SOME PROPERTIES OF HANKEL CONVOLUTION OPERATORS

J. J. BETANCOR AND I. MARRERO

Abstract

Let $\mathcal{H}_{\mu}^{\prime}$ be the Zemanian space of Hankel transformable generalized functions and let $O_{\mu, *}^{\prime}$ be the space of Hankel convolution operators for $\mathcal{H}_{\mu}^{\prime}$. This $\mathcal{H}_{\mu}^{\prime}$ is the dual of a subspace \mathcal{H}_{μ} of $O_{\mu, *}^{\prime}$ for which $O_{\mu, *}^{\prime}$ is also the space of Hankel convolutors. In this paper the elements of $O_{\mu, *}^{\prime}$ are characterized as those in $\mathcal{L}\left(\mathcal{H}_{\mu}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$ that commute with Hankel translations. Moreover, necessary and sufficient conditions on the generalized Hankel transform $\xi_{\mu}^{\prime} S$ of $S \in O_{\mu, *}^{\prime}$ are established in order that every $T \in O_{\mu, *}^{\prime}$ such that $S * T \in \mathcal{H}_{\mu}$ lie in \mathcal{H}_{μ}.

1. Introduction. Let $\mu \in \mathbb{R}$, and let \mathcal{H}_{μ} be the space of Hankel transformable functions, as introduced by A. H. Zemanian [5]. We recall that \mathcal{H}_{μ} consists of all those infinitely differentiable functions $\phi=\phi(x)$ defined on $I=] 0, \infty[$ such that the quantities

$$
\gamma_{m, k}^{\mu}(\phi)=\sup _{x \in I}\left|\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{-\mu-1 / 2} \phi(x)\right| \quad(m, k \in \mathbb{N})
$$

are finite. When endowed with the topology generated by the family of seminorms $\left\{\gamma_{m, k}^{\mu}\right\}_{(m, k) \in \mathbb{N} \times \mathbb{N}}, \mathcal{H}_{\mu}$ becomes a Fréchet space. The Hankel transformation

$$
\left(\Im_{\mu} \phi\right)(t)=\int_{0}^{\infty} \phi(x) \sqrt{x t} J_{\mu}(x t) d x
$$

is an automorphism of \mathcal{H}_{μ}, provided that $\mu \geq-1 / 2$ (here, as usual, J_{μ} denotes the Bessel function of the first kind and order μ). If $\mu \geq-1 / 2$, the generalized Hankel transformation $\mathfrak{פ}_{\mu}^{\prime}$ is defined on $\mathcal{H}_{\mu}^{\prime}$, the dual space of \mathcal{H}_{μ}, as the adjoint of \mathfrak{S}_{μ}. Then $\mathfrak{S}_{\mu}^{\prime}$ is an automorphism of $\mathcal{H}_{\mu}^{\prime}$.

In previous papers [2] and [3], for $\mu \geq-1 / 2$, the authors have introduced and studied the subspace $O_{\mu, *}^{\prime}$ of $\mathcal{H}_{\mu}^{\prime}$ formed by all those $T \in \mathcal{H}_{\mu}^{\prime}$ such that $\theta(x)=x^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(x)$ is a smooth function on I with the property that for every $k \in \mathbb{N}$ there exists $n_{k} \in \mathbb{N}$ satisfying

$$
\sup _{x \in I}\left|\left(1+x^{2}\right)^{-n_{k}}\left(x^{-1} D\right)^{k} \theta(x)\right|<+\infty .
$$

Clearly, \mathcal{H}_{μ} is a subspace of $O_{\mu, *}^{\prime}$. The space O of all those smooth functions $\theta=\theta(x)$ on I possessing the above property turns out to be the space of multiplication operators on

[^0](c) Canadian Mathematical Society 1993.
\mathcal{H}_{μ} and on $\mathcal{H}_{\mu}^{\prime}(\mu \in \mathbb{R})$, whereas $O_{\mu, *}^{\prime}$ is the space of convolution operators on \mathcal{H}_{μ} and on $\mathcal{H}_{\mu}^{\prime}(\mu \geq-1 / 2)$.

In what follows we shall always assume that μ is a real number not inferior to $-1 / 2$ and, unless otherwise stated, that $\mathcal{H}_{\mu}^{\prime}$ is endowed with its weak ${ }^{*}$ topology.

In Section 2 of this paper the elements of $O_{\mu, *}^{\prime}$ are characterized as those in $\mathcal{L}\left(\mathcal{H}_{\mu}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$ that commute with Hankel translations. Here, as customary, $\mathcal{L}\left(\mathcal{H}_{\mu}\right)$ (respectively, $\mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$) denotes the space of all linear continuous operators from \mathcal{H}_{μ} (respectively, $\left.\mathcal{H}_{\mu}^{\prime}\right)$ into itself. Furthermore, necessary and sufficient conditions on the generalized Hankel transform $\mathfrak{g}_{\mu}^{\prime} S$ of $S \in O_{\mu, *}^{\prime}$ are established in order that every distribution $T \in O_{\mu, *}^{\prime}$ such that $S * T \in \mathcal{H}_{\mu}$ lie in \mathcal{H}_{μ}. This is done in Section 3.
2. Characterizing $O_{\mu, *}^{\prime}$ in $\mathcal{L}\left(\mathcal{H}_{\mu}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$. Let $\mathcal{L}\left(\mathcal{H}_{\mu}\right)$ (respectively, $\mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$) denote the space of all linear continuous operators from \mathcal{H}_{μ} (respectively, $\mathcal{H}_{\mu}^{\prime}$) into itself. The characterization of the elements in $\mathcal{L}\left(\mathcal{H}_{\mu}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$ that commute with Hankel translations is our first objective.

We recall that the Hankel translation $\tau_{x} \phi$ of $\phi \in \mathcal{H}_{\mu}$ by $x \in I$ is defined as

$$
\left(\tau_{x} \phi\right)(y)=\int_{0}^{\infty} \phi(z) D_{\mu}(x, y, z) d z \quad(y \in I)
$$

where,

$$
D_{\mu}(x, y, z)=\int_{0}^{\infty} t^{-\mu-1 / 2} \mathcal{J}_{\mu}(x t) \mathcal{J}_{\mu}(y t) \mathcal{J}_{\mu}(z t) d t \quad(x, y, z \in I)
$$

and $\mathcal{I}_{\mu}(z)=\sqrt{z} J_{\mu}(z)(z \in I)$. The map $\phi \mapsto \tau_{x} \phi$ is a continuous endomorphism of \mathcal{H}_{μ}. Further

$$
\begin{equation*}
\left(\mathfrak{S}_{\mu} \tau_{x} \phi\right)(t)=t^{-\mu-1 / 2} \mathcal{I}_{\mu}(x t)\left(\mathfrak{S}_{\mu} \phi\right)(t) \quad(t \in I) \tag{2.1}
\end{equation*}
$$

whenever $\phi \in \mathcal{H}_{\mu}$ and $x \in I$.
If $u \in \mathcal{H}_{\mu}^{\prime}$ and $x \in I$, we define $\tau_{x} u \in \mathcal{H}_{\mu}^{\prime}$ by transposition:

$$
\begin{equation*}
\left\langle\tau_{x} u, \phi\right\rangle=\left\langle u, \tau_{x} \phi\right\rangle \quad\left(\phi \in \mathcal{H}_{\mu}\right) \tag{2.2}
\end{equation*}
$$

The following analogue of (2.1) holds for the generalized translation (2.2).
Lemma 2.1. Let $u \in \mathcal{H}_{\mu}^{\prime}$ and $x \in I$. Then:

$$
\left(\mathfrak{S}_{\mu}^{\prime} \tau_{x} u\right)(t)=t^{-\mu-1 / 2} J_{\mu}(x t)\left(\mathfrak{G}_{\mu}^{\prime} u\right)(t) \quad(t \in I) .
$$

Proof. For $u \in \mathcal{H}_{\mu}^{\prime}, x \in I$, and $\phi \in \mathcal{H}_{\mu}$, a combination of (2.1) and (2.2) yields:

$$
\begin{aligned}
\left\langle\mathfrak{פ}_{\mu}^{\prime} \tau_{x} u, \mathfrak{F}_{\mu} \phi\right\rangle & =\left\langle\tau_{x} u, \phi\right\rangle=\left\langle u, \tau_{x} \phi\right\rangle=\left\langle\mathfrak{W}_{\mu}^{\prime} u, \mathfrak{F}_{\mu} \tau_{x} \phi\right\rangle \\
& =\left\langle\left(\mathfrak{פ}_{\mu}^{\prime} u\right)(t), t^{-\mu-1 / 2} \mathcal{J}_{\mu}(x t)\left(\mathfrak{S}_{\mu} \phi\right)(t)\right\rangle \\
& =\left\langle t^{-\mu-1 / 2} \mathcal{I}_{\mu}(x t)\left(\mathfrak{S}_{\mu}^{\prime} u\right)(t),\left(\mathfrak{F}_{\mu} \phi\right)(t)\right\rangle .
\end{aligned}
$$

The classical Hankel convolution $\phi * \varphi$ of $\phi, \varphi \in \mathcal{H}_{\mu}$ is the function

$$
\phi * \varphi(x)=\int_{0}^{\infty} \phi(y)\left(\tau_{x} \varphi\right)(y) d y \quad(x \in I)
$$

The map $(\phi, \varphi) \mapsto \phi * \varphi$ is continuous from $\mathcal{H}_{\mu} \times \mathcal{H}_{\mu}$ into \mathcal{H}_{μ}. The generalized Hankel convolution $u * \phi$ of $u \in \mathcal{H}_{\mu}^{\prime}$ and $\phi \in \mathcal{H}_{\mu}$ is the distribution given by

$$
\langle u * \phi, \varphi\rangle=\langle u, \phi * \varphi\rangle \quad\left(\varphi \in \mathcal{H}_{\mu}\right) .
$$

The map $(u, \phi) \longmapsto u * \phi$ is separately continuous from $\mathcal{H}_{\mu}^{\prime} \times \mathcal{H}_{\mu}$ into $\mathcal{H}_{\mu}^{\prime}$, when $\mathcal{H}_{\mu}^{\prime}$ is endowed either with its weak* or its strong topology. Finally, for $u \in \mathcal{H}_{\mu}^{\prime}$ and $T \in \mathcal{O}_{\mu, *}^{\prime}$, the generalized function $u * T \in \mathcal{H}_{\mu}^{\prime}$ is defined as

$$
\begin{equation*}
\langle u * T, \phi\rangle=\langle u, T * \phi\rangle \quad\left(\phi \in \mathcal{H}_{\mu}\right) . \tag{2.3}
\end{equation*}
$$

Note that each of these definitions extends the previous one. Moreover,

$$
\begin{equation*}
\left(\mathfrak{S}_{\mu}^{\prime} u * T\right)(t)=t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\left(\mathfrak{S}_{c}^{\prime} u\right)(t) \quad(t \in I) \tag{2.4}
\end{equation*}
$$

whenever $u \in \mathcal{H}_{\mu}^{\prime}$ and $T \in O_{\mu, *}^{\prime}$.
If $c_{\mu}=2^{\mu} \Gamma(\mu+1)$ then the element δ_{μ} of $O_{\mu, *}^{\prime}$ given by

$$
\left\langle\delta_{\mu}, \phi\right\rangle=c_{\mu} \lim _{x \rightarrow 0+} x^{-\mu-1 / 2} \phi(x) \quad\left(\phi \in \mathcal{H}_{\mu}\right)
$$

is an identity for (2.3).
The generalized $*$-convolution commutes with Hankel translations:
Lemma 2.2. Assume that $u \in \mathcal{H}_{\mu}^{\prime}$ and $x \in \operatorname{I}$. If $T \in O_{\mu, *}^{\prime}$, then

$$
\tau_{x}(u * T)=\left(\tau_{x} u\right) * T=u *\left(\tau_{x} T\right) .
$$

Proof. Since $\mathfrak{G}_{\mu}^{\prime}$ is an automorphism of $\mathcal{H}_{\mu}^{\prime}$, we establish the lemma by fixing $t \in I$ and using Lemma 2.1, along with (2.4), to write:

$$
\begin{aligned}
& \quad\left(\mathfrak{S}_{\mu}^{\prime} \tau_{x}(u * T)\right)(t)=t^{-\mu-1 / 2} \mathcal{I}_{\mu}(x t)\left(\mathfrak{S}_{\mu}^{\prime} u * T\right)(t)=t^{-2 \mu-1} \mathcal{J}_{\mu}(x t)\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} u\right)(t), \\
& \left(\mathfrak{S}_{\mu}^{\prime}\left(\tau_{x} u\right) * T\right)(t)=t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} \tau_{x} u\right)(t)=t^{-2 \mu-1} \mathcal{J}_{\mu}(x t)\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} u\right)(t), \\
& \left(\mathfrak{S}_{\mu}^{\prime} u *\left(\tau_{x} T\right)\right)(t)=t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} \tau_{x} T\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} u\right)(t)=t^{-2 \mu-1} \mathcal{J}_{\mu}(x t)\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} u\right)(t) .
\end{aligned}
$$

We are now in a position to prove
Theorem 2.3. If $T \in O_{\mu, *}^{\prime}$ and L is the element of $\mathcal{L}\left(\mathcal{H}_{\mu}\right)$ defined by

$$
\begin{equation*}
L \phi=T * \phi \quad\left(\phi \in \mathcal{H}_{\mu}\right), \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\tau_{x} L=L \tau_{x} \quad(x \in I) \tag{2.6}
\end{equation*}
$$

Conversely, if $L \in \mathcal{L}\left(\mathcal{H}_{\mu}\right)$ satisfies (2.6) then there exists a unique $T \in O_{\mu, *}^{\prime}$ for which (2.5) holds.

Proof. Let $T \in O_{\mu, *}^{\prime}$. The fact that $L \in \mathcal{L}\left(\mathcal{H}_{\mu}\right)$ defined by (2.5) satisfies (2.6) is contained in Lemma 2.2. On the other hand, assume that $L \in \mathcal{L}\left(\mathcal{H}_{\mu}\right)$ is such that (2.6) holds, and define $T \in \mathcal{H}_{\mu}^{\prime}$ by

$$
\langle T, \phi\rangle=\left\langle\delta_{\mu}, L \phi\right\rangle \quad\left(\phi \in \mathcal{H}_{\mu}\right) .
$$

Then

$$
(T * \phi)(x)=\left\langle T, \tau_{x} \phi\right\rangle=\left\langle\delta_{\mu}, L \tau_{x} \phi\right\rangle=\left\langle\delta_{\mu}, \tau_{x} L \phi\right\rangle=\left(\delta_{\mu} * L \phi\right)(x)=(L \phi)(x) \quad(x \in I)
$$

whenever $\phi \in \mathcal{H}_{\mu}$, which proves (2.5). Since $O_{\mu, *}^{\prime}$ is the space of convolution operators of \mathcal{H}_{μ}, it follows from (2.5) that $T \in O_{\mu, *}^{\prime}$. As to the uniqueness assertion, note that if $S \in O_{\mu, *}^{\prime}$ is such that $S * \phi=0$ for every $\phi \in \mathcal{H}_{\mu}$, then $S=0$. In fact, $S * \phi=0$ $\left(\phi \in \mathcal{H}_{\mu}\right)$ and (2.4) imply $t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t) \varphi(t)=0\left(\varphi \in \mathcal{H}_{\mu}, t \in I\right)$. By particularizing $\varphi(t)=t^{\mu+1 / 2} e^{-t^{2}}(t \in I)$ we find that $t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)=0$, whence $\mathfrak{g}_{\mu}^{\prime} S=0$ and $S=0$.

The following result will help in characterizing the elements of $O_{\mu, *}^{\prime}$ as those in $\mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$ that commute with Hankel translations.

LEmmA 2.4. The linear hull of the set of generalized functions of the form $\tau_{x} \delta_{\mu}(x \in$ I) is weakly ${ }^{*}$ dense in $\mathcal{H}_{\mu}^{\prime}$.

Proof. Since $\left(\mathfrak{F}_{\mu}^{\prime} \delta_{\mu}\right)(t)=t^{\mu+1 / 2}(t \in I)$, by Lemma 2.1 we have

$$
\left(\mathfrak{\xi}_{\mu}^{\prime} \tau_{x} \delta_{\mu}\right)(t)=\mathcal{J}_{\mu}(x t) \quad(x, t \in I) .
$$

If $\phi \in \mathcal{H}_{\mu}$ does not vanish identically then there exists $x \in I$ such that $\phi(x) \neq 0$, and hence

$$
\left\langle\tau_{x} \delta_{\mu}, \phi\right\rangle=\left\langle\mathfrak{S}_{\mu}^{\prime} \tau_{x} \delta_{\mu}, \mathfrak{W}_{\mu} \phi\right\rangle=\int_{0}^{\infty}\left(\mathfrak{W}_{\mu} \phi\right)(t) \mathcal{J}_{\mu}(x t) d t=\phi(x) \neq 0 .
$$

This means that the subset $\left\{\tau_{x} \delta_{\mu}\right\}_{x \in I}$ of $\mathcal{H}_{\mu}^{\prime}$ separates points in \mathcal{H}_{μ}. By [1], Problem W(b), this family is total in $\mathcal{H}_{\mu}^{\prime}$ with respect to the weak* topology.

Theorem 2.5. If $T \in O_{\mu, *}^{\prime}$ and $L \in \mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$ is defined by

$$
\begin{equation*}
L u=u * T \quad\left(u \in \mathcal{H}_{\mu}^{\prime}\right), \tag{2.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\tau_{x} L=L \tau_{x} \quad(x \in I) \tag{2.8}
\end{equation*}
$$

and also

$$
\begin{equation*}
L \delta_{\mu} \in O_{\mu, *}^{\prime} \tag{2.9}
\end{equation*}
$$

Conversely, given $L \in \mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$ satisfying (2.8) and (2.9), a unique $T \in O_{\mu, *}^{\prime}$ may be found so that (2.7) holds.

Proof. That L given by (2.7) satisfies (2.8) is a consequence of Lemma 2.2. Obviously, it also satisfies (2.9).

Conversely, let $L \in \mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$ be such that both (2.8) and (2.9) hold. Then

$$
\begin{equation*}
L\left(u * \delta_{\mu}\right)=u *\left(L \delta_{\mu}\right) \quad\left(u \in \mathcal{H}_{\mu}^{\prime}\right) . \tag{2.10}
\end{equation*}
$$

To demonstrate (2.10), define from $\mathcal{H}_{\mu}^{\prime}$ into $\mathcal{H}_{\mu}^{\prime}$ the linear map

$$
\Lambda u=L\left(u * \delta_{\mu}\right)-u *\left(L \delta_{\mu}\right) \quad\left(u \in \mathcal{H}_{\mu}^{\prime}\right) .
$$

The definition of Λ is consistent by virtue of (2.9). Since $\Lambda \in \mathcal{L}\left(\mathcal{H}_{\mu}^{\prime}\right)$, its kernel is a closed subspace of $\mathcal{H}_{\mu}^{\prime}$. In view of (2.8) this kernel contains $\tau_{x} \delta_{\mu}(x \in I)$, and hence (Lemma 2.4) it is also dense in $\mathcal{H}_{\mu}^{\prime}$. Therefore (2.10) holds.

Now, letting $T=L \delta_{\mu}$ we have

$$
u * T=u *\left(L \delta_{\mu}\right)=L\left(u * \delta_{\mu}\right)=L u,
$$

which proves (2.7).
As to the uniqueness assertion, assume that $S \in O_{\mu, *}^{\prime}$ is not the zero distribution, so that $\phi \in \mathcal{H}_{\mu}$ exists for which $S * \phi \neq 0$. Since $\mathcal{H}_{\mu}^{\prime}$ separates points in \mathcal{H}_{μ} we may find $u \in \mathcal{H}_{\mu}^{\prime}$ such that

$$
\langle u * S, \phi\rangle=\langle u, S * \phi\rangle \neq 0 .
$$

This completes the proof.
3. A property of convolution operators. Motivated by Theorem 2 in [4], the purpose of this section is to establish:

Theorem 3.1. Let $\mu \geq-1 / 2$. For $S^{\prime} \in O_{\mu, *}^{\prime}$, the following are equivalent:
(i) To every $k \in \mathbb{N}$ there correspond $m, n \in \mathbb{N}$ and a positive constant M, such that

$$
\max _{0 \leq \ell \leq m} \sup \left\{\left|\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\right|: t \in I,|x-t| \leq\left(1+x^{2}\right)^{-k}\right\} \geq\left(1+x^{2}\right)^{-n}
$$

whenever $x \in I, x \geq M$.
(ii) If $T \in O_{\mu, *}^{\prime}$ and $S * T \in \mathcal{H}_{\mu}$, then $T \in \mathcal{H}_{\mu}$.

Proof. Suppose that condition (ii) is not satisfied. Then there exists $T \in O_{\mu, *}^{\prime}$ such that $S * T \in \mathcal{H}_{\mu}$, but $T \notin \mathcal{H}_{\mu}$. This means that $t^{-\mu-1 / 2}\left(\mathscr{F}_{\mu}^{\prime} T\right)(t) \in O$, $t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t) \in \mathcal{H}_{\mu}$, and $\mathfrak{S}_{\mu}^{\prime} T \notin \mathcal{H}_{\mu}$.

Since both $t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)$ and $t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)$ lie in O, to every $\ell \in \mathbb{N}$ there correspond $r_{\ell} \in \mathbb{N}, M_{\ell}>0$ satisfying

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(5_{\mu}^{\prime} S\right)(t)\right| \leq M_{\ell}\left(1+t^{2}\right)^{r_{\ell}} \quad(t \in I), \tag{3.1}
\end{equation*}
$$

and $s_{\ell} \in \mathbb{N}, N_{\ell}>0$ satisfying

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\right| \leq N_{\ell}\left(1+t^{2}\right)^{s_{\ell}} \quad(t \in I) . \tag{3.2}
\end{equation*}
$$

Moreover, as $\mathfrak{S}_{\mu}^{\prime} T \notin \mathcal{H}_{\mu}$, there are $\ell_{0}, n_{0} \in \mathbb{N}$ and a sequence $\left\{t_{j}\right\}_{j \in \mathbb{N}}$ in I, such that $t_{j} \xrightarrow{\longrightarrow \rightarrow \infty} \infty$ and

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{\ell_{0}} t^{-\mu-1 / 2}\left(\xi_{\mu}^{\prime} T\right)(t)\right|_{t=t_{j}} \mid \geq\left(1+t_{j}^{2}\right)^{-n_{0}} \quad(j \in \mathbb{N}) . \tag{3.3}
\end{equation*}
$$

Set $k=s_{\ell_{0}+1}+n_{0}+2$, and define

$$
\begin{equation*}
B_{j, k}=\left\{t \in I:\left|t-t_{j}\right| \leq\left(1+t_{j}^{2}\right)^{-k}\right\} \quad(j \in \mathbb{N}) . \tag{3.4}
\end{equation*}
$$

From (3.2) and (3.3) we infer that, for sufficiently large j,

$$
\begin{equation*}
\inf _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{\ell_{0}} t^{-\mu-1 / 2}\left(5_{\mu}^{\prime} T\right)(t)\right| \geq \frac{1}{2}\left(1+t_{j}^{2}\right)^{-n_{0}}>0 \tag{3.5}
\end{equation*}
$$

In fact, if j is large enough and if $t \in B_{j, k}$, then

$$
\begin{aligned}
&\left|\left(t^{-1} D\right)^{\ell_{0}} t^{-\mu-1 / 2}\left(\mathfrak{F}_{\mu}^{\prime} T\right)(t)\right| \\
& \geq\left|\left(y^{-1} D\right)^{\ell_{0}} y^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(y)\right|_{y=t_{j}} \mid \\
& \quad \quad-\left(t_{j}+\left(1+t_{j}^{2}\right)^{-k}\right)\left(1+t_{j}^{2}\right)^{-k} \sup _{y \in B_{j, k}}\left|\left(y^{-1} D\right)^{\ell_{0}+1} y^{-\mu-1 / 2}\left(\mathfrak{F}_{\mu}^{\prime} T\right)(y)\right| \\
& \geq\left(1+t_{j}^{2}\right)^{-n_{0}}-C\left(1+t_{j}^{2}\right)^{s_{0}+1-k+1} \\
&=\left(1+t_{j}^{2}\right)^{-n_{0}}-C\left(1+t_{j}^{2}\right)^{-n_{0}-1},
\end{aligned}
$$

where $C>0$ is a constant independent from j. This proves (3.5).
Now $t^{-\mu-1 / 2}\left(\mathfrak{G}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{G}_{\mu}^{\prime} T\right)(t) \in \mathcal{H}_{\mu}$, and therefore

$$
\begin{equation*}
\sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{\ell} t^{-2 \mu-1}\left(\mathfrak{G}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{Y}_{\mu}^{\prime} T\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right) \quad(\ell, n \in \mathbb{N}, j \rightarrow \infty) \tag{3.6}
\end{equation*}
$$

Certainly, for fixed $\ell, n \in \mathbb{N}$ we may write

$$
\begin{aligned}
& \sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{\ell} t^{-2 \mu-1}\left(\mathfrak{G}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{G}_{\mu}^{\prime} T\right)(t)\right| \\
&=\sup _{|t| \leq\left(1+t_{j}^{2}\right)^{-k}}\left|\left(y^{-1} D\right)^{\ell} y^{-2 \mu-1}\left(\mathfrak{\xi}_{\mu}^{\prime} S\right)(y)\left(\mathfrak{G}_{\mu}^{\prime} T\right)(y)\right| y=t+t_{j} \mid \\
& \leq C_{n, \ell} \sup _{|t| \leq\left(1+t_{j}^{2}\right)^{-k}}\left(1+\left(t+t_{j}\right)^{2}\right)^{-n} \leq C_{n, \ell}\left(1+t_{j}^{2}-\left(1+t_{j}^{2}\right)^{-k}\right)^{-n},
\end{aligned}
$$

where $C_{n, \ell}>0$ is a constant, and the right-hand side of this inequality is clearly $O\left(\left(1+t_{j}^{2}\right)^{-n}\right)$ as $j \rightarrow \infty$.

Next we aim to prove that

$$
\begin{equation*}
\max _{0 \leq \ell \leq m} \sup _{t \in B_{j k}}\left|\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{G}_{\mu}^{\prime} S\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right) \quad(m, n \in \mathbb{N}, j \rightarrow \infty), \tag{3.7}
\end{equation*}
$$

a contradiction to (i). In the sequel, n will denote an arbitrary positive integer.
We first assume that $\ell_{0}=0$ and proceed by induction on m.
In view of (3.5) and (3.6), we have

$$
\begin{aligned}
\sup _{t \in B_{j, k}}\left|t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\right| & \leq 2\left(1+t_{j}^{2}\right)^{n_{0}} \sup _{t \in B_{j, k}}\left|t^{-2 \mu-1}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{F}_{\mu}^{\prime} T\right)(t)\right| \\
& =O\left(\left(1+t_{j}^{2}\right)^{-n}\right) \quad(j \rightarrow \infty) .
\end{aligned}
$$

Thus, condition (3.7) is satisfied for $m=0$.
Now suppose that (3.7) holds for some m. We must prove that it also holds for $m+1$. By Leibniz's rule,

$$
\begin{aligned}
& t^{-\mu-1 / 2}\left(\mathfrak{乌}_{\mu}^{\prime} T\right)(t)\left(t^{-1} D\right)^{m+1} t^{-\mu-1 / 2}\left(\mathfrak{\Im}_{\mu}^{\prime} S\right)(t) \\
& =\sum_{i=0}^{m+1}(-1)^{i}\binom{m+1}{i}\left(t^{-1} D\right)^{m+1-i}\left(t^{-\mu-1 / 2}\left(\mathfrak{פ}_{\mu}^{\prime} S\right)(t)\left(t^{-1} D\right)^{i} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\right) \quad(t \in I) .
\end{aligned}
$$

Bearing in mind (3.2), (3.6) and the induction hypotheses, we find that

$$
\sup _{t \in B_{j k}}\left|\left(t^{-1} D\right)^{m+1-i}\left(t^{-\mu-1 / 2}\left(\mathfrak{G}_{\mu}^{\prime} S\right)(t)\left(t^{-1} D\right)^{i} t^{-\mu-1 / 2}\left(\mathfrak{G}_{\mu}^{\prime} T\right)(t)\right)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right)
$$

as $j \rightarrow \infty$, whenever $0 \leq i \leq m+1$. Consequently

$$
t^{-\mu-1 / 2}\left(\mathfrak{G}_{\mu}^{\prime} T\right)(t)\left(t^{-1} D\right)^{m+1} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)
$$

satisfies this very estimate, and from (3.5) we conclude

$$
\begin{aligned}
& \sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{m+1} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\right| \\
& \leq 2\left(1+t_{j}^{2}\right)^{n_{0}} \sup _{t \in B_{j, k}}\left|t^{-\mu-1 / 2}\left(\mathfrak{G}_{\mu}^{\prime} T\right)(t)\left(t^{-1} D\right)^{m+1} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\right| \\
&=O\left(\left(1+t_{j}^{2}\right)^{-n}\right) \quad(j \rightarrow \infty)
\end{aligned}
$$

This shows that (3.7) holds when $\ell_{0}=0$.
Next, assume that $\ell_{0} \neq 0$ and ℓ_{0} is the smallest positive integer for which $n_{0} \in \mathbb{N}$ and a sequence $\left\{t_{j}\right\}_{j \in \mathbb{N}}$ in I may be found so that (3.3) (and hence, (3.5), with large enough j) is satisfied. This means that

$$
\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)=O\left(\left(1+t^{2}\right)^{-n}\right) \quad\left(\ell<\ell_{0}, t \rightarrow \infty\right) .
$$

Arguing as in the proof of (3.6) we are led to

$$
\begin{equation*}
\sup _{t \in B_{j k}}\left|\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{\xi}_{\mu}^{\prime} T\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right) \quad\left(\ell<\ell_{0}, j \rightarrow \infty\right) . \tag{3.8}
\end{equation*}
$$

By virtue of Leibniz's rule,

$$
\begin{aligned}
& t^{-\mu-1 / 2}\left(\mathfrak{G}_{\mu}^{\prime} S\right)(t)\left(t^{-1} D\right)^{\ell_{0}} t^{-\mu-1 / 2}\left(\mathfrak{פ}_{\mu}^{\prime} T\right)(t) \\
& \quad=\sum_{\ell=0}^{\ell_{0}}(-1)^{\ell}\binom{\ell_{0}}{\ell}\left(t^{-1} D\right)^{\ell_{0}-\ell}\left(t^{-\mu-1 / 2}\left(\mathfrak{W}_{\mu}^{\prime} T\right)\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)\right)(t) \quad(t \in I) .
\end{aligned}
$$

Then, from (3.1), (3.6) and (3.8) it follows that

$$
\begin{equation*}
\sup _{t \in B_{j, k}}\left|t^{-\mu-1 / 2}\left(\mathfrak{y}_{\mu}^{\prime} S\right)(t)\left(t^{-1} D\right)^{\ell_{0}} t^{-\mu-1 / 2}\left(\mathfrak{g}_{\mu}^{\prime} T\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right) \quad(j \rightarrow \infty) \tag{3.9}
\end{equation*}
$$

Finally, using (3.5), (3.6) and (3.9) we obtain (3.7) by an argument similar to that employed in the case $\ell_{0}=0$. This completes the proof that (i) implies (ii).

Conversely, suppose that (i) does not hold. Then there exist $k \in \mathbb{N}$ and a sequence $\left\{t_{j}\right\}_{j \in \mathbb{N}}$ in I, with $t_{j} \longrightarrow \infty$, such that

$$
\begin{equation*}
\max _{0 \leq \ell \leq j} \sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{F}_{\mu}^{\prime} S\right)(t)\right|<\left(1+t_{j}^{2}\right)^{-j} \quad(j \in \mathbb{N}) \tag{3.10}
\end{equation*}
$$

where the sets $B_{j, k}$ are given by (3.4). There is no loss of generality in assuming that $t_{0}>1$ and $t_{j+1}>t_{j}+1$. Let $\alpha \in \mathcal{D}(I)$ be such that $0 \leq \alpha \leq 1, \operatorname{supp} \alpha=[1 / 2,3 / 2]$, and $\alpha(1)=1$, and set

$$
\theta_{j}(t)=\alpha\left(1+\frac{1}{2}\left(t-t_{j}\right)\left(1+t_{j}^{2}\right)^{k}\right), \quad \theta(t)=\sum_{j=0}^{\infty} \theta_{j}(t) \quad(t \in I)
$$

The sum defining θ is finite, because $\operatorname{supp} \theta_{j}=B_{j, k}(j \in \mathbb{N})$ and $B_{i, k} \cap B_{j, k}=\emptyset(i, j \in \mathbb{N}$, $i \neq j)$. If $\ell, j \in \mathbb{N}$ and $t \in B_{j, k}$ then, for some $a_{m} \in \mathbb{R}(0 \leq m \leq \ell)$, we have

$$
\begin{aligned}
\left|\left(t^{-1} D\right)^{\ell} \theta(t)\right| & =\left|\left(t^{-1} D\right)^{\ell} \theta_{j}(t)\right|=\sum_{m=0}^{\ell}\left|a_{m} t^{-\ell-m} D^{m} \theta_{j}(t)\right| \\
& \leq 2^{\ell+m} \sum_{m=0}^{\ell}\left|a_{m} D^{m} \theta_{j}(t)\right| \\
& \left.\leq C_{\ell} 2^{-k \ell}\left(1+t_{j}^{2}\right)^{k \ell} \sum_{m=0}^{\ell}\left|D^{m} \theta_{j}(y)\right|_{y=1+\frac{1}{2}\left(t-t_{j}\right)\left(1+t_{j}^{2}\right)^{k}} \right\rvert\, \\
& \leq C_{\ell}\left(1+t_{j}^{2}\right)^{k \ell} \leq C_{\ell}\left(1+t^{2}\right)^{k \ell},
\end{aligned}
$$

where $C_{\ell}>0$ denotes an appropriate constant (not necessarily the same in each occurrence). Then

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{\ell} \theta(t)\right| \leq C_{\ell}\left(1+t^{2}\right)^{k \ell} \quad(t \in I) \tag{3.11}
\end{equation*}
$$

thus proving that $\theta \in O$. Hence, there exists $T \in O_{\mu, *}^{\prime}$ such that $\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)=t^{\mu+1 / 2} \theta(t)$ $(t \in I)$. Let $n, \ell \in \mathbb{N}$. The function

$$
\left(1+t^{2}\right)^{n}\left(t^{-1} D\right)^{\ell} t^{-2 \mu-1}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t) \quad(t \in I)
$$

is bounded on the interval $0<t<t_{n+k \ell}-\left(1+t_{n+k \ell}^{2}\right)^{-k}$. Letting $j=n+k \ell+r(r \in \mathbb{N})$ and $t \in B_{j, k}$, Leibniz's rule, along with (3.10) and (3.11), implies

$$
\begin{aligned}
\left|\left(1+t^{2}\right)^{n}\left(t^{-1} D\right)^{\ell} t^{-2 \mu-1}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t)\right| & =\left|\left(1+t^{2}\right)^{n}\left(t^{-1} D\right)^{\ell} t^{-\mu-1 / 2}\left(\mathfrak{§}_{\mu}^{\prime} S\right)(t) \theta(t)\right| \\
& \leq C\left(1+t^{2}\right)^{n+k \ell}\left(1+t_{j}^{2}\right)^{-n-k \ell} \leq C
\end{aligned}
$$

where $C>0$ is a suitable constant (concerning the value of C, we make the same convention as before). This shows that $t^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} S\right)(t)\left(\mathfrak{S}_{\mu}^{\prime} T\right)(t) \in \mathcal{H}_{\mu}$. But $\mathfrak{S}_{\mu}^{\prime} T \notin \mathcal{H}_{\mu}$, since

$$
t_{j}^{-\mu-1 / 2}\left(\mathfrak{S}_{\mu}^{\prime} T\right)\left(t_{j}\right)=\alpha(1)=1
$$

as $t_{j} \longrightarrow \infty$. We conclude that $T \in O_{\mu, *}^{\prime}$ and that $S * T \in \mathcal{H}_{\mu}$ although $T \notin \mathcal{H}_{\mu}$, which contradicts (ii) and completes the proof.

References

1. J. L. Kelley, General Topology, D. van Nostrand, Princeton, New Jersey, 1968.
2. J. J. Betancor and I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon, to appear.
3. I. Marrero and J. J. Betancor, Hankel convolution of generalized functions, 1992, preprint.
4. S. Sznajder and Z. Zielezny, On some properties of convolution operators in \mathcal{K}_{1}^{\prime} and \mathcal{S}^{\prime}, J. Math. Anal. Appl. 65(1978), 543-554.
5. A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.

Departamento de Análisis Matemático
Universidad de La Laguna
38271 La Laguna (Tenerife)
Canary Islands
Spain

[^0]: Received by the editors March 3, 1992.
 AMS subject classification: 46F12.
 Key words and phrases: generalized functions, Hankel transformation, Hankel translation, Hankel convolution.

