ON THEOREMS OF KAWADA AND WENDEL

by J. H. WILLLAMSON

(Received 22nd April 1957)

1. Introduction

Let G be a locally compact topological group, with left-invariant Haar measure. If $L_{1}(G)$ is the usual class of complex functions which are integrable with respect to this measure, and μ is any bounded Borel measure on G , then the convolution-product $\mu \star f$, defined for any f in L_{1} by

$$
\mu \star f(y)=\int_{G} f\left(x^{-1} y\right) d \mu(x)
$$

is again in L_{1}, and

$$
\|\mu \star f\| \leqslant\|\mu\|\|f\| .
$$

Y. Kawada ((1), Theorem 2) has proved essentially the following result:

Theorem K. If L_{1} is mapped onto itself by the correspondence $f \rightarrow \mu \star f$, and $\mu \star f \geqslant 0$ p.p. if, and only if, $f \geqslant 0$ p.p., then μ has one-point support.
J. G. Wendel ((3), Theorem 3) has proved essentially the following :

Theorem W. If $\|\mu \star f\|=\|\mu\|\|f\|$ for all $f \in L_{1}$, then μ has one-point support.

There is clearly a close connection between order-preserving and normpreserving measures μ. Wendel ((3), footnote 4) appears to assert that the two classes are substantially identical (that is, up to scalar factors) and that Theorem K would continue to be valid if the condition that L_{1} should be mapped onto itself were dropped. We shall refer to this modified version as the Kawada-into theorem, in distinction to the Kawada-onto theorem, which is the original Theorem K.

The principal aim of this note is to give a counter-example to the Kawadainto theorem in its general setting. It turns out, however, that the theorem is true in many cases; some of these are discussed in §3. Although it has not been possible to obtain definitive conditions for the validity of the theorem, a conjecture about this is advanced in the last section.

2. The Counter-Example

Let G be the group of matrices of the form

$$
x=\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & 1
\end{array}\right]\left(0<x_{1}<\infty ;-\infty<x_{2}<\infty\right),
$$

with ordinary matrix multiplication as the group operation. The topology of G is the ordinary topology of the Euclidean half-plane. Left-invariant Haar measure $d x$ is here equal to $x_{1}{ }^{-2} d x_{1} d x_{2}$. The modular function $\Delta(x)$ ((2), p. 117) is $x_{1}{ }^{-1}$.
E.M.S.——

For each positive integer n, let N_{n} be the neighbourhood of the identity e defined by

$$
1-\frac{1}{2} n^{-1} \leqslant x_{1} \leqslant 1+\frac{1}{2} n^{-\frac{1}{2}} ;-\frac{1}{2} n^{-2} \leqslant x_{2} \leqslant \frac{1}{2} n^{-1} .
$$

It is easy to verify that the measure of $N_{n}, m\left(N_{n}\right)$ (with the Haar measure indicated) is $\left(n^{\frac{1}{2}}-\frac{1}{4}\right)^{-1}$. Thus $m\left(N_{n}\right) \sim n^{-\frac{1}{2}}$ as $n \rightarrow \infty$.

If $a_{n}=\left[\begin{array}{cc}(n!)^{-3} & 0 \\ 0 & 1\end{array}\right]$, then $\Delta\left(a_{n}\right)=(n!)^{3}$. Let the function f_{0} be defined as follows :

$$
\begin{aligned}
f_{0}(x) & =(n!)^{-1} \text { if } x \in a_{n} N_{n}(n=1,2,3, \ldots) \\
& =0 \text { otherwise. }
\end{aligned}
$$

The sets $a_{n} N_{n}(n=1,2,3, \ldots)$ are mutually disjoint, so that $f_{0}(x)$ consists of an infinity of separate pieces. Further, the function is clearly in L_{1} : in fact

$$
\left\|f_{0}\right\|=\sum_{n=1}^{\infty}(n!)^{-1} m\left(N_{n}\right)
$$

the series is certainly convergent.
Let μ be the measure associated with f_{0} :

$$
\mu(E)=\int_{E} f_{0}(x) d x
$$

For the convolution-product $\mu \star f$, where $f \in L_{1}$, we have

$$
\begin{aligned}
\mu \star f(y) & =\int_{G} f\left(x^{-1} y\right) f_{0}(x) d x \\
& =\int_{G} f\left(x^{-1}\right) f_{0}(y x) d x
\end{aligned}
$$

We shall show that if $f \in L_{1}$, and $\mu \star f \geqslant 0$ p.p., then $f \geqslant 0$ p.p. Since the support of μ is not a single point, this will provide the required counter-example.

First, we note that for the present purpose it is permissible to suppose that a given real function $f \in L_{1}$, not $\geqslant 0$ p.p., has the form

$$
\begin{align*}
f(x) & =-1 \text { if } x \in N_{n^{\prime}} \\
& =0 \text { if } x \in N_{n^{\prime}}-1 N_{n^{\prime}}{ }_{n} \mathscr{C} N_{n^{\prime}} \tag{1}\\
& \geqslant 0 \text { if } x \in \mathscr{C} N_{n^{\prime}}-1 N_{n^{\prime}}{ }^{2}
\end{align*}
$$

for some $n^{\prime} \geqslant 16$ ($\mathscr{C} E$ is the complement of E).
Let f^{\prime} be any real function in L_{1}, not $\geqslant 0$ p.p. There is a bounded nonnegative function $g \in L_{1}$ such that $f^{\prime} \star g$ is not $\geqslant 0$ p.p. (g could be any bounded non-negative function vanishing outside a sufficiently small neighbourhood of the identity). Since g is bounded, $f^{\prime} \star g$ is continuous. Hence there is a positive real δ such that the set $\left\{x: f^{\prime} \star g(x)<-\delta\right\}$ is open (and not empty). Let a be any point in this set, and write, for any function $\phi, \phi_{a}(x)=\phi(x a)$: then $\left(f^{\prime} \star g\right)_{a}$ is negative (in fact $<-\delta$) in some neighbourhood N of e.

Since the sets N_{n} as defined above form a base of neighbourhoods of e,
we can find $n^{\prime} \geqslant 16$ so that $N_{n^{\prime}}{ }^{-1} N_{n^{\prime}} \subset \subset$. Let a be a positive real number such that $\alpha\left(f^{\prime} \star g\right)_{a} \leqslant-1$ in $N_{n^{\prime}}$. If $f^{\prime \prime}$ is defined by

$$
\begin{aligned}
f^{\prime \prime}(x) & =-1 \text { if } x \in N_{n^{\prime}} \\
& =0 \text { if } x \in N_{n^{\prime-1}} N_{n^{\prime}}{ }^{2} \mathscr{C} N_{n^{\prime}} \\
& =\sup \left\{a\left(f^{\prime} \star g\right)_{a}(x), 0\right\} \text { if } x \in \mathscr{C} N_{n^{\prime}}-\mathbf{1} N_{n^{\prime}},
\end{aligned}
$$

then evidently $f^{\prime \prime}(x) \geqslant a\left(f^{\prime} \star g\right)_{a}(x)$ for all x. It is clear that $f^{\prime \prime} \in L_{1}$.
The implications

$$
\mu \star f^{\prime} \geqslant 0 \Rightarrow \mu \star f^{\prime} \star g \geqslant 0 \Rightarrow \mu \star\left(f^{\prime} \star g\right)_{a}=
$$

$$
\left(\mu \star f^{\prime} \star g\right)_{a} \geqslant 0 \Rightarrow a \mu \star\left(f^{\prime} \star g\right)_{a}=\mu \star \alpha\left(f^{\prime} \star g\right)_{a} \geqslant 0 \Rightarrow \mu \star f^{\prime \prime} \geqslant 0
$$

are immediate. So if it can be proved that $\mu \star f^{\prime \prime} \geqslant 0$ is impossible when $f^{\prime \prime}$ has the form (1), it will follow that $\mu \star f \geqslant 0$ is impossible for real $f \in L_{1}$, unless $f \geqslant 0$ p.p.

It will follow at once from this that $\mu \star f \geqslant 0\left(f \in L_{1}\right)$ implies $f \geqslant 0$; for let $f=\phi+i \psi$, where ϕ and ψ are real. Since μ is real, $\mu \star f \geqslant 0$ implies that $\mu \star \phi \geqslant 0$ and $\mu \star \psi=0$, whence $\phi \geqslant 0, \psi \geqslant 0$ and $\psi \leqslant 0$, that is, $\psi=0$ and $f=\phi \geqslant 0$.

Suppose then that f is of the form (1) ; write

$$
\begin{aligned}
f_{1}(x) & =-\mathrm{l} \text { if } x \in N_{n^{\prime}} \\
& =0 \text { otherwise }
\end{aligned}
$$

and $f_{2}(x)=f(x)-f_{1}(x)$. What we show is that if $\mu \star f \geqslant 0$ p.p. then $\left\|f_{2}\right\|$ is arbitrarily large, which provides the required contradiction.

Let

$$
\begin{align*}
& g_{n}(y)=\int_{G}(n!)^{-1} \chi_{a_{n} N_{n}}(y x) f_{1}\left(x^{-1}\right) d x \tag{2}\\
& h_{n}(y)=\int_{G}(n!)^{-1} \chi_{a_{n} N_{n}}(y x) f_{2}\left(x^{-1}\right) d x \tag{3}
\end{align*}
$$

(where as usual $\chi_{E}(x)=1$ if $x \in E,=0$ otherwise). Since also

$$
g_{n}(y)=\int_{G}(n!)^{-1} \chi_{a_{n} N_{n}}(x) f_{1}\left(x^{-1} y\right) d x
$$

it is clear that

$$
\begin{equation*}
\left\|g_{n}\right\|=(n!)^{-1} m\left(a_{n} N_{n}\right)\left\|f_{1}\right\|=(n!)^{-1} m\left(N_{n}\right)\left\|f_{1}\right\| \tag{4}
\end{equation*}
$$

(where in fact $\left\|f_{1}\right\|=m\left(N_{n^{\prime}}\right)$). It is also clear that if $g_{n}(y) \neq 0$, then there is a point x such that $y x \in a_{n} N_{n}$ and $x^{-1} \in N_{n^{\prime}}$; that is, $y \in a_{n} N_{n} N_{n^{\prime}}$. Since $a_{n} N_{n} N_{n^{\prime}}$ is a closed set, it contains the support of g_{n}. It is easy to see that the support of g_{n} is disjoint from that of g_{m} if $m \neq n$, since $n^{\prime} \geqslant 16$.

Next we show that if $n \geqslant n^{\prime}$ then $h_{n}(y)=0$ for $y \in a_{n} N_{n} N_{n^{\prime}}$. For, if also $y x \in a_{n} N_{n}$ then $x^{-1} \in N_{n}{ }^{-1} a_{n}{ }^{-1} a_{n} N_{n} N_{n^{\prime}}=N_{n}^{-1} N_{n} N_{n^{\prime}} \subset N_{n^{\prime}}{ }^{-1} N_{n^{\prime}}{ }^{2}$, since $N_{n} \subset N_{n^{\prime}}$ if $n \geqslant n^{\prime}$. But $f_{2}\left(x^{-1}\right)=0$ if $x^{-1} \in N_{n^{\prime}}{ }^{-1} N_{n^{\prime}}$, so that $h_{n}(y)=0$ if $y \in a_{n} N_{n} N_{n^{\prime}}$, from (3).

Write $h_{m, n}(x)=h_{m}(x)$ if $x \in a_{n} N_{n} N_{n^{\prime}},=0$ otherwise ; that is, $h_{m, n}$ is the restriction of h_{m} to $a_{n} N_{n} N_{n^{\prime}}$. Now, for each $n, \mu \star f \geqslant 0$ throughout $a_{n} N_{n} N_{n^{\prime}}$, if, and only if

$$
\sum_{m=1}^{\infty} h_{m, n}(x)+g_{n}(x) \geqslant 0
$$

It is thus necessary that

$$
\left\|\sum_{m=1}^{\infty} h_{m, n}\right\| \geqslant\left\|g_{n}\right\|
$$

Since $f_{2} \geqslant 0$, it follows that $h_{m, n} \geqslant 0$ for all m, n; and so

$$
\left\|\sum_{m=1}^{\infty} h_{m, n}\right\|=\sum_{m=1}^{\infty}\left\|h_{m, n}\right\| .
$$

Thus a necessary condition that $\mu \star f \geqslant 0$ in $a_{n} N_{n} N_{n}$ is

$$
\begin{equation*}
\left\|g_{n}\right\| \leqslant \sum_{m=1}^{\infty}\left\|h_{m, n}\right\| . \tag{5}
\end{equation*}
$$

In view of (4), and the fact that $h_{n, n}=0$ for $n \geqslant n^{\prime}$, we have, for $n \geqslant n^{\prime}$, the inequality

$$
\begin{equation*}
(n!)^{-1} m\left(N_{n}\right)\left\|f_{1}\right\| \leqslant \sum_{m=1}^{n-1}\left\|h_{m, n}\right\|+\sum_{m=n+1}^{\infty}\left\|h_{m, n}\right\| . \tag{6}
\end{equation*}
$$

We estimate the terms on the right-hand side of (6) as follows. If $r>n$ then

$$
\begin{equation*}
\left\|h_{r, n}\right\| \leqslant\left\|h_{r}\right\|=(r!)^{-1} m\left(N_{r}\right)\left\|f_{2}\right\| \tag{7}
\end{equation*}
$$

while if $r<n$ then

$$
\begin{equation*}
\left\|h_{r, n}\right\| \leqslant m\left(a_{n} N_{n} N_{n^{\prime}}\right) \sup _{y \in a_{n} N n N_{n}} h_{r}(y) . \tag{8}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\sup _{y \in a_{n} N_{n} N_{n}} h_{r}(y) & =(r!)^{-1} \sup _{y \in a_{n} N_{n} N_{n} n^{\prime}} \int_{G} \chi_{a_{r} N_{r}}(y x) \Delta(x) \Delta\left(x^{-1}\right) f_{2}\left(x^{-1}\right) d x \\
& \leqslant(r!)^{-1} \sup _{\substack{y \in a_{n} N_{n} N_{n} \\
y x \in a_{r} N_{r}}} \chi_{a_{r} N_{r}}(y x) \Delta(x) \int_{G} \Delta\left(x^{-1}\right) f_{2}\left(x^{-1}\right) d x \\
& =(r!)^{-1} \sup _{\substack{y \in a_{n} N_{n} N_{n} \\
y \in \in a_{r} N_{r}}} \Delta(x)\left\|f_{2}\right\| .
\end{aligned}
$$

If $y \in a_{n} N_{n} N_{n^{\prime}}$ and $y x \in a_{r} N_{r}$ then $x \in N_{n^{\prime}}{ }^{-1} N_{n}{ }^{-1} a_{n}{ }^{-1} a_{r} N_{r}$, so that

$$
x_{1} \geqslant\left(1+\frac{1}{2} n^{-\frac{1}{2}}\right)^{-1}\left(1+\frac{1}{2} n^{-\frac{1}{2}}\right)^{-1}\left(1-\frac{1}{2} r^{-\frac{1}{2}}\right)(n!/ r!)^{3}
$$

and hence, for such x,

$$
\begin{equation*}
\Delta(x) \leqslant C(r!/ n!)^{3} \tag{9}
\end{equation*}
$$

where C is a constant, independent of n, n^{\prime} and r (it could for example be taken to be 8).

Then, using (9), the inequality (8) gives

$$
\left\|h_{r, n}\right\| \leqslant m\left(a_{n} N_{n} N_{n^{\prime}}\right)(r!)^{-1} C(r!/ n!)^{3}\left\|f_{2}\right\|
$$

If $n \geqslant n^{\prime}$ then $m\left(a_{n} N_{n} N_{n^{\prime}}\right) \leqslant m\left(a_{n} N_{n^{\prime}}{ }^{2}\right)=m\left(N_{n^{2}}{ }^{2}\right)$; if $C^{\prime}=C m\left(N_{n^{\prime}}{ }^{2}\right)$ then

$$
\begin{equation*}
\left\|h_{r, n}\right\| \leqslant C^{\prime}(r!)^{2}(n!)^{-3}\left\|f_{2}\right\| \text { for } r<n, n \geqslant n^{\prime} . \tag{10}
\end{equation*}
$$

The inequality (6) now gives, using (7) and (10),

$$
(n!)^{-1} m\left(N_{n}\right)\left\|f_{1}\right\| \leqslant\left\{C^{\prime}(n!)^{-3} \sum_{r=1}^{n-1}(r!)^{2}+\sum_{r=n+1}^{\infty}(r!)^{-1} m\left(N_{r}\right)\right\}\left\|f_{2}\right\|
$$

and, using the trivial inequalities

$$
{ }_{r=1}^{n-1}(r!)^{2}<n\{(n-1)!\}^{2}, \quad m\left(N_{\tau}\right)<K, \quad \sum_{r=n+1}^{\infty}(r!)^{-1}<2\{(n+1)!\}^{-1}
$$

we have

$$
(n!)^{-1} m\left(N_{n}\right)\left\|f_{1}\right\| \leqslant\left\{C^{\prime}(n!)^{-3} n((n-1)!)^{2}+2 K((n+1)!)^{-1}\right\}\left\|f_{2}\right\|
$$

which gives at once

$$
\begin{equation*}
m\left(N_{n}\right)\left\|f_{1}\right\| \leqslant C^{\prime \prime} n^{-1}\left\|f_{2}\right\| . \tag{li}
\end{equation*}
$$

But $m\left(N_{n}\right)=\left(n^{\frac{1}{1}}-\frac{1}{4}\right)^{-1}$, so it is evident that (11) cannot hold for all $n \geqslant n^{\prime}$; $\left\|f_{2}\right\|$ cannot be finite if $\left\|f_{1}\right\| \neq 0$ (which we have assumed).

The required contradiction has thus been produced.
It seems clear that the above construction could be carried out in any metrisable, non-unimodular, locally compact topological group.

3. Some Positive Results

We now turn to one or two cases in which the Kawada-into theorem is true.
In the following, S_{μ} denotes the support of the measure μ, which is assumed to be positive.

Proposition 1. If G is abelian, and S_{μ} contains two distinct points, there exists $f \in L_{1}$, not $\geqslant 0$ p.p., such that $\mu \star f \geqslant 0$ p.p.

Proof. There is clearly no loss of generality in assuming that $e \in S_{\mu}$. Suppose that h is another point in S_{μ}. Choose a compact symmetric neighbourhood N of e so that $h \notin N^{4}$. Let μ_{1} be the restriction of μ to N, μ_{2} its restriction to $N h$. Write $\mu=\mu_{1}+\mu_{2}+\mu_{3}$; it is clear that $\mu_{3} \geqslant 0$.

Let f_{1} be the characteristic function of $N^{3}\left(=1\right.$ in $N^{3},=0$ outside $\left.N^{3}\right)$. Let f_{2} be equal to $\mu \star f_{1}$ throughout $\mathscr{C} N$, and zero in N. Write, for $k \geqslant 0$,

$$
f_{3}(t)=f_{2}(t)-\left(\mu_{1} \star f_{1}\right)(t)+k f_{1}(h t) ;
$$

then f_{3} is negative throughout N.
Also, $\mu \star f_{3}=\mu_{1} \star f_{2}-\mu \star \mu_{1} \star f_{1}+k \mu_{2} \star\left(f_{1}\right)_{h}+$ positive terms. Since $\mu_{1} \star f_{2}=$ $\mu_{1} \star \mu \star f_{1}$ throughout $\mathscr{C} N^{2}$, it follows that $\mu \star f_{3} \geqslant 0$ throughout $\mathscr{C} N^{2}$. Since $\left(\mu_{2} \star\left(f_{1}\right)_{h}\right)(t)=\int_{G} f_{1}\left(h u^{-1} t\right) d \mu_{2}(u)$, and $t \in N^{2}, u \in N h$ implies $h u^{-1} t \in N^{3}$, it follows that $f_{1}\left(h u^{-1} t\right)=1$ throughout $S_{\mu_{2}}$, and $\int_{G} f_{1}\left(h u^{-1} t\right) d \mu_{2}(u)=\left\|\mu_{2}\right\|$ for all $t \in N^{2}$. So, by taking k large enough, $\mu \star f_{3}$ can be made $\geqslant 0$ p.p.

Proposition 2. If μ contains a point-mass, and S_{μ} contains two distinct points, then there is a function $f \in L_{1}$, not $\geqslant 0$ p.p., such that $\mu \star f \geqslant 0$ p.p.

Proof. There is clearly no loss of generality in supposing that the pointmass is at e. Let h be another point of S_{μ}, and let N be a compact symmetric neighbourhood of e such that $h \notin N^{3}$. Let μ_{2} be the restriction of μ to $N h$; let the mass at e be m_{1}, and let $f_{1}=1$ in $N,=0$ outside N. Let f_{2} be the restriction of $\mu \star f_{1}$ to $\mathscr{C} N$. Write $f_{4}=1$ in $h^{-1} N^{2},=0$ elsewhere, and $f_{3}=f_{2}-m_{1} f_{1}+k f_{4}$ $(k \geqslant 0)$. Then $f_{3}<0$ in N, and $\mu \star f_{3}=m_{1} f_{2}-m_{1} \mu \star f_{1}+\mu_{2} \star k f_{4}+$ positive terms, so that $\mu \star f_{3} \geqslant 0$ throughout $\mathscr{C} N$.
E.M.S.—E 2

Also, $\left(\mu_{2} \star f_{4}\right)(t)=\int_{G} f_{4}\left(u^{-1} t\right) d \mu_{2}(u)$; and if $t \in N$ and $u \in N h$ then $u^{-1} t \in h^{-1} N^{2}$, so that $f_{4}\left(u^{-1} t\right)=1$. So $\left(\mu \star f_{4}\right)(t)=\left\|\mu_{2}\right\|$ throughout N, and by taking k large enough we have $\mu \star f_{3} \geqslant 0$ p.p.

If μ is a measure, and M a suitable set (e.g., open or closed), denote by $(\mu)_{M}$ the restriction of μ to M.

Lemma. If μ is a bounded measure on G which does not have one-point support, then there exist a compact set M and a positive real number $k<1$, such that $\left\|(\mu)_{a M}\right\| \leqslant k\|\mu\|$ for all $a \in G$.

Proof. Let x, y be two distinct points in S_{μ}, N a neighbourhood of e such that $y^{-1} x \notin N$, and N^{\prime} a compact symmetric neighbourhood of e such that $N^{\prime 4} \subset N$. Then for any $a \epsilon G, a N^{\prime}$ cannot intersect both $x N^{\prime}$ and $y N^{\prime}$. For, if $a n_{1}=x n_{2}, a n_{3}=y n_{4}\left(n_{i} \in N^{\prime}, 1 \leqslant i \leqslant 4\right)$ then $x=a n_{1} n_{2}{ }^{-1}, y=a n_{3} n_{4}{ }^{-1}$ and $y^{-1} x=n_{4} n_{3}^{-1} n_{1} n_{2}{ }^{-1} \in N^{\prime 4} \subset N$, which is a contradiction.

Hence if p denotes the lesser of $\left\|(\mu)_{x N^{\prime}}\right\|,\left\|(\mu)_{y N^{\prime}}\right\|$ then $p>0$ and $\left\|(\mu)_{a N^{\prime}}\right\|$ $\leqslant\|\mu\|-p=k\|\mu\|(k<1)$ for all $a \in G$.

Proposition 3. If S_{μ} is compact, and not one-point, then there exists $f \in L_{1}$, not $\geqslant 0$ p.p., such that $\mu \star f \geqslant 0$ p.p.

Proof. Let M and k be as in the above Lemma. Let q be positive, and let f be a function which is equal to -1 in M, and equal to q in $S_{\mu}^{-1} S_{\mu} M_{n} \mathscr{C} M$. Then

$$
\mu \star f(t)=\int_{t M^{-1}} f\left(u^{-1} t\right) d \mu(u)+\int_{\mathscr{C} t M^{-1}} f\left(u^{-1} t\right) d \mu(u)
$$

The first integral is less in absolute value than $k\|\mu\|$. If $t \notin S_{\mu} M$, then $\mu \star f(t)=\int f\left(u^{-1} t\right) d \mu(u) \geqslant 0$, since $u \in S_{\mu}$ implies $u^{-1} t \notin M$ in this case. If on the other hand $t \in S_{\mu} M$ then

$$
\begin{aligned}
\mu \star f(t) & \geqslant \int_{\mathscr{C L} M^{-1}} f\left(u^{-1} t\right) d \mu(u)-\left|\int_{t M^{-1}} f\left(u^{-1} t\right) d \mu(u)\right| \\
& \geqslant q(1-k)\|\mu\|-k\|\mu\| \\
& >0 \text { if } q \text { is large enough. }
\end{aligned}
$$

So $\mu \star f(t) \geqslant 0$ p.p. for suitable choice of q.
Theorem 1. The Kawada-into theorem is true if G is (a) abelian or (b) discrete or (c) compact.

Proof. The three cases follow at once from Propositions 1, 2 and 3.
It is possible to ensure the truth of the Kawada-into theorem by imposing on the measures μ considered, restrictions similar to, but more complicated than, those of Propositions 2 and 3. Since it is unlikely that these conditions are the best possible results in this direction, we have refrained from writing them down here.

4. Miscellaneous Remarks

The truth or falsity of the Kawada-into theorem is connected in an essential way with the function-class L_{1}. If a slightly different class of functions is taken, the results are completely altered. Thus if the class L of continuous
functions on G with compact support is considered, it is soon apparent that there exist in general measures $\dot{\mu}$ such that $\mu \star f \geqslant 0$ implies $f \geqslant 0$, for $f \in L$, but such that S_{μ} is not compact. For example, let G be the additive real numbers, and μ the measure consisting of point-masses n^{-2} at n^{2} ($n=1,2$, 3, ...).

Further, if L_{1} is replaced by the class of all bounded functions on G, or the class of all bounded continuous functions, it is easy to see, by using the Lemma given above, that the analogue of the Kawada-into theorem is true, whatever G may be. In the counter-example of $\S \mathbf{2}$, of course, the properties of L_{1} were involved in an essential way.

It is possible to produce a proof of Theorem W on the lines of the constructions of Propositions 1, 2 or 3, which appears to be shorter, and certainly involves simpler ideas than Wendel's original proof. Kawada's original proof of Theorem K can also be simplified.

In view of the counter-example of $\S 2$, and Theorem 1, it is tempting to conjecture that the Kawada-into theorem is true if, and only if, G is unimodular. But there is really no substantial evidence in support of this, and the role of metrisability in the counter-example certainly requires clarification.

REFERENCES

(1) Y. Kawada, On the group ring of a topological group, Math. Jap., 1 (1948), 1-5.
(2) L. H. Loomis, Abstract Harmonic Analysis (van Nostrand, New York, 1953).
(3) J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-61.

The Queen's University
Belfast

