = iω0 and λ = −iω0,
respectively. Let us take q(θ) = (1, α)Teiω0θ. Since A(0)q(θ) = iω0q(θ), we can easily
find α from the definitions of A(0), Lµφ and η(θ, µ). Thus, q(θ) = (1, α)Teiω0θ where
α = (−iw0)/(a12τk). Similarly, let q∗(s) = D(α∗, 1)eiω0 s. We need to find the value of D
and α∗. From the definition of A∗, we can find α∗ = (−τ0a21eiw0 )/(iw0). To calculate
D, the relation 〈q∗(s), q(θ)〉 = 1 is used. From (A.5), one obtains

〈q∗(s), q(θ)〉 = D(α∗, 1)(1, α)T −

∫ 0

−1

∫ θ

ξ=0
D(α∗, 1)e−iω0(ξ−θ) dη(θ)(1, α)Teiω0ξ dξ

= D
{
α∗ + α −

∫ 0

−1
(α∗, 1)θeiω0θ dη(θ)(1, α)T

}
.

Thus, we can choose D as

D =
1

α∗ + α + τke−iω0 (a21 − a22α)

such that 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q(θ)〉 = 0.
Using similar notation as in Hassard et al. [14], we first compute the coordinates to

describe the centre manifold C0 at µ = 0. Let xt be the solution of equation (A.4) when
µ = 0. Define

z(t) = 〈q∗, xt〉, w(t, θ) = xt − 2Re{z(t)q(θ)}. (A.6)

On the centre manifold, we have

w(t, θ) = w(z(t), z(t), θ) = w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ · · · ,

where z and z are local coordinates for the centre manifold C0 in the direction of q and
q∗, respectively. For xt ∈ C0, we have

ż(t) = 〈q∗, ẋt〉 = 〈q∗, Axt + Rxt〉

= iω0〈q∗, xt〉 + q∗(0) f0(z, z) ≡ iω0z(t) + g(z, z)

since µ = 0, where

g(z, z) = q∗(0) f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · · . (A.7)
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To evaluate the coefficients of g(z, z), we need to rewrite equation (A.2). From (A.6),
we have xt(x1t(θ), x2t(θ)) = w(t, θ) + zq(θ) + zq(θ). Since q(θ) = (1, α)Teiω0θ, we obtain

x1t(0) = z + z + w(1)
20 (0)

z2

2
+ w(1)

11 (0)zz + w(1)
02 (0)

z2

2
+ O(|z, z|3),

x2t(0) = zα + zα + w(2)
20 (0)

z2

2
+ w(2)

11 (0)zz + w(2)
02 (0)

z2

2
+ O(|z, z|3),

x1t(−1) = ze−iω0 + zeiω0 + w(1)
20 (−1)

z2

2
+ w(1)

11 (−1)zz + w(1)
02 (−1)

z2

2
+ O(|z, z|3),

x2t(−1) = zαe−iω0 + zαeiω0 + w(2)
20 (−1)

z2

2
+ w(2)

11 (−1)zz + w(2)
02 (−1)

z2

2
+ O(|z, z|3).

From (A.3), we have

g(z, z) = q∗(0) f0(z, z) = Dτk(α∗, 1)
 f 0

11

f 0
12

 ,
where

f 0
11 = −εx1t(0)x2t(0)

and

f 0
12 = −

θ

N∗
x2t(0)x2t(−1) + θ

P∗

(N∗)2 x1t(−1)x2t(−1)

+ θ
P∗

(N∗)2 x1t(−1)x2t(0) − θ
(P∗)2

(N∗)3 x2
1t(−1).

Thus,

g(z, z) = Dτkz2


−εαα∗ −

θ

N∗
α2e−iω0 + θ

P∗

(N∗)2αe−2iω0

+ θ
P∗

(N∗)2αe−iω0 − θ
(P∗)2

(N∗)3 e−2iω0



+ Dτkzz



−εαα∗ − εαα∗ −
θ

N∗
ααeiω0 −

θ

N∗
ααe−iω0

+ θ
P∗

(N∗)2α + θ
P∗

(N∗)2α + θ
P∗

(N∗)2αe−iω0

+ θ
P∗

(N∗)2αeiω0 − 2θ
(P∗)2

(N∗)3


+ Dτkz2


−εαα∗ −

θ

N∗
α2eiω0 + θ

P∗

(N∗)2αe2iω0

+ θ
P∗

(N∗)2αeiω0 − θ
(P∗)2

(N∗)3 e2iω0
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+ Dτkz2z



−εαα∗
w(1)

20 (0)
2

− εα∗
w(2)

20 (0)
2

− εαα∗
w(1)

20 (0)
2

− εαα∗w(1)
11 (0) − εα∗w(2)

11 (0) −
θ

N∗
α

w(2)
20 (0)
2

eiω0

−
θ

N∗
α

w(2)
20 (−1)

2
−

θ

N∗
αw(2)

11 (0)e−iω0 −
θ

N∗
αw(2)

11 (−1)

+ θ
P∗

(N∗)2α
w(1)

20 (−1)
2

eiω0 + θ
P∗

(N∗)2

w(2)
20 (−1)

2
eiω0

+ θ
P∗

(N∗)2αw(1)
11 (−1)e−iω0 + θ

P∗

(N∗)2 w(2)
11 (−1)e−iω0

+ θ
P∗

(N∗)2α
w(2)

20 (−1)
2

+ θ
P∗

(N∗)2

w(2)
20 (0)
2

eiω0

+ θ
P∗

(N∗)2αw(1)
11 (−1) + θ

P∗

(N∗)2 w(2)
11 (0)e−iω0

− θ
(P∗)2

(N∗)3 2w(1)
11 (−1)e−iω0 − θ

(P∗)2

(N∗)3 w(1)
20 (−1)eiω0


+ H.O.T.

If we compare the coefficients with (A.7), we get

g20 = 2Dτk

[
−εαα∗ −

θ

N∗
α2e−iω0 + θ

P∗

(N∗)2αe−2iω0 + θ
P∗

(N∗)2αe−iω0 − θ
(P∗)2

(N∗)3 e−2iω0

]
,

g11 = Dτk


−εαα∗ − εαα∗ −

θ

N∗
ααeiω0 −

θ

N∗
ααe−iω0 + θ

P∗

(N∗)2α + θ
P∗

(N∗)2α

+ θ
P∗

(N∗)2αe−iω0 + θ
P∗

(N∗)2αeiω0 − 2θ
(P∗)2

(N∗)3

 ,
g02 = 2Dτk

[
−εαα∗ −

θ

N∗
α2eiω0 + θ

P∗

(N∗)2αe2iω0 + θ
P∗

(N∗)2αeiω0 − θ
(P∗)2

(N∗)3 e2iω0

]
,

g21 = 2Dτk



−εαα∗
w(1)

20 (0)
2

− εα∗
w(2)

20 (0)
2

− εαα∗
w(1)

20 (0)
2

− εαα∗w(1)
11 (0)

− εα∗w(2)
11 (0) −

θ

N∗
α

w(2)
20 (0)
2

eiω0 −
θ

N∗
α

w(2)
20 (−1)

2
−

θ

N∗
αw(2)

11 (0)e−iω0

−
θ

N∗
αw(2)

11 (−1) + θ
P∗

(N∗)2α
w(1)

20 (−1)
2

eiω0 + θ
P∗

(N∗)2

w(2)
20 (−1)

2
eiω0

+ θ
P∗

(N∗)2αw(1)
11 (−1)e−iω0 + θ

P∗

(N∗)2 w(2)
11 (−1)e−iω0

+ θ
P∗

(N∗)2α
w(2)

20 (−1)
2

+ θ
P∗

(N∗)2

w(2)
20 (0)
2

eiω0 + θ
P∗

(N∗)2αw(1)
11 (−1)

+ θ
P∗

(N∗)2 w(2)
11 (0)e−iω0 − θ

(P∗)2

(N∗)3 2w(1)
11 (−1)e−iω0 − θ

(P∗)2

(N∗)3 w(1)
20 (−1)eiω0



.
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In order to determine g21, we need to compute w11(θ) and w20(θ). From (A.6), we can
write

ẇ(t, θ) = ẋt − 2Re{ ˙z(t)q(θ)}

=

{
Aw − 2Re{q∗(0) f0q(θ)} if θ ∈ [−1, 0)
Aw − 2Re{q∗(0) f0q(θ)} + f0 if θ = 0

: ≡ Aw + H(z, z, θ),

where

H(z, z, θ) = H20
z2

2
+ H11zz + H02

z2

2
+ · · · . (A.8)

On the other hand,
ẇ = wzż + wzż

on the centre manifold. Thus, comparing the coefficients one obtains that

(A − 2iω0)w20(θ) = −H20(θ), Aw11(θ) = −H11(θ). (A.9)

For θ ∈ [−1, 0),
H(z, z, θ) = −2Re{ż(t)q(θ)}.

Comparing the coefficients of (A.9) with those of (A.8), we obtain the following

H20(θ) = −(q(θ)g20 + q(θ)g02),
H11(θ) = −(q(θ)g11 + q(θ)g11),
H02(θ) = −(q(θ)g02 + q(θ)g20).

From (A.9) and the definition of A, we get

w
′

20(θ) − 2iω0w20(θ) = q(θ)g20 + q(θ)g02.

Then, since q(θ) = q(0)eiω0θ, we have

w20(θ) =
i
ω0

g20q(0)eiω0θ +
i

3ω0
g02q(0)e−iω0θ + E1e2iω0θ,

where E1 = (E(1)
1 , E(2)

1 )T ∈ R2 is a constant vector. Similarly,

w11(θ) =
−i
ω0

g11q(0)eiω0θ +
i
ω0

g11q(0)e−iω0θ + E2

where E2 = (E(1)
2 , E(2)

2 )T ∈ R2 is a constant vector. Let us find the values of E1 and E2.
If we take θ = 0 at (A.9), then∫ 0

−1
dη(θ) w20(θ) = 2iω0w20(0) − H20(0), (A.10)∫ 0

−1
dη(θ) w11(θ) = −H11(0). (A.11)
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Also, for θ = 0,

H20(0) = −g20q(0) − g02q(0) + 2τk

[
n1
n2

]
, (A.12)

where n1 = −εα and

n2 = −
θ

N∗
α2e−iω0 + θ

P∗

(N∗)2αe−2iω0 + θ
P∗

(N∗)2αe−iω0 − θ
(P∗)2

(N∗)3 e−2iω0 ,

in addition

H11(0) = −g11q(0) − g11q(0) + τk

[
s1
s2

]
, (A.13)

where s1 = −2εRe(α) and

s2 = −
θ

N∗
ααeiω0 −

θ

N∗
ααe−iω0 + θ

P∗

(N∗)2 2Re(α) + θ
P∗

(N∗)2αeiω0

+ θ
P∗

(N∗)2αe−iω0 − 2θ
(P∗)2

(N∗)3 .

On the other hand, since A(0)q(0) = iw0q(0) and A(0)q(0) = iw0q(0), we can write[
iw0I −

∫ 0

−1
eiw0θ dη(θ)

]
q(0) = 0, (A.14)

[
−iw0I −

∫ 0

−1
e−iw0θ dη(θ)

]
q(0) = 0. (A.15)

Substituting (A.12) into (A.10) and using (A.14) we obtain[
2iw0I −

∫ 0

−1
e2iw0θ dη(θ)

]
E1 = 2τk

[
n1
n2

]
,

which is equal to  2iw0 τka12

−τka21e−2iw0 2iw0 + a22e−2iw0

 E1 = 2τk

[
n1
n2

]
.

Now, if one solves this system for E1 one obtains

E(1)
1 =

2τk

A1

∣∣∣∣∣∣∣∣
n1 τka12

n2 2iw0 + a22e−2iw0

∣∣∣∣∣∣∣∣ ,

E(2)
1 =

2τk

A1

∣∣∣∣∣∣∣∣
2iw0 n1

−τka21e−2iw0 n2

∣∣∣∣∣∣∣∣
2×2

,
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where

A1 =

∣∣∣∣∣∣∣∣
2iw0 τka12

−τka21e−2iw0 2iw0 + a22e−2iw0

∣∣∣∣∣∣∣∣ .
Similarly, substituting (A.13) into (A.11) and utilizing (A.15) we can easily get[

0 −a12
a21 −a22

]
E2 =

[
s1
s2

]
,

so that

E(1)
2 =

1
A2

∣∣∣∣∣∣s1 −a12
s2 −a22

∣∣∣∣∣∣ ,
E(2)

2 =
1
A2

∣∣∣∣∣∣ 0 s1
a21 s2

∣∣∣∣∣∣ ,
where

A2 =

∣∣∣∣∣∣ 0 −a12
a21 −a22

∣∣∣∣∣∣ .
Now, we can substitute E1 and E2 into w11(θ) and w20(θ) and find the coefficients

of g(z, z) which determine the stability, direction and the period of Hopf bifurcation as
one can see in Section 3.

References
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