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Abstract

In this paper we characterise the distributions of the number of predecessors and of the
number of successors of a given set of vertices, A, in the random mapping model, T D̂

n (see
Hansen and Jaworski (2008)), with exchangeable in-degree sequence (D̂1, D̂2, . . . , D̂n).
We show that the exact formulae for these distributions and their expected values can
be given in terms of the distributions of simple functions of the in-degree variables
D̂1, D̂2, . . . , D̂n. As an application of these results, we consider two special examples
of T D̂

n which correspond to random mappings with preferential and anti-preferential
attachment, and determine the exact distributions for the number of predecessors and the
number of successors in these cases. We also characterise, for these two special examples,
the asymptotic behaviour of the expected numbers of predecessors and successors and
interpret these results in terms of the threshold behaviour of epidemic processes on random
mapping graphs. The families of discrete distributions obtained in this paper are also of
independent interest.
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1. Introduction

In this paper we investigate the distributions of the numbers of predecessors and successors
of vertices from a given set in random mappings with exchangeable in-degrees. In order to
describe such mappings, we begin with a general definition of a random mapping model. For
positive integer n, let [n] denote the set of integers {1, 2, . . . , n} and let Mn denote the set of
all functions from [n] into [n]. A random mapping T : [n] → [n] is a random element of the
space of mappings Mn. We note that any f ∈ Mn can be represented as a directed graph,
G(f ), on vertices 1, 2, . . . , n such that there is a directed edge from vertex i to j if and only
if f (i) = j . So, if T is a random mapping on [n] then G(T ) is a random directed graph on n

labelled vertices. Since each vertex in G(T ) has out-degree 1, the components of the random
digraph G(T ) consist of directed cycles with directed trees attached to the cycles.

Various random mapping models have been studied since the 1950s and the structure of their
corresponding digraphs have received much attention in the literature; see, for example, [5],
[6], [15], [19], [23], [24], [27], [29], and the references therein. In particular, these models
have been considered as models for epidemic processes and they have a natural application in
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the analysis of cryptographic systems (e.g. DES), in applications of Pollard’s algorithm, and in
random number generation. In the context of applications, two statistics of particular interest for
a random mapping T are the number of predecessors and the number of successors in the digraph
G(T ) of a set of vertices A ⊆ [n]. In the case of the uniform mapping Tn : [n] → [n], where
P{Tn = f } = 1/nn for each f ∈ Mn, the exact and asymptotic distributions of the number of
predecessors and the number of successors of vertices from a given set in Gn ≡ G(Tn) have
been extensively investigated (see [3], [4], [6], [8], [21], [22], and [25]). In another direction,
these variables have also been investigated for the evolutionary model, Tn,q : [n] → [n], which
is a generalization of the uniform model. The model Tn,q depends on an additional parameter
0 ≤ q ≤ 1 and is defined so that, for 1 ≤ i ≤ n, P{Tn,q(i) = i} = q and, for 1 ≤ i, j ≤ n

such that i �= j , P{Tn,q(i) = j} = (1 − q)/(n − 1). Clearly, for Tn,q , the distributions of the
numbers of predecessors and successors will depend also on the parameter 0 ≤ q ≤ 1 and this
dependence has been characterised in [16] and [17].

Both the uniform model Tn and the evolutionary model Tn,q described above are examples
of random mappings with independent vertex choices. In this paper we consider, instead,
the structure of random mappings with exchangeable in-degrees where vertex choices are not
necessarily independent. This class of random mappings was introduced in [11] (see also [10]
and [12]) and can be defined as follows. Suppose that f ∈ Mn. Then, for 1 ≤ i ≤ n, we
let di(f ) denote the in-degree of vertex i in the functional digraph G(f ) which represents the
mapping f , and define �d(f ) ≡ (d1(f ), . . . , dn(f )). Also, given a vector �d ≡ (d1, d2, . . . , dn)

of nonnegative integers such that
∑n

i=1 di = n, define

Mn( �d) ≡ {f ∈ Mn : �d(f ) = �d}

to be the set of all mappings f ∈ Mn with in-degree sequence �d and note that the size of the
set Mn( �d) is given by

|Mn( �d)| = n!∏n
i=1 di ! .

Now suppose that D̂1, D̂2, . . . , D̂n is a collection of nonnegative integer-valued exchangeable
random variables such that D̂1 + D̂2 +· · ·+ D̂n = n. Then, given the event {D̂i = di, i ∈ [n]}
(with P{D̂i = di, i = 1, 2, . . . , n} > 0), we define the conditional distribution of the
random mapping T D̂

n with exchangeable degree sequence (D̂1, D̂2, . . . , D̂n) to be the uniform
distribution over Mn( �d). So, the distribution of T D̂

n is given by

P
{
T D̂

n = f
} =

∏n
i=1(di(f ))!

n! P
{
D̂i = di(f ), 1 ≤ i ≤ n

}
for any f ∈ Mn.

One of the most important and attractive features of the random mapping T D̂
n , as defined

above, is that many distributions of statistics related to the structure of GD̂
n ≡ G(T D̂

n ) (e.g. the
number of components in GD̂

n , the size of a typical component in GD̂
n , etc.) can be expressed in

terms of a calculus based on the joint distribution of the variables (D̂1, . . . , D̂n). In addition,
this calculus turns out to be straightforward to use for a large class of random mappings with
exchangeable in-degrees which can be constructed as follows. Suppose that D1, D2, . . . , Dn

are independent and identically distributed (i.i.d.) nonnegative integer-valued random variables
with P{∑n

i=1 Di = n} > 0, and let D̂1, D̂2, . . . , D̂n be a sequence of random variables with
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joint distribution given by

P
{
D̂i = di, 1 ≤ i ≤ n

} = P

{
Di = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Di = n

}
.

Clearly, the variables D̂1, D̂2, . . . , D̂n are exchangeable with
∑n

i=1 D̂i = n, so we can use

D̂1, D̂2, . . . , D̂n to construct T D̂
n and GD̂

n . In the special case when the underlying i.i.d.
variables D1, D2, . . . , Dn have a generalised negative binomial distribution we obtain a
random mapping with ‘preferential attachment’, and when they have a binomial Bin(m, p)

distribution, we obtain a random mapping with ‘anti-preferential attachment’. For both of
these natural and interesting examples, the calculus developed for random mappings with
exchangeable in-degrees has been used to obtain the exact and asymptotic distributions for
various structure variables associated with these models. We also note that when the underlying
i.i.d. variables D1, D2, . . . , Dn have a Poisson distribution, then T D̂

n corresponds to the uniform
random mapping model. So, random mappings with exchangeable in-degrees can also be
viewed as a generalisation, in a different direction, of the classical uniform model Tn.

In this paper we show that there is also a calculus for the distributions of the number of
predecessors and the number of successors of a set of vertices A ⊆ [n] in GD̂

n ≡ G(T D̂
n ),

where T D̂
n is a random mapping with exchangeable in-degrees. In Section 2 we show exactly

how these distributions depend on the joint distribution of the exchangeable in-degree variables
D̂1, D̂2, . . . , D̂n for T D̂

n . In Section 3 we apply this calculus to obtain exact formulae for
the distributions of the number of predecessors and the number of successors in the special
examples of mappings with preferential and anti-preferential attachment, respectively. We also
investigate the asymptotic behaviour of the expected value of these distributions. We also note
that the discrete distributions obtained in Section 3 are of general independent interest. Finally,
in Section 4 we discuss the application of our results to the characterisation of the threshold
behaviour of epidemic processes on random mapping digraphs and we suggest directions for
further research.

2. Main results

For any f ∈ Mn, we note that every component of G(f ) consists of a directed cycle with
trees, directed towards the cycle, attached to it. Recall that if there exists an oriented path from
i to j in G(f ) then j is said to be a successor of i while i is said to be a predecessor of j .
More formally, for any f ∈ Mn and any positive integer �, let f (�) denote the �th iterate of f ,
and, for every i ∈ [n], define f (0)(i) ≡ i. Let

Sf (j) ≡ {i ∈ [n] : f (�)(j) = i for some � ≥ 0}
denote the successors of vertex j under f , and let

Pf (i) ≡ {j ∈ [n] : f (�)(j) = i for some � ≥ 0}
denote the predecessors of vertex i under f . Moreover, let

Sf (A) =
⋃
j∈A

Sf (j), Pf (B) =
⋃
i∈B

Pf (i),

i.e. with respect to the mapping f , Sf (A) is the set of all successors of the vertices of A ⊂ [n],
and Pf (B) is the set of all predecessors of the vertices of B ⊂ [n].
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In this paper we are interested in the properties of GD̂
n which are described by the random

variables
sD̂
n (A) = |S

T D̂
n

(A)|, pD̂
n (B) = |P

T D̂
n

(B)|.
We note that it follows from the definition of T D̂

n and the exchangeability of the variables
D̂1, D̂2, . . . , D̂n that the distribution of GD̂

n is invariant under relabelling of the vertices of GD̂
n .

In particular, for any sets A, B ⊂ [n], we have

sD̂
n ([a]) d∼ sD̂

n (A), pD̂
n ([b]) d∼ pD̂

n (B), (2.1)

where a = |A| and b = |B|. Throughout this paper, for any 1 ≤ a ≤ n, sD̂
n [a] will denote the

number of successors in GD̂
n of a given a-element subset of the vertex set of GD̂

n . Similarly, for
any 1 ≤ b ≤ n, pD̂

n [b] will denote the number of predecessors in GD̂
n of a given b-element subset

of the vertex set of GD̂
n . We note from (2.1) that the distributions of sD̂

n [a] and pD̂
n [b] depend

only on the parameters a, b, and n and on the distribution of the variables D̂1, D̂2, . . . , D̂n.
In this section we obtain exact formulae for the distributions of the variables sD̂

n [a] and
pD̂

n [b] defined above. We begin by adopting some additional notation. Given 1 ≤ b ≤ n, we

define the ‘cut’ digraph GD̂
n,b by deleting, for each 1 ≤ i ≤ b, the edge from i to T D̂

n (i) in

GD̂
n , and we let T D̂

n,b denote the mapping from [b + 1, n] ≡ {b + 1, b + 2, . . . , n} to [n] which

corresponds to the directed edges of GD̂
n,b. For 1 ≤ i ≤ n, we also introduce the ‘cut’ variable

D̃i(n, b) ≡ di(G
D̂
n,b), the in-degree of vertex i in the ‘cut’ graph GD̂

n,b. Finally, let Mn,b denote
the set of all mappings h : [b + 1, n] → [n], and, for any nonnegative integers d̃1, d̃2, . . . , d̃n

such that
∑n

i=1 d̃i = n − b, let

Mn,b(d̃1, d̃2, . . . , d̃n) = {
h ∈ Mn,b : di(G(h)) = d̃i , 1 ≤ i ≤ n

}
.

The conditional distribution of T D̂
n,b is given by the following lemma.

Lemma 2.1. Suppose that d̃1, d̃2, . . . , d̃n are nonnegative integers such that
∑n

i=1 d̃i = n − b.
Then, for every h ∈ Mn,b(d̃1, d̃2, . . . , d̃n),

P
{
T D̂

n,b = h | D̃i(n, b) = d̃i , 1 ≤ i ≤ n
} =

(
n − b

d̃1, d̃2, . . . , d̃n

)−1

,

that is, given {D̃i(n, b) = d̃i , 1 ≤ i ≤ n}, the distribution of T D̂
n,b is uniform over

Mn,b(d̃1, d̃2, . . . , d̃n).

Proof. Suppose that d̃1, d̃2, . . . , d̃n are nonnegative integers such that
∑n

i=1d̃i = n−b, and

that d1, d2, . . . , dn are nonnegative integers such that
∑n

i=1di = n and di ≥ d̃i for 1 ≤ i ≤ n.
Then, for every h ∈ Mn,b(d̃1, d̃2, . . . , d̃n), we have

P
{
T D̂

n,b = h
∣∣ D̂i = di, D̃i(n, b) = d̃i , 1 ≤ i ≤ n

}
= P{T D̂

n,b = h | D̂i = di, 1 ≤ i ≤ n}
P{D̃i(n, b) = d̃i , 1 ≤ i ≤ n | D̂i = di, 1 ≤ i ≤ n}

= b!
(d1 − d̃1)! · · · (dn − d̃n)!

[(
(n − b)!
d̃1! · · · d̃n!

)(
b!

(d1 − d̃1)! · · · (dn − d̃n)!
)]−1

=
(

n − b

d̃1, d̃2, . . . , d̃n

)−1

(2.2)
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since, given D̂i = di for 1 ≤ i ≤ n, the distribution of T D̂
n is uniform over Mn(d1, d2, . . . , dn).

It is also clear that∑
�d such that

∑
di=n

di≥d̃i

P
{
D̂i = di, 1 ≤ i ≤ n

∣∣ D̃i(n, b) = d̃i , 1 ≤ i ≤ n
} = 1. (2.3)

The result now follows from (2.2), (2.3), and the total probability theorem.

Next, we give an exact formula for the distribution of pD̂
n [b] in terms of the ‘cut’ variables

D̃1(n, b), D̃2(n, b), . . . , D̃n(n, b).

Proposition 2.1. Suppose that 1 ≤ b ≤ n, and let pD̂
n [b] denote the number of predecessors

of a given b-element subset of the vertex set in GD̂
n . Then, for 0 ≤ t ≤ n − b,

P
{
pD̂

n [b] = b + t
} = b

b + t
P

{b+t∑
i=1

D̃i(n, b) = t

}
.

Proof. It follows from (2.1) that we can assume throughout the proof that the given b-element

subset of vertices is [b] = {1, 2, . . . , b}. Now consider the ‘cut’ digraph GD̂
n,b. Since GD̂

n,b is

obtained by deleting edges from 1 ≤ i ≤ b to T D̂
n (i) in GD̂

n , it follows that GD̂
n,b is, in general,

a disjoint union of F (T D̂
n,b), a directed forest of trees rooted at the vertices labelled 1, 2, . . . , b,

and of components which consist of directed cycles with directed trees attached. It follows

from the definition of GD̂
n,b that P

T D̂
n

([b]) is the vertex set of F (T D̂
n,b), and so

pD̂
n [b] = ∣∣F (

T D̂
n,b

)∣∣. (2.4)

Now suppose that t = 0. It follows from (2.4) that

P
{
pD̂

n [b] = b
} = P

{∣∣F (
T D̂

n,b

)∣∣ = b
}

= P
{
D̃i(n, b) = 0 for 1 ≤ i ≤ b

}
= P

{ b∑
i=1

D̃i(n, b) = 0

}
.

So the result holds for t = 0.
Next, suppose that 1 ≤ t ≤ n−b. Since the distribution of GD̂

n is invariant under relabelling
of the vertices, we have

P
{
pD̂

n [b] = b + t
} =

(
n − b

t

)
P{P

T D̂
n

([b]) = [b + t]}. (2.5)

Let A(b, t, n, D̂) denote the event that F (T D̂
n,b) is a directed forest on [b + t] which is rooted

on [b]. Then we have

P{P
T D̂

n
([b]) = [b + t]}

= P{A(b, t, n, D̂)}

= P

{
A(b, t, n, D̂)

∣∣∣∣
b+t∑
i=1

D̃i(n, b) = t

}
P

{b+t∑
i=1

D̃i(n, b) = t

}
. (2.6)

We use the following lemma to compute the right-hand side of (2.6).
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Lemma 2.2. Suppose that 1 ≤ b ≤ n and 1 ≤ t ≤ n − b, and that d̃1, d̃2, . . . , d̃b+t are
nonnegative integers such that

∑b
i=1 d̃i ≥ 1 and

∑b+t
i=1 d̃i = t . Then the number of directed

forests on [b + t], rooted at [b], with in-degree sequence given by d̃1, d̃2, . . . , d̃b+t , is equal to

(t − 1)!
d̃1! d̃2! · · · d̃b+t !

b∑
i=1

d̃i ,

where we interpret 0! = 1.

Proof. Suppose that 1 ≤ b ≤ n and 1 ≤ t ≤ n − b, and that d̃1, d̃2, . . . , d̃b+t are
nonnegative integers such that

∑b
i=1 d̃i ≥ 1 and

∑b+t
i=1 d̃i = t . Let Tb,t (d̃1, d̃2, . . . , d̃b+t )

denote the set of directed forests on 1, 2, . . . , b+t , rooted at 1, 2, . . . , b with in-degree sequence
d̃1, d̃2, . . . , d̃b+t , and let S(d̃1, d̃2, . . . , d̃b+t ) denote the set of sequences of length t such that
each 1 ≤ i ≤ b + t appears d̃i times in the sequence and the last term in the sequence is some
i ∈ [b]. Using a straightforward adaptation of the Prüfer tree code (see [26] and also [10]),
we obtain a bijection between Tb,t (d̃1, d̃2, . . . , d̃b+t ) and S(d̃1, d̃2, . . . , d̃b+t ). The lemma now
follows since

S
(
d̃1, d̃2, . . . , d̃b+t

) = (t − 1)!
d̃1! d̃2! · · · d̃b+t !

b∑
i=1

d̃i .

We note that Lemma 2.2 can also be proved by appealing to Moon’s formula (see [20]) for the
number of trees with a given degree sequence.

To complete the proof of Proposition 2.1, suppose that d̃1, d̃2, . . . , d̃n are nonnegative integers
such that

(C1)
∑b

i=1 d̃i ≥ 1,

(C2)
∑b+t

i=1 d̃i = t ,

(C3)
∑n

i=b+t+1 d̃i = n − b − t .

Then it follows from Lemma 2.1 and Lemma 2.2 that

P
{
A(b, t, n, D̂)

∣∣ D̂i(n, b) = d̃i , 1 ≤ i ≤ n
}

= (t − 1)! ∑b
i=1 d̃i

d̃1! d̃2! · · · d̃b+t !
(n − b − t)!

d̃b+t+1! · · · d̃n!
/

(n − b)!
d̃1! d̃2! · · · d̃n!

=
(

n − b

t

)−1 1

t

b∑
i=1

d̃i . (2.7)

Finally, let d̃(b, t, n) denote the set of vectors (d̃1, d̃2, . . . , d̃n) that satisfy conditions (C1)–(C3).
Then it follows from (2.7) that

P

{
A(b, t, n, D̂)

∣∣∣∣
b+t∑
i=1

D̃i(n, b) = t

}

=
∑

(d̃1,d̃2,...,d̃n)∈d̃(b,t,n)

(
n − b

t

)−1(1

t

b∑
i=1

d̃i

)

× P

{
D̃i(n, b) = d̃i , 1 ≤ i ≤ n

∣∣∣∣
b+t∑
i=1

D̃i(n, b) = t

}
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=
(

n − b

t

)−1 1

t
E

( b∑
i=1

D̃i(n, b)

∣∣∣∣
b+t∑
i=1

D̃i(n, b) = t

)

=
(

n − b

t

)−1
b

b + t
. (2.8)

The last equation in (2.8) follows from the exchangeability of the variables D̃1(n, b), D̃2(n, b),

. . . , D̃n(n, b). The result now follows from (2.5), (2.6), and (2.8).

Theorem 2.1. Let pD̂
n [b] denote the number of predecessors of a given b-element subset of the

vertex set in GD̂
n . Then, for 0 ≤ t ≤ n − b,

P
{
pD̂

n [b] = b + t
} =

(
n − b

t

)
b

b + t

b∑
j=0

(
b
j

)
(

n
t+j

)P

{b+t∑
i=1

D̂i = j + t

}
.

Moreover,

E
(
pD̂

n [b]) = b + b

n−b∑
k=1

(n − b)k

(n)k
E

(
D̂1D̂2 · · · D̂k

)
.

Proof. As in the proof of Proposition 2.1, we can assume without loss of generality that the
given subset of vertices is [b] = {1, 2, . . . , b}. From Proposition 2.1, we have

P
{
pD̂

n [b] = b + t
}

= b

b + t
P

{b+t∑
i=1

D̃i(n, b) = t

}

= b

b + t

b∑
j=0

P

{b+t∑
i=1

D̃i(n, b) = t

∣∣∣∣
b+t∑
i=1

D̂i = j + t

}
P

{b+t∑
i=1

D̂i = j + t

}
. (2.9)

To compute the conditional probability in (2.9), it is convenient to introduce the following
urn process. Start with an urn that contains D̂i balls labelled i for 1 ≤ i ≤ n. Select balls
sequentially from the urn such that at each step a ball is selected uniformly and at random from
the balls still in the urn. This process generates a random mapping from [n] to [n] which is
defined by mapping k ∈ [n] to the label of the ball removed from the urn at the kth step. It is
straightforward to check that this random mapping and T D̂

n have the same distribution. It is also
clear that we can define the ‘cut’ variables D̃i(n, b) in terms of this urn scheme. Specifically,
for 1 ≤ i ≤ n, D̃i(n, b) equals the number of balls labelled i that are left in the urn after the
first b have been removed. So, given that

∑b+t
i=1D̂i = j + t , we obtain

∑b+t
i=1 D̃i(n, b) = t if

and only if in the first b draws from the urn, we choose exactly b − j balls with labels that are
greater than b + t (and j balls with labels that are not greater than b + t). It follows that

P

{b+t∑
i=1

D̃i(n, b) = t

∣∣∣∣
b+t∑
i=1

D̂i = j + t

}
=

(
j+t
j

)(
n−t−j
b−j

)
(
n
b

) =
(

n − b

t

) (
b
j

)
(

n
j+t

) .

The first result now follows by substitution into (2.9).
To obtain the formula for the expectation of the number of predecessors pD̂

n [b], we
define, for i = b + 1, . . . , n, Ii[b] to be the indicator variable corresponding to the event

https://doi.org/10.1239/jap/1378401232 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401232


728 J. C. HANSEN AND J. JAWORSKI

Ai[b] = ⋃b
j=1 Ai,j [b], where Ai,j [b] is the event that there is a path from i to j in GD̂

n for
which all internal vertices are in {b + 1, . . . , n}. It is clear that, for b + 1 ≤ i ≤ n, the events
Ai,1[b], Ai,2[b], . . . ,Ai,b[b] are disjoint, so

E
(
pD̂

n [b]) = E

(
b +

n∑
i=b+1

Ii[b]
)

= b +
n∑

i=b+1

b∑
j=1

P{Ai,j [b]}

= b + b(n − b)P{Ab+1,1[b]}. (2.10)

Now observe that

P{Ab+1,1[b]} =
n−b∑
k=1

P{Ab+1,1(k, [b])}, (2.11)

where Ab+1,1(k, [b]) denotes the event that there is a path with k directed edges from b + 1

to 1 in GD̂
n for which all internal vertices are in {b + 1, . . . , n}. Finally, we note that, using the

same approach as in [10], we have

P{Ab+1,1(k, [b])} =
(

n − b − 1

k − 1

)
(k − 1)! 1

(n)k
E

(
D̂1D̂2 · · · D̂k

)
. (2.12)

The result now follows from (2.10)–(2.12).

To obtain the distribution of sD̂
n [a], we exploit the following ‘duality’ (see [16]) between

the successors and predecessors of T D̂
n . For any A ⊆ [n] and B ⊆ [n] \ A, with |A| = a and

|B| = b,
B ⊆ [n] \ S

T D̂
n

(A) if and only if A ⊆ [n] \ P
T D̂

n
(B), (2.13)

since each of the inclusions in (2.13) is equivalent to the statement that no vertex in B is
‘reachable’ from A, and, therefore,

P{B ⊆ [n] \ S
T D̂

n
(A)} = P{A ⊆ [n] \ P

T D̂
n

(B)}. (2.14)

We also note that, since the distribution of GD̂
n is invariant under relabelling of the vertices, we

have
P{B ⊆ [n] \ S

T D̂
n

(A)} = P{B ′ ⊆ [n] \ S
T D̂

n
(A)} (2.15)

for any other B ′ ⊆ [n] \ A such that |B ′| = b. It follows from (2.1) and (2.15) that, since
the random variable n − sD̂

n (A) can be expressed as a sum of indicators of events that a given
vertex is not a successor of A, we have

(n − a)bP{B ⊆ [n] \ S
T D̂

n
(A)} = Eb

(
n − sD̂

n (A)
) = Eb

(
n − sD̂

n [a]), (2.16)

where Et (X) denotes the t th factorial moment of the random variable X. By a similar argument,
we also have

(n − b)aP{A ⊆ [n] \ P
T D̂

n
(B)} = Ea

(
n − pD̂

n (B)
) = Ea

(
n − pD̂

n [b]). (2.17)

Equations (2.14), (2.16), and (2.17) give us the following useful relation between the number
of successors of the vertices A ⊆ [n], |A| = a, and the number of predecessors of the vertices
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B ⊆ [n] \ A, |B| = b, in terms of factorial moments:

Ea(n − pD̂
n [b])

(n − b)a
= Eb(n − sD̂

n [a])
(n − a)b

. (2.18)

Using Theorem 2.1 and (2.16)–(2.18), we obtain the exact formulae for the distribution and
expected value of the number of successors of the vertices labelled 1, 2, . . . , a in GD̂

n .

Theorem 2.2. Let sD̂
n [a] denote the number of successors of a given a-element subset of the

vertex set in GD̂
n . Then, for 0 ≤ s ≤ n − a,

P
{
sD̂
n [a] = a + s

} =
(

n − a

s

) s∑
j=0

(
s

j

)
(−1)j

s−j∑
t=0

(
s − j

t

)
n + j − a − s

n + j − a − s + t

×
n+j−a−s∑

i=0

(
n+j−a−s

i

)
(

n
t+i

) P

{n+j−a−s+t∑
k=1

D̂k = i + t

}
.

Moreover,

E
(
sD̂
n [a]) = n −

n−1−a∑
j=0

(n − a)j+1

(n)j+1

n − j

j + 1
P

{j+1∑
k=1

D̂k = j

}

−
n−1−a∑
j=0

(n − a)j+1

(n)j+1
P

{j+1∑
k=1

D̂k = j + 1

}
.

Proof. Again, it follows from (2.1) that we can assume throughout the proof that the given
a-element subset of vertices is [a] = {1, 2, . . . , a}. The result now follows from inclusion–
exclusion, (2.14), and (2.16):

P
{
sD̂
n [a] = a + s

}
= P

{
n − sD̂

n [a] = n − a − s
}

=
n−a∑

b=n−a−s

(
b

n − a − s

)
(−1)b−n+a+s Eb(n − sD̂

n [a])
b!

=
n−a∑

b=n−a−s

(
n − a

b

)(
b

n − a − s

)
(−1)b−n+a+s

P{[a] ⊆ [n] \ P
T D̂

n
([a + 1, a + b])}

=
n−a∑

b=n−a−s

(
n − a

b

)(
b

n − a − s

)
(−1)b−n+a+s

×
n−a−b∑

t=0

(
n − a − b

t

)
P{P

T D̂
n

([a + 1, a + b]) = [a + 1, a + b + t]}

=
n−a∑

b=n−a−s

(
n − a

b

)(
b

n − a − s

)
(−1)b−n+a+s

×
n−a−b∑

t=0

(
n − a − b

t

)(
n − b

t

)−1

P
{
pD̂

n [b] = b + t
} (2.19)
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=
(

n − a

s

) s∑
j=0

(
s

j

)
(−1)j

s−j∑
t=0

(
s − j

t

)
n + j − a − s

n + j − a − s + t

×
n+j−a−s∑

i=0

(
n+j−a−s

i

)
(

n
t+i

) P

{n+j−a−s+t∑
k=1

D̂k = i + t

}
.

The formula for the expected value of sD̂
n [a] follows immediately from Theorem 2.1 since by

(2.18) we have

E
(
sD̂
n [a]) = n −

n−1−a∑
j=0

(n − a)j+1

(n − 1)j
P
{
pD̂

n [1] = j + 1
}
. (2.20)

3. Examples

In this section we consider the application of our main results to the digraph structure of
random mappings with preferential attachment and anti-preferential attachment.

3.1. Random mappings with preferential attachment

The definition of random mappings with preferential attachment is based upon the following
sequential urn scheme. Start with n urns, numbered 1 to n and each containing a ball with
weight ρ, where ρ > 0 is fixed. Urns are sequentially selected and balls are added to the urns
as follows. At each stage, for 1 ≤ i ≤ n, the probability that urn i is selected is proportional to
the weight of the balls in urn i. If urn i is selected at some stage then a ball of weight 1 is added
to urn i before the next urn selection is made. We define the random mapping T

ρ
n : [n] → [n]

based on the first n selections in the scheme defined above. Specifically, we define

T ρ
n (i) = j

for 1 ≤ i, j ≤ n if on the ith selection, urn j is chosen.
In order to determine the distributions of the numbers of predecessors and successors of a

set of vertices in G
ρ
n ≡ G(T

ρ
n ), we use the fact (see [11]) that T

ρ
n has the same

distribution as a random mapping T
D̂(ρ,n)
n , with exchangeable in-degree sequence D̂(ρ, n) =

(D̂
ρ
1,n, D̂

ρ
2,n, . . . , D̂

ρ
n,n) defined as follows. Suppose that Dρ

1 , D
ρ
2 , . . . are i.i.d. random variables

with a generalized negative binomial distribution given by

P
{
D

ρ
1 = k

} = ρ(k)

k!
(

ρ

1 + ρ

)ρ(
1

1 + ρ

)k

for k = 0, 1, . . . , (3.1)

where ρ is a positive parameter and x(j) = x(x + 1) · · · (x + j − 1). Then, for n ≥ 1, let
D̂(ρ, n) = (D̂

ρ
1,n, D̂

ρ
2,n, . . . , D̂

ρ
n,n) be a sequence of variables with joint distribution given by

P
{
D̂

ρ
i,n = di, 1 ≤ i ≤ n

} = P

{
D

ρ
i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

D
ρ
i = n

}
. (3.2)

We note that, since T
ρ
n

d∼ T
D̂(ρ,n)
n , we also have

sρ
n [a] d∼ sD̂(ρ,n)

n [a], pρ
n [b] d∼ pD̂(ρ,n)

n [b],
where s

ρ
n [a] and p

ρ
n [b] denote the number of successors and the number of predecessors,

respectively, of given a-element and b-element vertex subsets in G
ρ
n . Thus, we can determine

the distributions of s
ρ
n [a] and p

ρ
n [b] by appealing to Theorems 2.1 and 2.2 applied to G

D̂(ρ,n)
n .
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Theorem 3.1. Suppose that 1 ≤ b ≤ n, and let p
ρ
n [b] denote the number of predecessors of

the vertices from a given b-element subset of the vertex set in G
ρ
n . Then, for 0 ≤ t ≤ n − b,

P
{
pρ

n [b] = b + t
} =

(
n − b

t

)
b

b + t

(ρ(b + t))(t)(ρ(n − b − t))(n−b−t)

(ρn)(n−b)
.

Moreover,

E
(
pρ

n [b]) = b

n−b∑
k=0

ρk (n − b)k

(ρn)(k)
.

Proof. Suppose that 1 ≤ b ≤ n are fixed integers and that ρ > 0 is fixed. Since

T
ρ
n

d∼ T
D̂(ρ,n)
n , where the distribution of D̂(ρ, n) is given by (3.2), we have, for 0 ≤ t ≤ n− b,

P
{
pρ

n [b] = b + t
} = P

{
pD̂(ρ,n)

n [b] = b + t
}
. (3.3)

Next we note that it follows from the definition of the i.i.d. variables D
ρ
1 , D

ρ
2 , . . . that, for any

integers k ≥ 0 and m ≥ 1,

P

{ m∑
i=1

D
ρ
i = k

}
= (ρm)(k)

k!
(

ρ

1 + ρ

)ρm(
1

1 + ρ

)k

. (3.4)

So, it follows from (3.2) and (3.4) that

P

{b+t∑
i=1

D̂
ρ
i,n = j + t

}

= P{∑b+t
i=1 D

ρ
i = j + t}P{∑n

i=b+t+1 D
ρ
i = n − j − t}

P{∑n
i=1 D

ρ
i = n}

=
(

n

j + t

)
(ρ(b + t))(j+t)(ρ(n − b − t))(n−j−t)

(ρn)(n)

=
(

n

j + t

)
(ρ(b + t))(t)(ρ(n − b − t))(n−b−t)

(ρn)(n)

× (t + ρ(b + t))(j)(n − b − t + ρ(n − b − t))(b−j). (3.5)

The thesis now follows from (3.3), (3.5), Theorem 2.1, and the identity

b∑
j=0

(
b

j

)
x(j)y(b−j) = (x + y)(b)

(which follows from the fact that rising factorials are Sheffer sequences of binomial type;
see [28]). The formula for the expectation of p

ρ
n [b] follows from Theorem 2.1 since (see [10])

E
(
D̂

ρ
1,nD̂

ρ
2,n · · · D̂ρ

k,n

) = ρk (n)k

(ρn)(k)
.

We note that the distribution above is closely related to quasi-hypergeometric distribution I
(see [7], [18], and the references therein). One can easily check that the results for the moments
obtained for this distribution formally coincide with the results for the number of predecessors,
but the parameters in our model are outside the range of parameters usually given for these
distributions.
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In order to describe the asymptotic behaviour of E(p
ρ
n [b]) as n → ∞, we introduce a

function f : R
2+ → R which is defined by

f (c, α) = c exp

(
αc2

2

) ∫ ∞

αc

exp

(−u2

2α

)
du. (3.6)

We note that it is an exercise in calculus to show that, for fixed α > 0, f (c, α) increases to 1 as
c → ∞. Using this fact and straightforward asymptotic calculations, we obtain the following
result from Theorem 3.1.

Corollary 3.1. Suppose that ρ > 0 is fixed.

(i) If b = o(
√

n) then

E
(
pρ

n [b]) ∼ b

√
ρπn

2(1 + ρ)
.

(ii) If c > 0 is fixed and b = �c√n�, then

E
(
pρ

n [b]) ∼ f

(
c,

ρ

1 + ρ

)
n,

where f is as defined by (3.6).

Theorem 3.2. Let sρ
n [a] denote the number of successors of the vertices from a given a-element

subset of the vertex set in G
ρ
n . Then, for 0 ≤ s ≤ n − a,

P
{
sρ
n [a] = a + s

} =
(

n − a

s

)
(a + s)(ρ + 1) − 1

(ρn)(a+s)

s∑
j=0

(
s

j

)
(−1)j (ρ(a + s − j))(a+s−1).

Moreover,

E
(
sρ
n [a]) = n −

n−a∑
j=1

(
n − a

j

)
(ρj)(j−1)(ρ(n − j))(n−j)

(ρn)(n−1)
.

Proof. The distribution for s
ρ
n [a] is obtained from (2.19) and Theorem 3.1 via some

manipulation of the summations. For completeness, the main steps of these manipulations
are included for the reader:

P
{
sρ
n [a] = a + s

} =
(

n − a

s

) n−a∑
b=n−a−s

(
s

n − a − b

)
(−1)b−n+a+s

×
n−a−b∑

t=0

(
n − a − b

t

)
b

b + t

(ρ(b + t))(t)(ρ(n − b − t))(n−b−t)

(ρn)(n−b)

=
(

n − a

s

) s∑
j=0

(
s

j

)
(−1)j

s−j∑
t=0

(
s − j

t

)
n + j − a − s

n − a − t

× (ρ(n − a − t))(s−j−t)(ρ(a + t))(a+t)

(ρn)(a+s−j)

=
(

n − a

s

) s∑
t=0

(
s

t

)
(ρ(a + t))(a+t)

×
s−t∑
j=0

(
s − t

j

)
(−1)s−t−j n + j − a − s

n − a − t

(ρ(n − a − t))(j)

(ρn)(a+t+j)
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=
(

n − a

s

) s∑
t=0

(
s

t

)
(−1)s−t (ρ(a + t))(a+t)

(ρn)(a+t)

×
[ s−t∑

j=0

(
s − t

j

)
(−1)j

(ρ(n − a − t))(j)

(ρn + a + t)(j)

+ ρ(s − t)

ρn + a + t

s−t∑
j=1

(
s − t − 1

j − 1

)
(−1)j−1 (ρ(n − a − t) + 1)(j−1)

(ρn + a + t + 1)(j−1)

]

=
(

n − a

s

) s∑
t=0

(
s

t

)
(−1)s−t (ρ(a + t))(a+t)

(ρn)(a+t)

×
[ s−t∑

j=0

(
s − t

j

)
(−1)j

(ρ(n − a − t))(j)

(ρn + a + t)(j)

+ ρ(s − t)

ρn + a + t

s−t−1∑
j=0

(
s − t − 1

j

)
(−1)j

(ρ(n − a − t) + 1)(j)

(ρn + a + t + 1)(j)

]
.

Now, using the identity

N∑
j=0

(
N

j

)
(−1)j

x(j)

(x + y)(j)
= y(N)

(x + y)(N)
,

which follows from Gauss’s hypergeometric theorem (see [1], and also Frisch’s identity in [9]),
we obtain

s−t∑
j=0

(
s − t

j

)
(−1)j

(ρ(n − a − t))(j)

(ρn + a + t)(j)
= ((1 + ρ)(a + t))(s−t)

(ρn + a + t)(s−t)
.

Similarly,

s−t−1∑
j=0

(
s − t − 1

j

)
(−1)j

(ρ(n − a − t) + 1)(j)

(ρn + a + t + 1)(j)
= ((1 + ρ)(a + t))(s−t−1)

(ρn + a + t + 1)(s−t−1)
.

Hence,

P
{
sρ
n [a] = a + s

}
=

(
n − a

s

) s∑
t=0

(
s

t

)
(−1)s−t (ρ(a + t))(a+t)

(ρn)(a+t)

× ((1 + ρ)(a + t))(s−t−1)

(ρn + a + t)(s−t)
[s + a + ρ(a + t) − 1 + ρ(s − t)]

=
(

n − a

s

)
(1 + ρ)(s + a) − 1

(ρn)(a+t)

s∑
j=0

(
s

j

)
(−1)j (ρ(a + s − j))(a+s−1).

Finally, the formula for the expectation of s
ρ
n [a] follows from (2.20) and Theorem 3.1 for b = 1.
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Corollary 3.2. Suppose that a = o(n) and ρ > 0 is fixed. Then

lim
n→∞

E(s
ρ
n [a])
n

= 0.

Proof. Suppose that ρ > 0 is fixed and a = o(n). Then we obtain, from (2.20),

E
(
sρ
n [a]) = n − (n − a)

n−a−1∑
j=0

(n − a − 1)j

(n − 1)j
P{pρ

n [1] = j + 1}. (3.7)

It also follows from Theorem 3.1 that, for fixed ρ > 0 and any fixed integer j > 0,

lim
n→∞ P

{
pρ

n [1] = j + 1
} = ρ

(ρ + 1)j + ρ

(
(ρ + 1)(j + 1)

j

)(
1

1 + ρ

)j(
ρ

ρ + 1

)(ρ+1)j+ρ−j

.

So, for any ε > 0, there is some integer �(ε) > 0 such that, for all large n,

P
{
pρ

n [1] ≤ �(ε)
} ≥ 1 − ε, (3.8)

and it follows from (3.7) and (3.8) that

E
(
sρ
n [a]) ≤ n − (n − a)

(n − a − 1)�(ε)

(n − 1)�(ε)
P{pρ

n [1] ≤ �(ε)}

≤ n − (n − a)
(n − a − 1)�(ε)

(n − 1)�(ε)
(1 − ε). (3.9)

The result follows since we obtain, from (3.9),

lim
n→∞

E(s
ρ
n [a])
n

≤ ε.

3.2. Random mappings with anti-preferential attachment

In this section we consider the digraph structure of random mappings with anti-preferential
attachment. Random mappings with anti-preferential attachment were introduced in [11] and
can be described as follows. Start with n urns, numbered 1 to n, each containing m ≥ 1 balls,
where m is a fixed integer. Balls are removed one at a time and at random from the urns in
such a way that the probability that a ball is removed from urn j in a given draw is equal to the
number of balls in urn j before the draw divided by the total number of balls still in the urns
before the draw. Then, for 1 ≤ i, j ≤ n, we define T m

n (i) = j if a ball is removed from the j th
urn on the ith draw.

As in the case of random mappings with preferential attachment, it is known (see [11])
that T m

n has the same distribution as a random mapping T
D̂(m,n)
n , with exchangeable in-degree

sequence D̂(m, n) = (D̂m
1,n, D̂

m
2,n, . . . , D̂

m
n,n) defined as follows. Suppose that Dm

1 , Dm
2 , . . . are

i.i.d. random variables with a binomial distribution Bin(m, p). Then, for n ≥ 1, let D̂(m, n) =
(D̂m

1,n, D̂
m
2,n, . . . , D̂

m
n,n) be a sequence of variables with joint distribution given by

P
{
D̂m

i,n = di, 1 ≤ i ≤ n
} = P

{
Dm

i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Dm
i = n

}
. (3.10)

https://doi.org/10.1239/jap/1378401232 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401232


Predecessors and successors in random mappings 735

Again, since T m
n

d∼ T
D̂(m,n)
n , we also have

sm
n [a] d∼ sD̂(m,n)

n [a], pm
n [b] d∼ pD̂(m,n)

n [b],
where sm

n [a] and pm
n [b] denote the number of successors and the number of predecessors,

respectively, of given a-element and b-element vertex subsets in Gm
n ≡ G(T m

n ). Thus, as in
the case of preferential mappings, we can determine the distributions of sm

n [a] and pm
n [b] by

appealing to Theorems 2.1 and 2.2 applied to G
D̂(m,n)
n .

Theorem 3.3. Let pm
n [b] denote the number of predecessors of the vertices from a given

b-element subset of the vertex set in Gm
n . Then, for 0 ≤ t ≤ n − b,

P
{
pm

n [b] = b + t
} =

(
n − b

t

)
b

b + t

(m(b + t))t (m(n − b − t))n−b−t

(mn)n−b

.

Moreover,

E
(
pm

n [b]) = b

n−b∑
k=0

mk (n − b)k

(nm)k
.

Proof. Suppose that 1 ≤ b ≤ n and m ≥ 1 are fixed integers. Since T m
n

d∼ T
D̂(m,n)
n , where

the distribution of D̂(m, n) is given by (3.10), we have, for 0 ≤ t ≤ n − b,

P
{
pm

n [b] = b + t
} = P

{
pD̂(m,n)

n [b] = b + t
}
. (3.11)

Next, we note that

P

{b+t∑
i=1

D̂m
i,n = j + t

}

= P{∑b+t
i=1 Dm

i = j + t}P{∑n
i=b+t+1 Dm

i = n − j − t}
P{∑n

i=1 Dm
i = n}

=
(
(b+t)m

j+t

)
pj+t (1 − p)(b+t)m−j−t

(
(n−b−t)m

n−j−t

)
pn−j−t (1 − p)(n−b−t)m−n+j+t(

nm
n

)
pn(1 − p)nm−n

=
(

n

j + t

)
((b + t)m)j+t ((n − b − t)m)n−j−t

(nm)n

=
(

n

j + t

)
((b + t)m)t ((n − b − t)m)n−b−t

(nm)n

× ((b + t)m − t)j ((n − b − t)m − n + b + t)b−j .

Equation (3.11), Theorem 2.1, and Vandermonde’s identity,

b∑
j=0

(
b

j

)
(x)j (y)b−j = (x + y)b

(which follows from the fact that the falling factorials are also Sheffer sequences of binomial
type), lead immediately to the thesis. The formula for the expectation of p

ρ
n [b] follows from

Theorem 2.1 since (see [10])

E
(
D̂m

1,nD̂
m
2,n · · · D̂m

k,n

) = mk (n)k

(nm)k
.
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We note that the distribution above is closely related to quasi-Pólya distribution I (see [7],
[18], and the references therein). One can easily check that the results for the moments obtained
for this distribution formally coincide with the results for the number of predecessors, but the
parameters in our model are outside the range of parameters usually given for these distributions.

Using straightforward asymptotic calculations, we obtain the following result from
Theorem 3.3.

Corollary 3.3. Suppose that m ≥ 2 is a fixed integer.

(i) If b = o(
√

n) then

E
(
pm

n [b]) ∼ b

√
mnπ

2(m − 1)
.

(ii) If c > 0 is fixed and b = �c√n�, then

E
(
pm

n [b]) ∼ f

(
c,

m

m − 1

)
n,

where f is as defined by (3.6).

Theorem 3.4. Let sm
n [a] denote the number of successors of the vertices from a given a-element

subset of the vertex set in Gm
n . Then, for 0 ≤ s ≤ n − a,

P
{
sm
n [a] = a + s

} =
(

n − a

s

) s∑
j=0

(
s

j

)
(−1)j

(m − 1)(a + s) + j

(mn)a+s

(m(a + s − j))a+s−1.

Moreover,

E
(
sm
n [a]) = n −

n−a∑
j=1

(
n − a

j

)
(mj)j−1(m(n − j))n−j

(mn)n−1
.

Proof. First, we note that by (2.19) we have

P
{
sm
n [a] = a + s

} =
n−a∑

b=n−a−s

(
n − a

b

)(
b

n − a − s

)
(−1)b−n+a+s

×
n−a−b∑

t=0

(
n − a − b

t

)(
n − b

t

)−1

P
{
pm

n [b] = b + t
}
.

Next, applying Theorem 3.3 and manipulating the summations above as in the proof of
Theorem 3.2, we obtain

P
{
sm
n [a] = a + s

}
=

(
n − a

s

) s∑
t=0

(
s

t

)
(−1)s−t (m(a + t))a+t

(mn)a+t

×
[ s−t∑

j=0

(
s − t

j

)
(−1)j

(m(n − a − t))j

(mn − a − t)j

+ m(s − t)

mn − a − t

s−t−1∑
j=0

(
s − t − 1

j

)
(−1)j

(m(n − a − t) − 1)j

(mn − a − t − 1)j

]
.
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Now, using the identity

N∑
j=0

(
N

j

)
(−1)j

(x)j

(y + x)j
= (y)N

(x + y)N
,

which also follows from Gauss’s hypergeometric theorem (see [1] and also [9]), we obtain

s−t∑
j=0

(
s − t

j

)
(−1)j

(m(n − a − t))j

(mn − a − t)j
= ((m − 1)(a + t))s−t

(mn − a − t)s−t

.

Similarly,

m(s − t)

mn − a − t

s−t−1∑
j=0

(
s − t − 1

j

)
(−1)j

(m(n − a − t) − 1)j

(mn − a − t − 1)j

= m(s − t)

mn − a − t

((m − 1)(a + t))s−t−1

(mn − a − t − 1)s−t−1

= m(s − t)
((m − 1)(a + t))s−t−1

(mn − a − t)s−t

.

Hence,

P
{
sm
n [a] = a + s

}
=

(
n − a

s

) s∑
t=0

(
s

t

)
(−1)s−t (m(a + t))a+t

(mn)a+t

× ((m − 1)(a + t))s−t−1

(mn − a − t)s−t

[(m − 1)(a + t) − s + t + 1 + m(s − t)]

=
(

n − a

s

)
(m − 1)(a + s) + 1

(mn)a+s

s∑
j=0

(
s

j

)
(−1)j (m(a + s − j))a+s−1.

Finally, the formula for the expectation of sm
n [a] follows from (2.20) and Theorem 3.3 for b = 1.

Corollary 3.4. Suppose that a = o(n) and m > 1 is a fixed positive integer. Then

lim
n→∞

E(sm
n [a])
n

= 0.

Proof. The proof of the result is analogous to the proof of Corollary 3.2 and follows from
the fact that, in this case, for fixed j ≥ 0,

lim
n→∞ P

{
pm

n [1] = j + 1
} = 1

(m − 1)j

(
mj + m

m

)
1

j + 1

(
1 − 1

m

)mj+m

.

4. Final remarks and discussion

In this paper we have shown that, for a random mapping, T D̂
n , with exchangeable in-degrees,

the exact distributions and expected values of the numbers of successors and of predecessors
of a set of vertices A in GD̂

n can be expressed in terms of the joint distribution of the in-degree
variables D̂1, D̂2, . . . , D̂n. Since the uniform random mapping Tn is a special case of the
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model T D̂
n , our results immediately generalise the known results for Tn. As an application of

these results, we have also obtained the distributions of these variables for the important special
examples, T

ρ
n and T m

n , of random mappings with preferential and anti-preferential attachment,
respectively. We note that these results generalise earlier work in [10] on the numbers of
successors and predecessors of a single vertex in T

ρ
n and T m

n , respectively. However, different
techniques were required in this paper and the results obtained above, along with the results
in [10], lead to interesting identitites when we consider the predecessors and successors of a
single vertex. In addition, we have characterised for T

ρ
n and T m

n the asymptotic behaviour of the
expected values of the numbers of predecessors and successors. We note that, for these models,
one can also consider the asymptotic distributions of these variables, but these calculations are
outside the scope of this paper.

In this paper we also characterised the asymptotic behaviour of the expected value for the
numbers of predecessors and of successors in a random mapping because this behaviour is
closely related to the threshold behaviour of epidemic processes on random mapping digraphs.
Specifically, suppose that T̃n : [n] → [n] is a random mapping which is represented by the
random digraph G(T̃n) and suppose that some a-element subset A of the vertices [n] are initially
infected with a contagious disease and the disease spreads to other elements of [n] along arcs
of the random digraph G(T̃n). Three types of epidemic process can be considered depending
upon the way in which the disease spreads. If it spreads only forward, that is, in the direction of
orientation of the arcs, it is called a direct epidemic process (DEP). If it spreads only backward,
it is called an inverse epidemic process (IEP). If it spreads in both directions, the process is
termed a two-sided epidemic process (TEP). Clearly, the total numbers of elements which are
eventually infected in DEP, IEP, and TEP on a digraph G(T̃n) are given as the cardinalities of
sets of all successors, all predecessors of elements from A, and the set of all vertices in the
connected components to which elements from A belong, respectively. Following Gertsbakh
[9], a function hIEP = hIEP(T̃n) is called the threshold for IEP on G(T̃n) representing a random
mapping T̃n if, for a fixed γ, 0 < γ < 1,

lim
n→∞ P{p

T̃n
[h] > γn} =

{
0 if h = o(hIEP),

1 if hIEP = o(h).

Similarly, threshold functions hDEP and hTEP can be defined for DEP and TEP, respectively. We
note that, for uniform random mappings, the exact and asymptotic distributions for the number
of predecessors of elements from a given set of vertices for the uniform models were given by
Burtin [6]. The respective results for successors were given by Berg [3], [4] and Pittel [25],
who also gave the results related to TEP. The solution to the main problem stated by Gertsbakh,
namely, to find the thresholds for DEP, IEP, and TEP, follows immediately from these results
(some results concerning the thresholds were given independently by Mutafchiev [21], [22]). In
the case of random mappings with preferential or anti-preferential attachment, we can conclude
from the asymptotic results for the expected value of the numbers of successors and predecessors
that, when the parameters ρ and m are fixed, we obtain, for both G

ρ
n and Gm

n ,

• hDEP = n, i.e. there is no proper threshold function for DEP on G
ρ
n and Gm

n ,

• hIEP = √
n for both G

ρ
n and Gm

n .

It is also known (see [11]) that, for both G
ρ
n and Gm

n , with ρ and m fixed, the size of the
component that contains vertex 1 is O(n). So, for both G

ρ
n and Gm

n , we have

• hTEP = 1, i.e. there is no proper threshold function for TEP on G
ρ
n and Gm

n .
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In light of the results obtained in this paper, it would be interesting to investigate in more detail
the asymptotic behaviour of the distributions of the numbers of predecessors and of successors
in the random digraphs G

ρ
n and Gm

n . In particular, we would like to study how the limiting
distributions depend on the parameters ρ and m and on the size of the set of ‘infected’ vertices
as n → ∞. For example, complementary results (see [12]) on the component structure of G

ρ
n

suggest that the limiting distributions for p
ρ
n [b] and s

ρ
n [a] will depend on whether ρn → ∞ or

ρn → β > 0 or ρn → β = 0 as n → ∞ as well as on the size of a and b as a function of n. In
the case of random mappings with anti-preferential attachment, there are qualitative changes in
the component structure in models which lie in a continuum between T 2

n and T 1
n (see [13]) and

we would expect that the epidemic process threshold behaviour in this continuum will differ
from the threshold behaviour in Gm

n when m ≥ 2.
Finally, in another direction, we note that the epidemic process results for uniform random

mappings were generalized for epidemic processes associated with the evolutionary model
mentioned in the introduction. The results obtained for the evolutionary model are interesting
for many reasons, e.g. they provide a full answer to questions stated by Islam [14] (see also [2])
and they also lead to a very nice relation between Abel sums and noncentral Stirling numbers
as well as to families of interesting discrete distributions. Since our results for mappings with
preferential and anti-preferential attachments display a striking formal similarity to results for
the uniform model, where powers are replaced by rising or falling factorials, respectively, it is
likely that an investigation of an evolutionary model related to the ‘cut’ variables introduced in
Section 2 would lead to even more general families of discrete distributions. We also note that
it may be possible to obtain exact and asymptotic results for TEP on G

ρ
n and Gm

n , with the help
of results given in this paper, although we cannot directly use the relation which was the key to
obtain the corresponding results for mappings with independent choices of images (see [17]).
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