SOME PROPERTIES OF HANKEL CONVOLUTION OPERATORS

J. J. BETANCOR AND I. MARRERO

ABSTRACT. Let \mathcal{H}'_{μ} be the Zemanian space of Hankel transformable generalized functions and let $\mathcal{O}'_{\mu,*}$ be the space of Hankel convolution operators for \mathcal{H}'_{μ} . This \mathcal{H}'_{μ} is the dual of a subspace \mathcal{H}_{μ} of $\mathcal{O}'_{\mu,*}$ for which $\mathcal{O}'_{\mu,*}$ is also the space of Hankel convolutors. In this paper the elements of $\mathcal{O}'_{\mu,*}$ are characterized as those in $\mathcal{L}(\mathcal{H}'_{\mu})$ and in $\mathcal{L}(\mathcal{H}'_{\mu})$ that commute with Hankel translations. Moreover, necessary and sufficient conditions on the generalized Hankel transform $\mathfrak{H}'_{\mu}S$ of $S \in \mathcal{O}'_{\mu,*}$ are established in order that every $T \in \mathcal{O}'_{\mu,*}$ such that $S * T \in \mathcal{H}_{\mu}$ lie in \mathcal{H}_{μ} .

1. Introduction. Let $\mu \in \mathbb{R}$, and let \mathcal{H}_{μ} be the space of Hankel transformable functions, as introduced by A. H. Zemanian [5]. We recall that \mathcal{H}_{μ} consists of all those infinitely differentiable functions $\phi = \phi(x)$ defined on $I =]0, \infty[$ such that the quantities

$$\gamma^{\mu}_{m,k}(\phi) = \sup_{x \in I} \left| (1 + x^2)^m (x^{-1}D)^k x^{-\mu - 1/2} \phi(x) \right| \quad (m, k \in \mathbb{N})$$

are finite. When endowed with the topology generated by the family of seminorms $\{\gamma_{m\,k}^{\mu}\}_{(m,k)\in\mathbb{N}\times\mathbb{N}}, \mathcal{H}_{\mu}$ becomes a Fréchet space. The Hankel transformation

$$(\mathfrak{H}_{\mu}\phi)(t) = \int_0^\infty \phi(x)\sqrt{xt}J_{\mu}(xt)\,dx$$

is an automorphism of \mathcal{H}_{μ} , provided that $\mu \geq -1/2$ (here, as usual, J_{μ} denotes the Bessel function of the first kind and order μ). If $\mu \geq -1/2$, the generalized Hankel transformation $\tilde{\mathfrak{G}}'_{\mu}$ is defined on \mathcal{H}'_{μ} , the dual space of \mathcal{H}_{μ} , as the adjoint of $\tilde{\mathfrak{G}}_{\mu}$. Then $\tilde{\mathfrak{G}}'_{\mu}$ is an automorphism of \mathcal{H}'_{μ} .

In previous papers [2] and [3], for $\mu \ge -1/2$, the authors have introduced and studied the subspace $O'_{\mu,*}$ of \mathcal{H}'_{μ} formed by all those $T \in \mathcal{H}'_{\mu}$ such that $\theta(x) = x^{-\mu-1/2}(\tilde{\mathfrak{G}}'_{\mu}T)(x)$ is a smooth function on I with the property that for every $k \in \mathbb{N}$ there exists $n_k \in \mathbb{N}$ satisfying

$$\sup_{x\in I} |(1+x^2)^{-n_k}(x^{-1}D)^k\theta(x)| < +\infty.$$

Clearly, \mathcal{H}_{μ} is a subspace of $O'_{\mu,*}$. The space *O* of all those smooth functions $\theta = \theta(x)$ on *I* possessing the above property turns out to be the space of multiplication operators on

Received by the editors March 3, 1992.

AMS subject classification: 46F12.

Key words and phrases: generalized functions, Hankel transformation, Hankel translation, Hankel convolution.

[©] Canadian Mathematical Society 1993.

 \mathcal{H}_{μ} and on \mathcal{H}'_{μ} ($\mu \in \mathbb{R}$), whereas $\mathcal{O}'_{\mu,*}$ is the space of convolution operators on \mathcal{H}_{μ} and on \mathcal{H}'_{μ} ($\mu \geq -1/2$).

In what follows we shall always assume that μ is a real number not inferior to -1/2 and, unless otherwise stated, that \mathcal{H}'_{μ} is endowed with its weak^{*} topology.

In Section 2 of this paper the elements of $O'_{\mu,*}$ are characterized as those in $\mathcal{L}(\mathcal{H}_{\mu})$ and in $\mathcal{L}(\mathcal{H}'_{\mu})$ that commute with Hankel translations. Here, as customary, $\mathcal{L}(\mathcal{H}_{\mu})$ (respectively, $\mathcal{L}(\mathcal{H}'_{\mu})$) denotes the space of all linear continuous operators from \mathcal{H}_{μ} (respectively, \mathcal{H}'_{μ}) into itself. Furthermore, necessary and sufficient conditions on the generalized Hankel transform $\tilde{\mathfrak{G}}'_{\mu}S$ of $S \in O'_{\mu,*}$ are established in order that every distribution $T \in O'_{\mu,*}$ such that $S * T \in \mathcal{H}_{\mu}$ lie in \mathcal{H}_{μ} . This is done in Section 3.

2. Characterizing $\mathcal{O}'_{\mu,*}$ in $\mathcal{L}(\mathcal{H}_{\mu})$ and in $\mathcal{L}(\mathcal{H}'_{\mu})$. Let $\mathcal{L}(\mathcal{H}_{\mu})$ (respectively, $\mathcal{L}(\mathcal{H}'_{\mu})$) denote the space of all linear continuous operators from \mathcal{H}_{μ} (respectively, \mathcal{H}'_{μ}) into itself. The characterization of the elements in $\mathcal{L}(\mathcal{H}_{\mu})$ and in $\mathcal{L}(\mathcal{H}'_{\mu})$ that commute with Hankel translations is our first objective.

We recall that the Hankel translation $\tau_x \phi$ of $\phi \in \mathcal{H}_{\mu}$ by $x \in I$ is defined as

$$(\tau_x\phi)(y) = \int_0^\infty \phi(z) D_\mu(x, y, z) \, dz \quad (y \in I),$$

where,

$$D_{\mu}(x,y,z) = \int_0^\infty t^{-\mu-1/2} \mathcal{J}_{\mu}(xt) \mathcal{J}_{\mu}(yt) \mathcal{J}_{\mu}(zt) dt \quad (x,y,z \in I)$$

and $\mathcal{J}_{\mu}(z) = \sqrt{z}J_{\mu}(z)$ ($z \in I$). The map $\phi \mapsto \tau_x \phi$ is a continuous endomorphism of \mathcal{H}_{μ} . Further

(2.1)
$$(\mathfrak{H}_{\mu}\tau_{x}\phi)(t) = t^{-\mu-1/2}\mathcal{J}_{\mu}(xt)(\mathfrak{H}_{\mu}\phi)(t) \quad (t \in I)$$

whenever $\phi \in \mathcal{H}_{\mu}$ and $x \in I$.

If $u \in \mathcal{H}'_u$ and $x \in I$, we define $\tau_x u \in \mathcal{H}'_u$ by transposition:

(2.2)
$$\langle \tau_x u, \phi \rangle = \langle u, \tau_x \phi \rangle \quad (\phi \in \mathcal{H}_{\mu}).$$

The following analogue of (2.1) holds for the generalized translation (2.2).

LEMMA 2.1. Let $u \in \mathcal{H}'_{\mu}$ and $x \in I$. Then:

$$(\mathfrak{F}'_{\mu}\tau_{x}u)(t)=t^{-\mu-1/2}\mathcal{J}_{\mu}(xt)(\mathfrak{F}'_{\mu}u)(t)\quad (t\in I).$$

PROOF. For $u \in \mathcal{H}'_{\mu}$, $x \in I$, and $\phi \in \mathcal{H}_{\mu}$, a combination of (2.1) and (2.2) yields:

$$\begin{split} \langle \mathfrak{H}'_{\mu}\tau_{x}u,\mathfrak{H}_{\mu}\phi\rangle &= \langle \tau_{x}u,\phi\rangle = \langle u,\tau_{x}\phi\rangle = \langle \mathfrak{H}'_{\mu}u,\mathfrak{H}_{\mu}\tau_{x}\phi\rangle \\ &= \langle (\mathfrak{H}'_{\mu}u)(t),t^{-\mu-1/2}\mathcal{I}_{\mu}(xt)(\mathfrak{H}_{\mu}\phi)(t)\rangle \\ &= \langle t^{-\mu-1/2}\mathcal{I}_{\mu}(xt)(\mathfrak{H}'_{\mu}u)(t),(\mathfrak{H}_{\mu}\phi)(t)\rangle. \end{split}$$

The classical Hankel convolution $\phi * \varphi$ of $\phi, \varphi \in \mathcal{H}_{\mu}$ is the function

$$\phi * \varphi(x) = \int_0^\infty \phi(y)(\tau_x \varphi)(y) \, dy \quad (x \in I).$$

The map $(\phi, \varphi) \mapsto \phi * \varphi$ is continuous from $\mathcal{H}_{\mu} \times \mathcal{H}_{\mu}$ into \mathcal{H}_{μ} . The generalized Hankel convolution $u * \phi$ of $u \in \mathcal{H}'_{\mu}$ and $\phi \in \mathcal{H}_{\mu}$ is the distribution given by

$$\langle u * \phi, \varphi \rangle = \langle u, \phi * \varphi \rangle \quad (\varphi \in \mathcal{H}_{\mu})$$

The map $(u, \phi) \mapsto u * \phi$ is separately continuous from $\mathcal{H}'_{\mu} \times \mathcal{H}_{\mu}$ into \mathcal{H}'_{μ} , when \mathcal{H}'_{μ} is endowed either with its weak* or its strong topology. Finally, for $u \in \mathcal{H}'_{\mu}$ and $T \in \mathcal{O}'_{\mu,*}$, the generalized function $u * T \in \mathcal{H}'_{\mu}$ is defined as

(2.3)
$$\langle u * T, \phi \rangle = \langle u, T * \phi \rangle \quad (\phi \in \mathcal{H}_{\mu})$$

Note that each of these definitions extends the previous one. Moreover,

(2.4)
$$(\tilde{\mathfrak{G}}'_{\mu}u * T)(t) = t^{-\mu - 1/2} (\tilde{\mathfrak{G}}'_{\mu}T)(t) (\tilde{\mathfrak{G}}'_{\mu}u)(t) \quad (t \in I)$$

whenever $u \in \mathcal{H}'_{\mu}$ and $T \in \mathcal{O}'_{\mu,*}$.

If $c_{\mu} = 2^{\mu} \Gamma(\mu + 1)$ then the element δ_{μ} of $O'_{\mu,*}$ given by

$$\langle \delta_{\mu}, \phi \rangle = c_{\mu} \lim_{x \to 0+} x^{-\mu - 1/2} \phi(x) \quad (\phi \in \mathcal{H}_{\mu})$$

is an identity for (2.3).

The generalized *-convolution commutes with Hankel translations:

LEMMA 2.2. Assume that $u \in \mathcal{H}'_{\mu}$ and $x \in I$. If $T \in \mathcal{O}'_{\mu,*}$, then

$$\tau_x(u*T) = (\tau_x u) * T = u * (\tau_x T).$$

PROOF. Since \mathfrak{G}'_{μ} is an automorphism of \mathcal{H}'_{μ} , we establish the lemma by fixing $t \in I$ and using Lemma 2.1, along with (2.4), to write:

$$\begin{split} & \left(\tilde{\mathfrak{G}}'_{\mu}\tau_{x}(u*T)\right)(t) = t^{-\mu-1/2}\mathcal{J}_{\mu}(xt)(\tilde{\mathfrak{G}}'_{\mu}u*T)(t) = t^{-2\mu-1}\mathcal{J}_{\mu}(xt)(\tilde{\mathfrak{G}}'_{\mu}T)(t)(\tilde{\mathfrak{G}}'_{\mu}u)(t), \\ & \left(\tilde{\mathfrak{G}}'_{\mu}(\tau_{x}u)*T\right)(t) = t^{-\mu-1/2}(\tilde{\mathfrak{G}}'_{\mu}T)(t)(\tilde{\mathfrak{G}}'_{\mu}\tau_{x}u)(t) = t^{-2\mu-1}\mathcal{J}_{\mu}(xt)(\tilde{\mathfrak{G}}'_{\mu}T)(t)(\tilde{\mathfrak{G}}'_{\mu}u)(t), \\ & \left(\tilde{\mathfrak{G}}'_{\mu}u*(\tau_{x}T)\right)(t) = t^{-\mu-1/2}(\tilde{\mathfrak{G}}'_{\mu}\tau_{x}T)(t)(\tilde{\mathfrak{G}}'_{\mu}u)(t) = t^{-2\mu-1}\mathcal{J}_{\mu}(xt)(\tilde{\mathfrak{G}}'_{\mu}T)(t)(\tilde{\mathfrak{G}}'_{\mu}u)(t). \end{split}$$

We are now in a position to prove

THEOREM 2.3. If $T \in O'_{\mu,*}$ and L is the element of $\mathcal{L}(\mathcal{H}_{\mu})$ defined by

(2.5) $L\phi = T * \phi \quad (\phi \in \mathcal{H}_{\mu}),$

then

(2.6)
$$\tau_x L = L \tau_x \quad (x \in I).$$

400

Conversely, if $L \in \mathcal{L}(\mathcal{H}_{\mu})$ satisfies (2.6) then there exists a unique $T \in \mathcal{O}'_{\mu,*}$ for which (2.5) holds.

PROOF. Let $T \in O'_{\mu,*}$. The fact that $L \in \mathcal{L}(\mathcal{H}_{\mu})$ defined by (2.5) satisfies (2.6) is contained in Lemma 2.2. On the other hand, assume that $L \in \mathcal{L}(\mathcal{H}_{\mu})$ is such that (2.6) holds, and define $T \in \mathcal{H}'_{\mu}$ by

$$\langle T, \phi \rangle = \langle \delta_{\mu}, L\phi \rangle \quad (\phi \in \mathcal{H}_{\mu}).$$

Then

$$(T * \phi)(x) = \langle T, \tau_x \phi \rangle = \langle \delta_\mu, L \tau_x \phi \rangle = \langle \delta_\mu, \tau_x L \phi \rangle = (\delta_\mu * L \phi)(x) = (L \phi)(x) \quad (x \in I)$$

whenever $\phi \in \mathcal{H}_{\mu}$, which proves (2.5). Since $O'_{\mu,*}$ is the space of convolution operators of \mathcal{H}_{μ} , it follows from (2.5) that $T \in O'_{\mu,*}$. As to the uniqueness assertion, note that if $S \in O'_{\mu,*}$ is such that $S * \phi = 0$ for every $\phi \in \mathcal{H}_{\mu}$, then S = 0. In fact, $S * \phi = 0$ $(\phi \in \mathcal{H}_{\mu})$ and (2.4) imply $t^{-\mu-1/2}(\tilde{\wp}'_{\mu}S)(t)\varphi(t) = 0$ ($\varphi \in \mathcal{H}_{\mu}, t \in I$). By particularizing $\varphi(t) = t^{\mu+1/2}e^{-t^2}$ ($t \in I$) we find that $t^{-\mu-1/2}(\tilde{\wp}'_{\mu}S)(t) = 0$, whence $\tilde{\wp}'_{\mu}S = 0$ and S = 0.

The following result will help in characterizing the elements of $\mathcal{O}'_{\mu,*}$ as those in $\mathcal{L}(\mathcal{H}'_{\mu})$ that commute with Hankel translations.

LEMMA 2.4. The linear hull of the set of generalized functions of the form $\tau_x \delta_\mu$ ($x \in I$) is weakly^{*} dense in \mathcal{H}'_μ .

PROOF. Since $(\mathfrak{H}'_{\mu}\delta_{\mu})(t) = t^{\mu+1/2}$ $(t \in I)$, by Lemma 2.1 we have

$$(\mathfrak{S}'_{\mu}\tau_{x}\delta_{\mu})(t) = \mathcal{J}_{\mu}(xt) \quad (x,t \in I).$$

If $\phi \in \mathcal{H}_{\mu}$ does not vanish identically then there exists $x \in I$ such that $\phi(x) \neq 0$, and hence

$$\langle \tau_x \delta_\mu, \phi \rangle = \langle \mathfrak{H}'_\mu \tau_x \delta_\mu, \mathfrak{H}_\mu \phi \rangle = \int_0^\infty (\mathfrak{H}_\mu \phi)(t) \mathcal{J}_\mu(xt) \, dt = \phi(x) \neq 0.$$

This means that the subset $\{\tau_x \delta_\mu\}_{x \in I}$ of \mathcal{H}'_μ separates points in \mathcal{H}_μ . By [1], Problem W(b), this family is total in \mathcal{H}'_μ with respect to the weak* topology.

THEOREM 2.5. If $T \in O'_{\mu,*}$ and $L \in \mathcal{L}(\mathcal{H}'_{\mu})$ is defined by

$$Lu = u * T \quad (u \in \mathcal{H}'_u),$$

then

(2.8)
$$\tau_x L = L \tau_x \quad (x \in I),$$

and also

$$(2.9) L\delta_{\mu} \in O'_{\mu,*}.$$

Conversely, given $L \in \mathcal{L}(\mathcal{H}'_{\mu})$ satisfying (2.8) and (2.9), a unique $T \in \mathcal{O}'_{\mu,*}$ may be found so that (2.7) holds.

PROOF. That L given by (2.7) satisfies (2.8) is a consequence of Lemma 2.2. Obviously, it also satisfies (2.9).

Conversely, let $L \in \mathcal{L}(\mathcal{H}'_{\mu})$ be such that both (2.8) and (2.9) hold. Then

(2.10)
$$L(u * \delta_{\mu}) = u * (L\delta_{\mu}) \quad (u \in \mathcal{H}'_{\mu}).$$

To demonstrate (2.10), define from \mathcal{H}'_{μ} into \mathcal{H}'_{μ} the linear map

$$\Lambda u = L(u * \delta_{\mu}) - u * (L\delta_{\mu}) \quad (u \in \mathcal{H}'_{\mu}).$$

The definition of Λ is consistent by virtue of (2.9). Since $\Lambda \in \mathcal{L}(\mathcal{H}'_{\mu})$, its kernel is a closed subspace of \mathcal{H}'_{μ} . In view of (2.8) this kernel contains $\tau_x \delta_{\mu}$ ($x \in I$), and hence (Lemma 2.4) it is also dense in \mathcal{H}'_{μ} . Therefore (2.10) holds.

Now, letting $T = L\delta_{\mu}$ we have

$$u * T = u * (L\delta_u) = L(u * \delta_u) = Lu,$$

which proves (2.7).

As to the uniqueness assertion, assume that $S \in O'_{\mu,*}$ is not the zero distribution, so that $\phi \in \mathcal{H}_{\mu}$ exists for which $S * \phi \neq 0$. Since \mathcal{H}'_{μ} separates points in \mathcal{H}_{μ} we may find $u \in \mathcal{H}'_{\mu}$ such that

$$\langle u * S, \phi \rangle = \langle u, S * \phi \rangle \neq 0.$$

This completes the proof.

3. A property of convolution operators. Motivated by Theorem 2 in [4], the purpose of this section is to establish:

THEOREM 3.1. Let $\mu \ge -1/2$. For $S \in O'_{\mu,*}$, the following are equivalent:

(i) To every $k \in \mathbb{N}$ there correspond $m, n \in \mathbb{N}$ and a positive constant M, such that

$$\max_{0 \le \ell \le m} \sup\{ \left| (t^{-1}D)^{\ell} t^{-\mu - 1/2} (\mathfrak{F}'_{\mu}S)(t) \right| : t \in I, |x - t| \le (1 + x^2)^{-k} \} \ge (1 + x^2)^{-n}$$

whenever $x \in I$, $x \ge M$. (ii) If $T \in O'_{\mu,*}$ and $S * T \in \mathcal{H}_{\mu}$, then $T \in \mathcal{H}_{\mu}$.

PROOF. Suppose that condition (ii) is not satisfied. Then there exists $T \in O'_{\mu,*}$ such that $S * T \in \mathcal{H}_{\mu}$, but $T \notin \mathcal{H}_{\mu}$. This means that $t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t) \in \mathcal{O}$, $t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)(\mathfrak{F}'_{\mu}T)(t) \in \mathcal{H}_{\mu}$, and $\mathfrak{F}'_{\mu}T \notin \mathcal{H}_{\mu}$.

Since both $t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)$ and $t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)$ lie in O, to every $\ell \in \mathbb{N}$ there correspond $r_{\ell} \in \mathbb{N}$, $M_{\ell} > 0$ satisfying

(3.1)
$$|(t^{-1}D)^{\ell}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)| \leq M_{\ell}(1+t^2)^{r_{\ell}} \quad (t \in I),$$

and $s_{\ell} \in \mathbb{N}$, $N_{\ell} > 0$ satisfying

(3.2)
$$|(t^{-1}D)^{\ell}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)| \leq N_{\ell}(1+t^2)^{s_{\ell}} \quad (t \in I).$$

Moreover, as $\mathfrak{S}'_{\mu}T \notin \mathcal{H}_{\mu}$, there are $\ell_0, n_0 \in \mathbb{N}$ and a sequence $\{t_j\}_{j\in\mathbb{N}}$ in *I*, such that $t_j \xrightarrow[i \to \infty]{} \infty$ and

(3.3)
$$|(t^{-1}D)^{\ell_0}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)|_{t=t_j}| \ge (1+t_j^2)^{-n_0} \quad (j \in \mathbb{N}).$$

Set $k = s_{\ell_0+1} + n_0 + 2$, and define

(3.4)
$$B_{j,k} = \{t \in I : |t-t_j| \le (1+t_j^2)^{-k}\} \quad (j \in \mathbb{N}).$$

From (3.2) and (3.3) we infer that, for sufficiently large j,

(3.5)
$$\inf_{t\in B_{j,k}} |(t^{-1}D)^{\ell_0}t^{-\mu-1/2}(\mathfrak{H}'_{\mu}T)(t)| \ge \frac{1}{2}(1+t_j^2)^{-n_0} > 0.$$

In fact, if *j* is large enough and if $t \in B_{j,k}$, then

$$\begin{split} |(t^{-1}D)^{\ell_0}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)| \\ &\geq |(y^{-1}D)^{\ell_0}y^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(y)|_{y=t_j}| \\ &- (t_j + (1+t_j^2)^{-k})(1+t_j^2)^{-k}\sup_{y\in B_{j,k}} |(y^{-1}D)^{\ell_0+1}y^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(y)| \\ &\geq (1+t_j^2)^{-n_0} - C(1+t_j^2)^{s_{\ell_0+1}-k+1} \\ &= (1+t_j^2)^{-n_0} - C(1+t_j^2)^{-n_0-1}, \end{split}$$

where C > 0 is a constant independent from *j*. This proves (3.5).

Now $t^{-\mu-1/2}(\mathfrak{H}'_{\mu}S)(t)(\mathfrak{H}'_{\mu}T)(t) \in \mathcal{H}_{\mu}$, and therefore

(3.6)
$$\sup_{t\in B_{jk}} |(t^{-1}D)^{\ell}t^{-2\mu-1}(\mathfrak{F}'_{\mu}S)(t)(\mathfrak{F}'_{\mu}T)(t)| = O((1+t_{j}^{2})^{-n}) \quad (\ell,n\in\mathbb{N},\,j\to\infty).$$

Certainly, for fixed $\ell, n \in \mathbb{N}$ we may write

$$\sup_{t \in B_{jk}} |(t^{-1}D)^{\ell} t^{-2\mu-1}(\mathfrak{F}'_{\mu}S)(t)(\mathfrak{F}'_{\mu}T)(t)|$$

=
$$\sup_{|t| \le (1+t_{j}^{2})^{-k}} |(y^{-1}D)^{\ell} y^{-2\mu-1}(\mathfrak{F}'_{\mu}S)(y)(\mathfrak{F}'_{\mu}T)(y)|_{y=t+t_{j}}|$$

$$\le C_{n,\ell} \sup_{|t| \le (1+t_{j}^{2})^{-k}} (1+(t+t_{j})^{2})^{-n} \le C_{n,\ell} (1+t_{j}^{2}-(1+t_{j}^{2})^{-k})^{-n},$$

where $C_{n,\ell} > 0$ is a constant, and the right-hand side of this inequality is clearly $O((1+t_j^2)^{-n})$ as $j \to \infty$.

Next we aim to prove that

(3.7)
$$\max_{0 \le \ell \le m} \sup_{t \in B_{j,k}} \left| (t^{-1}D)^{\ell} t^{-\mu - 1/2} (\mathfrak{F}'_{\mu} S)(t) \right| = O\left((1 + t_j^2)^{-n} \right) \quad (m, n \in \mathbb{N}, \ j \to \infty),$$

a contradiction to (i). In the sequel, n will denote an arbitrary positive integer.

We first assume that $\ell_0 = 0$ and proceed by induction on *m*.

In view of (3.5) and (3.6), we have

$$\sup_{t \in B_{j,k}} |t^{-\mu - 1/2}(\tilde{\mathfrak{G}}'_{\mu}S)(t)| \leq 2(1 + t_j^2)^{n_0} \sup_{t \in B_{j,k}} |t^{-2\mu - 1}(\tilde{\mathfrak{G}}'_{\mu}S)(t)(\tilde{\mathfrak{G}}'_{\mu}T)(t)|$$

= $O((1 + t_j^2)^{-n}) \quad (j \to \infty).$

Thus, condition (3.7) is satisfied for m = 0.

Now suppose that (3.7) holds for some m. We must prove that it also holds for m + 1. By Leibniz's rule,

$$t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)(t^{-1}D)^{m+1}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t) = \sum_{i=0}^{m+1} (-1)^{i} \binom{m+1}{i} (t^{-1}D)^{m+1-i} (t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)(t^{-1}D)^{i}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)) \quad (t \in I).$$

Bearing in mind (3.2), (3.6) and the induction hypotheses, we find that

$$\sup_{t\in B_{j,k}} \left| (t^{-1}D)^{m+1-i} (t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)(t^{-1}D)^{i} t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)) \right| = O((1+t_{j}^{2})^{-n})$$

as $j \to \infty$, whenever $0 \le i \le m + 1$. Consequently

$$t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)(t^{-1}D)^{m+1}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)$$

satisfies this very estimate, and from (3.5) we conclude

$$\begin{split} \sup_{t \in B_{jk}} |(t^{-1}D)^{m+1}t^{-\mu-1/2}(\tilde{\mathfrak{G}}'_{\mu}S)(t)| \\ &\leq 2(1+t_{j}^{2})^{n_{0}} \sup_{t \in B_{jk}} |t^{-\mu-1/2}(\tilde{\mathfrak{G}}'_{\mu}T)(t)(t^{-1}D)^{m+1}t^{-\mu-1/2}(\tilde{\mathfrak{G}}'_{\mu}S)(t)| \\ &= O((1+t_{j}^{2})^{-n}) \quad (j \to \infty). \end{split}$$

This shows that (3.7) holds when $\ell_0 = 0$.

Next, assume that $\ell_0 \neq 0$ and ℓ_0 is the smallest positive integer for which $n_0 \in \mathbb{N}$ and a sequence $\{t_j\}_{j\in\mathbb{N}}$ in *I* may be found so that (3.3) (and hence, (3.5), with large enough *j*) is satisfied. This means that

$$(t^{-1}D)^{\ell}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t) = O((1+t^2)^{-n}) \quad (\ell < \ell_0, \ t \to \infty).$$

Arguing as in the proof of (3.6) we are led to

(3.8)
$$\sup_{t \in B_{j,k}} |(t^{-1}D)^{\ell} t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)| = O((1+t_j^2)^{-n}) \quad (\ell < \ell_0, \, j \to \infty).$$

By virtue of Leibniz's rule,

$$t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)(t^{-1}D)^{\ell_{0}}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t)$$

= $\sum_{\ell=0}^{\ell_{0}} (-1)^{\ell} {\ell_{0} \choose \ell} (t^{-1}D)^{\ell_{0}-\ell} (t^{-\mu-1/2}(\mathfrak{F}'_{\mu}T)(t^{-1}D)^{\ell}t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S))(t) \quad (t \in I).$

404

Then, from (3.1), (3.6) and (3.8) it follows that

$$(3.9) \quad \sup_{t \in B_{j,k}} \left| t^{-\mu - 1/2} (\mathfrak{F}'_{\mu} S)(t) (t^{-1} D)^{\ell_0} t^{-\mu - 1/2} (\mathfrak{F}'_{\mu} T)(t) \right| = O\left((1 + t_j^2)^{-n} \right) \quad (j \to \infty).$$

Finally, using (3.5), (3.6) and (3.9) we obtain (3.7) by an argument similar to that employed in the case $\ell_0 = 0$. This completes the proof that (i) implies (ii).

Conversely, suppose that (i) does not hold. Then there exist $k \in \mathbb{N}$ and a sequence $\{t_j\}_{j\in\mathbb{N}}$ in *I*, with $t_j \xrightarrow{i\to\infty} \infty$, such that

(3.10)
$$\max_{0 \le \ell \le j} \sup_{t \in B_{j,k}} |(t^{-1}D)^{\ell} t^{-\mu - 1/2} (\mathfrak{F}'_{\mu}S)(t)| < (1 + t_j^2)^{-j} \quad (j \in \mathbb{N}),$$

where the sets $B_{j,k}$ are given by (3.4). There is no loss of generality in assuming that $t_0 > 1$ and $t_{j+1} > t_j + 1$. Let $\alpha \in \mathcal{D}(I)$ be such that $0 \le \alpha \le 1$, supp $\alpha = \lfloor 1/2, 3/2 \rfloor$, and $\alpha(1) = 1$, and set

$$heta_j(t) = lpha \Big(1 + rac{1}{2} (t-t_j) (1+t_j^2)^k \Big), \quad heta(t) = \sum_{j=0}^\infty heta_j(t) \quad (t \in I)$$

The sum defining θ is finite, because $\sup \theta_j = B_{j,k}$ $(j \in \mathbb{N})$ and $B_{i,k} \cap B_{j,k} = \emptyset$ $(i, j \in \mathbb{N}, i \neq j)$. If $\ell, j \in \mathbb{N}$ and $t \in B_{i,k}$ then, for some $a_m \in \mathbb{R}$ $(0 \le m \le \ell)$, we have

$$\begin{split} |(t^{-1}D)^{\ell}\theta(t)| &= |(t^{-1}D)^{\ell}\theta_{j}(t)| = \sum_{m=0}^{\ell} |a_{m}t^{-\ell-m}D^{m}\theta_{j}(t)| \\ &\leq 2^{\ell+m}\sum_{m=0}^{\ell} |a_{m}D^{m}\theta_{j}(t)| \\ &\leq C_{\ell}2^{-k\ell}(1+t_{j}^{2})^{k\ell}\sum_{m=0}^{\ell} |D^{m}\theta_{j}(y)|_{y=1+\frac{1}{2}(t-t_{j})(1+t_{j}^{2})^{k\ell}} \\ &\leq C_{\ell}(1+t_{j}^{2})^{k\ell} \leq C_{\ell}(1+t^{2})^{k\ell}, \end{split}$$

where $C_{\ell} > 0$ denotes an appropriate constant (not necessarily the same in each occurrence). Then

$$(3.11) |(t^{-1}D)^{\ell}\theta(t)| \le C_{\ell}(1+t^2)^{k\ell} \quad (t \in I),$$

thus proving that $\theta \in O$. Hence, there exists $T \in O'_{\mu,*}$ such that $(\mathfrak{F}'_{\mu}T)(t) = t^{\mu+1/2}\theta(t)$ $(t \in I)$. Let $n, \ell \in \mathbb{N}$. The function

$$(1+t^2)^n (t^{-1}D)^{\ell} t^{-2\mu-1} (\mathfrak{F}'_{\mu}S)(t) (\mathfrak{F}'_{\mu}T)(t) \quad (t \in I)$$

is bounded on the interval $0 < t < t_{n+k\ell} - (1 + t_{n+k\ell}^2)^{-k}$. Letting $j = n + k\ell + r$ ($r \in \mathbb{N}$) and $t \in B_{j,k}$, Leibniz's rule, along with (3.10) and (3.11), implies

$$\begin{aligned} |(1+t^2)^n (t^{-1}D)^\ell t^{-2\mu-1}(\mathfrak{F}'_{\mu}S)(t)(\mathfrak{F}'_{\mu}T)(t)| &= |(1+t^2)^n (t^{-1}D)^\ell t^{-\mu-1/2}(\mathfrak{F}'_{\mu}S)(t)\theta(t)| \\ &\leq C(1+t^2)^{n+\ell}(1+t_j^2)^{-n-\ell}\leq C, \end{aligned}$$

where C > 0 is a suitable constant (concerning the value of *C*, we make the same convention as before). This shows that $t^{-\mu-1/2}(\tilde{\mathfrak{G}}'_{\mu}S)(t)(\tilde{\mathfrak{G}}'_{\mu}T)(t) \in \mathcal{H}_{\mu}$. But $\tilde{\mathfrak{G}}'_{\mu}T \notin \mathcal{H}_{\mu}$, since

$$t_j^{-\mu-1/2}(\mathfrak{H}'_{\mu}T)(t_j) = \alpha(1) = 1$$

as $t_j \xrightarrow{j\to\infty} \infty$. We conclude that $T \in \mathcal{O}'_{\mu,*}$ and that $S * T \in \mathcal{H}_{\mu}$ although $T \notin \mathcal{H}_{\mu}$, which contradicts (ii) and completes the proof.

REFERENCES

- 1. J. L. Kelley, General Topology, D. van Nostrand, Princeton, New Jersey, 1968.
- 2. J. J. Betancor and I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon, to appear.
- 3. I. Marrero and J. J. Betancor, Hankel convolution of generalized functions, 1992, preprint.
- **4.** S. Sznajder and Z. Zielezny, On some properties of convolution operators in \mathcal{K}_{i}^{i} and \mathcal{S}^{i} , J. Math. Anal. Appl. **65**(1978), 543–554.
- 5. A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.

Departamento de Análisis Matemático Universidad de La Laguna 38271 La Laguna (Tenerife) Canary Islands Spain

406