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Abstract

Let Mn denote a random symmetric n×n matrix whose upper-diagonal entries are independent and
identically distributed Bernoulli random variables (which take values 1 and−1 with probability 1/2
each). It is widely conjectured that Mn is singular with probability at most (2+o(1))−n . On the other
hand, the best known upper bound on the singularity probability of Mn , due to Vershynin (2011), is
2−nc , for some unspecified small constant c > 0. This improves on a polynomial singularity bound
due to Costello, Tao, and Vu (2005), and a bound of Nguyen (2011) showing that the singularity
probability decays faster than any polynomial. In this paper, improving on all previous results, we
show that the probability of singularity of Mn is at most 2−n1/4

√
log n/1000 for all sufficiently large n.

The proof utilizes and extends a novel combinatorial approach to discrete random matrix theory,
which has been recently introduced by the authors together with Luh and Samotij.

2010 Mathematics Subject Classification: 60B20

1. Introduction

The invertibility problem for Bernoulli matrices is one of the most well-studied
problems in discrete random matrix theory. Letting An denote a random n × n
matrix, whose entries are independent and identically distributed (i.i.d.) Bernoulli
random variables which take values ±1 with probability 1/2 each, this problem
asks for the value of cn , which is the probability that An is singular. By considering
the event that two rows or two columns of An are equal (up to a sign), it is clear
that

cn > (1+ o(1))n221−n.

c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
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It has been widely conjectured that this bound is, in fact, tight. On the other hand,
perhaps surprisingly, it is nontrivial even to show that cn tends to 0 as n goes to
infinity—this was first accomplished in 1967 by Komlós [8], who showed using
the classical Erdős–Littlewood–Offord anticoncentration inequality that

cn = O(n−1/2).

Subsequently, a breakthrough result due to Kahn, Komlós, and Szemerédi in 1995
[7] showed that

cn = O(0.999n).

After intermediate improvements in the base of the exponent due to Tao and Vu
[15] and Bourgain, Vu, and Wood [1], this conjecture has been settled up to lower
order terms recently (in fact, a few months after the appearance of the present
work) in a very impressive work of Tikhomirov [17], showing that

cn 6 (2+ o(1))−n.

Another widely studied model of random matrices is that of random symmetric
matrices; apart from being important for applications, it is also very interesting
from a technical perspective as it is one of the simplest models with nontrivial
correlations between the entries of the matrix. Formally, let Mn denote a random
n×n symmetric matrix, whose upper-diagonal entries are i.i.d. Bernoulli random
variables which take values ±1 with probability 1/2 each, and let qn denote the
probability that Mn is singular. Despite its similarity to cn , much less is known
about qn , as we discuss below.

The problem of determining whether qn tends to 0 as n goes to infinity was first
posed by Weiss in the early 1990s and only settled in 2005 by Costello, Tao, and
Vu [2], who showed that

qn = O(n−1/8+o(1)).

In order to do this, they introduced and studied a quadratic variant of the Erdős-
Littlewood–Offord inequality. Subsequently, Nguyen [9] developed a quadratic
variant of inverse Littlewood–Offord theory to show that

qn = OC(n−C)

for any C > 0, where the implicit constant in OC(·) depends only on C . This
so-called quadratic inverse Littlewood–Offord theorem in [9] builds on previous
work of Nguyen and Vu [10], which is itself based on deep Freiman-type theorems
in additive combinatorics (see [16] and the references therein). The current best
known upper bound on qn is due to Vershynin [18], who used a sophisticated and
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technical geometric framework pioneered by Rudelson and Vershynin [13, 14] to
show that

qn = O(2−nc
)

for some unspecified small constant c > 0.
As far as lower bounds on qn are concerned, once again, by considering the

event that the first and last rows of Mn are equal (up to a sign), we see that qn >
(2+ o(1))−n . It is commonly believed that this lower bound is tight.

CONJECTURE 1.1 [2, 19]. We have

qn = (2+ o(1))−n.

In this paper, we obtain a much stronger upper bound on qn , thereby making
progress towards Conjecture 1.1.

THEOREM 1.2. There exists n0 ∈ N such that for all n > n0,

qn 6 2−n1/4
√

log n/1000.

REMARK 1.3. While the constant 1000 in the above theorem is somewhat
arbitrary, the leading order term n1/4

√
log n in the exponent is optimal for the

argument in this paper. We believe that improving the exponent to even n(1/2)+ε

(for some absolute constant ε > 0) will likely require new ideas beyond those in
the present work, since even in the case of i.i.d. Rademacher random matrices, the
combinatorial techniques from [3] that we build upon here are only able to obtain
an upper bound of 2−Ω̃(

√
n) on the singularity probability.

Apart from providing a stronger conclusion, our proof of the above theorem
is considerably shorter than previous works, and introduces and extends several
novel combinatorial tools and ideas in discrete random matrix theory (some of
which are based on joint work of the authors with Luh and Samotij [3]). We
believe that these ideas allow for a unified approach to the singularity problem
for many different discrete random matrix models, which have previously been
handled in an ad hoc manner (see also the discussion at the end of the next
subsection).

1.1. Outline of the proof and comparison with previous work. In this
subsection, we provide a very brief, and rather imprecise, outline of our proof,
and compare it to previous works of Nguyen [9] and Vershynin [18]; for further
comparison with the work of Costello, Tao, and Vu, see [9].
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Let x := (x1, . . . , xn) be the first row of Mn , let M1
n−1 denote the bottom-right

(n − 1) × (n − 1) submatrix of Mn , and for 2 6 i, j 6 n, let ci j denote the
cofactor of M1

n−1 obtained by removing its (i − 1)st row and ( j − 1)st column.
Then, Laplace’s formula for the determinant gives

det(Mn) = x1 det(Mn−1)−

n∑
i, j=2

ci j xi x j ,

so that our goal is to bound the probability (over the randomness of x and ci j )
that this polynomial is zero. By a standard reduction due to [2] (see Lemmas 2.1
and 2.3 and Corollary 2.4), we may further assume that M1

n−1 has rank either
n − 2 or n − 1. In this outline, we will only discuss the case when M1

n−1 has rank
n − 1; the other case is easier, and is handled exactly as in [9] (see Lemma 2.5
and equation (8)).

A decoupling argument due to [2] (see Lemma 2.10) further reduces the
problem (albeit in a manner incurring a loss) to bounding from above the
probability that ∑

i∈U1

∑
j∈U2

ci j(xi − x ′i)(x j − x ′j) = 0,

where U1 t U2 is an arbitrary nontrivial partition of [n − 1], and x ′i , x ′j are
independent copies of xi , x j (see Corollary 2.11). For the remainder of this
discussion, the reader should think of |U2| as ‘small’(more precisely, |U2| ∼

n1/4
√

log n). We remark that a similar decoupling based reduction is used in
[18] as well, whereas [9] also uses a similar decoupling inequality in proving
the so-called quadratic inverse Littlewood–Offord theorem. The advantage of
decoupling is that for any given realization of the variables (ci j)26i, j6n and
(x j − x ′j) j∈U2 , the problem reduces to bounding from above the probability that
the linear sum ∑

i∈U1

Ri(xi − x ′i) = 0,

where Ri :=
∑

j∈U2
ci j(x j − x ′j). Problems of this form are precisely the subject

of standard (linear) Littlewood–Offord theory.
Broadly speaking, Littlewood–Offord theory applied to our problem says that

the less ‘additive structure’ the |U1|-dimensional vector (Ri)i∈U1 possesses, the
smaller the probability of the above sum being zero. Quantifying this in the
form of ‘Littlewood–Offord type theorems’ has been the subject of considerable
research over the years; we refer the reader to [11, 14] for general surveys on the
Littlewood–Offord problem with a view towards random matrix theory. Hence,
our goal is to show that with very high probability, the vector (Ri)i∈U1 is additively
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‘very unstructured’. This is the content of our structural theorem (Theorem 3.2),
which is at the heart of our proof.

The statement (and usefulness) of our structural theorem is based on the
following simple, yet powerful, observations.

• The (n − 1)-dimensional vector R := (R2, . . . , Rn), where recall that Ri =∑
j∈U2

ci j(x j−x ′j), is zero if and only if x j = x ′j for all j ∈ |U2|, which happens
with probability exponentially small in |U2|; the if and only if statement holds
since the matrix (ci j)26i, j6n is proportional to the matrix (M1

n−1)
−1, which is

assumed to be invertible.

• The vector R is orthogonal to at least n−1−|U2| rows of M1
n−1 (Lemma 2.12).

This follows since for any 2 6 j0 6 n, the n− 1 dimensional vector (ci j0)26i6n

is orthogonal to all but the j0th row of M1
n−1, again since the matrix (ci j)26i j6n

is proportional to the matrix (M1
n−1)

−1.

• The probability of the linear sum
∑

i∈U1
Ri(xi − x ′i) being zero is ‘not much

more’ than the probability of the linear sum
∑

26i6n Ri(xi − x ′i) being zero
(Lemma 2.9).

Taken together, these observations show that it suffices to prove a structural
theorem of the following form: every nonzero integer vector which is orthogonal
to ‘most’ rows of M1

n−1 is ‘very unstructured’. In [9], a structural theorem
along similar lines is also proven. However, it suffers from two drawbacks.
First, the notion of ‘very unstructured’ in the conclusion there is much weaker,
leading to the bound OC(n−C) for any constant C > 0, as opposed to our
bound from Theorem 1.2. Second, such a conclusion is not obtained for every
nonzero integer vector, but only for those nonzero integer vectors for which
‘most’ coefficients satisfy the additional additive constraint of being contained
in a ‘small’ generalized arithmetic progression (GAP) of ‘low complexity’.
Consequently, the simple observations mentioned above no longer suffice, and
the rest of the proof in [9] is necessarily more complicated.

The structural theorem in [18] is perhaps closer in spirit to ours, although there
are many key differences, of which we mention here the most important one.
Roughly speaking, both [18] and the present work prove the respective structural
theorems by taking the union bound, over the choice of a nonzero (integer) vector
which is not ‘very unstructured’, that the matrix–vector product of M1

n−1 with this
vector is contained in a small prescribed set. A priori, this union bound is over an
infinite collection of vectors. In order to overcome this obstacle, [13, 18] adopt
a geometric approach of grouping vectors on the unit sphere into a finite number
of clusters based on Euclidean distances; using the union bound and a nontrivial
estimate of the number of clusters to show that with very high probability, the
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matrix–vector product of M1
n−1 with a representative of each cluster is ‘far’ from

the small prescribed set; and then, using estimates on the operator norm of M1
n−1

to deduce a similar result for all other vectors in each cluster. Naturally, this
geometric approach is very involved, and leads to additional losses at various
steps (which is why [18] obtains a worse bound on qn than Theorem 1.2).

In contrast, we overcome this obstacle with a completely novel and purely
combinatorial approach of clustering vectors based on the residues of their
coordinates modulo a large prime, and using a combinatorial notion due to Halász
[4] to quantify the amount of additive structure in a vector (Proposition 3.3).
In particular, with our approach, the analogue of the problem of ‘bounding
the covering number of sublevel sets of regularized LCD’—which constitutes a
significant portion of [18] (see Section 7.1 there), is one of the key contributions of
that work, and is also a major contributor to the suboptimality of the final result—
can be solved more efficiently and with a short double-counting argument (see
Theorem 3.10, which is based on joint work of the authors with Luh and Samotij
in [3], and Corollary 3.11).

It is worth mentioning that [18] provides bounds not just for the probability of
singularity of Mn , but also for the probability that the ‘least singular value’ of
Mn (as well as random matrices with more general entries) is ‘very small’. Very
recent work [5, 6] of the second author shows how to develop the combinatorial
ideas introduced in [3] (which we use here) in order to obtain quantitative control
on the lower tail of the least singular value for a variety of random matrix models.
We anticipate that the ideas in the present work can be combined with those in
[5, 6] to control the lower tail of the least singular value of symmetric random
matrices as well.

The rest of this paper is organized as follows. In Section 2, we discuss in detail
the overall proof strategy leading to the reduction to the structural theorem; in
Section 3, we state and prove our structural theorem; and in Section 4, we put
everything together to quickly complete our proof.

Notation: Throughout the paper, we will omit floors and ceilings when they
make no essential difference. For convenience, we will also say ‘let p = x be a
prime’, to mean that p is an odd prime between x and 2x ; again, this makes no
difference to our arguments. As is standard, we will use [n] to denote the discrete
interval {1, . . . , n}. All logarithms are natural unless noted otherwise.

2. Proof strategy: reduction to the structural theorem

In this section, we discuss the strategy underlying our proof of Theorem 1.2.
The key conclusions are equations (2), (8), and (12), which show that it suffices
to prove the structural theorem in Section 3 in order to prove Theorem 1.2.

https://doi.org/10.1017/fms.2019.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.21


Singularity of random symmetric matrices 7

2.1. Preliminary reductions. For any n ∈ N and k ∈ [n], let Rkk(n) denote
the event that Mn has rank exactly k, and let Rk6k(n) denote the event that Mn has
rank at most k. Thus, our goal is to bound the probability of Rk6n−1(n). The next
lemma, which is due to Nguyen [9], shows that it suffices to bound the probability
of Rkn−1(n).

LEMMA 2.1 [9, Lemma 2.1]. For any ` ∈ [n − 2],

Pr
[
Rk`(n)

]
6 0.1× Pr

[
Rk2n−`−2(2n − `− 1)

]
.

The proof of this lemma uses the following simple observation due to Odlyzko
[12]:

OBSERVATION 2.2. Let V be any subspace of Rn of dimension at most `. Then,
|V ∩ {±1}n| 6 2`.

Proof of Lemma 2.1. It suffices to show that for any ` 6 n − 2,

Pr
[
Rk`+2(n + 1) | Rk`(n)

]
> 1− 2−n+`. (1)

Indeed, iterating this equation shows that

Pr[Rk2n−`−2(2n − `− 1) | Rk`(n)]

>
n−`−1∏

j=1

Pr
[
Rk`+2 j(n + j) | Rk`+2 j−2(n + j − 1)

]
>

n−`−1∏
j=1

(1− 2−n+`+ j) > 0.1,

which gives the desired conclusion.
In order to prove equation (1), consider the coupling of Mn and Mn+1 where

Mn is the top-left n × n submatrix of Mn+1. Suppose Mn has rank `, and let
V (Mn) be the (`-dimensional) subspace spanned by its rows. By Observation 2.2,
|V (Mn) ∩ {±1}n| 6 2`. Therefore, the probability that the vector formed by the
first n coordinates of the last row of Mn+1 lies in V (Mn) is at most 2−n+`. If this
vector does not lie in V (Mn), then the symmetry of the matrix also shows that the
last column of Mn+1 does not lie in the span of the first n columns of Mn+1, so
that the rank of Mn+1 exceeds the rank of Mn by 2.

The following lemma, also due to Nguyen, allows us to reduce to the case where
the rank of the (n− 1)× (n− 1) symmetric matrix obtained by removing the first
row and the first column of Mn is at least n − 2.
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LEMMA 2.3 [9, Lemma 2.3]. Assume that Mn has rank n − 1. Then, there exists
i ∈ [n] such that the removal of the i th row and the i th column of Mn results in a
symmetric matrix Mn−1 of rank at least n − 2.

Proof. Without loss of generality, we can assume that the last n − 1 rows of Mn

are independent. Therefore, the matrix Mn−1, which is obtained by removing the
first row and first column of Mn has rank at least n − 2.

As a simple corollary of the above lemma, we obtain the following:

COROLLARY 2.4. For i ∈ [n], let Rk i
n−1(n) denote the event that Mn has rank

n − 1, and the symmetric matrix obtained by removing the i th row and the i th
column of Mn has rank at least n − 2. Then,

Pr
[
Rkn−1(n)

]
6 n Pr

[
Rk1

n−1(n)
]
.

Proof. Suppose that Mn has rank n − 1. By Lemma 2.3, there exists an i ∈ [n]
for which the (n − 1) × (n − 1) matrix obtained by deleting the i th row and i th
column has rank at least n − 2. Moreover, by symmetry,

Pr[Rk i
n−1(n)] = Pr[Rk1

n−1(n)] for all i ∈ [n].

Therefore, by the union bound,

Pr[Rkn−1(n)] = Pr
[ n⋃

i=1

Rk i
n−1(n)

]
6

n∑
i=1

Pr[Rk i
n−1(n)] = n Pr[Rk1

n−1(n)].

Let M1
n−1 denote the (n − 1)× (n − 1) symmetric matrix obtained by deleting

the first row and first column of Mn . Let D(n − 1) denote the ‘degenerate’ event
that M1

n−1 has rank n − 2, and let ND(n − 1) denote the ‘nondegenerate’ event
that M1

n−1 has full rank n − 1. By definition,

Rk1
n−1(n) =

(
Rk1

n−1(n) ∩D(n − 1)
)
t
(
Rk1

n−1(n) ∩ND(n − 1)
)
,

and hence,

Pr
[
Rk1

n−1(n)
]
= Pr

[
Rk1

n−1(n)∩D(n−1)
]
+Pr

[
Rk1

n−1(n)∩ND(n−1)
]
. (2)

It is thus enough to bound each of the above two summands.
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2.2. Bounding Pr
[
Rk1

n−1(n) ∩D(n − 1)
]
. Let x := (x1, . . . , xn) denote the

first row of Mn . It follows from Laplace’s formula for the determinant that

det(Mn) = x1 det
(
M1

n−1

)
−

∑
26i, j6n

ci j xi x j , (3)

where ci j denotes the cofactor of M1
n−1 obtained by removing its (i −1)st row and

( j − 1)st column. In order to deal with Mn ∈ Rk1
n−1(n) ∩ D(n − 1), we use the

following observation due to Nguyen (see [9, Section 9]).

LEMMA 2.5. For every Mn ∈ Rk1
n−1(n) ∩ D(n − 1), there exists some λ :=

λ
(
M1

n−1

)
∈ Q \ {0} and some a := a

(
M1

n−1

)
= (a2, . . . , an) ∈ Zn−1

\ {0} such that

M1
n−1a = 0, (4)

and

det(Mn) = λ

( ∑
26i6n

ai xi

)2

. (5)

Proof. Let adj
(
M1

n−1

)
denote the adjugate matrix of M1

n−1; note that this is
an integer-valued symmetric matrix since M1

n−1 is an integer-valued symmetric
matrix. Since M1

n−1 is of rank n−2, its kernel is of rank 1. Moreover, the equation

M1
n−1 adj

(
M1

n−1

)
= det

(
M1

n−1

)
In−1 (6)

shows that every column of adj
(
M1

n−1

)
is in the kernel of M1

n−1 as det(M1
n−1) = 0

by assumption. It follows that the matrix adj
(
M1

n−1

)
is an integer-valued

symmetric matrix of rank 1, which cannot be zero since M1
n−1 is of rank n − 2.

Hence, there exists some λ ∈ Q \ {0} and a vector a = (a2, . . . , an)
T
∈ Zn−1

\ {0}
such that

adj
(
M1

n−1

)
= λaaT . (7)

In particular, every column of adj
(
M1

n−1

)
is equal to a multiple of the vector a.

By considering any column which is a nonzero multiple of a, equation (6) along
with det

(
M1

n−1

)
= 0 gives equation (4). Moreover, by writing the entries of the

adjugate matrix in terms of the cofactors, we see that equation (7) is equivalent to
the following: for all 2 6 i, j 6 n:

ci j = λai a j .

Substituting this in equation (3) and using det
(
M1

n−1

)
= 0 gives equation (5).

Before explaining how to use Lemma 2.5, we need the following definition.
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DEFINITION 2.6 (Atom probability). Let R be an arbitrary ring (with a unit
element). For a vector a := (a1, . . . , an) ∈ Rn , we define its µ-atom probability
by

ρR
µ (a) := sup

c∈R
Pr

xµ1 ,...,x
µ
n

[
a1xµ1 + · · · + an xµn = c

]
,

where the xµi ’s are i.i.d. random variables taking on the value 0 with probability
µ and the values ±1, each with probability (1− µ)/2.

REMARK 2.7. We will often refer to the 0-atom probability simply as the atom
probability, and denote it by ρR(a) instead of ρR

0 (a). Similarly, we will denote
x0

i simply as xi .

Although we will not need them in this subsection, we will later make use of
the following two simple lemmas about the atom probability. The first lemma
shows that the µ-atom probability of a vector is bounded above by the µ-atom
probability of any of its restrictions.

LEMMA 2.8. Let a ∈ Rn , and let a|U1 denote the restriction of a to U1 ⊆ [n].
Then,

ρR
µ (a) 6 ρR

µ

(
a|U1

)
.

Proof. Let c∗ := arg maxc∈R Prxµ
[∑

i∈[n] ai x
µ

i = c
]
. Then,

ρR
µ (a) = Pr

xµ

[∑
i∈[n]

ai x
µ

i = c∗
]
= Pr

xµ

[ ∑
i∈[U1]

ai x
µ

i = c∗ −
∑

i∈[U1]

ai x
µ

i

]

= E(xµi )i∈U1

[
Pr

(xµi )i∈[U1]

[ ∑
i∈[U1]

ai x
µ

i = c∗ −
∑

i∈[U1]

ai x
µ

i

]]
6 E(xµi )i∈U1

[
ρR
µ (a|U1)

]
= ρR

µ (a|U1),

where the third equality follows from the law of total probability, and the fourth
inequality follows from the definition of ρR

µ (a|U1).

The second lemma complements Lemma 2.8, and shows that the µ-atom
probability cannot increase too much if, instead of the original vector, we work
with its restriction to a sufficiently large subset of coordinates.

LEMMA 2.9. Let a ∈ Rn , and let a|U1 denote the restriction of a to U1. Then,

ρR
µ

(
a|U1

)
6 max

{
µ,

1− µ
2

}−|U2|

ρR
µ (a).
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Proof. Let c0 := arg maxc∈R Prxµ
[∑

i∈U1
ai x

µ

i = c
]

where the xµi ’s are as in
Definition 2.6, and let c1 := c0 +

∑
i∈U2

ai . Then,

Pr
xµ

[∑
i∈[n]

ai x
µ

i = c0

]
> Pr

(xµi )i∈U1

[∑
i∈U1

ai x
µ

i = c0

] ∏
j∈U2

Pr
xµj

[
xµj = 0

]
> ρR

µ

(
a|U1

)
µ|U2|,

and

Pr
xµ

[∑
i∈[n]

ai x
µ

i = c1

]
> Pr

(xµi )i∈U1

[∑
i∈U1

ai x
µ

i = c0

] ∏
j∈U2

Pr
xµj

[
xµj = 1

]
> ρR

µ

(
a|U1

)(1− µ
2

)|U2|

.

Taking the maximum of the two expressions gives

ρR
µ (a) > max

{
µ,

1− µ
2

}|U2|

ρR
µ

(
a|U1

)
,

and by rearranging we obtain the desired conclusion.

Returning to the goal of this subsection, for 0 < ρ 6 1, let Nullρ(n−1) denote
the event—depending only on M1

n−1—that every nonzero integer null vector of
M1

n−1 has atom probability (in Z) at most ρ. Then, we have

Pr
Mn

[
Rk1

n−1(n) ∩D(n − 1)
]
6 Pr

Mn

[
Rk1

n−1(n) ∩D(n − 1) ∩Nullρ(n − 1)
]

+ Pr
M1

n−1

[
Nullρ(n − 1)

]
6 Pr

M1
n−1,x

[( ∑
26i6n

ai
(
M1

n−1

)
xi = 0

)
∩Nullρ(n − 1)

]
+ Pr

M1
n−1

[
Nullρ(n − 1)

]
6

∑
An−1∈Nullρ (n−1)

Pr
x

[( ∑
26i6n

ai
(

An−1
)
xi = 0

)]
× Pr

M1
n−1

[
M1

n−1 = An−1
]

+ Pr
M1

n−1

[
Nullρ(n − 1)

]
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6 ρ + Pr
M1

n−1

[
Nullρ(n − 1)

]
, (8)

where the second line follows from equation (5); the third line is trivial; and the
last line follows from the definition of Nullρ(n − 1). Theorem 3.2 shows that
‘typically’, every nonzero integer null vector of M1

n−1 has ‘small’ atom probability,
and will be used to bound the right-hand side of equation (8).

2.3. Bounding Pr
[
Rk1

n−1(n) ∩ ND(n − 1)
]
. Once again, we start with

equation (3). However, for Mn−1 ∈ ND(n − 1), adj
(
M1

n−1

)
is invertible, and we

no longer have the factorization of the determinant in Lemma 2.5 available to us.
In this case, in order to reduce to a problem involving the anticoncentration of a
linear form, we will follow an idea by Costello, Tao and Vu [2]. The basic tool is
the following decoupling inequality from [2].

LEMMA 2.10 [2, Lemma 4.7]. Let Y and Z be independent random variables,
and E = E(Y, Z) be an event depending on Y and Z. Then,

Pr[E(Y, Z)]4 6 Pr[E(Y, Z) ∩ E(Y ′, Z) ∩ E(Y, Z ′) ∩ E(Y ′, Z ′)],

where Y ′ and Z ′ denote independent copies of Y and Z, respectively.

Next, we explain how to use the above decoupling lemma for our purpose. For
this discussion, recall equation (3). Fix a nontrivial partition [n] = U1 t U2. Let
Y := (xi)i∈U1 and Z := (xi)i∈U2 . Let Eα,c := Eα,c(Y, Z) denote the event that

Qα,c(Y, Z) := α −
∑

26i, j6n

ci j xi x j = 0,

where α and c := (ci j)26i, j6n are fixed. Then, the previous lemma shows that

Pr
[
Eα,c(Y, Z)

]4
6 Pr

[
Eα,c(Y, Z) ∩ Eα,c(Y ′, Z) ∩ Eα,c(Y, Z ′) ∩ Eα,c(Y ′, Z ′)

]
.

On the other hand, whenever the event on the right holds, we also have

Qα,c(Y, Z)− Qα,c(Y ′, Z)− Qα,c(Y, Z ′)+ Qα,c(Y, Z) = 0.

Direct computation shows that the left hand side equals

Rc :=
∑
i∈U1

∑
j∈U2

ci j(xi − x ′i)(x
′

j − x j) =
∑
i∈U1

Ri(xi − x ′i),

where x ′i denotes an independent copy of xi , and Ri denotes the random sum∑
j∈U2

ci j(x ′j − x j). To summarize, we have deduced the following.
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COROLLARY 2.11. Let U1 t U2 be an arbitrary nontrivial partition of [n]. Let
w = (w1, . . . , w|U1|) be the random vector with coordinates wi := xi − x ′i . Then,
with notation as above, and for any (n− 1)× (n− 1) symmetric matrix An−1, we
have

Pr
Mn

[
Rk1

n−1(n)
∣∣M1

n−1 = An−1
]
6 Pr

x,x′

[∑
i∈U1

Riwi = 0
∣∣M1

n−1 = An−1

]1/4

.

Using this corollary, we thus see that

Pr
Mn

[
Rk1

n−1(n) ∩ND(n − 1)
]4

=

( ∑
An−1∈ND(n−1)

Pr
Mn

[
Rk1

n−1(n)|M
1
n−1 = An−1

]
Pr
[
M1

n−1 = An−1
])4

6
∑

An−1∈ND(n−1)

Pr
Mn

[
Rk1

n−1(n)|M
1
n−1 = An−1

]4 Pr
[
M1

n−1 = An−1
]

6
∑

An−1∈ND(n−1)

Pr
x,x′

[∑
i∈U1

Riwi = 0|M1
n−1 = An−1

]
Pr
[
M1

n−1 = An−1
]

= Pr
x,x′,M1

n−1

[(∑
i∈U1

Riwi = 0
)
∩ND(n − 1)

]
, (9)

where the second line follows from Jensen’s inequality. Hence, we have reduced
the problem of bounding Pr

[
Rk1

n−1(n)∩ND(n−1)
]

to a linear anticoncentration
problem.

In order to use equation (9) profitably, we will rely on the following simple,
but crucial, observation about the vector R := (R2, . . . , Rn) ∈ Zn−1, where Ri is
defined as above.

LEMMA 2.12. R is orthogonal to at least n − 1− |U2| rows of M1
n−1.

Proof. Observe that R is a linear combination of the columns of adj
(
M1

n−1

)
corresponding to the indices in U2. By equation (6), each of these columns is
orthogonal to each of the rows with indices in [n− 1] ∩U1; therefore, the same is
true for R. Since |[n − 1] ∩U1| > n − 1− |U2|, we are done.

For 0 < δ, γ 6 1, let Orthδ,γ n(n − 1) denote the event—depending only on
M1

n−1—that every integer nonzero vector which is orthogonal to at least (1− γ )n
rows of M1

n−1 has µ-atom probability (in Z) at most δ, uniformly for all 0 6 µ 6
1/2. Let U1 tU2 be a partition of [n] where U2 := [γ n−1]. Then, with the vector
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R defined as above, we have

Pr
x,x′,M1

n−1

[(∑
i∈U1

Riwi = 0
)
∩ND(n − 1)

]
6 Pr

x,x′,M1
n−1

[(∑
i∈U1

Riwi = 0
)
∩Orthδ,γ n(n − 1) ∩ND(n − 1)

]
+ Pr

M1
n−1

[
Orthδ,γ n(n − 1)

]
6

∑
An−1∈Orthδ,γ n(n−1)∩ND(n−1)

Pr
w

[∑
i∈U1

Ri(An−1)wi = 0
]

× Pr
M1

n−1

[
M1

n−1 = An−1
]

+ Pr
M1

n−1

[
Orthδ,γ n(n − 1)

]
. (10)

As in Section 2.2, we will provide an upper bound on Prw
[∑

i∈U1
Ri(An−1)wi =

0
]

which is uniform in the choice of An−1 ∈ Orthδ,γ n(n − 1) ∩ND(n − 1). We
start by observing that

Pr
w

[∑
i∈U1

Ri(An−1)wi = 0
]

6 Pr
w

[(∑
i∈U1

Ri(An−1)wi = 0
)
∩
(
R(An−1) 6= 0

)]
+ Pr

w

[
R(An−1) = 0

]
= Pr

w

[(∑
i∈U1

Ri(An−1)wi = 0
)
∩
(
R(An−1) 6= 0

)]
+ 2−|U2|

6 Pr
w

[(∑
i∈U1

Ri(An−1)wi = 0
)
∩
(
R(An−1) 6= 0

)]
+ 2−γ n+1. (11)

To see why the second equality holds, observe as before that

R(An−1) :=
∑
j∈U2

w j col j
(

adj
(
M1

n−1

))
,

where col j
(

adj
(
M1

n−1

))
denotes the j th column of adj

(
M1

n−1

)
. Since An−1 ∈

ND(n − 1), it follows that these columns are linearly independent, and hence
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R(An−1) = 0 if and only if w j = 0 for all j ∈ |U2|, which happens precisely with
probability 2−|U2|.

It remains to bound the first summand in equation (11). For this, note that
since An−1 ∈ Orthδ,γ n(n − 1) and |U2| = γ n − 1, Lemma 2.12, together with
R(An−1) 6= 0, shows that ρZ

1/2

(
R(An−1)

)
6 δ. Then, by Lemma 2.9, it follows

that ρZ
1/2

(
R(An−1)|U1

)
6 2|U2|δ 6 2γ nδ. Finally, combining this with equations (9)

and (10), we have

Pr
Mn

[
Rk1

n−1(n) ∩ND(n − 1)
]
6

(
2γ nδ + 2−γ n+1

+ Pr
M1

n−1

[
Orthδ,γ n(n − 1)

])1/4

.

(12)

3. The structural theorem

This section is devoted to the proof of our structural theorem, which is
motivated by equations (8) and (12).

3.1. Statement and initial reductions. In order to state the structural theorem,
we need the following definition.

DEFINITION 3.1. For 0 6 α := α(n), β := β(n) 6 1, let Orthα,βn(n) denote the
event that every integer nonzero vector which is orthogonal to at least (1 − β)n
many rows of Mn has µ-atom probability (in Z) at most α, uniformly for all
0 6 µ 6 1/2.

THEOREM 3.2. Let α(n) = 2−n1/4
√

log n/64, β(n) = n−3/4
√

log n/128, and n ∈ N
be sufficiently large. Then,

Pr
Mn

[
Orthα,βn(n)

]
6 2−n/32.

Roughly, we will prove Theorem 3.2 by taking a union bound, over the choice
of the nonzero integer vector with large µ-atom probability, of the probability that
this vector is orthogonal to at least (1 − β)n many rows of Mn . However, there
is an obstacle since, a priori, this union bound is over an infinite collection of
vectors. In order to overcome this, we will work instead with the coordinate-wise
residues of the vector modulo a suitably chosen prime p(n).

In the next proposition, we make use of the event Orth p
α,βn(n), which is defined

exactly as Orthα,βn(n), except that we work over Fp instead of the integers.
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PROPOSITION 3.3. Let α(n) = 2−n1/4
√

log n/64 and β(n) = n−3/4
√

log n/128. Let

p(n) = 2n1/4
√

log n/32 be a prime, and let n ∈ N be sufficiently large. Then,

Pr
Mn

[
Orth p

α,βn(n)
]
6 2−n/32.

Before proving Proposition 3.3, let us quickly show how to deduce Theorem 3.2
from it.

Proof of Theorem 3.2 given Proposition 3.3. It suffices to show that

Orthα,βn(n) ⊆ Orth p
α,βn(n)

for any prime p. To see this, suppose Mn ∈Orthα,βn(n). So, there exists an integer
nonzero vector a which is orthogonal to at least (1 − β)n many rows of Mn and
has µ-atom probability (in Z) greater than α, for some 0 6 µ 6 1/2. Furthermore,
by rescaling a if necessary, we may assume that gcd(a1, . . . , an) = 1. Therefore,
letting a p be the image of a under the natural map from Zn

→ Fn
p, we see that

a p ∈ Fn
p \ {0} and is orthogonal (over Fp) to (at least) the same (1− β)n rows of

Mn . Finally, ρFp
µ (a p) > ρZ

µ(a) > β, since for any c ∈ Z, every solution x ∈ {−1,
0, 1}n of a1x1 + · · · + an xn = c over the integers is also a solution of the same
equation in Fp. Thus, the vector a p witnesses that Mn ∈ Orth p

α,βn(n).

The next lemma is the first step towards the proof of Proposition 3.3 and
motivates the subsequent discussion. In its statement, the support of a vector
a = (a1, . . . , an) ∈ Fn

p, denoted by supp(a), refers to the set of indices i ∈ [n]
such that ai 6= 0 mod p.

LEMMA 3.4. Let 1 6 d 6 n be an integer, and let p be a prime. Let Spt p
>d,βn(n)

denote the event that every vector in Fn
p \ {0} which is orthogonal (over Fp) to at

least (1 − β)n many rows of Mn has support of size at least d. Suppose further
that β 6 1/2, d 6 n/2, pβn 6 2n/2, pd 6 2n/8, H(β) 6 1/4, and H(d/n) 6 1/16
(where H(x) := −x log2(x)− (1− x) log2(1− x) is the binary entropy function
for x ∈ [0, 1]). Then,

Pr
Mn

[
Spt p

>d,βn(n)
]
6 2−n/16.

The proof of this lemma will use the following simple, yet powerful,
observation.
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OBSERVATION 3.5. LetΣ be an n×n permutation matrix. Then, for a uniformly
random n × n symmetric {±1}-matrix Mn , the random matrix Σ−1 MnΣ is also a
uniformly distributed n × n symmetric {±1}-matrix.

Proof. It is clear that Σ−1 MnΣ is an n × n {±1}-matrix. That it is symmetric
follows from Σ−1

= ΣT and MT
n = Mn . Finally, Σ−1 MnΣ is uniformly

distributed since conjugation by Σ is manifestly a bijection from the set of n × n
{±1} symmetric matrices to itself.

Proof of Lemma 3.4. Let d be as in the statement of the lemma, and for 1 6 s 6 d ,
let Supp

=s(n) denote the set of all vectors in Fn
p which have support of size exactly

s. Observe that |Supp
=s(n)| 6

(n
s

)
ps . We will now bound the probability that

any given a ∈ Supp
=s(n) is orthogonal to at least (1 − β)n rows of a uniformly

chosen Mn .
For this, let Σ = Σ(a) denote a fixed, but otherwise arbitrary, permutation

matrix for which Σ1supp(a) = 1[n−s+1,n]. In other words, Σ permutes the
vector a so that its nonzero entries are placed in the last s coordinates. Since
Observation 3.5 shows that Σ−1 MnΣ is a uniformly random n × n {±1}-
symmetric matrix, it follows that

Pr
Mn
[a is orthogonal to > (1− β)n rows of Mn]

= Pr
Mn

[
a is orthogonal to > (1− β)n rows of Σ−1 MnΣ

]
= Pr

Mn

[
Σ−1 MnΣa = v for some v ∈

βn⋃
t=0

Supp
=t(n)

]

6
βn∑
t=0

Pr
Mn

[
Σ−1 MnΣa = v for some v ∈ Supp

=t(n)
]

=

βn∑
t=0

Pr
Mn

[
MnΣa = v for some v ∈ Supp

=t(n)
]

6
βn∑
t=0

∑
v∈Supp=t (n)

Pr
Mn

[
MnΣa = v

]
, (13)

where the third line follows by the union bound; the fourth line follows since the
size of the support of a vector is invariant under the action of Σ ; and the last line
follows again by the union bound.

Next, we provide a (crude) upper bound on PrMn

[
Mn(Σa) = v

]
for any fixed

v = (v1, . . . , vn) ∈ Fn
p. For this, we isolate the last column of the matrix Mn by
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rewriting the system of equations Mn(Σa) = v as

m in = (Σa)−1
n

(
vi −

n−1∑
j=1

m i j(Σa) j

)
for all i ∈ [n], (14)

where m i j denotes the (i, j)th entry of the matrix Mn , and the equation makes
sense since (Σa)n 6= 0 by our choice of Σ . Note that the right-hand side of the
equation is completely determined by the top-left (n−1)×(n−1) submatrix of Mn .
Further, the entries m in, i ∈ [n] are mutually independent even after conditioning
on any realization of the top-left (n − 1) × (n − 1) submatrix of Mn . Since m in

takes on any value with probability at most 1/2, it follows that conditioned on
any realization of the top-left (n − 1) × (n − 1) submatrix of Mn , equation (14)
is satisfied with probability at most (1/2)n . Hence, by the law of total probability,
PrMn [MnΣa = v] 6 2−n . Substituting this in equation (13), we see that

Pr
Mn
[a is orthogonal to > (1− β)n rows of Mn] 6 2−n

βn∑
t=0

|Supp
=t(n)|

6 2−n
βn∑
t=0

(
n
t

)
pt

6 2−n pβn
βn∑
t=0

(
n
t

)
6 2−n/22nH(β) 6 2−n/4, (15)

where the fourth inequality follows by the assumption on pβn and the standard
inequality

∑βn
t=0

(n
t

)
6 2nH(β) for β 6 1/2, and the last inequality follows by the

assumption on nH(β). Finally, we have

Pr
Mn

[
Spt p

>d,βn(n)
]
6

d∑
s=1

∑
a∈Supp=s (n)

Pr
Mn
[a is orthogonal to > (1− β)n rows of Mn]

6 2−n/4
d∑

s=1

|Supp
=s(n)| 6 2−n/4

d∑
s=1

(
n
s

)
ps

6 2−n/4 pd
d∑

s=1

(
n
s

)
6 2−n/82nH(d/n) 6 2−n/16,

where the fifth inequality follows by the assumption on pd and d , and the last
inequality follows by the assumption on H(d/n).
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3.2. Tools and auxiliary results. Following Lemma 3.4, we will bound

Pr
Mn

[
Orth p

α,βn(n) ∩ Spt p
>d,βn(n)

]
for suitably chosen parameters. Our proof of this bound will be based on the
following two key ingredients. The first is a classical anticoncentration inequality
due to Halász, which bounds the atom probability of a vector in terms of the
‘arithmetic structure’ of its coordinates. In order to state it, we need the following
definition.

DEFINITION 3.6. Let a ∈ Fn
p and let k ∈ N. We define Rk(a) to be the number of

solutions to
±ai1 ± ai2 ± · · · ± ai2k = 0 mod p,

where repetitions are allowed in the choice of i1, . . . , i2k ∈ [n].

THEOREM 3.7 (Halász, [4]). Let p be any odd prime and let a := (a1, . . . , an) ∈

Fn
p \ {0}. Then,

sup
06µ6 1

2

max
q∈Fp

Pr
[∑

i

ai x
µ

i = q
]
6

1
p
+

C Rk(a)
22kn2k f (|supp(a)|)1/2

+ e− f (|supp(a)|)/2,

where C is an absolute constant (which we may assume is at least 1), and
f (|supp(a)|) is a positive real number which is at most min{|supp(a)|/100, n/k}.

Halász’s inequality is typically stated and proved over the integers, but the
version over Fp stated above easily follows using the same ideas. For the reader’s
convenience, we provide a complete proof in Appendix A.

The second ingredient is a ‘counting lemma’ due to the authors together with
Luh and Samotij [3], which bounds the number of vectors in Fn

p with a slightly
different (but practically equivalent) notion of ‘rich additive structure’.

DEFINITION 3.8. Let a ∈ Fn
p and let k ∈ N. We define R∗k (a) to be the number of

solutions to
±ai1 ± ai2 · · · ± ai2k = 0 mod p

that satisfy |{i1, . . . , i2k}| > 1.01k.

As mentioned above, Rk(a) and R∗k (a) are practically equivalent. This is made
precise by the following lemma.
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LEMMA 3.9 [3, Lemma 1.6]. For all positive integers k, n with k 6 n/2 and any
vector a ∈ Fn

p,
Rk(a) 6 R∗k (a)+ (40k0.99n1.01)k .

Proof. By definition, Rk(a) is equal to R∗k (a) plus the number of solutions to
±ai1 ± ai2 ± · · · ± ai2k = 0 that satisfy |{i1, . . . , i2k}| < 1.01k. The latter quantity
is bounded from above by the number of sequences (i1, . . . , i2k) ∈ [n]2k with at
most 1.01k distinct entries times 22k , the number of choices for the ± signs. Thus

Rk(a) 6 R∗k (a)+
(

n
1.01k

)(
1.01k

)2k22k 6 R∗k (a)+
(
4e1.01k0.99n1.01)k

,

where the final inequality follows from the well-known bound
(a

b

)
6 (ea/b)b.

Finally, noting that 4e1.01 6 40 completes the proof.

We can now state the ‘counting lemma’ from [3]. In the following statement,
the notation b ⊂ a for a ∈ Fn

p means that b is a subvector of a, that is, an element
of
⋃n

s=1 Fs
p formed by retaining some of the entries of a; the dimension of b is

denoted by |b|.

THEOREM 3.10 [3, Theorem 1.7]. Let p be a prime and let k ∈ N, s ∈ [n], t ∈ [p].
Let

Bk,s,>t(n) :=
{

a ∈ Fn
p | ∀b ⊂ a s.t. |b| > s we have R∗k (b) > t ·

22k
· |b|2k

p

}
denote the set of ‘k, s,> t-bad vectors’. Then,

|Bk,s,>t(n)| 6
(

s
n

)2k−1

pn(0.01t)−n+s .

The above theorem shows that there are very few vectors for which every
sufficiently large subset has rich additive structure. However, in order to use the
strategy in the proof of Lemma 3.4 effectively, we require that there are very few
vectors for which every moderately sized subset has rich additive structure (see
the proof of Corollary 3.13). This is accomplished by the following corollary.

COROLLARY 3.11. Let p be a prime and let k, s1, s2, d ∈ [n], t ∈ [p] such that
s1 6 s2. Let

Bd
k,s1,s2,>t (n)

:=

{
a ∈ Fn

p

∣∣|supp(a)| = d and ∀b ⊂ a|supp(a) s.t. s2 > |b| > s1 : R∗k (b) > t ·
22k
· |b|2k

p

}
.
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Then,

|Bd
k,s1,s2,>t(n)| 6

(
n
d

)
pd+s2(0.01t)−d+(s1/s2)d .

Proof. At the expense of an overall factor of
(n

d

)
, we may restrict our attention to

those vectors in Bd
k,s1,s2,>t(n)whose support is [d]. In order to count the number of

such vectors, we begin by decomposing [d] into the intervals I1, . . . , Im+1, where
m := bd/s2c, I j := {( j − 1)s2 + 1, . . . , js2} for j ∈ [m], and Im+1 := {ms2 + 1,
. . . , d}. For a vector with support [d] to be in Bd

k,s1,s2,>t(n), it must necessarily be
the case that the restriction of the vector to each of the intervals I1, . . . , Im is in
Bk,s1,>t(s2). Since there are at most p|Im+1| 6 ps2 many choices for the restriction
of the vector to Im+1, it follows from Theorem 3.10 that

|Bd
k,s1,s2,>t(n)| 6

(
n
d

)
|Bk,s1,>t(s2)|

m ps2 6

(
n
d

){(
s1

s2

)2k−1

ps2(0.01t)−s2+s1

}m

ps2

6

(
n
d

)
(ps2(0.01t)−s2+s1)d/s2 ps2 =

(
n
d

)
pd+s2(0.01t)−d+(s1/s2)d .

We conclude this subsection with a few corollaries of Theorem 3.7 and
Corollary 3.11. Let a ∈ Supp

=d(n) \ Bd
k,s1,s2,>(t+1)(n) for s1 6 d 6 n. Then, by

definition, there exists Λ = Λ(a) ⊆ supp(a) such that s1 6 |Λ| = |supp(a|Λ)| 6
s2 and R∗k (a|Λ) < (t + 1) · 22k

|Λ|2k/p. From now on, fix such a subset Λ(a) for
every such vector a.

COROLLARY 3.12. Let p be a prime and let a ∈ Supp
=d(n)\Bd

k,s1,s2,>(t+1)(n) for
1 6 s1 6 d 6 n. Suppose p−1 > max

{
e−s1/2k, (50k/s1)

0.99k
}

and t > s1 > k > 100.
Then,

sup
06µ61/2

ρFp
µ (a|Λ(a)) 6

2Ct
√

k
p
√

s1
,

where C > 1 is an absolute constant.

Proof. For convenience of notation, let b := a|Λ(a). By applying Theorem 3.7 to
the vector b with f (|supp(b)|) := |supp(b)|/k = |b|/k =: f (|b|) (which is a
valid choice for f since k > 100 by assumption), we get

sup
06µ6 1

2

ρFp
µ (b) 6

1
p
+

C(R∗k (b)+ (40k0.99
|b|1.01)k)

22k |b|2k
√
|b|/k

+ e−|b|/2k

6
1
p
+

C(t + 1)

p
√
|b|/k

+
C(40k0.99)k

|b|0.99k
√
|b|/k

+ e−|b|/2k
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6
1
p
+

C(t + 1)
√

k
p
√
|b|

+
C(40k0.99)k

|b|0.99k
+ e−|b|/2k

6
1
p
+

C(t + 1)
√

k
p
√

s1
+ C

(
50k
s1

)0.99k

+ e−s1/2k

6
(2+ C)

p
+

C(t + 1)
√

k
p
√

s1
6

2Ct
√

k
p
√

s1
,

where the first line follows from Theorem 3.7, Lemma 3.9, and the choice of
Λ(a), the fifth line follows by the assumption on p, and the last line follows since
t > s1 > 100.

COROLLARY 3.13. Let p be a prime and let a ∈ Bd
k,s1,s2,>t(n) \ Bd

k,s1,s2,>(t+1)(n).

Suppose p−1 > max
{
e−s1/2k,

(
50k/s1

)0.99k}
, n > d > s1, and t > s1 > k > 100.

Then, for 0 6 β := β(n) 6 1/2,

Pr
Mn
[a is orthogonal to > (1− β)n rows of Mn] 6 2nH(β) pβn

(
2Ct
√

k
p
√

s1

)n−s2

,

where C > 1 is an absolute constant.

Proof. The proof is very similar to the proof of Lemma 3.4. Let Λ := Λ(a)
and b := a|Λ. As in the proof of Lemma 3.4, let Σ denote a fixed, but
otherwise arbitrary, permutation matrix for which Σ1Λ = 1[n−|Λ|+1,n]. Then, by
equation (13),

Pr
Mn
[a is orthogonal to > (1− β)n rows of Mn] =

βn∑
t=0

∑
v∈Supp=t

Pr
Mn

[
MnΣa = v

]
.

Next, we provide an upper bound on PrMn

[
Mn(Σa) = v

]
for any fixed v = (v1,

. . . , vn) ∈ Fn
p. For this, note that the system of equations Mn(Σa) = v implies in

particular that

|Λ|∑
j=1

m i,n−|Λ|+ j b j = vi −

n−|Λ|∑
j=1

m i, j(Λa) j for all i ∈ [n − |Λ|]. (16)

Note that the right-hand side is completely determined by the top-left (n−|Λ|)×
(n−|Λ|) submatrix of Mn , and the entries of Mn appearing on the left are mutually
independent even after conditioning on any realization of the top-left (n− |Λ|)×
(n − |Λ|) submatrix of Mn . In particular, after conditioning on any realization
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of the top-left submatrix of this size, each of the n − |Λ| equations above is
satisfied with probability which is at most ρFp(b), and the satisfaction of different
equations is mutually independent. Hence, by the law of total probability, the
system equation (16) is satisfied with probability at most(

ρFp(b)
)n−|Λ|

6

(
2Ct
√

k
p
√

s1

)n−|Λ|

6

(
2Ct
√

k
p
√

s1

)n−s2

,

where the middle bound follows from Corollary 3.12, and the right-hand bound
follows since |Λ| 6 s2. Finally, substituting this in equation (13) and proceeding
as in equation (15) gives the desired conclusion.

COROLLARY 3.14. Let p be a prime and k, s1, s2, d ∈ [n], t ∈ [p] be such that
1 6 s1 6 s2 6 n/2, s1 6 d 6 n, p−1 > max

{
e−s1/2k,

(
50k/s1

)0.99k}
, and t > s1 >

k > 100. Then, for 0 6 β := β(n) 6 1/2,

Pr
Mn
[∃a ∈ Bd

k,s1,s2,>t (n) \ Bd
k,s1,s2,>(t+1)(n) : a is orthogonal to > (1− β)n rows of Mn]

6 (500C)n pβn+2s2+(s1/s2)d
(

k
s1

)n/4
,

where C > 1 is an absolute constant.

Proof. Using Corollary 3.13 to bound the probability that any given

a ∈ Bd
k,s1,s2,>t(n) \ Bd

k,s1,s2,>(t+1)(n)

is orthogonal to at least (1−β)n rows of Mn , and taking the union bound over all
|Bd

k,s1,s2,>t(n)\Bd
k,s1,s2,>(t+1)(n)| such vectors a, we see that the desired probability

is at most

|Bd
k,s1,s2,>t(n) \ Bd

k,s1,s2,>(t+1)(n)| · 2
nH(β) pβn

(
2Ct
√

k
p
√

s1

)n−s2

6 |Bd
k,s1,s2,>t(n)| · 2

n pβn

(
2Ct
√

k
p
√

s1

)n−s2

6 2n

(
n
d

)
pd+s2(0.01t)−d+(s1/s2)d pβn

(
2Ct
√

k
p
√

s1

)n−s2

6 (500C)n pβn+s2+(s1/s2)d

(
t
p

)n−d−s2
(

k
s1

)n/4

6 (500C)n pβn+2s2+(s1/s2)d

(
k
s1

)n/4

,
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where the second inequality follows from Corollary 3.11, and the third inequality
follows from s2 6 n/2.

3.3. Proof of Proposition 3.3. By combining the results of the previous
subsection, we can now prove Proposition 3.3.

Proof of Proposition 3.3. Consider the following choice of parameters: k = n1/4,
s1 = n1/2 log n, s2 = n3/4

√
log n, βn = n1/4

√
log n/128, d = n2/3, α =

2−n1/4
√

log n/64, and p = 2n1/4
√

log n/32. Throughout, we will assume that n is
sufficiently large for various inequalities to hold, even if we do not explicitly
mention this.

Step 1: It is readily seen that the assumptions of Lemma 3.4 are satisfied, so that
Pr
[
Spt p

>d,βn(n)
]
6 2−n/16. In other words, except with probability at most 2−n/16,

every vector in Fn
p \ {0} which is orthogonal to at least (1 − β)n rows of Mn has

support of size at least d = n2/3.

Step 2: Let a ∈ Supp
=s(n) \Bs

k,s1,s2,>
√

p(n) for any s > d . Since the assumptions
of Corollary 3.12 are satisfied for our choice of parameters, it follows from
Corollary 3.12 and Lemma 2.8 that for any 0 6 µ 6 1/2,

ρFp
µ (a) 6 ρFp

µ (a|Λ(a)) 6
2C
√

k
√

ps1
6 α,

for all n sufficiently large.

Step 3: Therefore, it suffices to bound the probability that for some s > d , there
exists some vector in Bs

k,s1,s2,>
√

p(n) which is orthogonal to at least (1− β)n rows
of Mn . By writing

Bs
k,s1,s2,>

√
p(n) :=

p⋃
t=
√

p

Bs
k,s1,s2,>t(n) \ Bs

k,s1,s2,>(t+1)(n),

noting that the assumptions of Corollary 3.14 are satisfied, and taking the union
bound over the choice of s and t , it follows that this event has probability at most

np(500C)n pβn+2s2+(s1/s2)s

(
k
s1

)n/4

6 np(500C)n p4s2 2−(n log n)/16

6 np(500C)n2−(n log n)/32 6 2−(n log n)/64,

for all n sufficiently large.
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Combining these steps, it follows that

Pr
Mn

[
Orth p

α,βn

]
6 2−n/16

+ 2−(n log n)/64 6 2−n/32,

as desired.

4. Proof of Theorem 1.2

Our main result is now immediate.

Proof of Theorem 1.2. By definition, Nullρ(n − 1) ⊆ Orthρ,βn(n − 1) for every
β > 0. Therefore, from equations (2), (8), and (12), it follows that

Pr
Mn

[
Rk1

n−1

]
6 α + Pr

M1
n−1

[
Orthα,βn(n − 1)

]
+

(
2βnα + 2−βn+1

+ Pr
M1

n−1

[
Orthρ,βn(n − 1)

])1/4

,

where α and β are as in the statement of Theorem 3.2. From Theorem 3.2, it
follows that the right-hand side of the above equation is at most 2−n1/4

√
log n/600

for all n sufficiently large. Finally, Lemma 2.1 and Corollary 2.4 give the desired
conclusion.
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Appendix A. Proof of Halász’s inequality over F p

In this appendix, we prove Theorem 3.7. The proof follows Halász’s original
proof in [4].

Proof of Theorem 3.7. Let ep be the canonical generator of the Pontryagin dual
of Fp, that is, the function ep : Fp → C defined by ep(x) = exp(2π i x/p). Recall
the following discrete Fourier identity in Fp:

δ0(x) =
1
p

∑
r∈Fp

ep(r x),
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where δ0(0) = 1 and δ0(x) = 0 if x 6= 0. Note that for any q ∈ Fp,

Pr
xµ

[ n∑
i=1

ai x
µ

i = q
]
= Exµ

[
δ0

( n∑
i=1

ai x
µ

i − q
)]

= Exµ

[
1
p

∑
r∈Fp

ep

(
r
( n∑

j=1

a j x
µ

j − q
))]

= Exµ

[
1
p

∑
r∈Fp

n∏
j=1

ep
(
ra j x

µ

j

)
ep(−rq)

]

6
1
p

∑
r∈Fp

n∏
j=1

∣∣∣∣µ+ (1− µ) cos
(

2πra j

p

)∣∣∣∣
=

1
p

∑
r∈Fp

n∏
j=1

∣∣∣∣µ+ (1− µ) cos
(
πra j

p

)∣∣∣∣,
where the equality holds because the map Fp 3 r 7→ 2r ∈ Fp is a bijection (as p
is odd) and (since x 7→ |cos(πx)| has period 1 and it is therefore well defined for
x ∈ R/Z) because |cos(2πx/p)| = |cos(π(2x)/p)| for every x ∈ Fp.

At this point, we record the useful inequality∣∣∣∣µ+ (1− µ) cos
(
πx
p

)∣∣∣∣ 6 exp
(
−

1
2

∥∥∥∥ x
p

∥∥∥∥2)
,

which is valid for every real number x uniformly for all 0 6 µ 6 1/2, where
‖x‖ := ‖x‖R/Z denotes the distance to the nearest integer. Thus, we arrive at

max
q∈Fp

Pr
xµ

[ n∑
i=1

ai x
µ

i = q
]
6

1
p

∑
r∈Fp

exp
(
−

1
2

n∑
j=1

‖ra j/p‖2

)
. (A.1)

Now, for each nonnegative real t , we define the following ‘level sets’

Tt :=

{
r ∈ Fp :

n∑
j=1

‖ra j/p‖2 6 t
}
,

and note that ∑
r∈Fp

exp
(
−

1
2

n∑
j=1

‖ra j/p‖2

)
=

1
2

∫
∞

0
e−t/2
|Tt | dt. (A.2)

We will now use a critical estimate due to Halász. First, note that for any m ∈ N,
the iterated sumset mTt is contained in Tm2t . Indeed, for r1, . . . , rm ∈ Tt , we have
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from the triangle inequality and the Cauchy–Schwarz inequality that
n∑

j=1

∥∥∥∥ m∑
i=1

ri a j/p
∥∥∥∥2

6
n∑

j=1

( m∑
i=1

‖ri a j/p‖
)2

6
n∑

j=1

m
m∑

i=1

‖ri a j/p‖2 6 m2t.

Recall that the Cauchy–Davenport theorem states that every pair of nonempty A,
B ⊆ Fp satisfies |A+B| > min{p, |A|+|B|−1}. It follows that for every positive
integer m and every t > 0, the iterated sumset mTt satisfies |mTt | > min{p,
m|Tt | − m}. Hence, |Tm2t | > min{p,m|Tt | − m}.

Next, since the map Fp 3 r 7→ ra ∈ Fp is bijective for every nonzero a ∈ Fp,
we have that ∑

r∈Fp

n∑
j=1

‖ra j/p‖2 >
∑

j∈supp(a)

∑
r∈Fp

‖ra j/p‖2

= |supp(a)|
∑
r∈Fp

‖r/p‖2

=
2|supp(a)|

p2

(p−1)/2∑
i=1

i2

>
|supp(a)|p

50
.

On the other hand, it follows from the definition of Tt that for every t > 0,∑
r∈Fp

n∑
j=1

‖ra j/p‖2 6 |Tt | · t +
(

p − |Tt |
)
· n.

In particular, we see that |Ts | < p if s 6 |supp(a)|/100. Therefore, if t 6
f (|supp(a)|) (as in the statement of the theorem), it follows by setting m :=
b
√

f (|supp(a)|)/tc > 1 that |Tm2t | < p, and hence,

|Tt | 6
|Tm2t |

m
+ 1 6

2
√

t |T f (|supp(a)|)|√
f (|supp(a)|)

+ 1. (A.3)

We now bound the size of T f (|supp(a)|). Using the elementary inequality 1 −
100‖z‖2 6 cos(2π z), which holds for all z ∈ R, it follows that |T f (|supp(a)|)| 6 |T ′|,
where

T ′ :=
{

r ∈ Fp :

n∑
j=1

cos(2πra j/p) > n − 100 f (|supp(a)|)
}
.

In turn, we will bound the size of T ′ by computing the moments of the random
variable (over the randomness of r ∈ Fp) given by

∑n
j=1 cos(2πra j/p). More
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precisely, by Markov’s inequality, we have for any ` ∈ N that

|T ′| 6
1

(n − 100 f (|supp(a)|))2`
∑
r∈T ′

∣∣∣∣ n∑
j=1

cos
(

2πra j

p

)∣∣∣∣2`. (A.4)

Moreover, we also have∑
r∈T ′

∣∣∣∣ n∑
j=1

cos
(

2πra j

p

)∣∣∣∣2`6 1
22`

∑
r∈Fp

∣∣∣∣ n∑
j=1

(exp(2iπra j/p)+ exp(−2iπra j/p))
∣∣∣∣2`

=
1

22`

∑
ε1,...,ε2`

∑
j1,..., j2`

∑
r∈Fp

exp
(

2π ir
2`∑

i=1

εi a ji

)
=

1
22`

∑
ε1,...,ε2`

∑
j1,..., j2`

p1∑2`
i=1 εi a ji=0

6
pR`(a)

22`
.

Finally, combining this with equations (A.1)–(A.4), we get for any 0 6 µ6 1/2
and k ∈ N as in the statement of the theorem that

max
q∈Fp

Pr
xµ

[ n∑
i=1

ai x
µ

i = q
]
6

1
2p

∫ f (|supp(a)|)

0
e−t/2
|Tt | dt +

1
2

e− f (|supp(a)|)/2

6
1

2p

∫ f (|supp(a)|)

0
e−t/2

(
2
√

t |T ′|√
f (|supp(a)|)

+ 1
)

dt

+
1
2

e− f (|supp(a)|)/2

6
|T ′|

p
√

f (|supp(a)|)

∫ f (|supp(a)|)

0
e−t/2
√

t dt +
1
p

+
1
2

e− f (|supp(a)|)/2

6
C1|T ′|

p
√

f (|supp(a)|)
+

1
p
+ e− f (|supp(a)|)/2

6
1
p
+

C1 Rk(a)
22k(n − 100 f (|supp(a)|))2k

√
f (|supp(a)|)

+ e− f (|supp(a)|)/2

6
1
p
+

C Rk(a)
22kn2k

√
f (|supp(a)|)

+ e− f (|supp(a)|)/2,
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as desired, where the last inequality uses the assumption that f (|supp(a)|) 6
n/k.
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