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Abstract

This note scouts a broad but underexplored class of explanations found in contemporary
computer science. These explanations, which I call limitative explanations, explain why
certain problems cannot be solved computationally. Limitative explanations are philosophi-
cally rich, but have not received the attention they deserve. The primary goals of this note
are to isolate limitative explanations and provide a preliminary account of what makes them
explanatory. On the account I favor, limitative explanations are a kind of non-causal
mathematical explanation which depend on highly idealized models of computation.

1. Introduction
This note scouts a broad class of explanations of central importance to contemporary
computer science. These explanations, which I call limitative explanations, explain
why certain problems cannot be solved computationally, either in principle or under
certain constraints on computational resources such as time or space. Limitative
explanations are philosophically rich, but have not received the attention they
deserve. The primary goals of this note are to isolate limitative explanations and
provide a preliminary account of their explanatory power. On the account I favor,
limitative explanations are a kind of non-causal mathematical explanation which
depend on highly idealized models of computation.

Here is the plan. Section 2 surveys some familiar results from theoretical computer
science. Section 3 argues that these results are prima facie explanatory of certain
features of physical computing systems. Sections 4 through 6 sketch a positive
account of their explanatory power. Section 7 concludes.

2. Limitative results in computer science
At the broadest level, computer science addresses two kinds of problem: those which
can be solved computationally, and those which cannot. To address the first kind of
problem, we must describe a computational procedure that solves it. To address the
second kind, by contrast, we must show that no such procedure exists. This typically
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involves proving a mathematical theorem to the effect that the problem in question
cannot be solved computationally. For want of a name, I shall call results like this
“limitative results.”

Perhaps the most well-known limitative results are impossibility theorems, which
state that no general computational procedure exists for a certain class of problems,
even in principle. One famous result of this sort is the unsolvability of the halting
problem. Informally, this is the problem of determining whether a given Turing
machine halts on an arbitrary input. Notoriously, of course, no Turing machine solves
this problem (Turing 1936). This result thus captures a limit on the computational
powers of Turing machines: even given unlimited computational time and space, they
simply cannot solve the halting problem.

Similar results play a central role in many branches of contemporary computer
science, including algorithmic analysis (Sedgewick and Flajolet 2013), distributed
systems theory (Attiya and Ellen 2014), artificial intelligence (Minsky and Papert
1988), and computer security (Cohen 1987), among others. To illustrate with a perhaps
less familiar example, consider the following problem from the field of compiler
design. A compiler is a program for translating programs written in one programming
language into another. One basic requirement is that a compiler preserve the
input/output profile of the program being translated. Often, however, to improve
performance, a compiler will attempt to optimize the translated program, for
instance by detecting and eliminating needlessly duplicated instructions. A fully
optimizing compiler is one which, given some program as input, produces as output the
smallest possible program with the same input/output profile as the original. The
fully optimizing compiler problem is the problem of writing such a compiler.

Perhaps surprisingly, it can be shown that no fully optimizing compiler exists
(Appel and Palsberg 2002, ch. 17). The reason is that the problem of fully optimizing a
program is equivalent to the halting problem. For consider a program which never
halts. The smallest possible program with the same input/output profile is:

L: goto L

Given any input, this program immediately goes into an infinite loop. Thus, to detect
whether an arbitrary program is input/output equivalent to this one, a compiler
would have to be able to detect whether a program ever halts. However, if it could do
this, it could in effect solve the halting problem. Since this is impossible, it is
impossible to write a fully optimizing compiler.

Impossibility theorems are the clearest and most straightforward kind of
limitative result, and for this reason they will be the primary focus of my discussion.
For completeness’ sake, however, let me briefly mention two others. First, while
impossibility theorems identify limits on what can be computed in principle, other
limitative results identify what can be computed tractably, using only a bounded
amount of computational time or space. For example, some problems are known to be
solvable only in time exponential in the size of their inputs, and identifying lower
bounds on the resources required to solve a problem is an important part of
computational complexity theory (Papadimitriou 1994, ch. 20).

Another kind of limitative result identifies tradeoffs between different solutions to
a problem. For instance, one technique for dealing with a problem known or strongly
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suspected to be intractable is to attempt to find good (albeit suboptimal) solutions
through optimization or approximation techniques. Investigation into such
techniques has identified a family of results known colloquially as “no free lunch”
theorems (Wolpert and Macready 1997). These identify tradeoffs between different
search or optimization strategies, in the sense that improved performance for some
range of problems is offset by decreased performance for others. These results thus
identify limits on approximate solutions to certain problems.

3. From limitative results to limitative explanations
Limitative results are, in the first instance, mathematical theorems. They are
characterized in terms of the members of a class of formal, mathematically
characterized computational models such as Turing machines. Consequently,
limitative results primarily concern the computational powers of these mathemati-
cally characterized computational models; the halting problem tells us something
about what Turing machines in particular cannot do.

Nonetheless, these results are widely taken to bear on the computational powers of
physical computing systems as well. This is because Turing machines are taken to be
models of physical computing systems, such as general-purpose stored-program
computers (Savage 2008). Consequently, when a system can be accurately modeled as
a Turing machine, it is plausible to think that limits on what can be computed by
Turing machines apply to that system as well.

Among philosophers, the idea that certain physical systems can be “accurately
described” as Turing machines is normally cashed out in terms of computational
implementation. Roughly speaking, a physical system implements a computational
model if that model captures the basic computational architecture of that system.
This involves, among other things, capturing its basic computational operations and
memory structure. What model(s) a system implements determines which
computational problems it can solve: crudely, it can solve (at most) those problems
solvable by the model in question.

It is relatively uncontroversial that limitative results describe limits on the
computational powers of physical computing systems. However, I think that they do
more than this. Sometimes, they explain those limits as well. This attitude is common
in computer science. For instance, a popular introductory monograph on
computational complexity begins with the following parable:

One day your boss calls you into his office and confides that the company is
about to enter the highly competitive “bandersnatch” market. For this reason, a
good method is needed for determining whether or not any given set of
specifications for a new bandersnatch component can be met and, if so, for
constructing a design that meets them. Since you are the company’s chief
algorithm designer, your charge is to find an efficient algorithm for doing this.

: : : Some weeks later, your office filled with mountains of crumpled-up scratch
paper, your enthusiasm has lessened considerably. So far you have not been able
to come up with any algorithm substantially better than searching through all
possible designs. This would not particularly endear you to your boss, since it
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would involve years of computation time for just one set of specifications, and
the bandersnatch department is already 13 components behind schedule.

: : : To avoid serious damage to your position within the company, it would be
much better if you could prove that the bandersnatch problem is inherently
intractable, that no algorithm could possibly solve it quickly. You could then
stride confidently into the boss’s office and proclaim: “I can’t find an efficient
algorithm because no such algorithm is possible!” (Garey and Johnson 1979, 1–2)

This “because” is no accident. The fact that no efficient bandersnatch algorithm
exists explains why one’s attempts to find one fail. Similarly, the fact that the halting
problem is unsolvable would seem to explain why my laptop, or indeed any system
that can be modeled as a Turing machine, fails to solve it. When limitative results are
used in this way, I call them “limitative explanations.”

Although more could be said in defense of the claim that limitative results are
explanatory, for now I will take this claim for granted to see where it takes us.
If limitative results are explanatory, where does their explanatory power come from?
Two observations guide my analysis. First, mathematical theorems play a central role
in limitative explanations. An adequate account of their explanatory power should
address this role. Second, limitative results apply extraordinarily widely. Indeed,
Turing’s result is striking partly because it applies to systems as disparate as effective
human workers, contemporary digital computers, and even to certain unconventional
computing systems such as cellular automata and quantum computers. Yet despite
their architectural differences, none of these systems can solve the halting problem.
Turing’s result seems to explain this, and so an adequate account of limitative
explanations should thus say something about how this is so.

4. Limitative explanations as mathematical explanations
Because they rely on mathematical theorems, a natural starting point is the idea that
they are a kind of mathematical scientific explanation. Although there are a few
different accounts of mathematical explanation in the literature, I will develop this
idea with reference to a well-known account due to Lange (2017, 2018). Explanations
by constraint, as Lange sometimes calls them, work by “describing how the
explanandum involves stronger-than-physical necessity by virtue of certain facts
(‘constraints’) that possess some variety of necessity stronger than ordinary causal
laws” (Lange 2018, 17). Although the explananda of such explanations can come in
varying modal strengths, they are in general modally stronger than the explananda of
typical causal explanations. Accordingly, their explanans must involve facts of equal
or greater modal strength. Mathematical explanations in particular are a kind
explanation by constraint in which at least one component of the explanans is
mathematically necessary.

To illustrate with a well-known case, consider the bridges of Königsberg.
Crudely, the reason why no one has successfully crossed all of the bridges without
crossing at least one of them more than once is that (a) the bridges realize a
certain graph-theoretic structure, a non-Eulerian graph, and (b) as a matter of
mathematical necessity any complete circuit of a non-Eulerian graph has at least one
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double-crossing (Pincock 2007). Here the explanans, that no one has successfully
crossed the bridges in a certain way, is modally stronger than ordinary causal laws
such as the force laws. Even if we could change the force laws, there would still be no
successful crossing. Thus, to explain this we must appeal to something modally
stronger—in this case, a mathematical necessity.

Similarly, it would seem that the reason why my laptop fails to solve the halting
problem is that (a) it has a certain computational structure, of the sort roughly
captured by a Turing machine, and (b) it is mathematically necessary that no object
with that structure can solve the halting problem. As with the bridges case, this
explanandum is more necessary than ordinary causal laws: vary the force laws, and
my laptop still wouldn’t solve the halting problem. Thus, to explain this fact we need
something modally stronger. Turing’s theorem that the halting problem is unsolvable
fits the bill.

Elsewhere, Lange suggests that explanations by constraint concern the
“framework” in which more ordinary causal explanations operate. Such explanations
work “not by describing the world’s actual causal structure, but rather by showing
how the explanandum arises from the framework that any possible physical
system : : : must inhabit” (Lange 2017, 30). This is unlike ordinary causal explanation,
which takes for granted a certain framework—e.g., as captured by the force laws—in
which causes operate. Explanations by constraint, by contrast, arise from the
framework underwriting causal explanation. They concern what must (or cannot) be
the case, given that framework.

Although limitative explanations clearly do not rely on claims about the
framework that any possible physical system must inhabit, it is not implausible to
think that they concern general facts about the frameworks underwriting causal
computational explanations in particular. To see this, consider explanation via
program execution, an uncontroversially causal kind of computational explanation
(Piccinini 2015, ch. 5). These take for granted a stock of primitive computational
operations (typically basic logical or arithmetical operations), and explain by citing a
step-by-step causal process composed of these basic operations. For instance, the
reason why my laptop displays these words on the screen is that it executes a
particular word-processing program transforming key-presses into pixel patterns.

A different kind of computational explanation comes into view, however, when we
consider a fixed set of computational operations and resources—for example, by
focusing on a fixed programming language—and then ask what problems can be
solved given that set. This leads us towards limitative explanation. By showing that
some problem cannot be solved using those computational operations and resources,
we thereby show that no computational model—for example, no specific program
written in a fixed language—that uses only those operations and resources can solve
that problem either.

These points suggest that limitative explanations can be profitably understood as a
kind of mathematical explanation. However, this isn’t the whole story. Merely noting
that limitative explanations cite a mathematical constraint does not obviously
address their wide applicability. Even though it is mathematically necessary, why not
think that Turing’s theorem applies only to a specific, restricted class of physical
computing systems, rather than more broadly? I take up this question next.
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5. Essential idealization
My account of the wide applicability of limitative results proceeds in two steps.
To keep things simple, I start by looking more closely at the implementation relation
connecting Turing machines to a single class of physical computing systems, namely
human agents working effectively. I argue that limitative results apply to effective
human agents only under significant idealization. Then, in the next section, I will
consider how to extend this basic story to other kinds of computing systems.

Recall that a physical system implements a computational model if that model
captures the computational architecture of that system, such as its basic
computational operations and memory organization. Because different computa-
tional models take different operations as primitive and have different memory
structures, implementation conditions differ between models. For instance, consider
a standard deterministic Turing machine (DTM). DTMs are equipped with a read/
write head and a one-dimensional tape. They manipulate symbols one at a time on the
tape according to a finite, predetermined set of instructions. Thus, a physical system
implements a DTM if, roughly speaking, it manipulates symbols one at a time
according to a finite set of determinate instructions on a one-dimensional tape.

So construed, however, few physical systems literally implement DTMs.
Few contemporary digital computers, for instance, manipulate symbols one at a
time, nor do they manipulate these symbols by scanning back and forth across a
one-dimensional array. Indeed, among physical systems that might reasonably be
construed as DTMs, human agents working effectively are perhaps the most plausible
example. This is of course unsurprising given that Turing’s characterization aimed, in
the first instance, to capture the basic elements of effective human calculation
(Sieg 2009). However, even here the differences are substantial. Whereas DTMs are
assumed to never break down, to follow instructions perfectly, and to have an
infinitely long tape (or at least potentially infinite), humans working effectively may
fail to follow instructions correctly, only have a finite amount of memory to work on
(there is only so much scratch paper in a finite universe), and, alas, will in the fullness
of time break down.

These observations suggest that humans working effectively implement DTMs
only under significant idealization. This is in some respects a familiar point. Quite
often we must idealize to bring mathematics to bear on physical systems (Bueno and
French 2018). However, as I will argue next, what is striking about the computational
case is that absent these idealizations limitative results do not obviously apply to
physical computing systems. These idealizations are thus essential to limitative
explanations.

First, notice that actual human calculators have access to only a finite amount of
memory. In fact, they are more literally described as Turing machines with only a
finite amount of tape, sometimes known as bounded tape Turing machines (BTTMs).
Human agents working effectively implement full-strength DTMs only under the
idealizing assumption that they have unbounded memory. Now consider an
in-principle unsolvable problem such as the halting problem. In practical terms,
the unsolvability of the halting problem ensures that no human calculator can
determine whether a given algorithm will halt on a given input. It turns out, however,
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that this problem is unsolvable only under the idealization that human calculators
have unbounded memory resources.

To see this, consider the bounded halting problem. This is the problem of
determining whether a machine with only a finite, pre-determined amount of
memory halts on a given input. This problem is decidable, because a deterministic
system with bounded memory has only finitely many possible configurations
(i.e., combinations of internal states and memory contents). Thus, we can let the
system run until either it produces the desired output, or it goes into a previously
seen configuration. In the latter case, because the system is deterministic we know
that the system has entered an infinite loop, and so can determine that it will never
halt (Sipser 2013, p. 222, Theorem 5.9).

There is thus a sense in which the halting problem doesn’t even concern ordinary
human calculators. If any version of the halting problem applies to them, it’s the
bounded halting problem. But that problem is decidable. If we knew how much
memory they had at their disposal, we could determine whether a human calculator
following an effective procedure would halt on a given input. But if this is right, then
it’s unclear why we should take limitative results such as the halting problem to apply
to human calculators in the first place. And if these results do not even apply to such
systems, it’s hard to see how they can explain anything about them either.

So why, despite this, do computer scientists continue to use DTMs rather than, say,
BTTMs to model physical computing systems? Crudely put, the reason is that DTMs
reveal deeper facts about their computational powers. Consider again effective
human workers. The fact that they only have finite memory is not so much a
reflection of their basic computational capacities as a contingent fact about the kind
of world they happen to find themselves in. If effective human workers did have
unbounded memory resources, Turing machines would much more closely
approximate them and the traditional halting problem would more straightforwardly
apply. The problem is “merely” that the world doesn’t cooperate, as it were.

Another way to put the point is that idealizations that provision more memory do
not require that we change the basic computational operations carried out in
effective human calculation (namely, finite operations on bounded data structures).
For this reason, they allow us to clarify what kinds of problems can and cannot be
solved using such operations. Contrast this with idealizations concerning basic
computational operations, for instance by allowing infinitary instructions or
architectures in which successive operations are executed twice as quickly. These
idealizations depart much more drastically from effective human calculation.
Although a human working effectively may in some sense, and under significant
idealization, implement an infinitary computational model, it is much less clear that
characterizing human calculation this way reveals much of interest regarding the
powers of actual human calculation.

6. Simulation equivalence
The next step is to extend this story to explain how limitative results apply as widely
as they do. Here the problems are of a rather different character. Earlier I noted that
the DTM architecture differs significantly from the architecture found in many actual
computing systems. Idealizations notwithstanding, why should we think that
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limitative results framed in terms of DTMs apply to systems with widely different
computational architectures?

To bring out the problem, consider a contemporary microprocessor. Like a DTM, a
microprocessor has memory and processing unit, and manipulates finitely many
digits at a time. But the similarities end there (plus or minus a few details). Unlike a
Turing machine, the physical system’s workspace is broken up into different
components (registers, RAM, storage, etc.), it operates directly on 32- or 64-bit words,
and its datapath is typically highly parallelized, to name just a few differences (Harris
and Harris 2013; Hennessy and Patterson 2003).

Indeed, contemporary microprocessors are much more accurately described as
register machines than Turing machines. Register machines are an idealized
representation of the von Neumann architecture employed in many contemporary
digital computers. Whereas a DTM has a single contiguous block of one-dimensional
memory, register machines are equipped with a bank of discrete memory locations
(“registers”). And whereas DTMs take certain string-theoretic operations as primitive
(e.g. reading, erasing, and writing individual symbols), register machines typically take
as primitive basic logical and arithmetical operations on register contents. In light of
these architectural similarities, it is much more natural to think that microprocessors
implement register machines (under appropriate idealizations) than Turing machines.

In spite of this, many limitative results framed in terms of DTMs are nonetheless
taken to apply to contemporary microprocessors. How do we reconcile this with the
fact that microprocessors are more accurately described as register machines? The
answer is that DTMs are, in a sense to be explained shortly, computationally just as
powerful as register machines. Thus, limits on the computational powers of DTMs
carry over to register machines and thereby to their implementations.

The standard technique for showing that two computational models M1 andM2 are
computationally equally powerful is to show that any given procedure framed in
terms of one can be simulated by the other. This involves demonstrating how to
systematically transform an M1-computation into an M2-computation, and vice versa.
In practice, this is facilitated by first proving a universality theorem, which identifies
a single machine which can solve any problem solvable by a given model. For
example, Turing discovered a universal Turing machine capable of solving any
problem solvable by a DTM. With a pair of universality theorems in hand, one for each
model in question, we need only show how to transform computations carried out by
one universal machine in terms of the other. When two computational models are
equivalent in this sense, I will say that they are simulation equivalent.

Simulation equivalent models can solve exactly the same computational problems.
For suppose we know how to solve a problem with an M1 machine. Then, given the
simulation equivalence of M1 and M2, we can systematically transform the M1-solution
into an M2-solution. Similarly, if no M1 machine solves some problem, then no
M2-solution exists either. For suppose not. By their simulation equivalence, we could
transform the M2-solution into an M1-solution, a contradiction.

Computational models simulation equivalent to Turing machines are said to be
Turing complete. Many computational models are known to be Turing complete,
including register machines, and most contemporary programming languages.
Because all of these models are computationally equipowerful, a limitative result
framed in terms of one of them applies to the others as well.
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I am now in a position to explain how limitative results apply so widely. Different
kinds of physical computing systems directly implement different kinds of
computational models. Which computational model a given system implements
depends on its architectural features: its primitive operations, memory organization,
and so forth. For instance, humans working effectively implement DTMs, while digital
computers implement register machines. Limitative results framed in terms of one
kind of computational model apply to implementations of a different kind of
computational model just in the case that the two models are simulation equivalent.
Metaphorically, we can think of the explanatory power of a limitative result flowing
outward from a node in a network: it applies to different computational models
through relations of simulation equivalence, and projects down to physical
computing systems via relations of computational implementation. (See Figure 1
for a partial sketch of the situation.)

7. Next steps
The account sketched in this paper raises certain interesting issues regarding
computational explanation. Let me close by mentioning two. First, even if DTMs,
register machines, and so forth are all in some sense explanatory, one wonders
whether limitative results framed in terms of different models display different
explanatory virtues. For instance, one might think that highly abstract models such as
the λ-calculus, partial recursive functions, or recursively enumerable sets provide
“deeper” explanations than those framed in terms of register machines, whereas
explanations framed in terms of register machines “purer” in the sense that they
more directly capture computational limits on specific kinds of physical systems. If so,
there are important explanatory tradeoffs to be considered when employing one
computational model over another.

Deterministic 

Turing 

Machines

Register

Machines

Effective

Human

Calculators

von Neumann

Machines

Simulation

Equivalent

Implement

(under idealization)

Implement
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Physical Computing
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Figure 1. How limitative results apply.
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Second, dominant views of computational explanation treat it by and large as a
kind of causal explanation. Roughly, on these views, computational explanations are
causal explanations whose relata are computational states, events, processes, etc. (Piccinini
2015). However, if limitative explanations are a kind of explanation by constraint,
and if explanations by constraint are non-causal, so too are limitative explanations.
If, moreover, limitative explanations are genuine computational explanations, they
would thus appear to be a kind of non-causal computational explanation hitherto
unaccounted for by dominant theories of computational explanation.
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