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DERIVATIONS AND INVARIANT FORMS
OF LIE ALGEBRAS GRADED BY FINITE ROOT SYSTEMS

GEORGIA BENKART

ABSTRACT. Lie algebras graded by finite reduced root systems have been classified
up to isomorphism. In this paper we describe the derivation algebras of these Lie alge-
bras and determine when they possess invariant bilinear forms. The results which we
develop to do this are much more general and apply to Lie algebras that are completely
reducible with respect to the adjoint action of a finite-dimensional subalgebra.

1. Introduction.
1.1. Throughout this work F will denote a field of characteristic zero, and all tensor
products will be over F. Unless specified otherwise, all algebras except Lie algebras will
be assumed to be unital.

1.2. Let ∆ be a finite irreducible reduced root system, and assume Λ is the integer lattice
generated by ∆. Following Berman and Moody [BeM], we say that a Lie algebra L over
F is graded by ∆ or is ∆-graded if

(i) L has a Λ-gradation L ≥
L

ï2Λ Lï in which Lï Â≥ (0) if and only if ï 2 ∆ [ f0g;
(ii) the split simple Lie algebra ª ≥ º ý

L
ï2∆ ªï whose root system is ∆ relative to

the split Cartan subalgebra º ≥ ª0 is a subalgebra of L, and Lï � ªï for all ï 2 ∆[f0g;
(iii) for all h 2 º the operator ad h acts diagonally on Lï with eigenvalue ï(h); and
(iv) L is generated by its root spaces Lï where ï 2 ∆.
The conditions for L to be a ∆-graded Lie algebra imply that it is a direct sum of finite-

dimensional irreducible ª-modules whose highest weights are roots, hence are either the
highest long or highest short root or are zero. Thus, condition (iii) in the definition of a
∆-graded Lie algebra can be replaced by:

(iii)0 As a ª-module, L is a direct sum of adjoint modules (modules isomorphic to ª),
little adjoint modules (modules isomorphic to the irreducible ª-module V whose highest
weight is the highest short root), or one-dimensional ª-modules; the latter being con-
tained in L0.

By collecting isomorphic summands, we may suppose that

L ≥ (ª 
 A)ý (V 
 B) ý D,
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226 GEORGIA BENKART

where D is the sum of the trivial ª-modules, and where we may identify ª with ª
 1 �
ª
A. Classifying the ∆-graded Lie algebras has necessitated determining the possibilities
for the spaces A, B, and D and the multiplication between the various summands.

1.3. It is easy to see that a ∆-graded Lie algebra L is perfect (i.e. L ≥ [L, L]), and in
particular, L0 ≥

P
ï2∆[Lï, L�ï]. If a central extension of a ∆-graded Lie algebra is per-

fect, then it is a ∆-graded Lie algebra relative to the same root system. For that reason
Berman and Moody [BeM] in the simply-laced case and Benkart and Zelmanov ([BZ1],
[BZ2]) in the doubly-laced case (see also [N]) classified the Lie algebras graded by fi-
nite root systems up to central extensions. Any perfect Lie algebra L has a unique (up
to isomorphism) universal central extension which is also perfect, called its universal
covering algebra (see [Ga] or [MP, Section 1.9]). Recently, Allison, Benkart, and Gao
[ABG1] have described the universal covering algebra of an arbitrary ∆-graded Lie al-
gebra L, hence its central extensions and its homology H2(L, F) with trivial coefficients.
As a consequence, the Lie algebras graded by finite reduced root systems are now com-
pletely determined up to isomorphism.

1.4. Among the Lie algebras graded by finite root systems are many important exam-
ples. The non-twisted affine algebras (or more accurately their derived algebras) have
a realization, L ¾≥ (ª 
 F[tš1]) ý Fc, where F[tš1] is the algebra of Laurent poly-
nomials in the variable t over F and c is a central element, and so they are ∆-graded.
The twisted affine algebras of type D(2)

r+1, A(2)
2r�1, or E(2)

6 can be realized as L ¾≥ (ª 

F[tš2]) ý (V 
 tF[tš2]) ý Fc, where c is central and ª is a split simple Lie algebra
of type Br, Cr, or F4, respectively. The twisted affine algebra D(3)

4 has a realization as
L ¾≥ (ª 
 F[tš3]) ý

�
V 
 (tF[tš3] + t2F[tš3])

�
ý Fc where ª is of type G2 and c is

central (see [K, Chapter 8]). Consequently, these twisted affine algebras are graded by
the doubly-laced root systems. The toroidal Lie algebras are the universal covering al-
gebras of the Lie algebras “(ª) ≥ ª 
 F[tš1

1 , tš1
2 , . . . , tš1

n ], n ≥ 2, 3, . . . , so they too
are ∆-graded. More generally, any perfect Lie algebra which is a central extension of
one of the form ª 
 A, where A is a commutative associative algebra, is graded by the
root system of ª. Other examples of ∆-graded Lie algebras include the cores of the ex-
tended affine (previously termed quasisimple) Lie algebras of reduced type (see [HT],
[BGK], [BGKN], [AABGP]), certain of the intersection matrix algebras of Slodowy (see
[Sl]), and all the finite-dimensional simple Lie algebras containing a split maximal toral
subalgebra with a reduced root system (see [S]). Thus, the notion of a ∆-graded Lie al-
gebra provides a unifying concept which encompasses many important families of Lie
algebras.

1.5. After the finite-dimensional split simple Lie algebras, the most studied of the ∆-
graded Lie algebras are the affine algebras because of their significant role in statisti-
cal mechanics, conformal field theory, and string theory. The characters of their irre-
ducible highest weight representations give interesting combinatorial identities, and the
string functions and generalized string functions of these representations are modular
functions related to theta functions. The universal covering algebra of the loop algebra
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LIE ALGEBRAS GRADED BY ROOT SYSTEMS 227

Í(ª) ≥ ª
 F[tš1] is the one-dimensional central extension L ≥ (ª 
 F[tš1])ý Fc (see
[W]). The Lie algebra L has infinite root spaces relative to the Cartan subalgebra ºýFc,
hence infinite weight spaces in its representations. Creating a useful representation theory
and character theory for the affine algebra L has necessitated having finite-dimensional
weight spaces, and this has been accomplished by enlarging L by adjoining derivations.
The Casimir operator, a critical tool in proving the character formula, is constructed from
a nondegenerate symmetric invariant form on L. Developing a parallel representation
theory for arbitrary Lie algebras graded by finite root systems requires determining their
derivations and knowing when such an algebra possesses an invariant bilinear form. That
is the goal of this present paper.

I take this opportunity to thank Yun Gao and Erhard Neher for their comments on a
preliminary version of this paper.

2. The structure of Lie algebras graded by finite root systems.
2.1. If L is a Lie algebra graded by finite root system, then we can decompose L as a
ª-module and collect isomorphic summands to get

L ≥ (ª 
 A)ý (V 
 B) ý D.

The spaces ª 
 A, V 
 B, and D are just the isotypic ª-module components. The space

µ def≥≥ A ý B is an algebra over A whose properties are summarized in (2.2) below, and
D acts as derivations on µ which map A to A and B to B. When ∆ is simply-laced, then
V ≥ (0) ≥ B and µ ≥ A. The coordinate algebras µ listed in (2.2) have inner deriva-
tions Dã,å involving certain expressions in the left multiplication and right multiplication
operators Lã, Lå and Rã, Rå and ad z ≥ Lz � Rz (in the associative case). The exact ex-
pressions for the derivations Dã,å have been determined in the classification results of
[BeM], [BZ2], [N], [S], and [ABG2], and this information is displayed below (compare
(2.39) of [ABG1]).

2.2. (a) Ar, (r ½ 3): µ is an associative algebra and

Dã,å ≥
1

r + 1
ad[ã,å]

(b) A2: µ is an alternative algebra and

Dã,å ≥
1
3

(L[ã,å] � R[ã,å] � 3[Lã, Rå])

(c) A1: µ is a Jordan algebra and

Dã,å ≥
1
2

[Lã, Lå]

(d) Dr, (r ½ 4), E6, E7, E8: µ is a commutative, associative algebra and

Dã,å ≥ 0
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228 GEORGIA BENKART

(e) Cr (r ½ 4): µ is an associative algebra with involution õ, A (resp. B) is the set of
symmetric (resp. skew-symmetric) elements relative to õ, and

Dã,å ≥
1
4r

(ad[ã,å] + ad[ãõ,åõ])

(f) C3: µ is an alternative with involution õ, A (resp. B) is the set of symmetric (resp.
skew-symmetric) elements relative to õ, A lies in the nucleus (associative center of µ)
and

Dã,å ≥
1

12
(L[ã,å] � R[ã,å] � 3[Lã, Rå] + L[ãõ,åõ] � R[ãõ,åõ] � 3[Lãõ , Råõ ])

(g) C2: µ is the Peirce half space of a unital Jordan algebra containing a triangle T ;
õ is the restriction of the connection involution determined by T to µ; A (resp. B) is the
set of symmetric (resp. skew-symmetric) elements in µ with respect to õ; the product is
given in (2.47) of [ABG1] and

Dã,å ≥
1
2

([Mã, Må] + [Mãõ , Måõ]),

where Mãç ≥ 1
2 (ãç + çã) for all ç 2 µ (see 2.43 of [ABG1] for unexplained terminol-

ogy).
(h) Br (r ½ 3): µ ≥ A ý B is the Jordan algebra over A of a symmetric bilinear form

and
Dã,å ≥ �[Lã, Lå]

(i) F4: µ ≥ A ý B is an alternative algebra over A with a normalized trace mapping
satisfying ch2, B is the set of elements of trace zero, and

Dã,å ≥
1
4

(L[ã,å] � R[ã,å] � 3[Lã, Rå])

(j) G2: µ ≥ A ý B is a Jordan algebra over A with a normalized trace mapping
satisfying ch3, B is the set of elements of trace zero, and

Dã,å ≥ [Lã, Lå].

2.3. For types F4, G2, Br, r ½ 3, µ ≥ A ý B where A is a commutative associative
algebra. There is a normalized trace on the algebra µ; that is, an A-linear functional
»:µ ! A such that

»(ãã0) ≥ »(ã0ã)

»
�
(ãã0)ã00

�
≥ »

�
ã(ã0ã00)

�
»(1) ≥ 1

for all ã,ã0,ã00 2 µ. The space B, which is the set of elements of trace zero,

B ≥ fb 2 µ j »(b) ≥ 0g,
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is an A-module. Relative to the multiplication,

(2. 4) b Ł b0 ≥ bb0 � »(bb0)1 2 B, for b, b0 2 B,

B is a (not necessarily unital) algebra. Moreover, the product on µ can be expressed as
follows:

(2. 5) (a + b)(a0 + b0) ≥ aa0 + (b, b0) + ab0 + a0b + b Ł b0,

where (b, b0) ≥ t(bb0) is the associated symmetric A-bilinear form. The trace satisfies the
Cayley-Hamilton equation ch2(x) ≥ 0 of 2 ð 2 matrices when ∆ is of type Br or F4 and
the Cayley-Hamilton equation ch3(x) ≥ 0 of 3ð 3 matrices when ∆ is of type G2.

2.6. It is useful to know that the following properties hold for the inner derivations Dã,å:

Dã,å + Då,ã ≥ 0,

Dãå,ç + Dåç,ã + Dçã,å ≥ 0,

(2.7) [E, Dã,å] ≥ DEã,å + Dã,Eå,

Dã,å(A) � A, Dã,å(B) � B,

Da,b ≥ 0,

for all ã,å, ç 2 µ, a 2 A, b 2 B, and E 2 Der(µ). For any algebra µ ≥ A ý B satisfying
(2.2) and (2.3) and having inner derivations as in (2.2), the space L ≥ (ª 
 A) ý (V 

B) ý Dµ,µ can be given the structure of a ∆-graded Lie algebra with trivial center using
the multiplication in (2.15) or (2.16) below with fã,åg ≥ Dã,å for all ã,å 2 µ.

2.8. Let µ ≥ A ý B be a coordinate algebra of an arbitrary ∆-graded Lie algebra, and
assume « is the subspace of µ 
 µ spanned by the elements

ã 
 å + å 
 ã

(2.9) ãå 
 ç + åç 
 ã + çã 
 å

a 
 b

where ã,å, ç are arbitrary elements of µ, and a 2 A, b 2 B. Let

(2. 10) fµ, µg def≥≥ (µ 
 µ)Û«

be the factor space, and for ã,å 2 µ, let fã,åg denote the coset ã 
 å + « in fµ, µg.

2.11. The space Dµ,µ ≥ DA,A +DB,B is a Lie subalgebra of Der(µ) which leaves invariant
A and B. Since µ is a Dµ,µ-module, so is the tensor product µ
µ. The space « is invariant
under Dµ,µ, and so fµ, µg is a Dµ,µ-module under the induced action:

Dã,ã0få,å0g ≥ fDã,ã0å,å0g + få, Dã,ã0å0g.

This allows us to define a multiplication on fµ, µg by

(2. 12) [fã,ã0g, få,å0g] ≥ Dã,ã0få,å0g ≥ fDã,ã0å,å0g + få, Dã,ã0å0g,
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230 GEORGIA BENKART

giving it the structure of a Lie algebra (see [ABG1, Section 4]).
The mapping µ
µ ! Der(µ), ã
å 7! Dã,å has « in its kernel because of (2.4), and

the induced mapping ö: fµ, µg ! Der(µ) given by

(2. 13) ö: fã,ã0g 7! Dã,ã0

is a surjective Lie algebra homomorphism. The kernel of ö is the full skew-dihedral
homology group of µ,

HF(µ) ≥ ker ö ≥
²X

i
fãi,åig 2 fµ, µg

þþþþ X
i

Dãi,åi ≥ 0
¦

.

THEOREM 2.14([ABG1, THEOREMS 4.13 AND 4.20]). Let L̂ ≥ (ª
A)ý (V 
B)ý
fµ, µg, where µ ≥ AýB is as in (2.2), and define a multiplication on L̂ by the following:
for ∆ ≥ Ar(r ½ 2), Cr(r ½ 2),

[x 
 a, y 
 a0] ≥ [x, y]

1
2

(a Ž a0) + (x Ž y) 

1
2

[a, a0] + (xjy)fa, a0g

(2.15) [x 
 a, u 
 b] ≥ (x Ž u)

1
2

[a, b] + [x, u] 

1
2

a Ž b ≥ �[u 
 b, x 
 a]

[u 
 b, v 
 b0] ≥ [u, v] 

1
2

(b Ž b0) + (u Ž v) 

1
2

[b, b0] + (ujv)fb, b0g,

for ∆ ≥ A1, Br, (r ½ 3), Dr, (r ½ 4), E6, E7, E8, F4, G2,

[x 
 a, y
 a0] ≥ [x, y] 
 aa0 + (xjy)fa, a0g

(2.16) [x 
 a, u 
 b] ≥ xu 
 ab ≥ �[u 
 b, x 
 a]

[u 
 b, v 
 b0] ≥ ∂u,v 
 (b, b0) + (u Ł v)
 (b Ł b0) + (ujv)fb, b0g,

and for all ∆,

[fã,ã0g, x 
 a] ≥ x 
 Dã,ã0a ≥ �[x 
 a, fã,ã0g]

(2.17) [fã,ã0g, u 
 b] ≥ u 
 Dã,ã0b ≥ �[u 
 b, fã,ã0g]

[fã,ã0g, få,å0g] ≥ fDã,ã0å,å0g + få, Dã,ã0å0g,

for all a, a0 2 A, b, b0 2 B, ã,ã0 2 µ ≥ A ý B, x, y 2 ª, u, v 2 V. (See (2.18) for an
explanation of the notation used in (2.15) and (2.16).) Then L̂ is a Lie algebra graded by
the root system ∆ of ª whose center is the full skew dihedral homology group

HF(µ) ≥
²X

i
fãi,åig 2 fµ, µg

þþþþ X
i

Dãi,åi ≥ 0
¦

.

Let L ≥ (ª 
 A) ý (V 
 B) ý Dµ,µ be a Lie algebra graded by the finite reduced
root system ∆ and having the centralizer of ª in L given by the inner derivations Dµ,µ

and having multiplication given by (2.15) and (2.16) with Dã,å in place of fã,åg. Then
(L̂, ô̂), where ô̂: L̂ ! L is given by ô̂: x
a 7! x
a; ô̂: u
b 7! u
b; ô̂: fã,ã0g 7! Dã,ã0 ,
is the universal covering algebra of L.
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LIE ALGEBRAS GRADED BY ROOT SYSTEMS 231

If S is a subspace of HF(µ), then

L(S)
def≥≥ L̂ÛS ≥ (ª 
 A) ý (V 
 B) ý fµ, µgÛS

is a ∆-graded Lie algebra. Every ∆-graded Lie algebra is isomorphic to L(S) for some
subspace S of HF(µ).

2.18 Explanation of the terms in (2.15) and (2.16). In Theorem 2.14 (xjy) is the Killing
form on ª. When ∆ ≥ Br, F4, and G2, the module V can be regarded as the space of
elements of trace zero with respect to a normalized trace ú on an algebra X ≥ F1ýV (see
[BZ2, Section 3]). In the Br-case, X is the Jordan algebra of a nondegenerate symmetric
bilinear form; in the F4-case, X is the 27-dimensional split exceptional Jordan algebra
over F; and in the G2-case, X is the alternative algebra of split octonions over F. In all
these cases ∂u,v 2 ª is a certain multiple of the inner derivation determined by u, v 2 V,
and u Ł v and (ujv) are respectively the V and F1 components of the product uv in X.
The mappings ∂: V 
 V ! ª, u 
 v 7! ∂u,v, and V 
 V ! V, u 
 v 7! u Ł v, are
ª-module homomorphisms, (in [BZ2] these are denoted by ô and ö respectively), and
(ujv) is the unique (up to scalar multiple) ª-invariant bilinear form on V with values in
F. Multiplication in X is given by (ê1 + u)(í1 + v) ≥ êí1 + (ujv) + êv + íu + u Ł v, where
u Ł v ≥ uv � ú(uv)1 and (ujv) ≥ ú(uv) is the associated bilinear form.

When ª is of type Ar, r ½ 2, we view ª as the Lie algebra sl r+1(F) of (r + 1)ð (r + 1)
matrices of trace zero. For Cr, r ½ 2, we regard ª as the Lie algebra sp2r(F) of (2r)ð (2r)
matrices which are skew-symmetric relative to the bilinear form whose matrix is E ≥Pr

i≥1 ei,2r+1�i �
Pr

i≥1 e2r+1�i,i. (Here ei,j denotes the standard matrix unit.) We identify V
with the (2r)ð (2r) matrices of trace zero that are symmetric relative to that same form.
In these cases there is a symmetric product w Ž z on ª ý V specified by

w Ž z ≥

8<
:wz + zw� 2

r+1 tr(wz)Ir+1 if ∆ ≥ Ar and w, z 2 ª
wz + zw� 1

r tr(wz)I2r if ∆ ≥ Cr and w, z 2 ª or V,

which gives a ª-module homomorphism. We let [w, z] ≥ wz�zw denote the usual matrix
commutator. Since we have matrix realizations, it is customary in these cases to assume
the forms are given by the matrix trace, (xjy) ≥ tr(xy) and (ujv) ≥ tr(uv). The Killing
form is just a scalar multiple of the trace, so this change is inconsequential.

In the Cr-case, µ ≥ A ý B is an algebra with involution õ which is associative when
r ½ 4 and alternative when r ≥ 3, and A is the set of symmetric elements and B is the set
of skew-symmetric elements relative to õ. When r ≥ 3, the set of symmetric elements A
must lie in the nucleus (associative center) of the algebra µ. Now when r ≥ 2, there is a
unital Jordan algebra (J, Ð) and a triangle T ≥ (p1, p2, q) of elements in J such that

p2
1 ≥ p1, p2

2 ≥ p2, p1 Ð p2 ≥ 0,

p1 Ð q ≥
1
2

q, p2 Ð q ≥
1
2

q and q2 ≥ p1 + p2 ≥ 1.

The algebra J has the Peirce decomposition J ≥ J11 ý J12 ý J22, where J11, J12, and
J22 are the 1, 0, and 1Û2 eigenspaces with respect to the left multiplication operator Lp1
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determined by the idempotent p1. The connection involution õ: J ! J, given by õ(x) ≥
2(q Ð x) Ðq� x, maps the Peirce half space µ ≥ J12 into itself, and µ ≥ AýB where A and
B are the 1 and �1-eigenspaces respectively of õ on µ. The mapping J11 ! A given by
x11 7! x11 Ð q is a bijection. Using that fact, we can define a product on µ, as in [ABG2],
by

(2.19) aa0 ≥ x11 Ð a0,

ab ≥ x11 Ð b,

ba ≥ xõ11 Ð b, and

bb0 ≥ �(b Ð b0) Ð q,

for all a ≥ x11 Ð q, a0 2 A, and b, b0 2 B. The mapping õ is an involution with respect
to this multiplication. In [ABG2] it is shown that the coordinate algebra µ ≥ A ý B of a
Lie algebra graded by the root system C2 is such a Peirce half space with multiplication
as in (2.19), and A and B are the symmetric and skew-symmetric elements relative to the
connection involution restricted to µ.

2.20. The classification results of [ABG1], [BeM], [BZ2], [N] determine the ∆-graded
Lie algebras up to central isogeny, that is, they state that the universal covering algebra
of any ∆-graded Lie algebra is isomorphic to the universal covering algebra of L ≥
(ª
A)ý (V 
B)ýDµ,µ (so isomorphic to L̂). Theorem 2.14 describes all the ∆-graded
Lie algebras up to isomorphism. Because each ∆-graded Lie algebra is isomorphic to a
covering algebra of L, we will write L̃ henceforth for an arbitrary ∆-graded Lie algebra.

3. The derivations of Lie algebras graded by finite root systems.
3.1. We begin by developing some very general results concerning derivations of Lie
algebras having the property that they are completely reducible relative to some subalge-
bra ª. These results apply to many different Lie algebras, but we content ourselves here
to use them to study ∆-graded Lie algebras.

PROPOSITION 3.2. Suppose L is a Lie algebra over a field F and ª is a finite-
dimensional subalgebra of L. Relative to the adjoint action of ª on L assume L decom-
poses into a sum of ª-modules, say L ≥

L
i2I[f0g Vi, where V0 ≥ ª. Assume H1(ª, Vi) ≥

(0) for all i 2 I [ f0g. If d 2 Der L, then there exists an element v 2 L so that if
d0 ≥ d + ad v, then d0(ª) ≥ 0.

PROOF. Let ôi: L ! Vi denote the projection onto the ª-module Vi and assume
di ≥ ôid. Then for x, y 2 ª,

di([x, y]) ≥ ôid([x, y]) ≥ ôi

�
[d(x), y]

�
+ ôi

�
[x, d(y)]

�
≥
h
ôi

�
d(x)

�
, y
i

+
h
x,ôi

�
d(y)

�i
≥ [di(x), y] + [x, di(y)].

Consequently, di 2 Der(ª, Vi) for each i. Since H1(ª, Vi) ≥ (0), we have Der(ª, Vi) ≥
Inder(ª, Vi) for all i 2 I [ f0g. Thus, there exists a vi 2 Vi such that di(x) ≥ x Ð vi ≥
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[x, vi] for all x 2 ª. Only finitely many vi are nonzero since ª is assumed to be finite-
dimensional. Set v ≥

P
i2I[f0g vi. Then clearly (d + ad v)(x) ≥ d(x)�

P
i[x, vi] ≥ 0 for all

x 2 ª.

3.3. By collecting isomorphic summands in the decomposition of such a Lie algebra
L, we may assume there is some subset J of I and a vector space Aj over F for each
j 2 J [ f0g with basis fa(j)

‡ g such that

L ≥
M

j2J[f0g
Vj 
 Aj,

where Vj 
 a(j)
‡

¾≥ Vj as ª-modules. We suppose a(0)
0 ≥ 1 2 A0 and identify ª with

ª 
 1 ≥ V0 
 1. Then [x 
 1, vj 
 a(j)
‡ ] ≥ x Ð vj 
 a(j)

‡ ≥ [x, vj] 
 aj
‡ for all x 2 ª.

PROPOSITION 3.4. With assumptions as in Proposition 3.2, suppose further that
dim Homª(Vk, Vj) ≥ ék,j for all j, k 2 J [ f0g. Assume d 2 Der(L) and d(ª) ≥ 0.
Then for each k 2 J [ f0g there exists a linear transformation d(k): Ak ! Ak such that
d(vk 
 a) ≥ vk 
 d(k)(a) for all a 2 Ak and vk 2 Vk.

PROOF. Let ô(j)
‡ : L ! Vj
a(j)

‡ denote the projection of L onto the ª-module Vj
a(j)
‡ .

Fix a basis element a(k)
m of Ak. Since

ô(j)
‡ d([x, vk]
 a(k)

m ) ≥ ô(j)
‡ d([x 
 1, vk 
 a(k)

m ]) ≥ [x 
 1,ô(j)
‡ d(vk 
 a(k)

m )],

for all x 2 ª, the map ô(j)
‡ d when restricted to Vk 
 a(k)

m can be regarded as a ª-module
homomorphism in Homª(Vk, Vj). By assumption this homomorphism must be zero if
j Â≥ k and a multiple of the identity, say c(k)

‡,m idVk if j ≥ k. Thus, d(vk 
 a(k)
m ) ≥P

‡ ô
(k)
‡ d(vk 
 a(k)

m ) ≥
P
‡ vk 
 c(k)

‡,ma(k)
‡ . Consequently for each k 2 J[f0g, the derivation

d induces a linear transformation d(k): Ak ! Ak defined by

d(k)(a(k)
m ) ≥

X
‡

c(k)
‡,ma(k)

‡ ,

and d(vk 
 a) ≥ vk 
 d(k)(a) for all a 2 Ak and vk 2 Vk as claimed.

3.5. The hypotheses of these propositions are satisfied by the split simple Lie algebra
ª, the little adjoint module V, the trivial ª-module, and any ∆-graded Lie algebra L̃ ≥
L(S) ≥ (ª 
 A) ý (V 
 B) ý fµ, µgÛS. The condition that the first cohomology group
vanishes is just the first Whitehead lemma for ª. Therefore, we may apply these results to
any ∆-graded Lie algebra. This brings us to the main result (Theorem 3.6) of this section.
I am grateful to Yun Gao for providing me with the calculation in (3.9) below.

THEOREM 3.6. Suppose L̃ ≥ L(S) ≥ (ª
A)ý (V 
B)ýfµ, µgÛS is a Lie algebra
graded by the finite reduced root system ∆. Let µ ≥ A ý B. Then

Der(L̃) ≥ ad L̃ + DerŁ(µ, S)
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where DerŁ(µ) ≥ fD 2 Der(µ) j D(A) � A, and D(B) � Bg and DerŁ(µ, S) ≥ fD 2
DerŁ(µ) j D(S) � Sg.

PROOF. Suppose L̃ ≥ L(S) ≥ (ª 
 A) ý (V 
 B) ý fµ, µgÛS is a ∆-graded Lie
algebra. For convenience of notation write D ≥ fµ, µgÛS and set hã,åi ≥ fã,åg + S
for all ã,å 2 µ. Then the D-component of [x
 a, y
 a0] is (xjy)ha, a0i, and analogously
the D-component of [u 
 b, v
 b0] is (ujv)hb, b0i in (2.15) and (2.16).

Assume d 2 Der(L̃). After adjusting by an inner derivation if necessary, we may
suppose that d(ª) ≥ 0. Then by Proposition 3.4, d induces a transformation on µ ≥ AýB,
say dŁ:µ ! µ, such that dŁ: A ! A, dŁ: B ! B, and

(3.7) d(x 
 a) ≥ x 
 dŁ(a)

d(u 
 b) ≥ u 
 dŁ(b)

for all x 2 ª, u 2 V. Moreover, since D is a subalgebra of L̃, which by Proposition 3.4
must be d-invariant, d restricted to D is a derivation.

Now when ∆ is not of type Ar, Cr, r ½ 2, we see upon applying d that

[x, y] 
 dŁ(aa0) + (xjy)d(ha, a0i)

≥ d([x 
 a, y 
 a0])

≥ [x 
 dŁ(a), y 
 a0] + [x 
 a, y 
 dŁ(a0)]

≥ [x, y] 

�
dŁ(a)a0 + adŁ(a0)

�
+ (xjy)

�
hdŁ(a), a0i + ha, dŁ(a0)i

�

for all x, y 2 ª and a, a0 2 A. From this it follows that dŁ is a derivation on A, and
d(ha, a0i) ≥ hdŁ(a), a0i + ha, dŁ(a0)i holds. We have similar calculations,

x Ð u 
 dŁ(ab) ≥ d([x 
 a, u 
 b])

≥ [x 
 dŁ(a), u 
 b] + [x 
 a, u
 dŁ(b)]

≥ x Ð u 

�
dŁ(a)b + adŁ(b)

�
,

and

∂u,v 
 dŁ
�
(b, b0)

�
+ (u Ł v)
 dŁ(b Ł b0) + (ujv)d(hb, b0i)

≥ d([u 
 b, v 
 b0])

≥ [u 
 dŁ(b), v 
 b0] + [u 
 b, v
 dŁ(b0)]

≥ ∂u,v 

�

(dŁ(b), b0) +
�
b, dŁ(b0)

��
+ (u Ł v) 


�
dµ(b) Ł b0 + b Ł dŁ(b0)

�
+ (ujv)

�
hdŁ(b), b0i + hb, dŁ(b0)i

�
.

Whence it follows that dŁ is a derivation on µ belonging to DerŁ(µ) ≥ fD 2 Der(µ) j
D(A) � A, and D(B) � Bg and satisfying

(3.8) d(ha, a0i) ≥ hdŁ(a), a0i + ha, dŁ(a0)i

d(hb, b0i) ≥ hdŁ(b), b0i + hb, dŁ(b0)i
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for all a, a0 2 A, b, b0 2 B. Every derivation in DerŁ(µ) has a natural action on fµ, µg.
Let ë denote the natural homomorphism ë: fµ, µg ! hµ, µi ≥ fµ, µgÛS. Then by (3.8),

(3. 9)
ëdŁ(fã,åg) ≥ ë(fdŁã,åg + fã, dŁåg)

≥ hdŁã,åi + hã, dŁåi ≥ dëfã,åg

for allã,å 2 µ. This shows that ëŽdŁ ≥ dŽë, and hence that the kernel ofë, which is S, is
dŁ-invariant. Conversely, any derivation dŁ 2 DerŁ(µ, S) ≥ fD 2 DerŁ(µ) j D(S) � Sg
gives rise to a corresponding derivation d on L by specifying that (3.7) and (3.8) hold.
Thus, we have the desired result for all ∆-graded Lie algebras whose root system ∆ is not
of types Ar or Cr for r ½ 2.

In the remaining cases suppose

ã Ž å ≥ ãå + åã

[ã,å] ≥ ãå � åã

for all ã,å 2 µ. Observe that

(3. 10)

1
2

[x, y] 
 dŁ(a Ž a0) +
1
2

(x Ž y)
 dŁ([a, a0]) + (xjy)d(ha, a0i)

≥ d([x 
 a, x 
 a0])

≥ [x 
 dŁ(a), y 
 a0] + [x 
 a, y 
 dŁ(a0)]

≥
1
2

[x, y] 

�
dŁ(a) Ž a0 + a Ž dŁ(a0)

�

+
1
2

(x Ž y) 

�
[dŁ(a), a0] + [a, dŁ(a

0)]
�

+ (xjy)
�
hdŁ(a), a0i + ha, dŁ(a0)i

�
,

Now suppose that x ≥ y ≥ e1,1 � e2,2 when ∆ is of type A. (Recall the identifications we
have made in this case of ª with the matrix Lie algebra sl r+1(F).) Then [x, y] ≥ 0, but
x Ž y Â≥ 0 since r ½ 2, and we may deduce from (3.10) that

(3. 11) dŁ([a, a0]) ≥ [dŁ(a), a0] + [a, dŁ(a
0)].

Putting that back in (3.10) we see that

(3. 12) dŁ(a Ž a0) ≥ dŁ(a) Ž a0 + a Ž dŁ(a0)

must hold as well, and these relations can be combined to show that dŁ is a derivation
on µ ≥ A. Note that (3.8) holds also in this case. Consequently, Theorem 3.6 is true for
type A by the same arguments as before.

When ∆ is type C, then the three summands of [x
a, y
a0] lie in different components,
so the corresponding coefficients of [x, y], x Ž y, and (xjy) on both sides of (3.10) can be
equated to give (3.8), (3.11), (3.12). Similarly, since all the summands in the products in
(2.15) lie in different components, the derivation d can be applied to those relations to
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deduce that dŁ is a derivation in DerŁ(µ, S) and (3.8) holds. Once again, any derivation
dŁ 2 DerŁ(µ, S) gives rise to one of L by (3.7) and (3.8), so we have all the desired
conclusions.

3.13. Special cases of Theorem 3.6 have been known. When L ≥ ª 
 A, where A is a
commutative associative algebra, Der(L) ≥ ad L ç Der(A) ≥ (ad ª 
 A) ç Der(A) (see
for example, [K, Exercise 7.3–7.5]). In particular, when Í(ª) ≥ ª 
 F[tš1], the loop
algebra corresponding to ª, then

Der
�
Í(ª)

�
≥ adÍ(ª) çDer(F[tš1]) ¾≥ (ª 
 F[tš1]) ç Der(F[tš1]),

where the Lie algebra of “outer derivations” Der(F[tš1]) is a Witt algebra (centerless
Virasoro algebra) with basis fdi ≥ ti+1 d

dt j i 2 Zg and multiplication given by [di, dj] ≥
(j � i)di+j. Benkart and Moody [BM] have determined the derivations of the toroidal
Lie algebras and their twisted counterparts. Since the derivation algebra of a Lie algebra
that is perfect and centerless and the derivation algebra of its universal covering algebra
coincide according to [BM, Theorem 2.2], the derivation algebra of a toroidal Lie algebra
is the same as the derivation algebra of “(ª) ≥ ª
 F[tš1

1 , . . . , tš1
n ], which is ad“(ª)ç

Der(F[tš1
1 , . . . , tš1

n ]) ¾≥ (ª 
 F[tš1
1 , . . . , tš1

n ]) ç Der(F[tš1
1 , . . . , tš1

n ]).
If A is any nonassociative algebra with 1, and N is the associative center (or what

is often called the nucleus) of A, then Benkart and Osborn [BO] have shown for the
algebra L0r+1(A) generated by the elements aei,j under the commutator product that
Der

�
L0r+1(A)

�
≥ ad Mr+1(N)+Der(A), where Mr+1(N) is the (r +1)ð (r +1)-matrices over

N, and the derivations in Der(A) are applied to each matrix entry. In the special case that
A is taken to satisfy the conditions in (1.2), this result gives Theorem 3.6 for algebras of
type Ar, r ½ 2. The derivations of Lie algebras graded by root systems of type Ar have
also been computed by Berman, Gao, and Kryliouk in [BGK] for r ½ 3 and by Berman,
Gao, Kryliouk, and Neher [BGKN] for r ≥ 2.

3.14. In [BM] it is shown that if L and K are perfect Lie algebras with universal cover-
ing algebras L̂ and K̂ respectively, and if K acts on L by derivations, then the universal
covering algebra of L ç K is L̂ ç K̂. In particular, since the Virasoro algebra V is the
universal covering algebra of Der(F[tš1]) (see for example, [GF], [BM], or [MP]), the
universal covering algebra of Der

�
Í(ª)

�
≥ (ª
F[tš1])çDer(F[tš1]) is the semidirect

product
�
(ª
F[tš1])ýFc

�çV of the affine algebra with the Virasoro algebra. This Lie
algebra appears naturally in representation theory due to the fact that any restricted mod-
ule for the affine algebra is also a module for

�
(ª
F[tš1])ýFc

�çV via the Sugawara
operators (see for example, [K, Section 12.8]).

More generally, suppose that L ≥ (ª
A)ý (V 
B)ýDµ,µ is a ∆-graded Lie algebra
whose D-component is given by the inner derivations of µ ≥ A ý B. Then L ≥ L(S),
where S ≥ HF(µ) in the notation of Theorem 2.14, and it is easy to see that DerŁ(µ, S) ≥
DerŁ(µ) in this case. Assume DerŁ(µ) ≥ Dµ,µ ç K where K is Lie subalgebra of DerŁ(µ)
which is perfect. Then we can identify Der(L) with L + DerŁ(µ) ≥ L ç K because L
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is centerless, and the universal covering algebra of Der(L) is L̂ ç K̂, where L̂ is as in
Theorem 2.14.

3.15. The general nature of our arguments allow them to be adapted to variety of dif-
ferent settings. For example, the same methods can be used to compute Der(L) where L
is a Lie algebra graded by the nonreduced root system BCr (see [ABG2] and [BS]).

4. Invariant forms on Lie algebras graded by finite root systems.
4.1. In this section we derive necessary and sufficient conditions for a Lie algebra L̃
graded by a finite root system to have an L̃-invariant bilinear form. Because L̃ is perfect
such a form must be symmetric (see for example, the argument in [BZ2, (2.3)]), so we
will assume that from the outset. Our aim is to establish the following

THEOREM 4.2. Assume L̃ ≥ L(S) ≥ (ª 
 A) ý (V 
 B) ý fµ, µgÛS is a ∆-graded
Lie algebra, where µ ≥ AýB. If L̃ has an L̃-invariant symmetric bilinear form ( , ), then
there exists an µ-invariant symmetric bilinear form ( , )Ł on µ such that (A, B)Ł ≥ 0 and

(x 
 a, y 
 a0) ≥ (xjy)(a, a0)Ł

(u 
 b, v
 b0) ≥ ò(ujv)(b, b0)Ł

(d, ha, a0i) ≥ (da, a0)Ł ≥ �(a, da0)Ł

(4.3) (d, hb, b0i) ≥ ò(db, b0)Ł ≥ �ò(b, db0)Ł

(x 
 a, u 
 b) ≥ 0

(x 
 a, d) ≥ 0

(u 
 b, d) ≥ 0,

for all a, a0 2 A, b, b0 2 B, x, y 2 ª, u, v 2 V, and d 2 D. When ∆ ≥ Cr, r ½ 2,
then ò ≥ 1, and when ∆ ≥ Br, r ½ 3, F4, or G2, then ò is the nonzero scalar such that
(xj∂u,v) ≥ ò(x Ð ujv) holds for all x 2 ª, u, v 2 V where ∂u,v is as in (2.10). The center
Z(L̃) of L̃ is contained in the radical of the form. If the form ( , )Ł on µ is nondegenerate,
then the radical of ( , ) is Z(L̃). Conversely, if the form ( , ) on L̃ is nondegenerate, then
the form ( , )Ł on µ is nondegenerate and Z(L̃) ≥ (0). Any symmetric µ-invariant bilinear
form ( , )Ł such that (A, B)Ł ≥ 0 determines a symmetric L̃-invariant bilinear form on L̃
given by (4.3).

PROOF. For the ∆-graded algebra L̃ ≥ (ª 
 A) ý (V 
 B) ý fµ, µgÛS, we set D ≥
fµ, µgÛS and write hã,åi for fã,åg+ S 2 D. We suppose that fai j i 2 Ωg is a basis for
A, fbj j j 2 æg is a basis for B, and fdk j k 2 øg is a basis for D. Then L̃ is the direct sum

of the finite-dimensional ª-modules M 2 Á
def
≥≥ fª
ai, V
bj, Fdk j i 2 Ω, j 2 æ, k 2 øg.

Now suppose ( , ) is an L̃-invariant form on L̃, and let M and N be any two (possibly
equal) modules in Á. Then the form restricts to a mapping M 
 N ! F, which must be
a ª-module homomorphism by the invariance. Since any module inÁ is irreducible and
self-dual, (M, N) Â≥ 0 implies M ¾≥ N.
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Fix indices i, i0 2 Ω and consider the map x
y 7! (x
ai, y
ai0). This gives a ª-module
map ª 
 ª ! F, which must be a multiple of the Killing form, say (x 
 ai, y 
 ai0) ≥
íi,i0(xjy). Define a bilinear form ( , )ž on A by first specifying (ai, ai0)ž ≥ íi,i0 and then
extending this bilinearly to all of A. As a result, (x 
 a, y
 a0) ≥ (xjy)(a, a0)ž.

Since there is also a unique (up to scalar multiple) ª-module homomorphism V
V !
F, the same argument shows there is a form on B, which we also denote ( , )ž, such that
(u
 b, v
 b0) ≥ (ujv)(b, b0)ž. Because ª
 A and V 
 B are orthogonal, we may extend
the form ( , )ž to all of µ by decreeing (A, B)ž ≥ 0.

The rest of the argument amounts to using the invariance ([f , g], h) ≥ (f , [g, h]) of the
form on L and the invariance of the Killing form on ª to derive various properties of the
bilinear form on µ. By first taking f ≥ x 
 a, g ≥ y 
 a0, and h ≥ z 
 a00, we see that
when ∆ is not of type Ar or Cr for r ½ 2 that the relation

(4. 4) (aa0, a00)ž ≥ (a, a0a00)ž

holds for all a, a0, a00 2 A. Next with f ≥ x 
 a, g ≥ u 
 b, h ≥ v 
 b0 we see that

(4. 5) (x Ð ujv)(ab, b0)ž ≥ (xj∂u,v)
�
a, (b, b0)

�
ž
.

Then with f ≥ u 
 b, g ≥ v 
 b0, h ≥ w 
 b00 we get

(4. 6) (u Ł vjw)(b Ł b0, b00)ž ≥ (ujv Ł w)(b, b0 Ł b00)ž.

Recall when ∆ is of types B,F,G that X ≥ FýV is an algebra with a normalized trace
ú: X ! F and V is the space of elements of trace zero. Multiplication in X is given by
(ê1 +u)(í1 +v) ≥ êí1 +(ujv)+ êv +íu +uŁv, where uŁv ≥ uv�ú(uv)1 and (ujv) ≥ ú(uv)
is the associated bilinear form. Then (u Ł vjw) ≥ ú

�
(uv)w

�
� ú(uv)ú(w) ≥ ú

�
(uv)w

�
≥

ú
�
u(vw)

�
≥ (ujv Ł w) follows from the properties of the trace. As a result, (4.6) implies

that (b Ł b0, b00)ž ≥ (b, b0 Ł b00)ž. This is equivalent to saying (bb0, b00)ž ≥ (b, b0b00)ž
because A and B are orthogonal.

The mappings ª
V
V ! F given by x
u
 v 7! (xj∂u,v) and x
u
 v 7! (x Ðujv)
are ª-module homomorphisms. They must be multiples of each other since the space
Homª(ª 
 V 
 V, F) is one-dimensional. Thus, there exists a scalar ò Â≥ 0 such that
(xj∂u,v) ≥ ò(x Ð ujv) for all x 2 ª, u, v 2 V. Suppose (a, a0)Ł ≥ (a, a0)ž, (a, b)Ł ≥ 0, and
(b, b0)Ł ≥ ò�1(b, b0)ž, for all a, a0 2 A, b, b0 2 B. Then our calculations in (4.4)–(4.6)
allow us to conclude that the form ( , )Ł on µ is invariant. Substituting f ≥ d 2 D, g ≥
x 
 a, and h ≥ y 
 a0 and then f ≥ d 2 D, g ≥ u 
 b, and h ≥ v 
 b0 shows that
(d, ha, a0i) ≥ (da, a0)Ł ≥ �(a, da0)Ł, (d, hb, b0i) ≥ ò(db, b0)Ł ≥ �ò(b, db0)Ł as claimed.

When ∆ is of type Ar, the substitution f ≥ x 
 a, g ≥ y 
 a0, and h ≥ z 
 a00 gives

(4. 7) ([x, y]jz)
�
(aŽa0, a00)ž� (a, a0 Ža00)ž

�
+ (x Ž yjz)

�
([a, a0], a00)ž� (a, [a0, a00]ž)

�
≥ 0.

Thus, when x ≥ y ≥ e1,1 � e2,2, z ≥ e2,2 � e3,3, we see that ([a, a0], a00)ž ≥ (a, [a0, a00])ž.
When this is put back into (4.7) and x, y, z are chosen so ([x, y]jz) Â≥ 0, the condition
(a Ž a0, a00)ž ≥ (a, a0 Ž a00)ž results. Combined these say (4.4) holds in this case. Since
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(d, ha, a0i) ≥ (da, a0)ž ≥ �(a, da0)ž holds exactly as before, all the same conclusions are
valid in the A-case with ( , )Ł ≥ ( , )ž.

Now when ∆ is of type Cr, the same initial substitution f ≥ x 
 a, g ≥ y 
 a0, and
h ≥ z 
 a00 yields ([x, y]jz)

�
(a Ž a0, a00)ž � (a, a0 Ž a00)ž

�
≥ 0. Since [A, A] � B, we also

have ([a, a0], a00)ž ≥ 0 ≥ (a, [a0, a00])ž for all a, a0, a00 2 A. Combining these results gives
(aa0, a00)ž ≥ (a, a0a00)ž. Analogous arguments with f , g, h taken from among the elements
x
a, y
a0, u
b, v
b0, w
b00, show that the form ( , )ž is invariant on µ. In particular,
setting f ≥ x 
 a, g ≥ u 
 b, and h ≥ v
 b0 shows

([x, u]jv)(ab, b0)ž ≥ (xj[u, v])(ajb Ž b0)ž.

Since x, u, v are (2r) ð (2r) matrices and the forms are given by the trace, (xj[u, v]) ≥
([x, u]jv) by the invariance of the trace. Thus, we may take ò ≥ 1 and ( , )Ł ≥ ( , )ž in
the Cr-case. The relations (d, ha, a0i) ≥ (da, a0)Ł ≥ �(a, da0)Ł, (d, hb, b0i) ≥ (db, b0)Ł ≥
�(b, db0)Ł hold exactly as in the other cases.

To verify the statements about the radical, observe that the center Z(L̃) of L̃ is the sum
of trivial ª-modules and so must lie in D. Any d 2 Z(L̃) must satisfy da ≥ 0 ≥ db for
all a 2 A and b 2 B. Therefore, since D ≥ hA, Ai + hB, Bi, it follows from (4.3) that
Z(L̃) is contained in the radical of the form.

Now let fxig be a basis for ª, and suppose that fyig is the dual basis with respect to
the form ( j ) on ª. Similarly, assume fujg and fvjg are dual bases of V with respect to
the form ( j ) on V. Assume initially that the form on µ is nondegenerate, and suppose
for z ≥

P
i xi 
 ai +

P
j uj 
 bj + d 2 L̃ that 0 ≥ (z, L̃). Then 0 ≥ (z, yk 
 a) ≥

(xkjyk)(ak, a)Ł ≥ (ak, a)Ł for all a 2 A. Since (A, B)Ł ≥ 0, and the form on µ is assumed
to be nondegenerate, we must have ak ≥ 0 for each k. Hence, z ≥

P
j uj
bj +d. A similar

argument with v‡
b shows that b‡ ≥ 0 for all ‡. Finally then 0 ≥ (d, ha, a0i) ≥ (da, a0)Ł
for all a, a0 2 A. Since da 2 A and (A, B)Ł ≥ 0, the nondegeneracy of the form on µ
forces da ≥ 0 for all a 2 A. Analogously, db ≥ 0 for all b 2 B, and from this we see
d 2 Z(L̃). Therefore, when ( j )Ł is nondegenerate, the radical of the form on L̃ is Z(L̃).
For the converse, note that if a + b is in the radical of the form on µ, then so are a and
b. Moreover, then x 
 a and u 
 b are in the radical of the form on L̃ for all x 2 ª and
u 2 V. Consequently, if the form on L̃ is nondegenerate, then so is the form on µ, and
Z(L̃) must be (0).

Finally, suppose that ( j )Ł is an µ-invariant symmetric bilinear form on µ. Then it can
be verified using the expressions for the inner derivations in (2.2) that the derivations
Dã,ã0 are skew-symmetric relative to the form:

(Dã,ã0å,å0)Ł ≥ �(å, Dã,ã0å0)Ł.

This allows us to define an invariant form on the Lie algebra fµ, µg by specifying

(fã,ã0g, få,å0g) ≥ (Dã,ã0å,å0)Ł.

Clearly, HF(µ) is in the radical of this form, and so for any subspace S of HF(µ) there
is an induced form on D ≥ fµ, µgÛS as in (4.3). Using the ª-invariance of the bilinear
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forms ( j ) on ª and V we see that every form on L̃ which is specified by (4.3), where ( j )Ł
is an µ-invariant symmetric bilinear form on µ such that (A, B)Ł ≥ 0, gives a symmetric
L̃-invariant form.

4.8. Because we have chosen (ujv) to be the symmetric bilinear form coming from the
normalized trace on F1ýV, and because in [BZ2] a fixed choice of mapping u
v 7! ∂u,v

is made, the scalar ò must be included above. For example, when ∆ is of type Br, r ½ 3,
then V is just the natural representation of the Lie algebra ª on a space of dimension
n ≥ 2r + 1. We can assume that V has a basis vi, i ≥ 1, . . . , n, such that (vijvj) ≥ éj,n+1�i.
Then for x ≥ e1,1 � en,n, u ≥ v1, v ≥ vn we have (x Ð ujv) ≥ 1. In [BZ2, Theorem 3.53],
∂u,v(w) ≥ (u, w)v � (v, w)u for all u, v, w 2 V. For our choice of u, v, ∂u,v ≥ en,n � e1,1.
Then (xj∂u,v) ≥ (4r� 2) tr(x∂u,v) ≥ �2(4r� 2) ≥ �2(4r� 2)(x Ð ujv) (see [FH, p. 272]).

4.9. Not every possible coordinate algebra µ has a nontrivial invariant form. For ex-
ample, consider the Weyl algebra µ generated by a, b subject to the relation [a, b] ≥
ab � ba ≥ 1. Since the Weyl algebra is an associative algebra with 1, it can serve as a
coordinate algebra when ∆ ≥ Ar, r ½ 2. Suppose ( , ) is a symmetric µ-invariant form
on µ. Then

([am+1bn, b], 1) ≥ (am+1bn, [b, 1]) ≥ 0.

But the left side equals (m + 1)(ambn, 1), so 1 is orthogonal to all the monomials ambn for
all m, n ½ 0. Because these monomials determine a basis for µ, 1 is in the radical of the
form. The radical of an invariant form is an ideal, which in this case contains 1. Thus, it
must be all of µ. Hence, the only invariant form on the Weyl algebra is the trivial one.
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