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Abstract:  Probabilistic programs extend classical imperative programs with
random-value generators. For classical non-probabilistic programs, termination is
a key question in static analysis of programs, that given a program and an initial
condition asks whether it terminates. In the presence of probabilistic behavior there
are two fundamental extensions of the termination question, namely, (a) the almost-
sure termination question that asks whether the termination probability is 1; and (b)
the bounded-time termination question that asks whether the expected termination
time is bounded. While there are many active research directions to address the
above problems, one important research direction is the use of martingale theory for
termination analysis. We will survey the main techniques related to martingale-based
approach for termination analysis of probabilistic programs.

7.1 Introduction

Stochastic models and probabilistic programs. The analysis of stochastic models
is a fundamental problem, and randomness plays a crucial role in several disci-
plines across computer science. Some prominent examples are (a) randomized
algorithms (Motwani and Raghavan, 1995); (b) stochastic network protocols (Baier
and Katoen, 2008; Kwiatkowska et al., 2011); (c) systems that interact with uncer-
tainty in artificial intelligence (Kaelbling et al., 1996, 1998; Ghahramani, 2015).
Programming language support for analysis of such models requires extending the
classical non-probabilistic programming models, and the extension of classical
imperative programs with random value generators that produce random values
according to some desired probability distribution gives rise to the class of proba-
bilistic programs (Gordon et al., 2014). The formal analysis of probabilistic systems
and probabilistic programs is an active research topic across different disciplines,
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such as probability theory and statistics (Durrett, 1996; Howard, 1960; Kemeny
et al., 1966; Rabin, 1963; Paz, 1971), formal methods (Baier and Katoen, 2008;
Kwiatkowska et al., 2011), artificial intelligence (Kaelbling et al., 1996, 1998),
and programming languages (Chakarov and Sankaranarayanan, 2013; Fioriti and
Hermanns, 2015; Sankaranarayanan et al., 2013; Esparza et al., 2012; Chatterjee
et al., 2016a).

Termination questions. One of the most basic, yet fundamental, question in analysis
of reactive systems or programs is the fermination problem. For non-probabilistic
program the termination problem asks whether a given program always terminates.
The termination problem represents the fundamental notion of liveness for programs,
and corresponds to the classical halting problem of Turing machines. While for
general programs the termination problem is undecidable, static analysis methods
for program analysis aim to develop techniques that can answer the question for
subclasses of programs. For non-probabilistic programs, the proof of termination
coincides with the construction of ranking functions (Floyd, 1967), and many different
approaches exist for such construction (Bradley et al., 2005a; Colén and Sipma,
2001; Podelski and Rybalchenko, 2004; Sohn and Gelder, 1991). For probabilistic
programs, the presence of randomness requires that the termination questions are
extended to handle stochastic aspects. The most natural and basic extensions of the
termination problem are as follows: First, the almost-sure termination question asks
whether the program terminates with probability 1. Second, the bounded termination
question asks whether the expected termination time is bounded. While the bounded
termination implies almost-sure termination, the converse is not true in general.
Section 7.2.4 illustrates the concepts on several examples.

Non-determinism. Besides stochastic aspects, another fundamental modeling con-
cept is the notion of non-determinism. A classic example of non-determinism
in program analysis is abstraction: for efficient static analysis of large programs,
it is infeasible to track all variables of the program. Abstraction ignores certain
variables and replaces them with worst-case behavior modeled as non-determinism.
Moreover, non-determinism can be used to replace large portions of a program by
overapproximating their effect on variables.

Martingales for probabilistic programs. While there are various different ap-
proaches for analyzing probabilistic programs (see Section 7.6 for further discussion),
the focus of this chapter is to consider martingale-based approaches. This approach
considers martingales (a special type of stochastic processes) and how they can
be used to develop algorithmic analysis techniques for analysis of probabilistic
programs. The approach brings together various different disciplines, namely, prob-
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ability theory, algorithmic aspects, and program analysis techniques. Below we
present a glimpse of the main results, and then the organization of the chapter.

Glimpse of main results. We present a brief description of main results related to

the martingale-based approach.

o Finite probabilistic choices. First, for probabilistic programs with non-determinism,
but restricted to finite probabilistic choices, quantitative invariants were used to
establish termination in Mclver and Morgan (2004, 2005).

o Infinite probabilistic choices without non-determinism. The approach presented
in Mclver and Morgan (2004, 2005) was extended in Chakarov and Sankara-
narayanan (2013) to ranking supermartingales to obtain a sound (but not complete,
see Chakarov and Sankaranarayanan (2013, page 10) for a counterexample) ap-
proach for almost-sure termination for infinite-state probabilistic programs without
non-determinism, but with infinite-domain random variables. The connection
between termination of probabilistic programs without non-determinism and
Lyapunov ranking functions was considered in Bournez and Garnier (2005). For
probabilistic programs with countable state space and without non-determinism,
Lyapunov ranking functions provide a sound and complete method to prove
bounded termination (Bournez and Garnier, 2005; Foster, 1953).

o [Infinite probabilistic choices with non-determinism. The interaction of non-
determinism and infinite probabilistic choice is quite tricky as illustrated in Fioriti
and Hermanns (2015). For bounded termination, the ranking supermartingale
based approach is sound and complete (Chatterjee and Fu, 2017; Fu and Chatter-
jee, 2019). As mentioned above, a key goal is to obtain algorithmic methods for
automated analysis. Automated approaches for synthesis of linear and polyno-
mial ranking supermartingales have been studied in Chatterjee et al. (2016a,b).
Moreover, recently parametric supermartingales, rather than ranking supermartin-
gales, (Mclver et al., 2018; Chatterjee and Fu, 2017; Huang et al., 2018) and lexi-
cographic ranking supermartingales (Agrawal et al., 2018) have been considered
for proving almost-sure termination of probabilistic programs. The martingale-
based approach has also been studied to prove high-probability termination and
non-termination of probabilistic programs (Chatterjee et al., 2017).

e Undecidability characterization. The problem of deciding termination (almost-
sure termination and bounded termination) of probabilistic programs is undecid-
able, and its precise undecidability characterization has been studied in Kaminski
and Katoen (2015).

Organization. The chapter is organized as follows: In Section 7.2 we present the

preliminaries (syntax, semantics, and the formal definition of termination problems).
In Section 7.3 we present the results related to the theoretical foundations of ranking
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supermartingales and bounded termination. In Section 7.4 we discuss algorithmic
approaches for synthesis of linear and polynomial ranking supermaritngales. In
Section 7.5 we consider the martingale-based approach beyond bounded termination:
we first consider almost-sure termination and discuss the parametric supermartingale
and lexicographic ranking supermartingale based approach, then discuss the approach
for high-probability termination. Finally, we discuss related works (Section 7.6),
and conclude with future perspective (Section 7.7).

7.2 Preliminaries
7.2.1 Syntax of Probabilistic Programs

We consider a mathematically clean formulation of a simple imperative probabilistic
programming language with real-valued numerical variables. An abstract grammar
of our probabilistic language is presented in Figure 7.1. There, (pvar) stands for
program variables, while (expr) and (boolexpr) represent arithmetic expressions
and boolean predicates, respectively.

Expressions and Predicates. We assume that the expressions used in each program
satisfy the following: (1) for each expression E over variables {xi,...,x,} and each
n-dimensional vector x the value E(x) is well defined; and (2) the function defined
by each expression E is Borel-measurable (for definition of Borel-measurability, see,
e.g. Billingsley (1995)). This holds in particular for expressions built using standard
arithmetic operators (+, —, %, /), provided that expressions evaluating to zero are not
allowed as divisors. A predicate is a boolean combination of atomic predicates of
the form E < E’, where E, E’ are expressions. We denote by x |= ¢ the fact that
the predicate y is satisfied by substituting values from of x for the corresponding
variables in .

Probability and Non-Determinism. Apart from the classical programming con-
structs, our probabilistic programs also have constructs introducing probabilistic
and non-deterministic behaviour. The former include probabilistic branching (e.g.
if prob(%) then...’) and sampling of a variable value from a probability distribution
(e.g. x := sample(Uniform[-2, 1])). We allow both discrete and continuous distribu-
tions and we also permit sampling instructions to appear in place of variables within
expressions. For the purpose of our analysis, we require that for each distribution
d appearing in the program we know the following characteristics: the expected
value E[d] and a set SP; containing the support of d (the support of d is the
smallest closed set of real numbers whose complement has probability zero under
d). We also allow (demonic) non-deterministic branching represented by % in the
conditional guard. The techniques presented in this chapter can be extended also to
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(stmt) ::= {(assgn) | skip | (stmt) ; (stmt)
| if (ndboolexpr) then (stmt) else (stmt) fi
| while (boolexpr) do (stmt) od
(assgn) ::= (pvar) := (expr) | {pvar) := sample({dist))
(ndboolexpr) ::= x | prob(p) | (boolexpr)

Figure 7.1 Abstract grammar of imperative probabilistic programs.

programs with non-deterministic assignments, but we omit this feature for the sake
of simplicity.

Affine Probabilistic Programs. The mathematical techniques presented in this
chapter are applicable to a rather general class of probabilistic programs. When
considering automation of these methods, we restrict our attention to affine programs.
A probabilistic program P is affine if each arithmetic expression occurring in £
(i.e. in its loop guards, conditionals, and right-hand sides of assignments) is an
affine expression, i.e. an expression of the form b + Zle a;x;, where b,ay,...,a,
are real-valued constants.

7.2.2 Semantics of Probabilistic Programs

We now sketch our definition of semantics of PPs with non-determinism. We use the
standard operational semantics presented in more detail in (Agrawal et al., 2018).

Basics of Probability Theory. We assume some familiarity with basic concepts of
probability theory. A probability space is a triple (Q, F,P), where Q is a non-empty
set (so called sample space), F is a sigma-algebra of measurable sets over €,
i.e. a collection of subsets of Q that contains the empty set @, and that is closed
under complementation and countable unions, and P is a probability measure on
F,i.e., afunction P: ¥ — [0, 1] such that: (1) P(0) = 0, (2) for all A € F it holds
P(Q ~ A) = 1 — P(A), and (3) for all pairwise disjoint countable set sequences
A, Ay, € F (e, A;NA; =0 foralli # j) we have 3.7, P(A;) = P(U;2, Ai).
A random variable in a probability space (€, 7, P) is an ¥ -measurable function
R: Q — R U {c0}, i.e., a function such that for every a € R U {co} the set
{w € Q| R(w) < a} belongs to F. We denote by E[R] the expected value of a
random variable R (see (Billingsley, 1995, Chapter 5) for a formal definition). A
random vector in (Q, F,P) is a vector whose every component is a random variable
in this probability space. We denote by X[;] the j-component of a vector X. A
stochastic process in a probability space (€, F,P) is an infinite sequence of random
vectors in this space. A filtration in the probability space is an infinite non-decreasing
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sequence of sigma-algebras fyp € F1 C F» C ---F characterizing an increase
of available information over time (see (Williams, 1991, Chapter 10)). A process
{Xn}nen, is adapted to the filtration {7, }nen,, if X, is F,-measurable for each
n € Ny. We will also use random variables of the form R: Q — S for some finite
set S, which easily translates to the variables above.

Configurations and Runs. For a program £ we denote by Vi the set of programs
variables used in # (we routinely drop the subscript when # is known from the
context). A configuration of a PP P is a tuple (¢,x), where ¢ is a program location
(a line of the source code carrying a command) and x is valuation, i.e. a |Vp|-
dimensional vector s.t. x[#] is the current value of variable ¢ € Vip. A run is a finite
or infinite sequence of configurations corresponding to a possible execution of the
program. A finite run which does not end in the program’s terminal location is also
called an execution fragment.

Schedulers. Non-determinism in a program is resolved via a scheduler. Formally,
a scheduler is a function o assigning to every execution fragment that ends in a
location containing a command if x then... else... a probability distribution over
the if- and else branches. We impose an additional measurability condition on
schedulers, so as to ensure that the semantics of probabilistic non-deterministic
programs is defined in a mathematically sound way. The definition of a measurable
scheduler that we use is the standard one used when dealing with systems that
exhibit both probabilistic and non-deterministic behaviour over a continuous state
space (NeuhiduBer et al., 2009; NeuhduBer and Katoen, 2007). In the rest of this
work, we refer to measurable schedulers simply as “schedulers.”

From a Program to a Stochastic process. A program % together with a scheduler

o and initial variable valuation x( define a stochastic process which produces a

random run (£, X0)(€1,X1)(£2,X2) - - - . The evolution of this process can be informally

described as follows: we start in the initial configuration, i.e. (€y,Xg), where ¢
corresponds to the first command of # and {y is the initial valuation of variables

(from now on, we assume that each program is accompanied by some initial variable

valuation denoted Xx;,;;). Now assume that i steps have elapsed and the program has

not yet terminated, and let 7; = (€y,X0)(€1,X1) - - - (£;,X;) be the execution fragment
produced so far. Then the next configuration (¢;41,X;+1) is chosen as follows:

e If {; corresponds to a deterministic assignment, the assignment is performed
and the program location advances to the next command, which yields the new
configuration.

o If {; corresponds to a probabilistic assignment, the value to assign is first sampled
from a given distribution, after which the assignment of the sampled value is
performed as above.
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e If {; corresponds to a command if x then..., then a branch to execute is sampled
according to scheduler o, i.e. from the distribution o-(7r;). The valuation remains
unchanged, but ¢;, advances to the first command of the sampled branch.

e If ¢; corresponds to a command if prob(p) then..., then we select the if branch
with probability p and the else branch with probability 1 — p. The selected branch
is then executed as above.

e Otherwise, ¢; contains a standard deterministic conditional (branching or loop
guard). We evaluate the truth value of the conditional under the current valuation
X; to select the correct branch, which is then executed as above.

The above intuition can be formalized by showing that each probabilistic program

% together with a scheduler o and initial valuation xo uniquely determine a certain

probability space (Qgun, R, P,‘{O) in which Qg,, is a set of all runs in #, and a

stochastic process C7 = {Cl?’}l?'io in this space such that for each run p € Qg,,, we

have that C{ (o) is the i-th configuration on o. The formal construction of R and

PY, proceeds via the standard cylinder construction (Ash and Doléans-Dade, 2000,

Theorem 2.7.2). We denote by EY the expectation operator in the probability space

(QRum R, PZ))

7.2.3 Termination

Each program % has a special location ¢,,; corresponding to the value of the program
counter after finishing the execution of . We say that a run terminates if it reaches a
configuration whose first component is £,,,; such configurations are called ferminal.

Analysing program termination is one of the fundamental questions already in
non-probabilistic program analysis. The question whether (every execution of) a
program terminates is really just a re-statement of the classical Halting problem
for Turing machines, which is, per one of the first fundamental results in computer
science, undecidable (Turing, 1937). While we cannot decide whether a given
program terminates, we can still aim to prove program termination via automated
means, i.e. construct an algorithm which proves termination of as many terminating
programs as possible, and reports a failure when it is unable to find such a proof
(note that failure to find a termination proof does not, per se, prove the program’s
non-termination).

A classical technique for proving termination of non-probabilistic programs is
the synthesis of an appropriate ranking function (Floyd, 1967). A ranking function
maps program configurations to rational numbers, satisfying the following two
properties: (1) each step of the program’s execution strictly decreases the value
of the ranking function by a value bounded away from zero, say at least by one;
and (2) non-terminal configurations are mapped to positive numbers. Due to this
strict decrease, the value of the function cannot stay positive ad infinitum; hence, the
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existence of a ranking function shows that the program terminates. Conversely, if
we restrict to non-probabilistic programs with bounded non-determinism (where the
number of non-deterministic choices in every step is bounded by some constant, such
as in our syntax), then each such terminating program possesses a ranking function
which maps a configuration (¢, x) to the maximal number of steps the program needs
to reach a terminal configuration from (¢, x). Since termination is undecidable, we
cannot have a sound and complete algorithm for synthesis of such ranking functions.
We can however employ techniques that are sound and conditionally complete in
the sense that they search for ranking functions of a restricted form (such as linear
ranking functions) and are guaranteed to find such a restricted ranking function
whenever it exists (Bradley et al., 2005a; Colén and Sipma, 2001; Podelski and
Rybalchenko, 2004).

7.2.4 Termination Questions for Probabilistic Programs

Termination and Termination Time. Recall that £,,, is a location to a terminated

program execution. We define a random variable 7erm such that for each run o the

value Term(p) represents the first point in time when the current location is £,,,. If a

run o does not terminate, then Term(p) = co. We call Term the termination time of

P.

We consider the following fundamental computational problems regarding termi-
nation:

o Almost-sure termination: A probabilistic program % is almost-surely (a.s.) termi-
nating if under each scheduler o~ it holds that Py, ({0 € Qgux | o terminates}) = 1,
or equivalently, if for each o it holds PY (Term < o) = 1.

o Finite and bounded termination: A probabilistic program % is said to be finitely
(aka positive almost-surely (Fioriti and Hermanns, 2015)) terminating if under
each o it holds that EJ - [Term] < co. Furthermore, the program % is boundedly
terminating if we have sup,, EY [Term] < oo.

o Probabilistic termination: In this generalization of the a.s. termination problem,
we aim to compute a non-trivial lower bound p € [0, 1] on termination probability,
i.e. p s.t. for each o we have Py ({0 € Qgyn | © terminates}) > p. In particular,
here we also aim to analyse programs that are not necessarily a.s. terminating.

Remark 7.1 We present some remarks about the above definitions.

e First, finite termination implies almost-sure termination as EJ [Term] < oo
implies Py (Term) = 1; however, the converse does not hold (see Example 7.2
below).

e Second, there is subtle but important conceptual difference between finite and

bounded termination. While the first asks for the expected termination time to be
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finite for all schedulers, the expected termination time can still grow unbounded
with different schedulers. In contrast, the bounded termination asks for the
expected termination time to be bounded for all schedulers (but can depend on
initial configuration). For probabilistic programs without non-determinism they
coincide, since there is no quantification over schedulers. In general bounded
termination implies finite termination; however, the converse does not hold (see
Example 7.3 below).

It follows that bounded termination provides the strongest termination guarantee

among the above questions, and we will focus on bounded termination.

Example 7.2 We present an example program that is almost-sure terminating, but
not finite terminating. Consider the probabilistic program depicted in Figure 7.2.
The loop models the classical symmetric random walk that hits zero almost-surely,
but in infinite expected termination time (see Williams, 1991, Chapter 10). Hence,
the loop is a.s. terminating but not finitely terminating.

Example 7.3 We present, in Figure 7.3, an example program that is finitely
terminating, but not boundedly terminating. A scheduler for the program can be
characterized by how many times the scheduler chooses the program counter 6 from
the non-deterministic branch at the program counter 5 (finitely or infinitely), as once
the scheduler chooses the program counter 10, the program then jumps out of the
while loop at the program counter 4 and terminates after the execution of the while
loop at the program counter 12. Under each such scheduler, the expected termination
time is finite, so we have that the program is finitely terminating. However, since
we have 3" at the right-hand-side of the program counter 10 and the probability to
jump out of the while loop at the non-deterministic branch 4 is 0.5 by the Bernoulli
distribution, the expected termination time under a scheduler can be arbitrarily large
when the number of times to choose the program counter 6 at the program counter 5
increases. Hence, there is no upper bound on the expected termination time for all
schedulers, i.e., the probabilistic program is not boundedly terminating. See Fioriti
and Hermanns (2015, Page 2) for details.

We now argue that termination analysis for probabilistic programs is more complex
than for non-probabilistic programs.

First, note that the classical ranking functions do not suffice to prove even
almost-sure termination. Since ranking functions are designed for non-probabilistic
programs, applying them to probabilistic programs would necessitate replacing
probabilistic choices and assignments with non-determinism. But Figure 7.2 shows
a program which terminates almost-surely in the probabilistic setting, but does not
necessarily terminate when the choice on line 3 is replaced by non-determinism (the
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non-deterministic choice might e.g. alternate between the if- and the else-branch,
preventing x from decreasing to 0).

Second, there are deeper theoretical reasons for the hardness of probabilistic
termination. The termination of classical programs, i.e. the halting problem, is
undecidable but recursively enumerable. As shown by (Kaminski and Katoen, 2015),
the problems of deciding almost sure and positive termination in probabilistic
programs are complete for the 2nd level of the arithmetic hierarchy.

Hence, the classical analysis is not applicable and new approaches to probabilistic
termination are needed.

7.3 Theoretical Foundations for Bounded Termination

In this section, we establish theoretical foundations for proving bounded termina-
tion of probabilistic programs. First, we consider probabilistic programs without
non-determinism and demonstrate mathematical approaches for proving bounded
termination over such programs. Second, we extend the approach to probabilis-
tic programs with non-determinism. Third, we show that our approach is sound
and complete for proving bounded termination of non-deterministic probabilistic
programs. Finally, we describe algorithms for proving bounded termination.

7.3.1 Probabilistic Programs without Non-determinism

For probabilistic programs without non-determinism, Chakarov and Sankara-
narayanan (2013) first proposed a sound approach for proving bounded termination.
(Recall that in the absence of non-determinism, finite and bounded termination
coincide.) The approach can be described as follows.
o First, a general result on bounded termination of a special class of stochastic
processes called ranking supermartingales (RSMs) is established.
e Second, program executions are translated into stochastic processes through a
notion of RSM-maps.
e Third, the existence of RSM-maps that ensure bounded termination of probabilistic
programs without non-determinism is established. The central idea of the proof is
a construction of RSMs from RSM-maps.
We begin with the notion of ranking supermartingales which is the key to the
approach. We take the original definition in Chakarov and Sankaranarayanan (2013).

Definition 7.4 (Ranking Supermartingales) A discrete-time stochastic process
I' = { X, }nen, adapted to a filtration {F, },en, is a ranking supermartingale (RSM)
if there exist real numbers € > 0 and K < 0 such that for all n € Ny, the following
conditions hold:

e (integrability) E[|X},|] < o0;

e (lower-bound) it holds a.s. that X,, > K;
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1: x:=100;

2: while x>0 do

3: if prob(0.5) then
4.

x:=x+1
else

5: x:=x-1
fi;

od
6:

Figure 7.2 An a.s. (but not finitely) terminating example

1: n:=0; 2: i:=0; 3: ¢c:=0;
4: while ¢=0 do
5: if x then
6: ¢ := sample(Bernoulli (0.5) ) ;
7: if ¢=0 then
8: n:=n+1
else
9: i:=n
fi
else
10: i:=3";
11: c:=1
fi
od;

12: while i >0 do
13: i=i-1

od
14

Figure 7.3 A finitely (but not boundedly) terminating example

e (ranking) itholds a.s. that E[ X,,+1|7] < X,, —€-1x, >0, where the random variable
E[X,+1|F] is the conditional expectation of X,,; given the sigma-algebra ¥,
(see Williams, 1991, Chapter 9 for details), and the random variable 1x, »( takes
value 1 if the event X, > 0 holds and 0 otherwise.

Informally, an RSM is a stochastic process whose values have a lower bound and
decrease in expectation when the step increases.
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The random variable Zr. Given an RSM I' = {X,,},en, adapted to a filtration
{Fn}nen,, we define the random variable Zr by Zr(w) := min{n | X,(w) < 0}
where min () := co. By definition, the random variable Zr measures the amount of
steps before the value of the stochastic process I' drops below zero for the first time.

The following theorem from illustrates the relationship between an RSM I' and
its termination time Zr. There are several versions for the theorem. The original
version is Chakarov and Sankaranarayanan (2013) which only asserts almost-sure
termination. (Recall that bounded termination implies almost-sure termination, but
not vice versa.) Then in Fioriti and Hermanns (2015, Lemma 5.5), the theorem
was extended to bounded termination with an explicit upper bound on expected
termination time. The version in Fioriti and Hermanns (2015, Lemma 5.5) restricts
K to be zero. Here we follow the version in Chatterjee et al. (2018a) that relaxes
K to be a non-positive number while deriving an upper bound on the expected
termination time.

Proposition 7.5 Let I' = {X,, },en, be an RSM adapted to a filtration {Fp}nen,
with €, K given as in Definition 7.4. Then P(Zr < o) = 1 and E[Zr] < w.

Proof Sketch  Using the ranking condition in Definition 7.4, we first prove by
induction on n > 0 that E[X,,] < E[Xp] — € - Z,’;(l) P(X; > 0). Moreover, we have
from the lower-bound condition in Definition 7.4 that E[X,,] > K, for all n. Then we
obtain that for all », it holds that

S P(Xg > 0) < ZXEXe] o EXo]K

Hence, the series 35° P(X; > 0) converges and is no greater than “X2=K 1¢

follows from Zp(w) > k = Xi(w) > 0 (for all k, w) that

o E[Zr] = X3 P(k < Zr < 00) < 20 P(Xx = 0) < E[Xi]_K-

Then the desired result follows. See Fioriti and Hermanns (2015, Lemma 5.5) and
Chatterjee et al. (2018a, Proposition 3.2) for details. O

Theorem 7.5 established the first step of the approach. In the next step, we need
to relate RSMs with probabilistic programs. To accomplish this, the notion of
RSM-maps plays a key role. We first introduce the notion of pre-expectation, then
that of RSM-maps.

Below we fix a non-deterministic probabilistic program P with the set L of
locations (values of the program counter), the set V of program variables and the set
D of probability distributions appearing in P. Then the set of variable valuations is
RV and the set of configurations is L x RIYI. Moreover, we say that a sampling
valuation is a real vector in R!?! that represents a vector of sampled values from
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all probability distributions. Then for each assignment statement in P at a location
¢, regardless of whether the assignment statement is deterministic or a sampling,
we have a function Fy which maps each current variable valuation x and current
sampling valuation r to the next variable valuation Fy(x,r) after the execution of the
assignment statement.

The following definition introduces the notion of pre-expectation (Chatterjee
et al., 2018a; Chakarov and Sankaranarayanan, 2013; Mclver and Morgan, 2005).

Definition 7.6 (Pre-expectation) Letn : L x RV — R be a function which maps
every configuration to a real number. We define the pre-expectation of n as the
function pre,, : L X RVl — R by:

e pre,(£,X) 1= Xper peer - (¢,X) if £ corresponds to a probabilistic branch and
pe.e is the probability that the next location is ¢;

e pre,(£,x) := 1 (¢',x) if £ corresponds to either an if-branch or a while-loop and £’
is the next location determined by the current variable valuation x and the boolean
predicate associated with ¢;

e pre,(£,x) = n(¢’,Er (Fe(x,1))) if £ corresponds to an assignment statement,
where ¢’ is the location after the assignment statement and the expectation Ep(—)
is considered when x is fixed and r observes the corresponding probability
distributions in D.

Intuitively, pre,, (¢, X) is the expected value of 7 after the execution of the statement
at £ with the current configuration (¢, x).

Remark 7.7 The pre-expectation here is taken from Chatterjee et al. (2018a), and
is a small-step version that only considers the execution of one individual statement.
A big-step version is given in Chakarov and Sankaranarayanan (2013) and Mclver
and Morgan (2005) that consider the execution of a block of statements. The big-step
version can be obtained by iterating the small-step version statement by statement in
the block.

Invariants. To introduce the notion of ranking-supermartingale maps, we further
need the notion of invariants. Formally, given an initial configuration (£, Xo), an
invariant [ is a function that assigns to each location ¢ a subset of variable valuations
I(€) such that in any program execution from the initial configuration and for all
configurations (¢,x) visited in the execution, we have that x € I(¢). Intuitively, an
invariant is an over-approximation of the reachable configurations from a specified
initial configuration. A trivial invariant is the one that assigns to all locations the set
RIVI of all variable valuations. Usually, we can obtain more precise invariants that
tightly approximate the reachable configurations through well-established techniques
such as abstract interpretation (Cousot and Cousot, 1977).

https://doi.org/10.1017/9781108770750.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.008

234 Chatterjee, Fu and Novotny: Termination Analysis with Martingales

Now we introduce the notion of ranking-supermartingale maps.

Definition 7.8 (Ranking-supermartingale Maps) A ranking-supermartingale map
(RSM-map) wrt an invariant / is a function 77 : L x RIV! — R such that there exist
real numbers € > 0 and K, K’ < 0 such that for all configurations (¢, x), the following
conditions hold:

(C1) if € # £,,; and x € I({), then n({,x) > 0;
(C2) if € = £,,; and x € I({), then K < n({,x) < K’;
(C3) if € # Lo and x € I({), then pre, (€,%) < 1((,x) — €.

Intuitively, the condition (C1) specifies that when the program does not terminate
then the value of the RSM-map should be non-negative. The condition (C2) specifies
that when the program terminates, then the value should be negative and bounded
from below. Note that (C1) and (C2) together guarantees that the program terminates
iff the value of the RSM-map is negative. Finally, the condition (C3) specifies that
the pre-expectation at non-terminal locations should decrease at least by some fixed
positive amount, which is related to the ranking condition in the RSM definition (cf.
Definition 7.4).

The key role played by RSM-maps is that if we have an RSM-map, then we can
assert the bounded termination of the program and an explicit upper bound. In
other words, RSM-maps are sound for proving bounded termination of probabilistic
programs. This is demonstrated by the following proposition from (Chatterjee et al.,
2018a, Theorem 3.8).

Proposition 7.9 (Soundness) If there exists an RSM-map n wrt some invariant I,

then we have that sup, EJ  [Term] < M

Proof Sketch  Suppose that there is an RSM-map n. Let the stochastic process
I' = {Xn}nen, be given by: X,, := n(C,,). (Recall that C,, is the vector of random
variables that represents the configuration at the n-th step in a program execution.)
Then from (C2) and (C3), we have that I" is an RSM with the same ¢, K. Thus we
obtain from Proposition 7.5 that E[Zr] < w. Furthermore, from (C1) and
(C2), we have that Term = Zr. It follows that EY [Zr] < w for all schedulers
0. See Chatterjee et al. (2018a, Theorem 3.8) for details. m|

Below we illustrate the approach of RSM-maps for proving bounded termination
of probabilistic programs through a simple example. The example is taken from
Chakarov and Sankaranarayanan (2013, Example 2).

Example 7.10 (A Tortoise-Hare Race) Consider a scenario where a tortoise and a
hare race against each other. The program representation for such a race is depicted
in the left part of Figure 7.4. At the beginning, the hare starts at the position 0
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1: h:=0 ; t Invariant / RSM-map

2: t:=30; 1 true 119

3: while A<t do 2 h=0 118

4: if prob(0.5) then 3 h<t+9 3-(t—h)+27

5: r := sample(Uniform(0, 10)) ; 1 h<i 3-(t—h)+26

6: h:=h+r 5 h<t 3-(t—h)+18
else PP

7. skip 6 A 3.(t-h-r)+32
fi: 0<r<10

8: t:i=t+1 7 h<t 3-(t—h)+32
od 8 h<r+10 3.(t-h)+31

9: 9 t<h -1

Figure 7.4 Left: The Probabilistic Program for a Tortoise-Hare Race Right: An RSM-map for
the Program

(location 1), while the tortoise starts at the position 30 (location 2). Then in each
round (an iteration of the loop body from the location 4 to location 8), the hare either
stops (location 7) or proceeds with a random distance that observes the uniform
distribution over [0, 10] (location 6), both with probability %, while the tortoise
always proceeds with a unit distance (location 8). It is intuitively clear that the hare
will eventually catch the tortoise and the program will enter the terminal location
{ous = 9 in finite expected time.

The right part of Figure 7.4 illustrates an RSM-map 7 w.r.t an invariant [ for
the program, where “€” stands for “location”, the invariant I is specified through
conditions on program variables for each location (e.g., 1(3) is the set of all variable
valuations x where x[/] < x[7] + 9), and the RSM-map 7 is also specified for each
location (e.g., n(3,x) = 3 - (x[t] — x[k]) + 27).

The function 7 is an RSM-map with € = 1,K = K’ = —1 since it satisfies (C1)—
(C3). For example, the condition (C1) is satisfied at the location 3 since x[ 4] < x[¢]+9
implies that 3 - (x[¢] —x[&]) +27 > 0; the condition (C2) is straightforwardly satisfied
at the location 9; finally, the condition (C3) at the location 5 is satisfied as we
have E[uniform(0,10)] =5and3-(t—h—E(r))+32<3-(t—h)+18—-1. Asa
consequence, we obtain that Ey_ . [Term] < w = 120. |

Xinit

7.3.2 Probabilistic Programs with Non-determinism

The approach of ranking supermartingales can be directly extended to non-determinism.
However, before we illustrate the extension, an important issue to resolve is the
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operational semantics with non-determinism. There is a diversity in the operational
semantics for probabilistic programs with non-determinism. The semantics can
be either directly based on random samplings (Fioriti and Hermanns, 2015) or
Markov decision processes (MDPs). Below we first describe the result with random-
sampling semantics (Fioriti and Hermanns, 2015), then the results with the MDP
semantics (Chatterjee et al., 2018a).

Sampling-Based Semantics. In Fioriti and Hermanns (2015), a semantics directly
based on samplings is proposed. Under this semantics, a sample point (in the sample
space) is an infinite sequence of sampled values from corresponding probability
distributions in the program. Then for each scheduler o, there is a termination-
time random variable Term“ . The advantage of this semantics is that there is only
one probability space (i.e., the set of all infinite sequences of sampled values).
However, the cost is that there are many random variables Term? , and one needs
to define a “supremum” random variable Term” := sup, Term” where o ranges
over all schedulers. As a result, a relative completeness result under such semantics
is established in Fioriti and Hermanns (2015, Theorem 5.8) which states that if
E(Term™) < oo then there exists a ranking supermartingale. As the semantics takes
the supremum over all termination-time random variables, it is infeasible to explore
the internal effect of an individual scheduler. As a consequence, it is difficult to
develop algorithmic approaches based on this semantics.

MDP-Based Semantics. In Chatterjee et al. (2018a), the MDP-semantics is
adopted. MDPs are a standard operational model for probabilistic systems with non-
determinism. Under the MDP-semantics, a state is a configuration of the program,
while the probabilistic transitions between configurations are determined by the
imperative semantics of each individual statement. Compared with the sampling-
based semantics, there is only one termination-time random variable Term and each
scheduler determines a probabilistic space. Since the behaviour of an individual
scheduler can be manipulated under this semantics, algorithmic approaches can be
developed (which will be further illustrated in Section 7.4).

We follow the MDP-based semantics and demonstrate the extension of ranking
supermartingales to non-determinism. To introduce the notion of RSM-maps in the
context of non-determinism, we first extend the notion of pre-expectation.

Below we fix a non-deterministic probabilistic program P with the set L of
locations, the set V of program variables and the set 9 of probability distributions
appearing in P.

Definition 7.11 (Pre-expectation) Letn : L xRV — R be a function which maps
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every configuration to a real number. We define the pre-expectation of n as the
function pre,, : L X RVI - R by:

e pre,(£,X) 1= Yper peer - (¢,X) if £ corresponds to a probabilistic branch and
pe.e is the probability that the next location is ¢/;

e pre,(£,X) := 1 (¢',x) if ¢ corresponds to either an if-branch or a while-loop and
¢’ is the next location given the current variable valuation x;

e pre, (€,x) := n(¢’,Ex [F¢(x,1)]) if the location ¢ corresponds to an assignment
statement, where ¢’ is the location after the assignment statement and the
expectation E.(—) is considered when x is fixed and r observes the corresponding
probability distributions in D;

e pre,(£,X) := max{n(m,x),n(la, X)} if € corresponds to a non-deterministic branch
where i, and £ are the locations for respectively the then- and else-branch.

Compared with Definition 7.6, the current definition is extended with non-
determinism. In the last item of Definition 7.11, the pre-expectation at a non-
deterministic branch are defined as the maximum over its then- and else-branches.
The reason to have maximum is that the non-deterministic branch in our programming
language can be resolved arbitrarily by any scheduler, so we need to consider the
worst case at non-deterministic branches regardless of the choice of the scheduler.

Soundness Result. Once we extend pre-expectation with non-determinism, we can
keep the definition for RSM-maps the same as in Definition 7.8. Then with similar
proofs, the statement of Proposition 7.9 still holds with non-determinism. Thus,
RSM-maps are sound for proving bounded termination of probabilistic programs
with non-determinism.

Proposition 7.12 (Soundness) RSM-maps are sound for proving bounded termi-
nation of probabilistic programs with non-determinism.

Completeness Result. In Fu and Chatterjee (2019, Theorem 2), a completeness
result is established for RSM-maps and probabilistic programs with integer-valued
variables. The result states that if the expected termination time of the probabilistic
program is bounded for all schedulers, then there exists an RSM-map. The formal
statement is as follows.

Proposition 7.13 (Completeness) If all program variables in a probabilistic
program P are integer-valued and sup, EJ [Term] < oo, then there exists an
RSM-map w.r.t some invariant I for P.

From Proposition 7.12 and Proposition 7.13, we obtain that the approach of RSMs

is sound and complete (through RSM-maps).
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Theorem 7.14 RSM-maps are sound and complete for proving bounded termination
of probabilistic programs.

Remark 7.15 Note that the termination problems for probabilistic programs gen-
eralize the termination problems for non-probabilistic programs (i.e., the halting
problem of Turing machines) and is undecidable (for detailed complexity characteri-
zation see Kaminski and Katoen (2015)). The above soundness and completeness
result does not imply that program termination is decidable, as it only ensures the
existence of an RSM-map in general form which is not always computable. Thus
the completeness result is orthogonal to the decidability results, however, special
classes of RSM-maps can be obtained algorithmically which we consider in the
following section.

7.4 Algorithms for Proving Bounded Termination

In the previous sections, we have illustrated that the existence of an RSM-map leads
to bounded termination of probabilistic programs. Thus, in order to develop an
algorithmic approach to prove bounded termination of probabilistic programs, it
suffices to synthesize an RSM-map. Furthermore, since it is infeasible to synthesize
an RSM-map in general form, in an algorithmic approach one needs to restrict the
form of an RSM-map so as to make the approach feasible. In this section, we illustrate
algorithmic approaches that can synthesize linear and polynomial RSM-maps given
an input invariant (also in special form). Since the class of linear/polynomial RSM-
maps is quite general, the corresponding algorithmic approaches can be applied
to typical probabilistic programs such as gambler’s ruin, random walks, robot
navigation, etc. (see the experimental results in Chakarov and Sankaranarayanan
(2013), Chatterjee et al. (2018a) and Chatterjee et al. (2016b) for details).

We first describe the algorithmic approach for synthesizing linear RSM-maps
over affine probabilistic programs where the right-hand-side of each assignment
statement is affine in program variables. A linear RSM-map is an RSM-map 7 such
that for each location ¢, the function 7(¢, —) is affine in the program variables of P.
For example, the RSM-map at the right part of Figure 7.4 is linear.

To illustrate the algorithm, we need the well-known Farkas’ Lemma that charac-
terizes the inclusion of a polyhedron in a halfspace.

Theorem 7.16 (Farkas’ Lemma (Farkas, 1894; Schrijver, 2003)) Let A € R™",
b e R™, ¢c € R" and d € R. Assume that {x € R" | Ax < b} # 0. Then we have that

{(xeR"|Ax<b} C {xeR"|c'x < d}
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iff there exists y € R™ such thaty > 0, ATy = c and b'y < d, where y > 0 means
that every coordinate of y is non-negative.

The Farkas’ Linear Assertions ®. Farkas’ Lemma transforms the inclusion testing
of systems of linear inequalities into an emptiness problem. Given a polyhedron
H = {x € R" | Ax < b} as in the statement of Farkas’ Lemma (Theorem 7.16),
we define the predicate ®[H, ¢, d](¢) (which is called a Farkas’ linear assertion) for
Farkas’ Lemma by

O[H,c,d](€) := (£ = 0) A (ATf - c) A (ng < d)

where £ is a variable representing a column vector of dimension m. Then by Farkas’
Lemma, we have that H C {x | ¢"x < d} iff there exists a column vector y such that
®[H,c,d](y) holds.

Linear Invariants. We also need the notion of linear invariants. Informally, A
linear invariant is an invariant I such that for all locations £ we have that /({) is a
finite union of polyhedra.

Now we illustrate the algorithm for synthesizing linear RSM-maps w.r.t a given
linear invariant. The description of the algorithm is as follows.

(i) First, the algorithm establishes a linear template for an RSM map. The linear
template specifies that at each location, the function is affine in program variables
with unknown coefficients. Besides, the algorithm also sets up three unknown
parameters €, K, K’ which correspond to the counterparts in the definition of
RSM-maps (cf Definition 7.8).

(i) Second, the algorithm transforms the conditions (C1)—(C3) equivalently into
Farkas’ linear assertions through Farkas’ Lemma.

(iii) Third, since the Farkas’ linear assertions refer to the emptiness problem
over polyhedra, we can use linear programming to solve those assertions. If a
linear programming solver eventually finds the concrete values for the unknown
coeflicients in the template, then the algorithm finds a linear RSM-map that
witnesses the bounded termination of the input program. Otherwise, the algorithm
outputs “fail”, meaning that the algorithm does not know whether the input
program is boundedly terminating or not.

Since linear programming can be solved in polynomial time, our algorithm also
runs in polynomial time, as is illustrated by the following theorem.

Theorem 7.17 (Chatterjee et al., 2018a, Theorem 4.1) The problem to synthesize
a linear RSM-map over non-deterministic affine probabilistic programs where all
loop guards are in disjunctive normal form can be solved in polynomial time.

Below we illustrate the details on how the algorithm works on Example 7.10.
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Example 7.18 We illustrate our algorithm on Example 7.10, where the input

invariant is the same as given by the right part of Figure 7.4.

(i) First, the algorithm establishes a template n for a linear RSM-map so that
ni,—)=a;-h+b;-t+c;-r+d;forl <i <9, where g, b;, ¢;,d; are unknown
coefficients. The algorithm also sets up the three unknown parameters €, K, K.

(ii) Second, the algorithm transforms the conditions (C1)—(C3) at all locations into
Farkas’ linear assertions. We present two examples for such transformation.

e The condition (C1) at location 6 says that (6, —) should be non-negative over
the polyhedron H’ := {x | x[h] < x[#] A O < x[r] < 10}. Then from Farkas’
Lemma, we construct the Farkas’ linear assertion ®[H’, (—as, —bg, —cs) ", ds ] (€)
where £ is a column vector of fresh variables.

e The condition (C3) at location 4 says that 0.5-7(5,—-)+0.5-n(7,-)+€ < n(4,-)
holds over the polyhedron H” := {x | x[4] < x[]}. Note that 0.5 - n(5,-) +
0.5-7(7,-) + e —n@4,-) = (¢') - (h,t,r)' —d’ where ¢’ = (0.5 - (a5 + a7) —
a4,0.5 - (b5 + b7) —b4,0.5- (C5 + C7) - C4) andd’ =-0.5- (d5 + d7) +dy—€.So
we construct the Farkas’ linear assertion ®[H",¢’,d"](¢”) with fresh variables
in &’. Note that this assertion is linear in both the unknown coefficients (i.e.,
a;, bi, ci, d;’s), the unknown parameters €, K, K’ and the variables in &’.

(iii) Third, the algorithm collects all the Farkas’ linear assertions constructed from
the second step in the conjunctive fashion. Then, together with the constraint
€ > 1 and K,K < —1 (which is equivalent to € > 0 and K,K < 0 as we can
always multiply them with a large enough factor), the algorithm calls a linear
programming solver (e.g. Cplex, 2010, Lpsolve, 2016) to get the solution to the
unknown coeflicients in the template.

Remark 7.19 (Synthesis of Polynomial RSM-maps) In several situations, linear
RSM-maps do not suffice to prove bounded termination of probabilistic programs.
To extend the applicability of RSM-maps, Chatterjee et al. (2016b) proposed an
efficient sound approach to synthesize polynomial RSM-maps. The approach is
through Positivstellensatz’s (Scheiderer, 2008), an extension of Farkas’ Lemma to
polynomial case, and linear/semidefinite programming. This sound approach gives
polynomial-time algorithms. Moreover, it is shown in Chatterjee et al. (2016b) that
the existence of polynomial RSM-maps is decidable through the first-order theory
of reals.

Remark 7.20 (Angelic Non-determinism) In this chapter, all non-deterministic
branches are demonic in the sense that they cannot be controlled and we need
to consider the worst-case. In contrast to demonic non-deterministic branches,
angelic non-deterministic branches are branches that can be controlled in order to
fulfill a prescribed aim. Similar to the demonic case, theoretical and algorithmic
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approaches for angelic branches have been considered. The differences for angelic
non-determinism as compared to demonic non-determinism are follows: (i) Motzkin’s
Transposition Theorem is used instead of Farkas’ Lemma in the algorithm, and
(ii) the problem to decide the existence of a linear RSM-map over affine probabilistic
programs with angelic non-determinism is NP-hard and in PSPACE (see Chatterjee
et al. (2018a) for details).

Remark 7.21 (Concentration Bound) A key advantage of martingales is that with
additional conditions sharp concentration results can be obtained. For example,
in Chatterjee et al. (2018a), it is shown that the existence of a difference-bounded
RSM can derive a concentration bound beyond which the probability of non-
termination within a given number of steps decreases exponentially. Informally, an
RSM is difference-bounded if its change of value is bounded from the current step
to the next step. The key techniques for such concentration bounds are Azuma’s or
Hoeffding’s inequality; for a detailed discussion see Chapter 8 of this book.

7.5 Beyond Bounded Termination

As shown above, ranking supermartingales provide a sound and complete method
of proving bounded termination. In this section, we present several martingale
techniques capable of proving a.s. termination of programs that do not necessarily
terminate in bounded or even finite expected time. Moreover, already for programs
that do terminate boundedly, some of the techniques we present here provide a
computationally more efficient approach to termination proving. For succinctness,
we will from now on omit displaying the terminal location when presenting program
examples.

7.5.1 Zero Trend and Zeno Behaviour

Consider a program modelling a symmetric random walk (Figure 7.5, here in a dis-
crete variant where the change in each step is either —1 or +1, with equal probability).
It is well-known that such a program is a.s. terminating. At the same time it does
not admit any ranking supermartingale. This is because ranking supermartingales
require that the “distance” to termination strictly decreases (in expectation) in every
step, while the expected one-step change of the symmetric random walk is zero.
Another scenario in which the standard ranking supermartingales are not applicable
is when there is a progress towards termination, but the magnitude of this progress
decreases over the runtime of the program, as is the case in Figure 7.6.

Mclver et al. (2018) give a martingale-based proof rule which can handle the
above issues. Here we present a re-formulation of the rule within the scope of our
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1: while x>1 do
2: x := x + sample(Uniform{-1, 1})
od

Figure 7.5 Symmetric random walk.

1:  while x>1 do
2: p:=1/(x+1)
3: t := sample(Uniform][0, 1])
4: if +<p then
5: x:=0
else
6: x:=x+1
fi od

Figure 7.6 Escaping spline program from (Mclver et al., 2018).

syntax and semantics of PPs. In the following, we say that a real function f is
antitone (or, alternatively, non-increasing) if f(x) < f(y) © y < x.

Definition 7.22 A non-negative discrete-time stochastic process I' = { X, },en,
adapted to a filtration {F, },cn, is a parametric ranking supermartingale (PRSM) if
there exist functions d (for “decrease”) of type d: R — R0, and p (for “probability”)
of type R — [0, 1], both of them antitone and strictly positive on positive reals, such
that the following conditions hold:

(i) for each n € Ny, E[X,,41 | Fn] < X,.; and
(ii) for each n € Ny, P(Xp+1 < X, — d(Xy) | Fn) = p(X,).

In PRSMs, the constraint on expected change is relaxed so that we prohibit an
expected increase of the value (i.e., I has to be a supermartingale). On the other hand,
in each step, there is a positive probability of a strict decrease, and this probability as
well as the magnitude of the decrease can only get larger as the value of the process
approaches zero (this is to avoid a possible ‘“Zeno behaviour”, when the process
would approach zero but never reach it).

Theorem 7.23 Let I' = {X,}nen, be a PRSM adapted to some filtration. Then
P(Zr < o0) = 1, i.e. with probability 1 the process reaches a zero value.

Proof (sketch). Let H € N be arbitrary, and and let Ty be a random variable
returning the first point in time in which I' jumps out of the interval (0, H]. Then
has P(Ty < o) = 1. This is because within the interval (0, H] both the probability
and magnitude of decrease of I are bounded away from zero (as p and d are
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antitone on positive reals), so I' cannot stay within this interval forever with positive
probability. Hence, we can apply the optional stopping theorem for non-negative
supermartingales Williams (1991, Section 10.10 d)), which says that the expected
value E[Xr,, | of I at time Ty satisfies E[X7,,] < E[Xp]. But at the same time
E[Xr,]| > H -P(X1, > H), so P(Xr,, > H) < E[Xo]/H. Hence, the probability
that I “escapes” through the upper boundary of (0, H] decreases as H increases. It
follows that, denoting € the probability that I" escapes through the lower boundary,
we have {g — 1 as H — co. But each £y is a lower bound on P(Zr < o), from
which the result follows. o

One way to apply this theorem to a concrete program ¥ equipped with an
invariant / is to find positive antitone functions p¢,d, (one per each location)
along with a function n mapping #’s configurations to non-negative real numbers,
such that the following holds whenever x € I(£): n(£,x) > 0 if £ is not the
terminal configuration; pre,(£,x) < n({,x); and, denoting Py x ¢ the function
mapping (¢’,y) to 0 if n(£’,y) < n(€,x) — de(n(¢,x)), and to 1 otherwise, we have
prep, ,(6:x) < 1 = pe(n(l,x)). We call such a function 7 a PRSM map. Existence
of such a PRSM map guarantees that the program terminates almost-surely. (Note
that allowing separate d and p functions for each location is acceptable, since there
are only finitely many locations and a minimum of finitely many positive antitone
functions is again positive and antitone.) However, finding PRSM maps might be an
intricate process. To illustrate this, consider the symmetric ransom walk in Figure 7.5.
Looking at a definition of a PRSM, it would seem natural to choose x itself as the
required function, since its expected change is non-positive and with probability %
the value of x decreases by 1 in every loop iteration. However, a mapping n assigning
x to each of the two program locations is not a PRSM map, since at the beginning of
each loop iteration, when transitioning from location 1 to location 2, there is not a
positive probability of decrease of x. Indeed, a simple computation shows that there
is no linear PRSM map for the program. Nevertheless, a PRSM map exists, as the
following example shows.

Example 7.24 Take 7 such that(1,x) = Vx + Landn(2,x) = 5 - vx+1-Vx +2.
Indeed, such 5 only takes positive values for x > 0 and furthermore, pre, (2,x) =
1(2,x) (by definition) and pre, (1,x) = %\/} + % -Vx + 2 < Vx + 1 the last inequality
following by a straightforward application of calculus. As for the decrease function,
when making a step from 2 to 1, there is a py = % probability of the value decreasing
by d2(n(2,x)) = %Vx +2 - %\/} while a step from 1 to 2 entails decrease by
di(n(1,x)) =Vx+1- %\/x +2 - %\/E with probability p; = 1. A straightforward
analysis reveals that both d; and d, are positive and antitone on positive reals.

An alternative “loop-based” approach to usage of PRSMs was proposed in (Mclver
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etal., 2018). Imagine that our aim is to prove almost-sure termination of a probabilistic
loop 1 : while i do P od, and that we are provided with an invariant /(1) for the
head of the loop. Assume that for each configuration x such that x € 7(1) and x |= i,
the body # of the loop terminates when started with variables set according to x.
(Such a guarantee might be obtained by recursively analysing . If P is loopless,
the guarantee holds trivially.) Let f be a non-negative function mapping variable
valuations to real numbers. Since # is guaranteed to terminate a.s., we can define
a stochastic process {le }ien, such that for a run g, le (o) returns the value f(X;),
where X; is the valuation of variables immediately after the i-th iteration of the loop
along o (if o traverses the loop less than i times, we put le (o) = 0). If the process
{le }ien, is @ PRSM, then with the help of Theorem 7.23 it can be easily shown
that the loop indeed terminates almost surely.

Example 7.25 Returning to the symmetric random walk (Figure 7.5), let f(x) = x.
In each iteration of the loop, the value of x has zero expected change, and with
probability p = % it decreases by d = 1. Hence, {le }ien, is a PRSM and the walk
terminates a.s.

Example 7.26 Consider the escaping spline in Figure 7.6 and set f(x, p) = x. Fix
any point in which the program’s execution passes through the loop head and let a
be the value of x at this moment. Then the expected value of x after performing one
loop iteration is O - ﬁ +(a+1)- 55 = a, so the expected change of x in each loop
iteration is zero. Moreover, in each iteration the value of x decreases by at least 1
with probability p = x—}rl Since p is antitone, it follows that {le }ien, is a PRSM,
and hence the program terminates a.s.

This loop-based use of PRSMs is non-local: we have to analyse the behaviour
of f along one whole loop iteration, as opposed to single computational steps. For
complex loops, finding the right f and checking its properties might be an intricate
process. In Mclver et al. (2018), the authors propose proving required properties of
f in the weakest pre-expectation logic, a formal calculus which extends the classical
weakest-precondition reasoning to probabilistic programs. While falling short of
automated termination analysis, formalizing the proofs in the formal logic makes use
of interactive proof assistants possible, with a potential to achieve provably correct
results with significantly decreased human workload.

Remark 7.27 A similar martingale-based approach for proving almost-sure termi-
nation of probabilistic while loops is proposed in Huang et al. (2018). Compared
with Mclver et al. (2018), the martingale-based approach in Huang et al. (2018)
can derive asymptotically optimal bounds on tail probabilities of program non-
termination within a given number of steps, while Mclver et al. (2018) cannot
derive such probabilities. On the other hand, the approach in Mclver et al. (2018)
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1: while x>1 and y>1 do

2: if x then

3: x := x + sample(Uniform{-3,1})
else

4: yi=y-1

5: x := 2x + sample(Uniform{—1, 1})
fi

Figure 7.7 A program without a linear RSM but admitting a LexRSM.

refines that in Huang et al. and can prove the almost-sure termination of probabilistic
programs that Huang et al. cannot. Another related approach in Huang et al. (2018)
uses Central Limit Theorem to prove almost-sure termination.

7.5.2 Lexicographic Ranking Supermartingales

For some programs (even for those that do terminate in finite expected time), it
might be difficult to find an RSM because of a complex control flow structure, which
makes the computation go through several phases, each with a different program
behaviour.

Example 7.28 Consider the program in Figure 7.7 with an invariant [ s.t. I(1) =
{(x,y) | x=2-2Ay=20},LIR2)=13)=14) ={(x,y) | x =21 Ay > 1}and
I(5) = {(x,y) | x = 1 Ay > 0}. The program terminates in bounded expected
time, as shown by the existence of the following (non-linear) RSM map 5: n(i) =
(x+2)-27 -y - S fori e {1,...,4} and n(5) = (x +2) - 22" - y + 1. Next, it i
easy to verify, that there is no linear RSM map for the program. Intuitively, in the
else branch, executing the decrement of y can decrease the value of a linear function
only by some constant, and this cannot compensate for the possibly unbounded
increase of x caused by doubling.

The absence of a termination certificate within the scope of linear arithmetic
is somewhat bothersome, as non-linear reasoning can become computationally
hard. In non-probabilistic setting, similar issues were addressed by considering
multi-dimensional termination certificates. The crucial idea is to consider functions
that map the program configurations to real-valued vectors instead of just numbers,
such that the value of the vector-valued function strictly decreases in every step
w.r.t. some well-founded ordering of the vectors. This in essence entails a certain
“decomposition” of the termination certificate: it might happen that a program
admits a multi-dimensional certificate where each component is linear, even when
no one-dimensional linear certificates exist. Such certificates can often be found
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via fully automated linear-arithmetic reasoning. A prime example of this concept
are lexicographic ranking functions (Cook et al., 2013), where the well-founded
ordering used is typically the lexicographic ordering on non-negative real vectors.

In the context of probabilistic programs, the lexicographic extension of ranking
supermartingales was introduced in Agrawal et al. (2018). We again start with a
general mathematical definition and a correctness theorem. In the following, an
n-dimensional stochastic process is a sequence {X;}7 of n-dimensional random
vectors, i.e. each X; is a vector whose component is a random variable. We denote
by X;[/j] the j-component of X;.

Definition 7.29 An n-dimensional real-valued stochastic process {X;}2 is a
lexicographic €-ranking supermartingale (e-LexRSM) adapted to a filtration {;};2
if the following conditions hold:

(i) Foreach 1 < j < n the 1-dimensional stochastic process {X;[]};2, is adapted
to {Fi} 2y

(ii) Foreachi € Ngand 1 < j < nitholds X;[j] = 0, i.e. the process takes values
in non-negative real vectors.

(iii) For each i € Ny there exists a partition of the set {w € Q | V1 < j <
n,X;[j](w) > 0} into n subsets Li,..., L all of them F;-measurable, such that
foreach1 < j <m:

e E[X;11lj] | Fillw) < X;[j](w) — € for each w € Lji.;
e forall 1 < j’ < j wehave E[X;+1[j'] | Fi](w) < X;[j’](w) for each w € L]l

Note that we dropped the integrability condition from Definition 7.4. This is
because integrability is only needed to ensure that the conditional expectations in
the definiton of a (Lex)RSM exist and are well-defined. However, the existence of
conditional expectations is also guaranteed for random variables that are real-valued
and non-negative, see Agrawal et al. (2018) for details. This is exactly the case
in LexRSMs. Waiving the integrability condition might simplify application of
LexRSMs to programs with non-linear arithmetic, where, as already shown in Fioriti
and Hermanns (2015), integrability of program variables is not guaranteed.

The full proof of the following theorem is provided in Agrawal et al. (2018).

Theorem 7.30 Let {X;}° ) be a LexRSM adapted to some filtration. Then with
probability 1 at least one component of the process eventually attains a zero value.

To apply LexRSMs to a.s. termination proving, let # be a program and / be an
invariant for P.

Definition 7.31 (Lexicographic Ranking Supermartingale Map) Let e > 0. An
n-dimensional lexicographic e-ranking supermartingale map (e-LexRSM map) for
a program ¥ with an invariant / is a vector function = (11, . . .,7n,), where each
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n; maps configurations of # to real numbers, such that for each configuration (¢, x)
where x € I(£) the following conditions are satisfied:
e forall 1 < j < n:n;({,x)>0,andif £ # £,,, then n;(£,x) > 0; and
o if { # {,,, and € does not contain a non-deterministic choice, then there exists
1 < j < nsuch that
- pre,, (£,x) < n;((,X) - €, and
— forall 1 < j’ < j we have pre,b_,(f, x) < n;j/(€,x);
e ( # £,, and ¢ contains a non-deterministic choice, then for each ¢ € {€h, Ce1 }
(where €y, £ are the successor locations in the corresponding branches) there is
1 < j < nsuch that
- nj(f,x) < n;(£,x) — €, and
- forall 1 < j’ < j we have n;/(£,x) < n;(£,x).
If additionally each 7; is a linear expression map, then we call 77 a linear e-LexRSM
map (e-LinLexRSM).

Using Theorem 7.30, we get the following.

Theorem 7.32 Let P be a probabilistic program and 1 its invariant. Assume that
there exists an € > 0 and an n-dimensional e-LexRSM map for P and I. Then P
terminates almost surely.

Example 7.33 Consider again the program in Figure 7.7, together with the invariant
I from Example 7.28. Then the following 3-dimensional 1-LexRSM map 7 proves
that the program terminates a.s.: 7(1,X) = (y+ 1,x+3,4), 7(2,x) = (y + 1, x +3,3),
TGEx) =74x) =0+ Lx+3,2), 75,x) = (y+2,x +3,1), and 7 (Lpus, X) =
(0,0,0).

(Agrawal et al., 2018) presented an algorithm for synthesis of linear LexRSM
maps in affine probabilistic programs with pre-computed invariants. The algorithm is
based on a method for finding lexicographic ranking functions presented in Alias et al.
(2010). The method attempts to find a LinLLexRSM map by computing one component
at a time, iteratively employing the algorithm for synthesis of 1-dimensional RSMs
(Section 7.4) as a sub-procedure. The method is complete in the sense that if there
exists a LinLexRSM map for a program # with a given invariant /, then the algorithm
finds such a map. If guards of all conditional statements and loops in the program
are linear assertions (i.e. conjunctions of linear inequalities), then the algorithm runs
in time polynomial in the size of  and /.

We now show that LexRSMs are indeed capable of proving a.s. termination of
programs that terminate in infinite expected number of steps.

Example 7.34 Consider the program in Figure 7.8, together with an invariant / such
that I(1) = {(x,¢) | x 2 1Ac=20,L12)=13)=14) ={(x,c) | x =1 Ac =1},
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1: while ¢>1 and x>1 do

2: if prob(0.5) then
3: x:=2-x
else
4: c:=0
fi
od;
5: while x>1 do
6: x:=x-1
od

Figure 7.8 An example program that is a.s. terminating but with infinite expected termination
time.

I(5) = {(x,c) | x > 0}, and I(6) = {(x,c) | x = 1}. The a.s. termination of the
program is witnessed by a linear 1-LexRSM map 77 such that 77 (1,X) = (6¢+5,2x+2),
T (2,x) = (6¢ +4,2x +2), 7(3,X) = (6¢ + 6,2x + 2), 7(4,X) = (6¢,2x + 2),
7(5,%x) = (1,2x + 2), and 77(5,x) = (1,2x + 1). However, the program terminates in
an infinite expected number of steps: to see this, note that that the expected value
of variable x upon reaching the second loop is % -1+ % -2+ % -4+ .- =o00,and
that the time needed to get out of the second loop is equal to the value of x upon

entering the loop.

Finally, we remark that (Agrawal et al., 2018) introduced further uses of LexRSMs,
such as compositional termination proving (where we prove a.s. termination one
loop at a time, proceeding from the innermost ones) and the use of special type of
linear LexRSMs for obtaining polynomial bounds on expected termination time.

7.5.3 Quantitative Termination and Safety

Consider the program in Figure 7.9. Due to lines 56, the program does not terminate
a.s., because there is a positive probability that x hits zero before y falls below 1.
However, a closer look shows that such an event, while possible, is unlikely, since
x tends to increase and y tends to decrease on average. (Chatterjee et al., 2017)
studied martingale-based techniques that can provide lower bounds on termination
probabilities of such programs.

First, the paper introduced the concept of stochastic invariants.

Definition 7.35 Let (PI,p) be a tuple such that PI is a function mapping each
program location to a set of variable valuations and p € [0, 1] is a probability. The
tuple (P1, p) is a stochastic invariant for a program P if the following holds: if we
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1: x:=150,y := 100
2: while y>1 do
3 x := x + sample(Uniform[ -, 1])
4 y := y + sample(Uniform[-1, 1])
5 while x <0 do
6 skip od

od

Figure 7.9 A program with infinitely many reachable configurations which terminates with high
probability, but not almost surely, together with a sketch of its pCFG.

denote by Fuail(PI) the set of all runs that reach a configuration of the form (¢,x)
with x ¢ PI({), then for all schedulers o it holds P7 (Fail(PI)) < 1 — p.

Example 7.36 Consider the example in Figure 7.9 and a tuple (PI, p) for the
program such that PI(5) = {(x,y) | x > é}, PI(¢) = R? for all the other locations,
and p = 107>, Using techniques for analysis of random walks, one can prove that
(PI, p) is a stochastic invariant for the program. Below, we will sketch a martingale-
based technique that can be used to prove this formally (and automatically).

Intuitively, unlike their classical counterparts, stochastic invariants are not over-
approximations of the set of reachable configurations. However, for small p, they
can be viewed as good probabilistic approximations of this set, in the sense that
the probability of reaching a configuration not belonging to this approximation is
small (smaller than p). The following theorem illustrates a possible use of stochastic
invariants in probabilistic termination analysis.

Theorem 7.37 Let P be a probabilistic program, I a (classical) invariant, and
(PI,p) a stochastic invariant for P. Further, let n: L x RV — R be a mapping
such that there exists € > 0 for which the following holds in each configuration (£,X)
of P:

o ifx € I({), then n(f,x) > 0, and

o if € # Lou and x € I(€) N PI({), then pre, (£,X) < n(£,X) — €.

Then, under each scheduler o, the program P terminates with probability at least
1-p.

Proof (Sketch). The map n can be viewed as an RSM map for a modified version of
P which immediately terminates whenever P[ is violated. Such a modified program
therefore terminates with probability 1. Since (PI,p) is a stochastic invariant,
violations of P/ can occur with probability at most p, so with probability at least
1 — p the modified (and thus also the original) program terminates in an orderly
way. O
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Example 7.38 Let (PI,107) be the stochastic invariant from Example 7.36
(concerning Figure 7.9). For the corresponding program we have a classical invariant
I such that I(1) = {(30,20)}, I(2) = {(x,y) | x =2 0Ay >0}, I(3) = {(x,y) | x =
O/\y 2 1}’1(4) = {(X,y) | x 2 _zlt/\y 2 1}’1(5) = {()C,y) | X 2 _%Ay 2 0}’
and /(6) = {(x,y) |0 > x > —}‘ Ay > 0}. Consider a map n defined as follows:
n(1) =n(5) = 16y+3,n(2) = 16y+2,n(3) = 16y+1,n(4) = 16y,and n(6) = 16y+4.
Then 7 satisfies the conditions of Theorem 7.37, from which it follows that the
program terminates with probability at least 0.99999.

Given an affine probabilistic program and its classical and stochastic invariants, /
and (P1, p) (both I and PI being linear), we can check whether there exists a linear
RSM map satisfying Theorem 7.37 using virtually the same linear system as in
Section 7.4. We just need to take the location-wise intersection I of I and PI as the
input invariant used to construct the linear constraints. Although 7’ is not a classical
invariant, the linear RSM map obtained from solving the constraints satisfies the
requirements of Theorem 7.37.

The question, then, is how to prove that a tuple (PL,p) is a stochastic invariant.
In (Chatterjee et al., 2017), a concept of repulsing supermartingales (RepSMs)
was introduced, which can be used to compute upper bounds on the probability of
violating PI. RepSMs are inspired by use of martingale techniques in the analysis
of one-counter probabilistic systems (Brizdil et al., 2013), and they are in some
sense dual to RSMs: they show that a computation is probabilistically repulsed away
from (rather than attracted to) some set of configurations. As was the case in the
preceding martingale-based concepts, RepSMs are defined abstractly as a certain
class of stochastic processes, and then applied to program analysis via the notion of
RepSM maps. For the sake of succinctness, we present here only the latter concept.

Definition 7.39 (Linear repulsing supermartingales) Let  be a PP with an initial
configuration (€, Xinir), I its invariant, and C C L X RIVI some set of configurations
of . An e-repulsing supermartingale (e-RepSM) map for C supported by [ is a
mapping : L x RV — V such that for all configurations (£,x) of # the following
holds:

e if ((,x) € C and x € I(¢), then n(£,x) > 0

e if ((,x) ¢ C and x € I((), then pre, (£,x) < n({,x) — €,

® 1)(Linits Xinit) < 0.

An e-RepSM map supported by / has c-bounded differences if for each pair of
locations ¢,¢’ and each pair of configurations (¢,x), (£/,x’) such that x € I(£) and
(¢’,x’) can be produced by performing a step of computation from (¢,x) it holds
In(£,x) —n(t’,x")| < c.
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The following theorem is proved using Azuma’s inequality, a concentration bound
from martingale theory.

Theorem 7.40 Let C be a set of configurations of a PP P. Suppose that there exist
€ >0, ¢ >0, and a linear e-RepSM map n for C supported by some invariant I such
that n has c-bounded differences. Then under each scheduler o, the probability pc
that the program reaches a configuration from C satisfies

) 7 Hn([initaxinir)l/c-l

pPc <@ , (7.1)
-y
h = __€ da = €117 Cinir Xinit) |
where'y = CXp |~ 3irep )| dnd @ =EXP{ ey )

Example 7.41 Consider again the program in Figure 7.9, with the same invariant
I as in Example 7.36. Let C = {(£,(x,y)) | { =5Ax < %}. Then the following map
n is a 13-bounded 1-RepSM map for C: n(1) = n(5) = -16x + 2, n(2) = 16x + 1,
n(3) = —16x, and n(4) = n(6) = —16x + 3. Applying Theorem 7.40 yields that C is
reached with probbaility at most exp (_13182154 — ﬁ T “?}154 ) /(1—exp(=1/392)) ~
1.2-107% < 1073. Now for the map PI in Example 7.36 it holds that violating PI
entails reaching C, which shows that (P1,1073) is indeed a stochastic invariant.

Checking whether there is a linear RepSM map (supported by a given linear
invariant) for a set of configurations defined by a given system of linear constraints
can be again performed by linear constraint solving, using techniques analogous to
Section 7.4.

Finally, we mention that RepSM maps can be used to refute almost-sure and finite
termination.

Theorem 7.42 Let C be a set of terminal configurations of a program P, i.e. of
those configurations where the corresponding location is terminal. Suppose that
there exist € > 0, ¢ > 0, and a linear e-RepSM map n for C supported by some
invariant I such that n has c-bounded differences. Then, no matter which scheduler
is used, P does not terminate in finite expected time. Moreover, if € > 0, then P
terminates with probability less than 1 under every scheduler.

Example 7.43 Consider the symmetric random walk (Figure 7.5) together with
an invariant x > 0 in every location. Assuming that initially x > 1, the mapping
which to each non-terminal configuration (¢, x) assigns the number —x + 1, while
each terminal configuration is assigned zero, is a 0-RepSM for the set of terminal
configurations, with 1-bounded differences. Hence, the symmetric random walk
indeed does not terminate in finite expected time.
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7.6 Related Works

Termination approaches. In Sharir et al. (1984) the termination of concurrent
probabilistic programs with finite-state space was considered as a fairness problem,
and the precise probabilities did not play a role in termination. A sound and complete
method for proving termination of finite state programs was given in Esparza et al.
(2012). The above approaches do not apply to programs with countable state space
in general. For countable state space and almost-sure termination a characterization
through fixed-point theory was presented in Hart and Sharir (1985). The analysis of
non-probabilistic program and the termination problem has also been extensively
studied (Bradley et al., 2005a; Colén and Sipma, 2001; Podelski and Rybalchenko,
2004; Sohn and Gelder, 1991; Bradley et al., 2005b; Cook et al., 2013; Lee et al.,
2001). The focus of this chapter was to present the key aspects of martingale-based
approaches for termination of infinite-state probabilistic programs.

Proof-rule based approach. In this work we consider the supermartingale based
approach for probabilistic programs, and an alternative approach is based on the
notion of proof rules (Kaminski et al., 2016; Hesselink, 1993; Olmedo et al., 2016).
These two approaches complement each other, and have their own advantages. The
proof-rule based approach itself does not depend on classical invariants (see for
exampleColén et al., 2003; Cousot, 2005) and is capable of establishing quanti-
tative invariants, whereas the supermartingale approach usually requires classical
invariants to achieve automation (Chakarov and Sankaranarayanan, 2013; Chatterjee
et al., 2016b,a). In contrast, the advantages of the supermartingale-based approach
are: (a) the supermartingale based approach leads to automated and algorithmic
approaches; (b) tail bounds can be obtained through supermartingales using the
mathematical results such as Azuma’s inequality or Hoeffding’s inequality (Chatter-
jee et al., 2016a), and (c) in presence of conditioning, proof-rules cannot be applied
to non-deterministic programs as the schedulers are not necessarily local, whereas
ranking supermartingales can consider non-determinism as the semantics is through
general MDPs and general schedulers.

Other results. Martingales can also be used for analysis of properties other than
termination over probabilistic programs (e.g., probabilistic invariants (Barthe et al.,
2016b) or proving recurrence/persistence/reactivity properties (Chakarov et al.,
2016; Dimitrova et al., 2016; Chatterjee et al., 2017)). Other prominent approaches
for analyzing probabilistic programs include: (a) techniques based on coupling proofs
and their applications in analysis of differential privacy and probabilistic sensitiv-
ity (Barthe et al., 2017, 2018, 2016a); (b) static-analysis based approaches (Sankara-
narayanan et al., 2013; Cusumano-Towner et al., 2018; Wang et al., 2018); (c)
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potential-function based approaches for cost analysis (Chatterjee et al., 2018b; Ngo
et al., 2018). Moreover, the semantics of probabilistic programs is studied in Bichsel
et al. (2018) and Staton et al. (2016).

7.7 Conclusion and Future Directions

In this chapter we present the main results related to martingale-based approach
for termination analysis of probabilistic programs. There are several interesting
directions of future work. First, for analysis of probabilistic programs with angelic
non-determinism there is a complexity gap for linear RSMs and an interesting
theoretical question is to close the complexity gap. Second, while the martingale-
based approach and other approaches such as proof-rule based approach each has its
own advantages, techniques for combining them is another interesting direction of
future work. Finally, practical directions of building scalable tools using algorithmic
results for martingales in conjunction with other methods such as compositional
analysis are also largely unexplored.
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