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Abstract
We study dynamics of solutions in the initial value space of the sixth Painlevé equation as the independent variable
approaches zero. Our main results describe the repeller set, show that the number of poles and zeroes of general
solutions is unbounded and that the complex limit set of each solution exists and is compact and connected.
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1. Introduction

In this paper, we consider the celebrated equation

𝑦′′ =
1
2

(
1
𝑦
+ 1
𝑦 − 1

+ 1
𝑦 − 𝑥

)
(𝑦′)2 −

(
1
𝑥
+ 1
𝑥 − 1

+ 1
𝑦 − 𝑥

)
𝑦′

+ 𝑦(𝑦 − 1) (𝑦 − 𝑥)
2𝑥2 (𝑥 − 1)2

(
𝜃2
∞ −

𝜃2
0𝑥

𝑦2 +
𝜃2

1 (𝑥 − 1)
(𝑦 − 1)2 +

(1 − 𝜃2
𝑥)𝑥(𝑥 − 1)

(𝑦 − 𝑥)2

)
, (1.1)

for 𝑥 ∈ C, (𝜃0, 𝜃1, 𝜃𝑥 , 𝜃∞) ∈ C4, in its initial value space, where initial values are given at a point 𝑥0 ∈ C,
for small |𝑥0 |. The equation is the sixth Painlevé equation, first derived in [6] from deformations of
a linear system with four regular singular points, a generalisation of Gauss’ hypergeometric equation;
we will refer to it as PVI. Subsequently, it was recognised as the most general equation in the study of
second-order ordinary differential equations (ODEs) whose movable singularities are poles [8, 28]. It
has been studied widely because of its relation to mathematical physics and algebraic geometry (see [15,
22]). For special values of the parameters (𝜃0, 𝜃1, 𝜃𝑥 , 𝜃∞), PVI has algebraic and elliptic solutions that
turn out to be related to a broad range of mathematical structures (see [2, 20] and references therein).
For generic parameters, the solutions are higher transcendental functions that cannot be expressed in
terms of algebraic or classical functions [32].

A large amount of work has been devoted to the description of these higher transcendental solutions.
In this paper, we study global properties of such solutions of PVI in the limit as 𝑥 → 0 in its initial value
space (see Okamoto [25]). Under appropriate Möbius transformations of the variables [26], our results
also apply in the limit as x approaches 1 or ∞. Further information and properties of PVI are given in
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Section 1.1 below. Our starting point is the equivalent nonautonomous Hamiltonian system

𝑦′ =
𝜕𝐻

𝜕𝑧
, (1.2a)

𝑧′ = −𝜕𝐻
𝜕𝑦

, (1.2b)

with Hamiltonian

𝐻 =
𝑦(𝑦 − 1) (𝑦 − 𝑥)

𝑥(𝑥 − 1)

(
𝑧2 − 𝑧

(
𝜃0
𝑦

+ 𝜃1
𝑦 − 1

+ 𝜃𝑥 − 1
𝑦 − 𝑥

)
+ 𝜃𝜃

𝑦(𝑦 − 1)

)
.

We will refer to the right side of Equations (1.2) as the Painlevé vector field and use the terminology

𝜃 :=
𝜃0 + 𝜃𝑥 + 𝜃1 + 𝜃∞ − 1

2
, 𝜃 := 𝜃 − 𝜃∞.

To see that the system (1.2) is equivalent to PVI (as shown by [27]), note that z is given by Equation
(1.2a) as

2𝑧 :=
(
𝑥 − 1
𝑦

− 𝑥

𝑦 − 1
+ 1
𝑦 − 𝑥

)
𝑦′ + 𝜃0

𝑦
+ 𝜃1
𝑦 − 1

+ 𝜃𝑥 − 1
𝑦 − 𝑥 .

Substituting this into Equation (1.2b) gives PVI. The Painlevé vector field becomes undefined at certain
points in C2. Those points correspond to the following initial values of the system (1.2): 𝑦 = 0 or 𝑦 = 1
or 𝑦 = 𝑥. Okamoto [25] showed how to regularise the system at such points. For each 𝑥0 ∈ C \ {0, 1},
he compactified the space of initial values (𝑦, 𝑧) ∈ (C \ {0, 1, 𝑥0}) × C to a smooth, complex surface
𝑆(𝑥0). The flow of the Painlevé vector field is well-defined in S :=

⋃
𝑥0∈C\{0,1} S (𝑥0), which we refer

to as Okamoto’s space of initial values.
Our main purpose is to describe the significant features of the flow in the singular limit 𝑥 → 0.

In similar studies of the first, second and fourth Painlevé equations [4, 16, 17] in singular limits, we
showed that successive resolutions of the Painlevé vector field at base points terminate after nine blow-
ups of CP2, while for the fifth and third Painlevé equations, we showed that the construction consists
of 11 blow-ups and two blow-downs [18, 19]. The initial value space in each case is then obtained by
removing the infinity set, denoted I, which is blow-ups of points not reached by any solution.

Our main results fall into three parts:

(a) Existence of a repeller set: Corollary 6.10 in Section 6 shows that I is a repeller for the flow.
Theorem 6.9 provides the range of the independent variable for which a solution may remain in the
vicinity of I.

(b) Numbers of poles and zeroes: In Corollary 6.10, we prove that each solution that is sufficiently
close to I has a pole in a neighbourhood of the corresponding value of the independent variable.
Moreover, Theorem 7.4 shows that each solution with essential singularity at 𝑥 = 0 has infinitely
many poles and infinitely many zeroes in each neighbourhood of that point.

(c) The complex limit set: We prove in Theorem 7.2 that the limit set for each solution is nonempty,
compact, connected and invariant under the flow of the autonomous equation obtained as 𝑥 → 0.

1.1. Background
PVI is the top equation in the well-known list of six Painlevé equations. Each of the remaining Painlevé
equations can be obtained as a limiting form of PVI.

To describe the complex analytic properties of their solutions, we recall that a normalised differential
equation of the form 𝑦′′ = R(𝑦′, 𝑦, 𝑥) gives rise to two types of singularities, that is, where the solution
is not holomorphic. A solution may have a fixed singularity where R(·, ·, 𝑥) fails to be holomorphic;
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in the case of PVI, these lie at 𝑥 = 0, 1,∞. The solutions may also have movable singularities. A
movable singularity is a singularity whose location changes in a continuous fashion when going from
one solution to a neighbouring solution under small changes in the initial conditions. We note that this
informal definition, which is somewhat difficult to make more precise, dates back to Fuchs [5, p.699].

PVI was discovered by R. Fuchs in 1905 [6] in his study of deformations of a linear system of
differential equations with four regular singularities, generalising Gauss’ hypergeometric equation. The
latter has three regular singularities, placed at 0, 1 and ∞ by convention, and Fuchs took the fourth one
to be at a location which is deformable. The compatibility of the linear system with the deformation
equation gives rise to PVI. It is well-known that PVI also has an elliptic form, which arises when we
introduce an incomplete elliptic integral on a curve parametrised by 𝑦(𝑥). PVI then becomes expressible
in terms of the Picard-Fuchs equation for the corresponding elliptic curve. This form has been used
for the investigation of its special solutions, which exist for special parameter values. This fact was
rediscovered by Manin [22] in his study of the mirror symmetries of the projective plane.

Given a Painlevé equation and x not equal to a fixed singularity of the equation, Okamoto showed [25]
that the space of initial values forms a connected, compactified and regularised space corresponding to
a nine-point blow-up of the two–complex-dimensional projective space CP2. For each given x, this is
recognisable as an elliptic surface. These elliptic surfaces form fibres of a vector bundle as x varies, with
C as the base space. Starting with a point (initial value) on such a fibre, a solution of the Painlevé equation
follows a trajectory that pierces each successive fibre, forming leaves of a foliated vector bundle [23].

1.2. Outline of the paper

The plan of the paper is as follows. In Section 3, we construct the surface S (𝑥0). We define the
notation and describe the results, with detailed calculations being provided in Appendix B. In Section 4,
we describe the corresponding vector field for the limit 𝑥 → 0. The movable singularities of PVI
correspond to points 𝑥0 where the Painlevé vector field becomes unbounded. In Section 5, we consider
neighbourhoods of exceptional lines where this occurs. Estimates of the Painlevé vector field as x
approaches 0 are deduced in Section 6. In Section 7, we consider the limit set. Finally, we give concluding
remarks in Section 8.

2. Resolution of singularities

In this section, we explain how to construct the space of initial values for the system (1.2). The notion
of initial value spaces described in Definition 2.2 is based on foliation theory, and we start by first
motivating the reason for this construction. We then explain how to construct such a space by carrying
out resolutions or blow-ups, based on the process described in Definition 2.3.

The system (1.2) is a system of two first-order ODEs for (𝑦(𝑥), 𝑧(𝑥)). Given initial values (𝑦0, 𝑧0)
at 𝑥0, local existence and uniqueness theorems provide a solution that is defined on a local polydisk
𝑈 × 𝑉 in C × C2, where 𝑥0 ∈ 𝑈 ⊂ C \ {0, 1} and (𝑦0, 𝑧0) ∈ 𝑉 ⊂ (C \ {0}) × C. Our interest lies in
global extensions of these local solutions. However, the occurrence of movable poles in the Painlevé
transcendents acts as a barrier to the extension of 𝑈 × 𝑉 to the whole domain of (1.2). The first step to
overcome this obstruction is to compactify the space C2, in order to include the poles. We carry this out
by embedding C2 into the first Hirzebruch surface F1 [1, 14]. F1 is a projective space covered by four
affine coordinate charts (given in Section 3).

The next step in this process results from the occurrence of singularities in the Painlevé vector
field (1.2) in V. By the term singularity, we mean points where (𝑦′, 𝑧′) becomes either unbounded or
undefined because at least one component approaches the undefined limit 0/0. We are led, therefore,
to construct a space in which the points where the singularities appear are regularised. The process of
regularisation is called “blowing up” or resolving a singularity.

The appearance of these singularities is related to the irreducibility of the solutions of Painlevé
equations, originally due to Painlevé [28], which we have restated below in modern terminology.
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Figure 1. The blow-up of the plane at a point.

A function is said to be reducible to another function if it is related to it through a series of allowable
operations (described by Painlevé and itemised as (O), (P1)–(P5) in [30, p.33]).

Theorem 2.1. If the space of initial values for a differential equation is a compact rational variety, then
the equation can be reduced either to a linear differential equation of higher order or to an equation
governing elliptic functions.

Modern proofs of the irreducibility of the Painlevé equations have been developed by many authors,
including Malgrange [21], Umemura [30, 31] and Watanabe [32]. Since the Hirzebruch surface is a
compact rational variety, the above theorem implies that it cannot be the space of initial values for (1.2).
We are now in a position to define the notion of initial value space.

Definition 2.2 [9–11, 25]. Let (E , 𝜋,B) be a complex analytic fibration, Φ a foliation of E and Δ a
holomorphic differential system on E , such that:

◦ the leaves of Φ correspond to the solutions of Δ;
◦ the leaves of Φ are transversal to the fibres of (E , 𝜋,B);
◦ for each path p in the base B and each point 𝑋 ∈ E , such that 𝜋(𝑋) ∈ 𝑝, the path p can be lifted into

the leaf of Φ containing point X.

Then each fibre of the fibration is called a space of initial values for the system Δ .

The properties listed in Definition 2.2 imply that each leaf of the foliation is isomorphic to the
base B. Since the transcendental solutions of the sixth Painlevé equation can be globally extended as
meromorphic functions of 𝑥 ∈ C \ {0, 1}, we search for the fibration with the base equal to C \ {0, 1}.

In order to construct the fibration, we apply the blow-up procedure defined below [3, 12, 13] to the
singularities of the system (1.2) that occur where at least one component becomes undefined of the
form 0/0. Okamoto [25] showed that such singular points are contained in the closure of infinitely many
leaves. Moreover, these leaves are holomorphically extended at such a point.

Definition 2.3. The blow-up of the plane C2 at point (0, 0) is the closed subset X of C2 × CP1 defined
by the equation 𝑢1𝑡2 = 𝑢2𝑡1, where (𝑢1, 𝑢2) ∈ C2 and [𝑡1 : 𝑡2] ∈ CP1 (see Figure 1). There is a natural
morphism 𝜑 : 𝑋 → C

2, which is the restriction of the projection from C2 × CP1 to the first factor.
𝜑−1 (0, 0) is the projective line {(0, 0)} × CP1, called the exceptional line.

Remark 2.4. Notice that the points of the exceptional line 𝜑−1(0, 0) are in bijective correspondence
with the lines containing (0, 0). On the other hand, 𝜑 is an isomorphism between 𝑋 \ 𝜑−1(0, 0) and
C

2\{(0, 0)}. More generally, any complex two-dimensional surface can be blown up at a point [3, 12, 13].
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In a local chart around that point, the construction will look the same as described for the case of the
plane.

Notice that the blow-up construction separates the lines containing the point (0, 0) in Definition 2.3,
as shown in Figure 1. In this way, the solutions of (1.2) containing the same point can be separated.
Additional blow-ups may be required if the solutions have a common tangent line or a tangency of
higher order at such a point. The explicit resolution of the vector field (1.2) is carried out in Appendix B.
Okamoto described so-called singular points of the first class that are not contained in the closure of
any leaf of the foliation given by the system of differential equations. At such points, the corresponding
vector field is infinite.

3. The construction of Okamoto’s space

In this section, we construct Okamoto’s space of initial values in such a way as to ensure that the process
yields a well-defined compact surface if we set 𝑥0 = 0. We start by defining a new time coordinate
𝑡 = ln 𝑥, or 𝑥 = exp(𝑡), suitable for taking the limit 𝑥 → 0, and rewrite the dependent variables as

𝑢(𝑡) = 𝑦(𝑥), 𝑣(𝑡) = 𝑧(𝑥).

For conciseness, we continue to use the notation 𝑥 = 𝑒𝑡 where needed.
Denoting t-derivatives by dots, we get �𝑢 = 𝑥 𝜕𝐻𝜕𝑣 , �𝑣 = −𝑥 𝜕𝐻𝜕𝑢 , or, equivalently

�𝑢 =
𝜕𝐸

𝜕𝑣
, �𝑣 = −𝜕𝐸

𝜕𝑢
, (3.1)

where

𝐸 =
𝑢(𝑢 − 1) (𝑢 − 𝑒𝑡 )

𝑒𝑡 − 1

{
𝑣2 − 𝑣

(
𝜃0
𝑢

+ 𝜃1
𝑢 − 1

+ 𝜃𝑥 − 1
𝑢 − 𝑒𝑡

)
+ 𝜃𝜃

𝑢(𝑢 − 1)

}
.

Suppose we are given 𝑥0 = 𝑒𝑡0 ∈ C\ {0, 1}. We compactify the space of initial values (𝑢(𝑡0), 𝑣(𝑡0)) ∈
C

2 to the first Hirzebruch surface F1 [14], which is covered by four affine charts in C2 [1]

(𝑢0, 𝑣0) = (𝑢, 𝑣), (𝑢1, 𝑣1) =
(
𝑢,

1
𝑣

)
,

(𝑢2, 𝑣2) =
(

1
𝑢
,

1
𝑢𝑣

)
, (𝑢3, 𝑣3) =

(
1
𝑢
, 𝑢𝑣

)
.

Let L be the unique section of the natural projection F1 → P1 defined by (𝑢, 𝑣) ↦→ 𝑢. Then, L is given
by {𝑣0 = 0} ∪ {𝑣3 = 0} and the self-intersection of its divisor class is −1. We identify four particular
fibres of this projection:

V 𝑗 := {𝑢0 = 𝑗} ∪ {𝑢1 = 𝑗} ∀ 𝑗 ∈ {0, 𝑥, 1} , D∞ := {𝑢2 = 0} ∪ {𝑢3 = 0}.

Note that as fibres of the projection, these lines all have self-intersection 0. Then F1 \ C2 is given by
D∞ ∪H, where

H := {𝑣1 = 0} ∪ {𝑣2 = 0}.

This section H, called a ‘horizontal line’ in the following, by a small abuse of common terminology,
is topologically equivalent to the formal sum 𝐿 + D∞ in H2 (F1,Z). In particular, its self-intersection
number is given by H · H = 𝐿 · 𝐿 + D∞ · D∞ + 2𝐿 · D∞ = −1 + 0 + 2 = +1, where the dot · denotes
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Table 1. Five base points and the charts in which they
are visible. The chart (𝑢0 , 𝑣0) is omitted because no
base points are visible in this chart..

Points
Charts (𝑢1 , 𝑣1) (𝑢2 , 𝑣2) (𝑢3 , 𝑣3)

𝛽0 (0, 0)
𝛽𝑥 (𝑥, 0) (1/𝑥, 0)
𝛽1 (1, 0) (1, 0)
𝛽∞ (0, 1/𝜃) (0, 𝜃)
𝛽−∞

(
0, 1/𝜃

) (
0, 𝜃

)

the intersection form of divisor classes in the Picard group of the surface. In each chart, the vector field,
respectively, becomes

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�𝑢 =

𝑢(𝑢 − 1) (𝑢 − 𝑥)
𝑥 − 1

(
2𝑣 − 𝜃0

𝑢
− 𝜃1
𝑢 − 1

− 𝜃𝑥 − 1
𝑢 − 𝑥

)
,

�𝑣 = −3𝑢2 − 2(𝑥 + 1)𝑢 + 𝑥
𝑥 − 1

𝑣2 + 2
𝜃 + 𝜃
𝑥 − 1

𝑢𝑣 −
(
𝑥𝜃0
𝑥 − 1

+ 𝜃1 +
𝜃 + 𝜃
𝑥 − 1

)
𝑣 − 𝜃𝜃

𝑥 − 1
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�𝑢1 =

𝑢1(𝑢1 − 1) (𝑢1 − 𝑥)
𝑥 − 1

(
2

1
𝑣1

− 𝜃0
𝑢1

− 𝜃1
𝑢1 − 1

− 𝜃𝑥 − 1
𝑢1 − 𝑥

)
,

�𝑣1 =
3𝑢2

1 − 2(𝑥 + 1)𝑢1 + 𝑥
𝑥 − 1

− 2
𝜃 + 𝜃
𝑥 − 1

𝑢1𝑣1 +
(
𝑥𝜃0
𝑥 − 1

+ 𝜃1 +
𝜃 + 𝜃
𝑥 − 1

)
𝑣1 +

𝜃𝜃

𝑥 − 1
𝑣2

1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�𝑢2 = 2

(𝑢2 − 1) (𝑥𝑢2 − 1)
(1 − 𝑥)𝑣2

+ (𝑢2 − 1) (𝜃 + 𝜃 − 𝑥𝜃0𝑢2)
1 − 𝑥 − 𝜃1𝑢2,

�𝑣2 = − (𝜃𝑣2 − 1) (𝜃𝑣2 − 1)
(1 − 𝑥)𝑢2

− 𝑥

1 − 𝑥 (𝜃0𝑣2 − 1)𝑢2,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�𝑢3 = − (𝑢3 − 1) (2𝑣3 − (𝜃 + 𝜃))

1 − 𝑥 − 𝜃1𝑢3 +
𝑥

1 − 𝑥 𝑢3(𝑢3 − 1) (2𝑣3 − 𝜃0),

�𝑣3 =
(𝑣3 − 𝜃) (𝑣3 − 𝜃)

(1 − 𝑥)𝑢3
− 𝑥 (𝑣3 − 𝜃0)𝑢3𝑣3

1 − 𝑥 .

One realises that the vector field is infinite on H : {𝑣1 = 0} ∪ {𝑣2 = 0}. More precisely, it is infinite
or undetermined precisely there. We use the term base point for points where the vector field becomes
undetermined. For example, the point (𝑢1, 𝑣1) = (0, 0) in the coordinate chart C2

𝑢1 ,𝑣1 is a base point
because the equation for �𝑢1 approaches 0/0 as (𝑢1, 𝑣1) → (0, 0). In total, we find the following five
base points in F1, possibly visible in several charts. This initial situation is summarised in Table 1 and
Figure 2. Where needed in figures, we indicate the self-intersection number n of an exceptional divisor
by annotating it by (𝑛).

Okamoto’s procedure consists in resolving the vector field by successively blowing up the base points
until the vector field becomes determined. Since later on we need a well-defined compact surface if we
set 𝑥 = 0, we may not blow up 𝛽0 and 𝛽𝑥 simultaneously. As detailed in Appendix B.1.1, the blow-up
of 𝛽0, 𝛽𝑥 , 𝛽1 with 𝛽𝑥 after 𝛽0 consists of replacing the charts C2

𝑢1 ,𝑣1 and C2
𝑢2 ,𝑣2 by the following five

C
2-charts, endowed with the obvious rational transition maps,

(�̃�1, �̃�1) :=
(
𝑢1,

𝑣1
𝑢1 (𝑢1−1) (𝑢1−𝑥)

)
(�̃�2, �̃�2) :=

(
𝑢2,

𝑣2
(1−𝑢2) (1−𝑥𝑢2)

)
(𝑢02, 𝑣02) :=

(
𝑢1
𝑣1
, 𝑣1

)
(𝑢12, 𝑣12) :=

(
𝑢1−1
𝑣1
, 𝑣1

)
(𝑢𝑥2, 𝑣𝑥2) :=

(
𝑢1 (𝑢1−𝑥)

𝑣1
, 𝑣1
𝑢1

)
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Figure 2. The surface F1 with its coordinates and the base point configuration. The numbers in
parentheses indicate self-intersection numbers.

For each 𝑖 ∈ {0, 1, 𝑥}, what formerly was the point 𝛽𝑖 is now replaced by an exceptional line

D𝑖 : {�̃�1 = 𝑖} ∪ {𝑣𝑖2 = 0}

of self-intersection −1. The strict transform of H, that is the closure of H \ {𝛽0, 𝛽𝑥 , 𝛽1} after blow-up
is given by

H∗ := {�̃�1 = 0} ∪ {�̃�2 = 0} .

As a general fact, each time we blow up a point on a curve, the self-intersection number of the strict
transformation of the curve is the former self-intersection number decreased by unity. Since here we
have blown up three points, H∗ has self-intersection number (−2). The blow-up of 𝛽∞ consists of
removing the point (0, 1/𝜃) (corresponding to 𝛽∞) from the chart C2

�̃�2 , �̃�2
and replacing the chart C2

𝑢3 ,𝑣3

by the following pair of C2-charts.

(�̃�3, �̃�3) :=
(
𝑢3,− 𝑣3−𝜃

𝑢3

)
(𝑢∞2, 𝑣∞2) :=

(
𝑢3
𝑣3−𝜃 , 𝑣3 − 𝜃

)
Again, we obtain an exceptional line E∞ and a strict transform D∗

∞, such that D∞ = E∞ ∪D∗
∞, where

E∞ := {�̃�3 = 0} ∪ {𝑣∞2 = 0} , D∗
∞ = {�̃�2 = 0} ∪ {𝑢∞2 = 0} .

In each of the seven new charts that we have to add toC2
𝑢,𝑣 in order to fully describe the surface resulting

of F1 after this first sequence of blow-ups, we again look at the resulting vector field (see Section B.1.2)
and find the following base points, including the still unresolved 𝛽−∞. The situation is summarised in
Table 2.

In Figure 3, the notation ‘(𝑛)’ again indicates ‘self-intersection number equal to n’. Moreover, as
a visual guideline, we again included the strict transforms V∗

𝑖 := {𝑢𝑖2 = 0} ∪ {𝑢0 = 𝑖} of the former
vertical lines V𝑖 . Those have self-intersection (−1).

We blow-up the remaining base points by replacing each chart C2
𝑢𝑖2 ,𝑣𝑖2 by a pair of C2-charts with

corresponding index as follows, and then removing the already blown up base points that are still visible
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Table 2. Base points remaining after blowing up 𝛽0 , 𝛽𝑥 , 𝛽1 and 𝛽∞. The chart
(�̃�3 , �̃�3) is ommitted as there is no base point remaining in this chart..

Charts
Points

𝛾0 𝛾𝑥 𝛾1 𝛽−∞

(�̃�1 , �̃�1)
(
0, 1

𝑥𝜃0

) (
𝑥, 1

𝑥 (𝑥−1) 𝜃𝑥

) (
1, 1

(1−𝑥) 𝜃1

)
(�̃�2 , �̃�2)

(
1
𝑥 ,

𝑥
(𝑥−1) 𝜃𝑥

) (
1, 1

(1−𝑥) 𝜃1

) (
0, 1

𝜃

)
(𝑢02 , 𝑣02) (𝜃0 , 0)
(𝑢𝑥2 , 𝑣𝑥2)

(
−𝑥𝜃0 ,

1
𝜃0

)
(𝑥𝜃𝑥 , 0)

(𝑢12 , 𝑣12) (𝜃1 , 0)
(𝑢∞2 , 𝑣∞2) (0, −𝜃∞)

Figure 3. The surface F1 after the first sequence of blow-ups and the new base point configuration.

from other charts.

(𝑢03, 𝑣03) :=
(
𝑢02 − 𝜃0,

𝑣02
𝑢02−𝜃0

)
(𝑢04, 𝑣04) :=

(
𝑢02−𝜃0
𝑣02

, 𝑣02

)
(𝑢𝑥3, 𝑣𝑥3) :=

(
𝑢𝑥2 − 𝑥(𝜃𝑥 − 1), 𝑣𝑥2

𝑢𝑥2−𝑥 (𝜃𝑥−1)

)
(𝑢𝑥4, 𝑣𝑥4) :=

(
𝑢𝑥2−𝑥 (𝜃𝑥−1)

𝑣𝑥2
, 𝑣𝑥2

)
(𝑢13, 𝑣13) :=

(
𝑢12 − 𝜃1,

𝑣12
𝑢12−𝜃1

)
(𝑢14, 𝑣14) :=

(
𝑢12−𝜃1
𝑣12

, 𝑣12

)
(𝑢∞3, 𝑣∞3) :=

(
𝑢∞2,

𝑣∞2+𝜃∞
𝑢∞2

)
(𝑢∞4, 𝑣∞4) :=

(
𝑢∞2

𝑣∞2+𝜃∞ , 𝑣∞2

)
We obtain the following new exceptional lines, for 𝑖 ∈ {0, 1, 𝑥}.

E𝑖 := {𝑢𝑖3 = 0} ∪ {𝑣𝑖4 = 0} , E−
∞ := {𝑢∞3 = 0} ∪ {𝑣∞4 = 0}.

Moreover, we have the following new strict transforms, for 𝑖 ∈ {0, 1, 𝑥}.

D∗
𝑖 := {𝑣𝑖3 = 0} ∪ {�̃�1 = 𝑖} , D∗∗

∞ := {�̃�2 = 0} ∪ {𝑢∞4 = 0}.

The above charts of the Hirzebruch surface blown up in our eight base points are detailed in the Appendix
Section B.2. As we can see from the equations there, the vector field is now free of base points. We say
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Figure 4. The space of initial values of the resolved Painlevé VI vector field for 𝑥 ≠ 0.

Figure 5. The Dynkin diagram with nodes representing (−2)-lines in Okamoto’s space, for 𝑥 ≠ 0, 1, is
equivalent to that for 𝐷 (1)

4 .

that the initial value space is resolved or regularised. Moreover, the function E is well-defined there,
that is when resolving the base points of the vector field, we also resolved the indeterminacy points of
E. For each of the new coordinate charts (𝑢𝑚𝑛, 𝑣𝑚𝑛), we also define the Jacobian

𝜔𝑚𝑛 =
𝜕𝑢𝑚𝑛
𝜕𝑢

𝜕𝑣𝑚𝑛
𝜕𝑣

− 𝜕𝑢𝑚𝑛
𝜕𝑣

𝜕𝑣𝑚𝑛
𝜕𝑢

.

Figure 4 illustrates a schematic drawing of the resultant collection of exceptional lines, H∗ and 𝐷∗∗
∞

and their intersections in the resolved space, as well as the coordinates that will be most important in
the following. For each 𝑥 = 𝑥0 ≠ 0, 1, this regularised space will be denoted as S (𝑥0). Moreover, we
define S (0) to be the result of the blow-up procedure for 𝑥 = 0. Its relation to the vector field is studied
in the next section. The union of 𝑆(𝑥0) forms a fibre bundle

S :=
⋃

𝑥0∈C\{1}
S (𝑥0).
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From the detailed charts in the Appendix Section B.2, one sees that for 𝑥0 ≠ 0, the Painlevé vector
field is ‘vertical’ or tangent to the lines H∗, D∗∗

∞ , D∗
0, D∗

𝑥 , D∗
1, which each have self-intersection −2. For

this reason, such curves are often referred to as ‘vertical leaves’ in Okamoto’s construction. For each
𝑥 = 𝑥0 ≠ 0, 1, we define

I (𝑥0) := H∗ ∪D∗∗
∞ ∪D∗

0 ∪D∗
𝑥 ∪D∗

1

the infinity set, corresponding to the black part of the diagram shown in Figure 4. Okamoto’s space of
initial values for 𝑥0 ≠ 0, 1 is Oka(𝑥0) := S (𝑥0) \ I (𝑥0).

Note that the strict transformsH∗,D∗∗
∞ ,D∗

0,D∗
𝑥 ,D∗

1 each have self-intersection−2. The corresponding
Dynkin diagram reflecting their intersections, given in Figure 5, is equivalent to that for 𝐷 (1)

4 .

4. The vector field in the limit space

When 𝑥 → 0 (or, more precisely, �(𝑡) → −∞), we get the autonomous limiting system{
�𝑢 = −𝑢{(𝑢 − 1) (2𝑢𝑣 − 2𝜃 + 𝜃∞) − 𝜃1},
�𝑣 = 𝑢𝑣((3𝑢 − 2)𝑣 − 4𝜃 + 2𝜃∞) + (2𝜃 − 𝜃∞ − 𝜃1)𝑣 + 𝜃 (𝜃 − 𝜃∞),

(4.1)

where �𝑢 = 𝜕𝐸0/𝜕𝑣, �𝑣 = − 𝜕𝐸0/𝜕𝑢, with

𝐸0 := −𝑢{(𝑢 − 1)𝑣(𝑢𝑣 − 2𝜃 + 𝜃∞) − 𝜃1𝑣 + 𝜃 (𝜃 − 𝜃∞)}.

We can solve this Hamiltonian system completely: if the values of the 𝜃𝑖’s are generic, that is if they
belong to an open dense subset of the set of all possible values of those parameters, we obtain a one-
parameter family of solutions that lies on the line {𝑢 = 0}. Again for generic 𝜃𝑖 values, no solutions lie
on the line {𝑢 = 1}. Let us assume 𝑢 � 0, 1. Then the Hamiltonian system (4.1) yields

𝑣 = − �𝑢
2𝑢2(𝑢 − 1)

+ 𝜃1
2𝑢(𝑢 − 1) +

𝜃 + 𝜃
2𝑢

,

leading to

𝑢 =
3𝑢 − 2

2𝑢(𝑢 − 1) �𝑢
2 +

𝜃2
∞
2

(𝑢 − 1)𝑢2 −
𝜃2

1𝑢
2

2(𝑢 − 1) .

Note that if (𝑢(𝑡), 𝑣(𝑡)) is a solution of the autonomous Hamiltonian system, then 𝜂0 := 𝐸0 (𝑢(𝑡), 𝑣(𝑡))
is constant. Setting 𝑢3 := 1/𝑢, the autonomous differential equation for u yields ( �𝑢3)2 = 𝛼𝑢2

3 + 𝛽𝑢3 + 𝛾,
where 𝛼 = 4𝜂0 + (𝜃 + 𝜃 − 𝜃1)2 , 𝛽 = 𝜃2

1 − 𝜃
2
∞ − 𝛼 and 𝛾 = 𝜃2

∞. This integrates as

𝑢3(𝑡) =
⎧⎪⎪⎨⎪⎪⎩
√

4𝛾𝛼−𝛽2sinh(
√
𝛼 𝑡+𝜂1)−𝛽

2𝛼 if 𝛼 ≠ 0(√
𝛽

2 𝑡 + 𝜂1

)2
− 𝛾
𝛽 if 𝛼 = 0 ,

where 𝜂1 is an arbitrary integration constant. In particular, we find the following list of equilibrium
points (trajectories reduced to one point) of the autonomous Hamiltonian system for generic 𝜃𝑖’s:

⎧⎪⎪⎨⎪⎪⎩
(𝑢, 𝑣) =

(
𝜃∞−𝜃1
𝜃∞

, 𝜃∞ 𝜃
𝜃∞−𝜃1

)
for 𝜂0 = (𝜃1−𝜃∞)2−(𝜃0+𝜃𝑥−1)

4

(𝑢, 𝑣) =
(
𝜃∞+𝜃1
𝜃∞

, 𝜃∞ 𝜃
𝜃∞+𝜃1

)
for 𝜂0 = (𝜃1+𝜃∞)2−(𝜃0+𝜃𝑥−1)

4 .
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Figure 6. The limit space for 𝑥 = 0 of the space of initial values for 𝑥 ≠ 0.

We may now compactify the space of initial values C2
𝑢,𝑣 to S (0). Figure 6 contains a schematic

drawing of how the limits of the components of the infinity set and the exceptional lines arrange
in this space. Here, as usual, red lines have self-intersection (−1). The notable differences with the
configuration in S (𝑥) with 𝑥 = 0 are the following, where we use the superscript ‘0’ when convenient
to indicate particularities for the 𝑥 = 0 case:

◦ After blow-up of 𝛽0 : (𝑢1, 𝑣1) = (0, 0), the point 𝛽0
𝑥 : (𝑢01, 𝑣01) = (0, 0) which has to be blown up

lies on the intersection of (the strict transform) of H and the exceptional line D0 = D0
0.

◦ As a result, we still have H∗ = {�̃�1 = 0} ∪ {�̃�2 = 0}, but D0
0 = D0∗

0 ∪D0
𝑥 .

◦ Moreover, the point 𝛾0
𝑥 : (𝑢𝑥2, 𝑣𝑥2) = (0, 0) now corresponds to the intersection D0∗

0 ∩D0
𝑥 .

◦ As a result, we still have D0∗
𝑥 = {𝑣𝑥3 = 0} ∪ {�̃�1 = 0}, but D0∗

0 = D0∗∗
0 ∪ E0

𝑥 , where E0
𝑥 : {𝑢𝑥3 =

0} ∪ {𝑣𝑥4 = 0}.
◦ Finally, the blow-up of 𝛾0

0 : (𝑢02, 𝑣02) = (𝜃0, 0) yields the strict transform D0∗∗∗
0 : {𝑣03 = 0} ∪ {𝑢𝑥4 =

0} of self-intersection (−4).

The resulting autonomous vector field in S (0) is obtained from the one in the Appendix Section B.2
by systematically setting 𝑥 = 0. For convenience of the reader, the formulae are given in the Appendix
Section D.

We use the term elliptic base points for a point where the induced autonomous vector field in S (0)
is undetermined. There is one such elliptic base point, given by

𝔲 : (𝑢𝑥4, 𝑣𝑥4) = (0, 0) ∈ D∗∗∗
0 ∩ E0

𝑥 .

This elliptic base point cannot be resolved by blow-ups!1 Note, however, that the autonomous energy
function 𝐸0 is well-defined (and infinite) at 𝔲.

Let us denote I0 the subset of S (0) where the autonomous vector field is infinite or undefined. We
find

I0 = E0
𝑥 ∪D0∗

𝑥 ∪H∗ ∪D∗
1 ∪D∗∗

∞ .

This set corresponds precisely to the points where the autonomous energy function 𝐸0 is infinite. As
explained above, we have

lim
𝑥→0

I (𝑥) = D0∗∗∗
0 ∪ I0 .

1Moreover, when following through the process of Okamoto desingularisation, one realises that 𝛾0
0 : (𝑢02 , 𝑣02) = (𝜃0, 0) was

in fact not an elliptic base point.
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In order to complete the description of the autonomous vector field in S (0) \ {𝔲}, it remains to
investigate trajectories that might be contained in S (0) \

(
I0 ∪ C2

𝑢0 ,𝑣0

)
. We find the following, where,

as usual, we assume the values of the 𝜃𝑖’s to be generic:

◦ There is no trajectory contained in any of the following:
– E∞ \D∗∗

∞ : {�̃�3 = 0},
– E−

∞ \D∗∗
∞ : {𝑢∞3 = 0},

– E1 \D∗
1 : {𝑣14 = 0}.

◦ The line E0
0 \D0∗∗∗

0 : {𝑣04 = 0} is the union of one trajectory and one equilibrium point, given by

𝑢04 = − (𝜃0 − 𝜃) (𝜃0 − 𝜃)𝜃0

2𝜃0 + 𝜃1 − (𝜃 + 𝜃)

with energy 𝜂0 = −(𝜃𝑥 − 1)𝜃0.
◦ Every point of D0∗∗∗

0 \ E0
𝑥 : {𝑣03 = 0} is an equilibrium point of the autonomous vector field, with

energy 𝜂0 = (𝑢03 − (𝜃𝑥 − 1)) (𝑢03 + 𝜃0).

5. Movable singularities in the Okamoto’s space

In this section, we will consider neighbourhoods of exceptional lines where the Painlevé vector field
becomes unbounded. The construction given in Appendix B shows that these are given by the lines E0,
E𝑥 , E1, E∞, E−

∞.

5.1. Points where u has a zero and v a pole.

The set E0 \ I is given by {𝑣04 = 0}, in the (𝑢04, 𝑣04) chart (see Section B.2.6). Suppose 𝑢04 (𝜏) = 𝐵,
𝑣04 (𝜏) = 0, for some complex numbers 𝜏, B. From the system of differential equations in Section B.2.6,
we get:

𝑣04(𝑡) =
𝑒𝜏

𝑒𝜏 − 1
(𝑡 − 𝜏) − 𝑒𝜏 𝜃0 (1 + 𝑒𝜏) − 𝜃𝑥 − 𝜃1𝑒

𝜏 + 2
2(𝑒𝜏 − 1)2 (𝑡 − 𝜏)2

+
(

2𝐵𝑒2𝜏 (1 + 𝑒𝜏)
3(1 − 𝑒𝜏)3 + 𝐹1 (𝜏)

)
(𝑡 − 𝜏)3 +𝑂 ((𝑡 − 𝜏)4),

with

𝐹1 (𝜏) = − 𝑒𝜏

6(1 − 𝑒𝜏)3

[
3(𝜃0 − 𝜃𝑥 + 1) + (𝜃0 − 𝜃𝑥)2 + 3𝑒𝜏 − 8𝜃0 (𝜃𝑥 + 𝜃1)𝑒𝜏 + 13𝜃0𝑒

𝜏 − 2𝜃𝑥𝑒𝜏

+ 𝜃1 (2𝜃𝑥 − 5)𝑒𝜏 + 2(𝜃 + 𝜃0) (𝜃 + 𝜃0)𝑒𝜏 + (𝜃0 − 𝜃1)2𝑒2𝜏
]
.

Since (see Section B.2.6)

𝑢 = 𝑢04𝑣
2
04 + 𝜃0𝑣04, 𝑣 =

1
𝑣04

,

we obtain the series expansions for (𝑢, 𝑣):

⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑡) = 𝜃0𝑒

𝜏

𝑒𝜏−1 (𝑡 − 𝜏) +
(
𝐵 𝑒2𝜏

(𝑒𝜏−1)2 − 𝜃0𝑒
𝜏 𝜃0 (1+𝑒𝜏 )−𝜃𝑥−𝜃1𝑒

𝜏+2
2(𝑒𝜏−1)2

)
(𝑡 − 𝜏)2 +𝑂 ((𝑡 − 𝜏)3) ,

𝑣(𝑡) = 𝑒𝜏−1
𝑒𝜏

1
𝑡−𝜏 + 𝜃0 (1+𝑒𝜏 )−𝜃𝑥−𝜃1𝑒

𝜏+2
2𝑒𝜏 +

(
2𝐵 (𝑒𝜏+1)
3(𝑒𝜏−1) + 𝐹2 (𝑡)

)
(𝑡 − 𝜏) +𝑂 ((𝑡 − 𝜏)2) ,
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with

𝐹2 (𝜏) =
1

12𝑒𝜏 (𝑒𝜏 − 1)

[
(𝜃0 − 𝜃𝑥 + 3)2 − 3 − 4(𝜃 − 𝜃0) (𝜃 − 𝜃0)𝑒𝜏 + 4𝜃2

0𝑒
𝜏 − 2(2𝜃0 + 1)2𝑒𝜏

+ 2(𝜃0 + 𝜃𝑥 − 1) (𝜃0 + 𝜃1 + 2)𝑒𝜏 + (𝜃0 − 𝜃1)2𝑒2𝜏
]
.

Note that u has a simple zero at 𝑡 = 𝜏 and v a simple pole with residue 1 − 𝑒−𝜏 .

5.2. Points where 𝑢 = 1 and v has a pole.

The set E1 \ I is given by {𝑣14 = 0}, in the (𝑢14, 𝑣14) chart (see Section B.2.10). Suppose 𝑢14 (𝜏) = 𝐵,
𝑣14 (𝜏) = 0, for some complex numbers 𝜏, B. From the system of differential equations in Section B.2.10,
we get:

𝑣14 (𝑡) = −(𝑡 − 𝜏) + 𝜃 + 𝜃 + 𝜃1 (𝑒𝜏 − 3) − 𝜃0𝑒
𝜏

2(𝑒𝜏 − 1) (𝑡 − 𝜏)2 +
(

2𝐵(𝑒𝜏 − 2)
3(1 − 𝑒𝜏) + 𝐹3 (𝜏)

)
(𝑡 − 𝜏)3 +𝑂 ((𝑡 − 𝜏)4),

with

𝐹3 (𝜏) = − 1
6(𝑒𝜏 − 1)2

[
(𝜃 + 𝜃 − 5𝜃1)2 + 2(𝜃𝜃 − 5𝜃2

1) + (𝜃0 − 𝜃1)2𝑒2𝜏 − 2(𝜃0 (𝜃 + 𝜃 + 2) + 𝜃𝜃)𝑒𝜏

+ 2(3𝜃1 + 1) (𝜃 + 𝜃 + 𝜃0 − 2𝜃1)𝑒𝜏
]
.

Since (see Section B.2.10)

𝑢 = 𝑢14𝑣
2
14 + 𝜃1𝑣14 + 1, 𝑣 =

1
𝑣14

,

we obtain the series expansions for (𝑢, 𝑣):

⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑡) = 1 − 𝜃1(𝑡 − 𝜏) +

(
𝐵 + 𝜃1

𝜃+𝜃+𝜃1 (𝑒𝜏−3)−𝜃0𝑒
𝜏

2(𝑒𝜏−1)

)
(𝑡 − 𝜏)2 +𝑂 ((𝑡 − 𝜏)3),

𝑣(𝑡) = − 1
𝑡−𝜏 − 𝜃+𝜃+𝜃1 (𝑒𝜏−3)−𝜃0𝑒

𝜏

2(𝑒𝜏−1) −
(

2𝐵 (𝑒𝜏−2)
3(1−𝑒𝜏 ) + 𝐹4 (𝜏)

)
(𝑡 − 𝜏) +𝑂 ((𝑡 − 𝜏)2),

with

𝐹4 (𝜏) = 𝐹3 (𝜏) +
(
𝜃 + 𝜃 + 𝜃1 (𝑒𝜏 − 3) − 𝜃0𝑒

𝜏

2(𝑒𝜏 − 1)

)2
.

At 𝑡 = 𝜏, 𝑢 − 1 has a simple zero, while v has a simple pole with residue −1.

5.3. Points where 𝑢(𝜏) = 𝑒𝜏 and v has a pole.

The set E𝑥 \ I is given by {𝑣𝑥4 = 0}, in the (𝑢𝑥4, 𝑣𝑥4) chart (see Section B.2.8). Suppose 𝑢𝑥4 (𝜏) = 𝐵,
𝑣𝑥4 (𝜏) = 0, for some complex number B. From the system of differential equations in Section B.2.8, we
get:

𝑣𝑥4 = (𝑡 − 𝜏) + 𝜃0 + 𝜃𝑥 − (𝜃 + 𝜃 − 𝜃𝑥)𝑒𝜏
2(𝑒𝜏 − 1) (𝑡 − 𝜏)2 +

(
𝐵(𝑒2𝜏 − 1)

3𝑒𝜏 (𝑒𝜏 − 1)2 + 𝐹5 (𝜏)
)
(𝑡 − 𝜏)3 +𝑂 ((𝑡 − 𝜏)4),
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with

𝐹5 (𝜏) =

[
(𝜃 + 𝜃 − 2𝜃𝑥)2 − 3𝜃2

𝑥 + 2𝜃𝜃
]
𝑒2𝜏 + (𝜃0 + 2𝜃𝑥)2 − 𝜃2

𝑥 − 2
[
1 + 𝜃0(𝜃 + 𝜃) + 𝜃𝑥 − 𝜃1 + 𝜃𝜃

]
𝑒𝜏

6(𝑒𝜏 − 1)2 .

Since, as calculated in Section B.2.8:

𝑢 = (𝑢𝑥4𝑣𝑥4 + 𝑒𝑡𝜃𝑥)𝑣𝑥4 + 𝑒𝑡 , 𝑣 =
1

((𝑢𝑥4𝑣𝑥4 + 𝑒𝑡𝜃𝑥)𝑣𝑥4 + 𝑒𝑡 )𝑣𝑥4
,

we obtain:

⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑡) = 𝑒𝜏 + 𝑒𝜏 (𝜃𝑥 + 1) (𝑡 − 𝜏) +

(
𝐵 + 𝑒𝜏

2 + 𝑒𝜏𝜃𝑥 𝜃0+𝜃𝑥−2−(𝜃0+𝜃1−3)𝑒𝜏
2(𝑒𝜏−1)

)
(𝑡 − 𝜏)2 +𝑂 ((𝑡 − 𝜏)3) ,

𝑣(𝑡) = 𝑒−𝜏

𝑡−𝜏 − 𝑒−𝜏 𝜃0−𝜃𝑥−2−(𝜃+𝜃−3𝜃𝑥−2)𝑒𝜏
2(𝑒𝜏−1) + 𝑒−𝜏

(
𝐵 · 2−4𝑒𝜏

3𝑒𝜏 (𝑒𝜏−1) + 𝐹6 (𝜏)
)
(𝑡 − 𝜏) +𝑂 ((𝑡 − 𝜏)2) ,

with

𝐹6 (𝜏) = − 1
12(𝑒𝜏 − 1)2

{[
𝜃2
∞ + 2(𝜃 + 𝜃 + 2𝜃𝑥) (𝜃𝑥 − 3) + (3𝜃𝑥 + 5)2 − 19

]
𝑒2𝜏

−
[
𝜃2
∞ − (𝜃1 − 2𝜃𝑥)2 + 2(𝜃𝑥 − 12) + (5𝜃𝑥 + 1)2 + (𝜃0 − 6)2]𝑒𝜏

+
[
8𝜃2
𝑥 + (𝜃0 − 𝜃𝑥 − 3)2 − 2

]}
.

At 𝑡 = 𝜏, obviously, v has a simple pole with residue 𝑒−𝜏 , while 𝑢(𝑡) − 𝑒𝜏 has a simple zero.

5.4. Points where u has a pole and v a zero.

Such points belong to E∞ and E−
∞, which are obtained by blowing up the points 𝛽∞ and 𝛽−∞ on D∞. We

notice that the initial vector field (see Section B.2.1) does not depend on the sign of 𝜃∞. Moreover, if
we replace 𝜃∞ by −𝜃∞, the roles of 𝛽∞ and 𝛽−∞ are interchanged. Because of that symmetry, we may
consider only the case when the solution intersects E∞.

The set E∞ \ I is given by {�̃�3 = 0} in the (�̃�3, �̃�3) chart (see Section B.2.4). Suppose �̃�3(𝜏) = 0,
�̃�3 (𝜏) = 𝐵. From the differential equations in Section B.2.4, we get:

�̃�3(𝑡) =
𝜃∞

1 − 𝑒𝜏 (𝑡 − 𝜏) − 𝜃∞
(𝜃∞ + 𝜃𝑥 − 2)𝑒𝜏 + 𝜃∞ + 𝜃1 + 2𝐵

2(𝑒𝜏 − 1)2 (𝑡 − 𝜏)2 +𝑂 ((𝑡 − 𝜏)3).

Then, using the relations:

𝑢 =
1
�̃�3
, 𝑣 = (𝜃 − �̃�3�̃�3)�̃�3,

we get: {
𝑢(𝑡) = 1−𝑒𝜏

𝜃∞ (𝑡−𝜏) +
(𝜃∞+𝜃𝑥−2)𝑒𝜏+𝜃∞+𝜃1+2𝐵

2𝜃∞ +𝑂 (𝑡 − 𝜏),
𝑣(𝑡) = 𝜃 𝜃∞

(1−𝑒𝜏 ) (𝑡 − 𝜏) − 𝜃∞
𝜃 (𝜃∞+𝜃𝑥−2)𝑒𝜏+𝜃 (𝜃∞+𝜃1)+2(𝜃+𝜃∞)𝐵

2(𝑒𝜏−1)2 (𝑡 − 𝜏)2 +𝑂 ((𝑡 − 𝜏)3).

Note that u has a simple pole with residue (1 − 𝑒𝜏)/𝜃∞, while v has a simple zero. In the intersection
points with E−

∞, u has a simple pole with residue −(1 − 𝑒𝜏)/𝜃∞ and v a simple zero.
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Figure 7. Domains 𝑅𝜖 and 𝐷𝑟 . 𝑅𝜖 is the disk centred at the origin with radius 0 < 𝜖 < 1. 𝐷𝑟 is a
disk within 𝑅𝜖 and does not contain the origin. The image of 𝑅𝜖 by the logarithmic function is the half-
plane placed on the left to the boundary �𝑡 = ln 𝜖 . On the left side of the figure, notice a curvilinear
‘quadrangle’ consisting of two circular arcs centred at the origin and two segments placed on radii of
𝑅𝜖 , such that it is circumscribed about 𝐷𝑟 . That ‘quadrangle’ is mapped to the red rectangle on the
right side, which thus will contain the image of 𝐷𝑟 .

6. Estimates and the main result

In this section, we estimate the distance of the vector field from each vertical leaf, for sufficiently small
x. These estimates allow us to describe the domain of each solution in S\I, which is Okamoto’s space
of initial values. The results will be used to prove properties of the limit set of each solution.

Given 0 < 𝜖 < 1, 𝜖 ∈ R, define a disk 𝑅 = 𝑅𝜖 = {𝑥 ∈ C | |𝑥 | < 𝜖}. Letting 𝜉 ∈ 𝑅, 𝑟 < |𝜉 | < 𝜖 , define
a disk 𝐷 = 𝐷𝑟 (𝜉) = {𝑥 ∈ 𝑅

�� |𝑥 − 𝜉 | < 𝑟} that lies in the interior of R. Defining a new time coordinate
𝑡 = ln 𝑥, we have corresponding domains 𝑅𝑡 and 𝐷𝑡 in the t-plane. Note that 𝐷𝑡 is no longer a circular
disk but lies inside a rectangular region in the left half of the t-plane (see Figure 7).

The reader may find it useful to consult Figure 4 in the proofs of the following results.

Lemma 6.1. Given 𝑥 ∈ C\{0}, there exists a continuous complex valued function d in a neighbourhood
of the infinity set I in Okamoto’s space, such that

𝑑 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
𝐸 in a neighbourhood of H∗ ∪D∗

1 ∪D∗∗
∞ \ (D∗

0 ∪D∗
𝑥),

− 𝑥−1
𝑥 𝜔03 in a neighbourhood of D∗

0\H∗,

−𝜔𝑥3 in a neighbourhood of D∗
𝑥\H∗.

Note that d vanishes on I and that d is not defined at 𝑥 = 0.

Proof. From Section B.2.5, the set D∗
0\H∗ is given by 𝑣03 = 0 in the (𝑢03, 𝑣03) chart. As we approach

D∗
0, we have:

𝐸𝜔03 ∼ − 𝑥

𝑥 − 1
, as 𝑣03 → 0.

From Section B.2.7, the set D∗
𝑥\H∗ is given by 𝑣𝑥3 = 0 in the (𝑢𝑥3, 𝑣𝑥3) chart. As we approach D∗

𝑥 ,
we have:

𝐸𝜔𝑥3 ∼ −1 − 𝑥

𝑢𝑥3
as 𝑣𝑥3 → 0.

Thus, as we approach H∗: 𝑢𝑥3 → ∞, we have that −𝜔𝑥3 ∼ 1/𝐸 . �
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Lemma 6.2. For every 𝜖 > 0, there exists a neighbourhood U of D∗∗
∞ , such that���� �𝐸𝐸 + 𝑒𝑡

𝑒𝑡 − 1

���� < 𝜖.

Proof. The proof follows from the expressions for �𝐸/𝐸 in (𝑢2, 𝑣2) and (𝑢3, 𝑣3) charts (see Sections
A.0.3 and A.0.4), where D∞ is given by 𝑢2 = 0 and 𝑢3 = 0, respectively. �

Lemma 6.3. For every compact subset K of D∗∗
∞ ∪ D∗

1 ∪H∗\D∗
𝑥 , there exists a neighbourhood V of K

and a constant 𝐶 > 0, such that ����𝑒−𝑡 �𝐸
𝐸

���� < 𝐶

in V for all t, such that 𝑒𝑡 is bounded away from 1.

Proof. Note that H∗ = {�̃�1 = 0}∪{�̃�2 = 0} is parametrised by �̃�1 and �̃�2 = 1/�̃�1, respectively. Moreover,
D∗
𝑥 is given in these charts by {�̃�1 = 𝑥} and {𝑥�̃�2 = 1}. In the respective coordinate charts (�̃�1, �̃�1),

(�̃�2, �̃�2) (see Sections B.2.2 and B.2.3), we have

𝑒−𝑡
�𝐸
𝐸

=

{
�̃�1−1

(𝑒𝑡−1) (𝑒𝑡−�̃�1) +
(𝜃𝑥−1)�̃�1 (�̃�1−1)

𝑒𝑡−�̃�1
�̃�1 +𝑂

(
�̃�2

1
)
,

− �̃�2−1
(𝑒𝑡−1) (𝑒𝑡 �̃�2−1) −

(𝜃𝑥−1)�̃�2 (�̃�2−1)
𝑒𝑡 �̃�2−1 �̃�2 +𝑂

(
�̃�2

2
)
.

So as long as we consider compact subsets of H∗\D∗
𝑥 , the values of 1

�̃�1−𝑥 and 1
𝑥�̃�2−1 are bounded. We

have now proven the desired result in a neighbourhood of any compact subset of H∗ \ D∗
𝑥 . Since D∗∗

∞
intersects with H∗ \D∗

𝑥 , the result holds in a neighbourhood of D∗∗
∞ ∩H∗.

On the other hand, near D∗∗
∞ \H∗, given by {𝑢∞4 = 0}, we may consider only bounded values of 𝑣∞4,

and so we have (see Section B.2.11)

𝑒−𝑡
�𝐸
𝐸

= − 1
𝑒𝑡 − 1

+
[
𝜃𝑣∞4 −

(
𝑣∞4 + 𝜃

)
(𝑣∞4 + 𝜃𝑥 − 1)

]
𝑢∞4 +𝑂 (𝑢2

∞4) .

Hence, the result holds in a neighbourhood of the compact set D∗∗
∞ = {𝑢∞4 = 0} ∪ {�̃�2 = 0}. Similarly,

near D∗∗
1 \H∗, given by {𝑣13 = 0}, where we may consider only bounded values of 𝑢13, we have (see

Section B.2.9)

𝑒−𝑡
�𝐸
𝐸

=
(𝑢13 + 𝜃1) (𝑢13 − 𝜃𝑥 + 1)

(𝑒𝑡 − 1)2 𝑣13 +𝑂 (𝑣2
13) .

Hence, the result holds for any compact subset K of D∗∗
∞ ∪ D∗

1 ∪ H∗\D∗
𝑥 and any t as long as 1

𝑒𝑡−1 is
bounded. �

Remark 6.4. The estimate in the above Lemma 6.3 applies to all compact subsets of D∗∗
∞ ∪D∗

1 ∪H∗\D∗
𝑥

and, therefore, in particular to D∗∗
∞ ∪D∗

1.

Definition 6.5. An approximate disk with centre 𝜏 and radius R is an open simply connected set which,
for some 𝜀 > 0, contains the disk centred at 𝜏 with radius 𝑅 − 𝜀 and is contained in the disk centred at
𝜏 with radius 𝑅 + 𝜀.

Lemma 6.6 (Behaviour near D∗
𝑥 \H∗). If a solution at a complex time t is sufficiently close to D∗

𝑥 \H∗,
then there exists a unique 𝜏 ∈ C, such that (𝑢(𝜏), 𝑣(𝜏)) belongs to the exceptional line E𝑥 . In other
words, 𝑢(𝜏) = 𝑒𝜏 and 𝑣(𝑡) has a pole at 𝑡 = 𝜏. Moreover, for sufficiently small 𝑑 (𝑡) and bounded 𝑢𝑥3,
we have |𝑡 − 𝜏 | = 𝑂 (|𝑒−𝑡𝑑 (𝑡) | |𝑢𝑥3 (𝑡) |).
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For large 𝑅𝑥 > 0, consider the set {𝑡 ∈ C | |𝑢𝑥3 (𝑡) | ≤ 𝑅𝑥}. Its connected component containing 𝜏 is
an approximate disk Δ 𝑥 with centre 𝜏 and radius |𝑑 (𝜏)𝑒−𝜏 |𝑅𝑥 , and 𝑡 ↦→ 𝑢𝑥3(𝑡) is a complex analytic
diffeomorphism from Δ 𝑥 onto {𝑢 ∈ C | |𝑢 | ≤ 𝑅𝑥}.

Proof. For the study of the solutions near D∗
𝑥 \H∗, we use coordinates (𝑢𝑥3, 𝑣𝑥3) (see Section B.2.7).

In this chart, the set D∗
𝑥 \H∗ is given by 𝑣𝑥3 = 0 and parametrised by 𝑢𝑥3 ∈ C. Moreover, E𝑥 is given by

{𝑢𝑥3 = 0} and parametrised by the variable 𝑣𝑥3. From Lemma 6.1, we recall that 𝑑 = −𝜔𝑥3 in this chart.
Asymptotically, for 𝑣𝑥3 → 0, bounded 𝑢𝑥3 and 𝑥 = 𝑒𝑡 bounded away from 0 and 1, we have:

�𝑢𝑥3 ∼ 1
𝑣𝑥3

, (6.1a)

�𝑣𝑥3 ∼
(

2𝑢𝑥3
𝑥(𝑥 − 1) − (𝜃0 + 𝜃𝑥) −

𝑥𝜃1 − 𝜃𝑥 − 1
𝑥 − 1

)
𝑣𝑥3, (6.1b)

𝜔𝑥3 ∼ −𝑥𝑣𝑥3, (6.1c)

�𝜔𝑥3
𝜔𝑥3

∼ (1 − 𝜃0 − 𝜃1)
𝑥

𝑥 − 1
+ 2𝑢𝑥3 + 𝜃0 + 𝜃𝑥

𝑥 − 1
, (6.1d)

𝐸𝜔𝑥3 ∼ −1 − 𝑥

𝑢𝑥3
. (6.1e)

Note that integrating Equation (6.1d) from 𝑡0 to 𝑡1, where 𝑡0, 𝑡1 ∈ 𝐷𝑡 (see Figure 7) leads to

log
(
𝜔𝑥3 (𝑡1)
𝜔𝑥3 (𝑡0)

)
∼ (1 − 𝜃0 − 𝜃1) log

(
1 − 𝑒𝑡1
1 − 𝑒𝑡0

)
+

∫ 𝑡1

𝑡0

2𝑢𝑥3 + 𝜃0 + 𝜃𝑥
𝑒𝑡 − 1

𝑑𝑡.

Therefore, if for all t on the line segment from 𝑡0 to 𝑡1, we have |𝑒𝑡 − 𝑒𝑡0 | � |𝑒𝑡0 | and |𝑢𝑥3 (𝑡) | is bounded,
then 𝜔𝑥3 (𝑡)/𝜔𝑥3(𝑡0) ∼ ((1 − 𝑒𝑡 )/(1 − 𝑒𝑡0))1−𝜃0−𝜃1 , where the right side is upperbounded by 𝑒𝑡0 . In
view of this situation, Equation (6.1c) shows that 𝑣𝑥3 is approximately given by a small constant. We
take 𝑡0 = 𝜏 in the following analysis. From (6.1a), it follows that:

𝑢𝑥3 ∼ 𝑢𝑥3(𝜏) +
𝑡 − 𝜏
𝑣𝑥3(𝜏)

.

Thus, if t runs over an approximate disk Δ centred at 𝜏 with radius |𝑣𝑥3 |𝑅, then 𝑢𝑥3 fills an approximate
disk centred at 𝑢𝑥3(𝜏) with radius R. Therefore, if |𝑣𝑥3 | � 1/|𝜏 |, the solution has the following properties
for 𝑡 ∈ Δ:

𝑣𝑥3(𝑡)
𝑣𝑥3 (𝜏)

∼ 1,

and 𝑢𝑥3 is a complex analytic diffeomorphism from Δ onto an approximate disk with centre 𝑢𝑥3(𝜏) and
radius R. If R is sufficiently large, we will have 0 ∈ 𝑢𝑥3(Δ), that is the solution of the Painlevé equation
will have a pole at a unique point in Δ . Now, it is possible to take 𝜏 to be the pole point. We have:

𝑢𝑥3(𝑡) ∼
𝑡 − 𝜏
𝑣𝑥3 (𝜏)

∼ − (𝑡 − 𝜏)𝑒𝜏
𝑑 (𝜏) .

Let 𝑅𝑥 be a large positive real number. Then the equation |𝑢𝑥3 (𝑡) | = 𝑅𝑥 corresponds to |𝑡 − 𝜏 | ∼
|𝑒−𝜏𝑑 (𝜏) |𝑅𝑥 , which is still small compared to |𝜏 | if |𝑑 (𝜏) | is sufficiently small. It follows that the
connected component Δ 𝑥 of the set of all 𝑡 ∈ C, such that {𝑡 | |𝑢𝑥3 (𝑡) | ≤ 𝑅𝑥} is an approximate disk
with centre 𝜏 and radius |𝑑 (𝜏)𝑒−𝜏 |𝑅𝑥 . More precisely, 𝑢𝑥3 is a complex analytic diffeomorphism from
Δ 𝑥 onto {𝑢 ∈ C | |𝑢 | ≤ 𝑅𝑥}, and 𝑑 (𝑡)

𝑑 (𝜏) ∼ 1 for all 𝑡 ∈ Δ 𝑥 . �
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Remark 6.7. Similar arguments show that if a solution comes sufficiently close to D∗
1 or D∗∗

∞ , then
it will cross the corresponding exceptional lines E1, respectively E∞ and E−

∞ transversally at a unique
nearby value of time. We prove this in Appendix C. This is, however, not needed for our main result.

Lemma 6.8 (Behaviour near D∗
0 \H∗). If a solution at a complex time t is sufficiently close to D∗

0 \H∗,
then there exists unique 𝜏 ∈ C, such that (𝑢(𝜏), 𝑣(𝜏)) belongs to the line E0. In other words, u vanishes
and v has a pole at 𝑡 = 𝜏. Moreover, |𝑡 − 𝜏 | = 𝑂 (|𝑑 (𝑡) | |𝑢03 (𝑡) |) for sufficiently small 𝑑 (𝑡) and bounded
𝑢03.

For large 𝑅0 > 0, consider the set {𝑡 ∈ C | |𝑢03 (𝑡) | ≤ 𝑅0}. Its connected component containing 𝜏
is an approximate disk Δ0 with centre 𝜏 and radius |𝑑 (𝜏) (𝑒𝜏 + 𝑒−𝜏) |𝑅0, and 𝑡 ↦→ 𝑢03 (𝑡) is a complex
analytic diffeomorphism from that Δ0 onto {𝑢 ∈ C | |𝑢 | ≤ 𝑅0}.

Proof. For the study of the solutions near D∗
0 \H∗, we use coordinates (𝑢03, 𝑣03) (see Section B.2.5).

In this chart, the set D∗
0 \H∗ is given by 𝑣03 = 0 and parametrised by 𝑢03 ∈ C. Moreover, E0 is given by

𝑢03 = 0 and parametrised by 𝑣03.
Asymptotically, for 𝑣03 → 0, bounded 𝑢03 and 𝑥 = 𝑒𝑡 bounded away from 0 and 1, we have:

�𝑢03 ∼ − 𝑥

(1 − 𝑥)𝑣03
, (6.2a)

�𝑣03 ∼ − (𝑥 + 1) (2𝑢03 + 𝜃0) − 𝜃𝑥 + 1 − 𝑥𝜃1
𝑥 − 1

𝑣03, (6.2b)

𝜔03 = −𝑣03, (6.2c)

�𝜔03
𝜔03

∼ 2𝑢03 + 𝜃0 − 𝜃1 +
4𝑢03 + 𝜃0 − 𝜃1 + 1

𝑥 − 1
, (6.2d)

𝐸𝜔03 ∼ − 𝑥

𝑥 − 1
. (6.2e)

Arguments similar to those in the proof of Lemma 6.6 show that 𝑣03 is approximately equal to a
small constant, and from (6.2a), it follows that:

𝑢03 ∼ 𝑢03 (𝜏) −
𝑒𝑡 − 𝑒𝜏
𝑣03(𝜏)

.

Thus, if t runs over an approximate disk Δ centred at 𝜏 with radius |𝑣03 | log 𝑅, then 𝑢03 fills an
approximate disk centred at 𝑢03(𝜏) with radius R. Therefore, if |𝑣03 | � 𝑒−|𝜏 | , the solution has the
following properties for 𝑡 ∈ Δ:

𝑣03 (𝑡)
𝑣03 (𝜏)

∼ 1,

and 𝑢03 is a complex analytic diffeomorphism from Δ onto an approximate disk with centre 𝑢03(𝜏) and
radius R. If R is sufficiently large, we will have 0 ∈ 𝑢03(Δ), that is the solution of the Painlevé equation
will vanish at a unique point in Δ . Now, it is possible to take 𝜏 to be that point. We have:

𝑢03(𝑡) ∼ − 𝑒
𝑡 − 𝑒𝜏
𝑣03(𝜏)

∼ − (𝑒𝑡 − 𝑒𝜏)𝑒𝜏
(𝑒𝜏 − 1)𝑑 (𝜏) .

Let 𝑅0 be a large positive real number. Then the equation |𝑢03 (𝑡) | = 𝑅0 corresponds to |1 − 𝑒𝑡−𝜏 | ∼
|𝑒−2𝜏 (𝑒𝜏 − 1)𝑑 (𝜏) |𝑅0, which is still small compared to |𝑒𝜏 | if |𝑑 (𝜏) | is sufficiently small. It follows that
the connected component Δ0 of the set of all 𝑡 ∈ C, such that {𝑡 | |𝑢03 (𝑡) | ≤ 𝑅0} is an approximate disk
with centre 𝜏 and radius |𝑑 (𝜏) (𝑒−𝜏 + 𝑒𝜏) |𝑅0. More precisely, 𝑢03 is a complex analytic diffeomorphism
from Δ0 onto {𝑢 ∈ C | |𝑢 | ≤ 𝑅0}, and 𝑑 (𝑡)

𝑑 (𝜏) ∼ 1 for all 𝑡 ∈ Δ0. �
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Theorem 6.9. Let 𝜖1, 𝜖2, 𝜖3 be given, such that 0 < 𝜖1 < 1, 0 < 𝜖2 < 1, 0 < 𝜖3 < 1. Then there exists
𝛿 > 0, such that if |𝑒𝑡0 | < 𝜖1 and |𝑑 (𝑡0) | < 𝛿, it follows that

𝜌 = inf{𝑟 < |𝑒𝑡0 | , such that |𝑑 (𝑡) | < 𝛿 whenever |𝑒𝑡0 | ≥ |𝑒𝑡 | ≥ 𝑟}

satisfies:

(i) 𝜌 > 0 and is bounded below by the relation:

𝛿 ≥ |𝑑 (𝑡0) |
(
(1 − 𝜌)/|1 − 𝑒𝑡0 |

)1−𝜖2 (1 − 𝜖3);

(ii) if |𝑒𝑡0 | ≥ |𝑒𝑡 | ≥ 𝜌, then

𝑑 (𝑡) = 𝑑 (𝑡0)
(

1 − 𝑒𝑡
1 − 𝑒𝑡0

)1+𝜀2 (𝑡)
(1 + 𝜀3 (𝑡)),

where |𝜀2 (𝑡) | ≤ 𝜖2 and |𝜀3 (𝑡) | ≤ 𝜖3; and,
(iii) if |𝑒𝑡 | is less than 𝜌, but still sufficiently close to 𝜌, then |𝑑 (𝑡) | ≥ 𝛿(1 − 𝜖3).

Proof. Suppose a solution of the system (3.1) is close to the infinity set at times 𝑡0 and 𝑡1. If follows from
Lemmas 6.6 and 6.8 that for every solution close to I, the set of complex times t, such that the solution is
not close to I \ (D∗

0∪D∗
𝑥) is the union of approximate disks of radius ∼ |𝑑 |. Hence, if the solution is near

I for all complex times t, such that |𝑒𝑡0 | ≥ |𝑒𝑡 | ≥ |𝑒𝑡1 |, then there exists a path P from 𝑡0 to 𝑡1, such that
the solution is close to I \ (D∗

0 ∪D∗
𝑥) for all 𝑡 ∈ P and P is 𝐶1-close to the path: 𝑠 ↦→ 𝑡𝑠1𝑡

1−𝑠
0 , 𝑠 ∈ [0, 1].

Then Lemma 6.2 implies that near D∗∗
∞ :

𝐸 (𝑡)
𝐸 (𝑡0)

∼ 1 − 𝑒𝑡0
1 − 𝑒𝑡 ,

and by using Lemma 6.1, we find:

𝑑 (𝑡) ∼ 𝑑 (𝑡0)
1 − 𝑒𝑡
1 − 𝑒𝑡0 . (6.3)

For the first statement of the theorem, we have:

𝛿 > |𝑑 (𝑡) | ≥ |𝑑 (𝑡0) |
(

1 − |𝑒𝑡 |
|1 − 𝑒𝑡0 |

)1−𝜖2

(1 − 𝜖3),

and the desired result follows from 𝜌 ≤ 𝑒𝑡 . For |𝑒𝑡 | ≤ |𝑒𝑡0 |, the second statement follows from (6.3) and
the third one from the definition of 𝜌. The symmetries of the sixth Painlevé equation show that the same
statements follow near other lines of the infinity set I. �

As a consequence of Theorem 6.9, we can prove the repelling property of the set I.

Corollary 6.10. No solution with the initial conditions in the space of the initial values intersects I. A
solution that is close to I for a certain value of the independent variable t will stay in the vicinity of I
only for a limited range of t. Moreover, if a solution is sufficiently close to I at a point t, then it will have
a pole in a neighbourhood of t.

Proof. The statement follows from Theorem 6.9 and Lemmas 6.6, 6.8. �

Remark 6.11. Parts (i) and (ii) of Theorem 6.9 give estimates on the behaviour of the solutions near
the infinity set. Part (iii) implies that a solution does not stay indefinitely near the infinity set as 𝑒𝑡 → 0.
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7. The limit set

Our definition of the limit set is the extension of the standard concept of limit sets in dynamical systems
to complex-valued solutions.

Definition 7.1. Let (𝑢(𝑡), 𝑣(𝑡)) be a solution of (3.1). The limit set Ω𝑢,𝑣 of (𝑢(𝑡), 𝑣(𝑡)) is the set of all
𝑠 ∈ S (0) \ I (0), such that there exists a sequence 𝑡𝑛 ∈ C satisfying:

lim
𝑛→∞

�(𝑡𝑛) = −∞ and lim
𝑛→∞

(𝑢(𝑡𝑛), 𝑧(𝑣𝑛)) = 𝑠.

Theorem 7.2. There exists a compact set 𝐾 ⊂ S (0) \ I (0), such that the limit set Ω𝑢,𝑣 of any solution
(𝑢, 𝑣) of (3.1) is contained in K. Moreover, Ω𝑢,𝑣 is a nonempty, compact and connected set, which is
invariant under the flow of the autonomous system given in Section 4.

Proof. For any positive numbers 𝜂, r, let 𝐾𝜂,𝑟 denote the set of all 𝑠 ∈ S (𝑥), such that |𝑥 | ≤ 𝑟 and
|𝑑 (𝑠) | ≥ 𝜂. Since S (𝑥) is a complex analytic family over P1 \ {0, 1} of compact surfaces S (𝑥), 𝐾𝜂,𝑟
is also compact. Furthermore, 𝐾𝜂,𝑟 is a compact subset of the Okamoto’s space S \ I (0). When r
approaches 0, the sets 𝐾𝜂,𝑟 shrink to the compact set:

𝐾𝜂,0 = {𝑠 ∈ S (0) | |𝑑 (𝑠) ≥ 𝜂} ⊂ S (0) \ I (0).

If follows from Theorem 6.9 that there is 𝜂 > 0, such that for every solution (𝑢, 𝑣), there exists 𝑟0 > 0
with the following property:

(𝑢(𝑡), 𝑣(𝑡)) ∈ 𝐾𝜂,𝑟0 for every 𝑡, such that |𝑒𝑡 | ≤ 𝑟0.

Hereafter, we take 𝑟 ≤ 𝑟0, when it follows that (𝑢(𝑡), 𝑣(𝑡)) ∈ 𝐾𝜂,𝑟 whenever |𝑒𝑡 | ≤ 𝑟 .
Let 𝑇𝑟 = {𝑡 ∈ C | |𝑒𝑡 | ≤ 𝑟}, and let Ω(𝑢,𝑣) ,𝑟 denote the closure of the image set

(
𝑢(𝑇𝑟 ), 𝑣(𝑇𝑟 )

)
in

S . Since 𝑇𝑟 is connected and (𝑢, 𝑣) is continuous, Ω(𝑢,𝑣) ,𝑟 is also connected. Since
(
𝑢(𝑇𝑟 ), 𝑣(𝑇𝑟 )

)
is

contained in the compact set 𝐾𝜂,𝑟 , its closure Ω(𝑢,𝑣) ,𝑟 is also contained in 𝐾𝜂,𝑟 , and, therefore, Ω(𝑢,𝑣) ,𝑟
is a nonempty compact and connected subset of S \ S (0). The intersection of a decreasing sequence of
nonempty, compact and connected sets is a nonempty, compact and connected. Therefore, as Ω(𝑢,𝑣) ,𝑟
decreases to Ω(𝑢,𝑣) as r approaches zero, it follows that Ω(𝑢,𝑣) is a nonempty, compact and connected
subset of S . Since Ω(𝑢,𝑣) ,𝑟 ⊂ 𝐾𝜂,𝑟 , for all 𝑟 ≤ 𝑟0, and the sets 𝐾𝜂,𝑟 shrink to the compact subset 𝐾𝜂,0
of S (0) \ I (0) as r decreases to zero, it follows that Ω(𝑢,𝑣) ⊂ 𝐾𝜂,0. This proves the first statement of
the theorem with 𝐾 = 𝐾𝜂,0.

Since Ω(𝑢,𝑣) is the intersection of the decreasing family of compact sets Ω(𝑢,𝑣) ,𝑟 , there exists for
every neighbourhood A of Ω(𝑢,𝑣) in S , an 𝑟 > 0, such that Ω(𝑢,𝑣) ,𝑟 ⊂ 𝐴. Hence, (𝑢(𝑡), 𝑣(𝑡)) ∈ 𝐴
for every 𝑡 ∈ C, such that |𝑒𝑡 | ≤ 𝑟 . If {𝑡 𝑗 } is any sequence in C \ {0}, such that |𝑡 𝑗 | → 0, then the
compactness of 𝐾𝜂,𝑟 , in combination with

(
𝑢(𝑇𝑟 ), 𝑣(𝑇𝑟 )

)
⊂ 𝐾𝜂,𝑟 , implies that there is a subsequence

𝑗 = 𝑗 (𝑘) → ∞ as 𝑘 → ∞ and an 𝑠 ∈ 𝐾𝜂,𝑟 , such that:

(𝑢(𝑡 𝑗 (𝑘) ), 𝑣(𝑡 𝑗 (𝑘) )) → 𝑠 as 𝑘 → ∞.

It follows, therefore, that 𝑠 ∈ Ω(𝑢,𝑣) . Next, we prove that Ω(𝑢,𝑣) is invariant under the flow Φ𝜏 of the
autonomous Hamiltonian system. Let 𝑠 ∈ Ω(𝑢,𝑣) and 𝑡 𝑗 be a sequence in C \ {0}, such that 𝑒𝑡 𝑗 → 0 and
(𝑢(𝑡 𝑗 ), 𝑣(𝑡 𝑗 )) → 𝑠. Since the t-dependent vector field of the Painlevé system converges in𝐶1 to the vector
field of the autonomous Hamiltonian system as 𝑒𝑡 → 0, it follows from the continuous dependence
on initial data and parameters that the distance between (𝑢(𝑡 𝑗 + 𝜏), 𝑣(𝑡 𝑗 + 𝜏)) and Φ𝜏 (𝑢(𝑡 𝑗 ), 𝑣(𝑡 𝑗 ))
converges to zero as 𝑗 → ∞. Since Φ𝜏 (𝑢(𝑡 𝑗 ), 𝑣(𝑡 𝑗 )) → Φ𝜏 (𝑠) and |𝑒𝑡𝑗 | → 0 as 𝑗 → ∞, it follows that
(𝑢(𝑡 𝑗 + 𝜏), 𝑣(𝑡 𝑗 + 𝜏)) → Φ𝜏 (𝑠) and 𝑒𝑡 𝑗+𝜏 → 0 as 𝑗 → ∞, hence, Φ𝜏 (𝑠) ∈ Ω(𝑢,𝑣) . �
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Proposition 7.3. Every solution (𝑢(𝑡), 𝑣(𝑡)) with the essential singularity at 𝑥 = 0 intersects each of the
exceptional lines E0, E𝑥 , E1, E∞, E−

∞ infinitely many times in any neighbourhood of that singular point.

Proof. For conciseness, we refer to the solution (𝑢(𝑡), 𝑣(𝑡)) of the system as the Painlevé vector field
and denote the vector field near each of the five exceptional lines E0, E𝑥 , E1, E∞, E−

∞ by (𝑈 (𝑡), 𝑉 (𝑡)).
Furthermore, let

ℰ = E0 ∪ E𝑥 ∪ E1 ∪ E∞ ∪ E−
∞.

Now suppose that (𝑈 (𝑡), 𝑉 (𝑡)) intersectsℰ only finitely many times. According to Theorem 7.2, the
limit set Ω(𝑢,𝑣) is a compact set in S (0) \ I (0). If Ω(𝑢,𝑣) intersects one the five exceptional lines E0,
E𝑥 , E1, E∞, E−

∞ at a point p, then there exists a t, such that 𝑒𝑡 is arbitrarily close to zero and the Painlevé
vector field is arbitrarily close to p, when the transversality of the vector field to the exceptional line
implies that (𝑈 (𝜏), 𝑉 (𝜏)) ∈ ℰ for a unique 𝜏 (≠ 𝑡) near t. This is a contradiction to our assumption, as
it follows that (𝑈 (𝑡), 𝑉 (𝑡)) intersects ℰ infinitely many times. Therefore, we must have that Ω(𝑢,𝑣) is a
compact subset of S (0) \ (I (0) ∪ℰ).

However, ℰ is equal to the set of all points in S (0) \ I (0), which project (blow-down) to the line
D∞ ∪H∗, and, therefore, S (0) \ (I (0) ∪ℰ) is the affine (𝑢, 𝑣)-coordinate chart, of which Ω(𝑢,𝑣) is a
compact subset, which implies that 𝑢(𝑡) and 𝑣(𝑡) remain bounded for small |𝑒𝑡 |. |𝑒𝑡 | → 0. From there,
𝑥 = 0 is not an essential singularity. �

Theorem 7.4. Every solution of the sixth Painlevé equation has infinitely many poles, infinitely many
zeroes and infinitely many times takes value 1 in any neighbourhood of its essential singularity.

Proof. At the intersection points with E0, E1, E∞, E−
∞, the solution will have zeroes, 1s and poles, as

explained in detail in Section 5. Thus, the statement for an essential singularity at 𝑥 = 0 follows from
Proposition 7.3. If 𝑦(𝑥) is a solution of (1.1), observe that the following Bäcklund transformations:

S1 : 𝑦1 (𝑥1) =
𝑦

𝑥
, 𝑥1 =

1
𝑥
, (𝜃∞,1, 𝜃0,1, 𝜃1,1, 𝜃𝑥,1) =

(
𝜃∞, 𝜃0,

√
𝜃2
𝑥 +

1
2
,

√
𝜃2

1 +
1
2

)
S2 : 𝑦2 (𝑥2) = 1 − 𝑦, 𝑥2 = 1 − 𝑥, (𝜃∞,2, 𝜃0,2, 𝜃1,2, 𝜃𝑥,2) = (𝜃∞, 𝑖𝜃1, 𝑖𝜃0, 𝜃𝑥)

give the solutions 𝑦1 (𝑥1) and 𝑦2 (𝑥2) of the sixth Painlevé equation with respective parameters
(𝜃∞,1, 𝜃0,1, 𝜃1,1, 𝜃𝑥,1) and (𝜃∞,2, 𝜃0,2, 𝜃1,2, 𝜃𝑥,2), [24, Section 32.7(vii)]. Transformation S1 maps point
𝑥 = ∞ to 𝑥1 = 0, while S2 maps point 𝑥 = 1 to 𝑥2 = 0, thus, the statement will also hold for essential
singularities at 𝑥 = 1 and 𝑥 = ∞. �

8. Conclusion
The Painlevé equations have been playing an increasingly important role in mathematical physics,
especially in the applications to classical and quantum integrable systems and random matrix theory.
The sixth Painlevé equation, which is the focus of this work, is very prominent in these areas, in
particular, in conformal field theory in recent times [7]. For further relations with conformal block
expansions and supersymmetric gauge theories, see the references in [7].

Although the initial values space for the Painlevé equations was described by Okamoto [25], our aim
in this work was to describe the dynamics of the solutions by analysing that construction.

Many questions beyond the limit behaviour remain open about particular families of transcendental
solutions, from the dynamical systems point of view. For example, the existence of limit cycles of
transcendental solutions with particular symmetry properties and whether there are periodic cycles in
the combined space of parameters and initial values remain open.
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A. Charts of the initial surface F1

A.0.1. Initial chart (𝑢0, 𝑣0) = (𝑢, 𝑣)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢, 𝑣) = (𝑢0, 𝑣0)
𝜔0 = 1
𝐸 = 1

𝑥−1
[
𝑢0(𝑢0 − 𝑥) (𝑢0 − 1)𝑣2

0 − (𝜃 + 𝜃)𝑢2
0𝑣0 + 𝜃𝜃 (𝑢0 − 𝑥) − 𝑥𝜃0𝑣0+

+
(
(𝑥 + 1)𝜃0 + 𝑥𝜃1 + (𝜃𝑥 − 1)

)
𝑢0𝑣0

]
�𝐸 = − 𝑥 (𝑢0−1)

(𝑥−1)2

[
(𝑢0𝑣0 − 𝜃) (𝑢0𝑣0 − 𝜃) − (𝑢0𝑣0 − 𝜃0)𝑣0

]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

�𝑢0 = −2𝑢0 (𝑢0−𝑥) (𝑢0−1)𝑣0
1−𝑥 + 𝜃+𝜃

1−𝑥 𝑢0 (𝑢0 − 1) + 𝜃1𝑢0 − 𝑥
1−𝑥 𝜃0 (𝑢0 − 1)

�𝑣0 = (3𝑢0−2)𝑢0
1−𝑥 𝑣2

0 −
[
𝜃+𝜃
1−𝑥 (2𝑢0 − 1) + 𝜃1

]
𝑣0 + 𝜃 𝜃

1−𝑥 −
𝑥

1−𝑥 [(2𝑢0 − 1)𝑣0 − 𝜃0]𝑣0
�𝜔0
𝜔0

= 0.

No base points.
No elliptic base points.
No visible components of the infinity set.

A.0.2. First chart (𝑢1, 𝑣1) =
(
𝑢, 1

𝑣

)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢, 𝑣) =
(
𝑢1,

1
𝑣1

)
𝜔1 = −𝑣2

1
𝐸 = 1

(𝑥−1)𝑣2
1

[
𝑢1 (𝑢1 − 𝑥) (𝑢1 − 1) − (𝜃 + 𝜃)𝑢2

1𝑣1 + 𝜃𝜃 (𝑢1 − 𝑥)𝑣2
1 − 𝑥𝜃0𝑣1+

+
(
(𝑥 + 1)𝜃0 + 𝑥𝜃1 + (𝜃𝑥 − 1)

)
𝑢1𝑣1

]
�𝐸 = − 𝑥 (𝑢1−1)

(𝑥−1)2𝑣2
1

[
(𝑢1 − 𝜃𝑣1) (𝑢1 − 𝜃𝑣1) − (𝑢1 − 𝜃0𝑣1)

]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�𝑢1 = −2𝑢1 (𝑢1−𝑥) (𝑢1−1)

(1−𝑥)𝑣1
+ 𝜃+𝜃

1−𝑥 𝑢1(𝑢1 − 1) + 𝜃1
1−𝑥 𝑢1 − 𝑥

1−𝑥 [𝜃0 (𝑢1 − 1) + 𝜃1𝑢1]
�𝑣1 = − 𝜃 𝜃

1−𝑥 𝑣
2
1 +

1
1−𝑥

[
(𝜃 + 𝜃) (2𝑢1 − 1) + 𝜃1

]
𝑣1 − (3𝑢1−2)𝑢1

1−𝑥 − 𝑥
1−𝑥 [(𝜃0 + 𝜃1)𝑣1 − (2𝑢1 − 1)]

�𝜔1
𝜔1

= −2 𝜃 𝜃
1−𝑥 𝑣1 + 2 1

1−𝑥

[
(𝜃 + 𝜃) (2𝑢1 − 1) + 𝜃1

]
− 2 (3𝑢1−2)𝑢1

(1−𝑥)𝑣1
− 2 𝑥

1−𝑥

[
(𝜃0 + 𝜃1) − 2𝑢1−1

𝑣1
)
]
.

Base points of the vector field:

𝑏0 : (𝑢1, 𝑣1) = (0, 0), 𝑏𝑥 : (𝑢1, 𝑣1) = (𝑥, 0), 𝑏1 : (𝑢1, 𝑣1) = (1, 0).

Elliptic base points are 𝑏0 and 𝑏1.
Visible components of the infinity set: 𝐻 : {𝑣1 = 0}

Estimates near H, that is v1 −→ 0:

𝜔 = −𝑣2
1 (A.1)

𝜔𝐸 ∼ 𝑢1 (𝑢1 − 1) (𝑢1 − 𝑥)
1 − 𝑥 (A.2)

�𝐸
𝐸

∼ 𝑥

1 − 𝑥 − 𝑥

𝑢1 − 𝑥
(A.3)

�𝜔
𝜔

∼
(

1
𝑢1

+ 1
𝑢1 − 𝑥

+ 1
𝑢1 − 1

)
�𝑢1 (A.4)
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�𝑢1 ∼ 2
𝑢1(𝑢1 − 1) (𝑢1 − 𝑥)

(𝑥 − 1)𝑣1
(A.5)

�𝑣1 ∼
3𝑢2

1 − 2(1 + 𝑥)𝑢1 + 𝑥
𝑥 − 1

(A.6)

𝜔𝐸0 ∼ 𝑢2
1(𝑢1 − 1) (A.7)

�𝐸0
𝐸0

∼
(

1
𝑢
− 1
𝑢 − 𝑥

)
�𝑢1. (A.8)

A.0.3. Second chart (𝑢2, 𝑣2) =
(

1
𝑢 ,

1
𝑢𝑣

)
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢, 𝑣) =
(

1
𝑢2
, 𝑢2
𝑣2

)
𝜔2 = 𝑢2𝑣

2
2

𝐸 = 1
(𝑥−1)𝑣2

2

[
(𝑥𝑢2−1) (𝑢2−1)−(𝜃+𝜃)𝑣2

𝑢2
− 𝜃𝜃 𝑥𝑢2−1

𝑢2
𝑣2

2 − 𝑥𝜃0𝑢2𝑣2 +
(
(𝑥 + 1)𝜃0 + 𝑥𝜃1 + (𝜃𝑥 − 1)

)
𝑣2

]
�𝐸 = 𝑥 (𝑢2−1)

(𝑥−1)2𝑣2
2

[
(𝜃𝑣2−1) (𝜃𝑣2−1)

𝑢2
+ 𝜃0𝑣2 − 1)

]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�𝑢2 = (𝑢2−1) ( (𝜃+𝜃)𝑣2−2)
(1−𝑥)𝑣2

− 𝜃1𝑢2 − 𝑥
(1−𝑥)𝑣2

𝑢2(𝑢2 − 1) (𝜃0𝑣2 − 2)
�𝑣2 = − 1

(1−𝑥)𝑢2
(𝜃𝑣2 − 1) (𝜃𝑣2 − 1) − 𝑥

1−𝑥 (𝜃0𝑣2 − 1)𝑢2
�𝜔2
𝜔2

= (𝜃+𝜃) (𝑢2+1)−2𝜃 𝜃𝑣2
(1−𝑥)𝑢2

− 𝜃1 + 2−1+𝑥 (2𝑢2−1)
(1−𝑥)𝑣2

− 𝑥𝜃0 (3𝑢2−1)
1−𝑥 .

No new base points.
Other visible base points:

𝑏𝑥 : (𝑢2, 𝑣2) =
(

1
𝑥
, 0

)
, 𝑏1 : (𝑢2, 𝑣2) = (1, 0), 𝑏∞ : (𝑢2, 𝑣2) =

(
0,

1
𝜃

)
, 𝑏−∞ : (𝑢2, 𝑣2) =

(
0,

1
𝜃

)
.

No new elliptic base points.
Visible components of the infinity set: 𝐻 : {𝑣2 = 0} , 𝐷∞ : {𝑢2 = 0}.

Estimates near D∞, that is u2 −→ 0:
𝜔 = 𝑢2𝑣

2
2 (A.9)

𝜔𝐸 ∼ (𝑣3𝜃 − 1) (𝑣3𝜃 − 1)
𝑥 − 1

(A.10)

�𝐸
𝐸

∼ 𝑥

1 − 𝑥 (A.11)

�𝜔
𝜔

∼
(

1
𝑣2 − 1

𝜃

+ 1
𝑣2 − 1

𝜃

)
�𝑣2 (A.12)

�𝑢2 ∼ 𝜃 + 𝜃
𝑥 − 1

− 2
(𝑥 − 1)𝑣2

(A.13)

�𝑣2 ∼ (𝑣2𝜃 − 1) (𝑣2𝜃 − 1)
(𝑥 − 1)𝑢2

(A.14)

𝜔𝐸0 ∼ −(𝑣2𝜃 − 1) (𝑣2𝜃 − 1) (A.15)

�𝐸0
𝐸0

∼ 𝑥
𝜃0 + 𝜃1
𝑥 − 1

− 2𝑥
(𝑥 − 1)𝑣2

. (A.16)
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Estimates near H, that is v2 −→ 0:

𝜔 = 𝑢2𝑣
2
2 (A.17)

𝜔𝐸 ∼ (𝑢2 − 1) (𝑥𝑢2 − 1)
𝑥 − 1

(A.18)

�𝐸
𝐸

∼ 1
1 − 𝑥 + 1

𝑥𝑢2 − 1
(A.19)

�𝜔
𝜔

∼
(

1
𝑢2 − 1

+ 𝑥

𝑥𝑢2 − 1

)
�𝑢2 (A.20)

�𝑢2 ∼ 2(𝑢2 − 1) (𝑥𝑢2 − 1)
(1 − 𝑥)𝑣2

(A.21)

�𝑣2 ∼ − 𝑥𝑢2
𝑥 − 1

+ 1
(𝑥 − 1)𝑢2

(A.22)

𝜔𝐸0 ∼ 𝑢2 − 1 (A.23)

�𝐸0
𝐸0

∼ − 𝑥 �𝑢2
𝑥𝑢2 − 1

. (A.24)

A.0.4. Third chart (𝑢3, 𝑣3) =
(

1
𝑢 , 𝑢𝑣

)
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢, 𝑣) =
(

1
𝑢3
, 𝑢3𝑣3

)
𝜔3 = −𝑢3

𝐸 = 1
𝑥−1

[
(𝑥𝑢3−1) (𝑢3−1)𝑣3−(𝜃+𝜃)

𝑢3
𝑣3 − 𝜃𝜃 𝑥𝑢3−1

𝑢3
− 𝑥𝜃0𝑢3𝑣3 + ((𝑥 + 1)𝜃0 + 𝑥𝜃1 + (𝜃𝑥 − 1))𝑣3

]
�𝐸 = 𝑥 (𝑢3−1)

(𝑥−1)2

[
(𝑣3−𝜃) (𝑣3−𝜃)

𝑢3
− (𝑣3 − 𝜃0)𝑣3

]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�𝑢3 = − (𝑢3−1) (2𝑣3−(𝜃+𝜃))

1−𝑥 − 𝜃1𝑢3 + 𝑥
1−𝑥 𝑢3(𝑢3 − 1) (2𝑣3 − 𝜃0)

�𝑣3 = 1
(1−𝑥)𝑢3

(𝑣3 − 𝜃) (𝑣3 − 𝜃) − 𝑥 (𝑣3−𝜃0)𝑢3𝑣3
1−𝑥

�𝜔3
𝜔3

= − (𝑢3−1) (2𝑣3−(𝜃+𝜃))
(1−𝑥)𝑢3

− 𝜃1 + 𝑥
1−𝑥 (𝑢3 − 1) (2𝑣3 − 𝜃0)

.

New base points:

𝑏∞ : (𝑢3, 𝑣3) = (0, 𝜃), 𝑏−∞ : (𝑢3, 𝑣3) =
(
0, 𝜃

)
.

No other visible base points.
New elliptic base points are 𝑏∞ and 𝑏−∞.
Visible components of the infinity set: 𝐷∞ : {𝑢3 = 0}.

Estimates near D∞, that is u3 −→ 0:

𝜔 = −𝑢3 (A.25)

𝜔𝐸 ∼ (𝑣3 − 𝜃) (𝑣3 − 𝜃)
1 − 𝑥 (A.26)
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�𝐸
𝐸

∼ 𝑥

1 − 𝑥 (A.27)

�𝜔
𝜔

∼ 1
𝑢3

�𝑢3 (A.28)

�𝑢3 ∼ 2𝑣3 − (𝜃 + 𝜃)
1 − 𝑥 (A.29)

�𝑣3 ∼ (𝑣3 − 𝜃) (𝑣3 − 𝜃)
(1 − 𝑥)𝑢3

(A.30)

𝜔𝐸0 ∼ (𝑣3 − 𝜃) (𝑣3 − 𝜃) (A.31)
�𝐸0
𝐸0

∼ −𝑥(𝜃𝑥 − 1)
𝑥 − 1

+ 𝑥 �𝑢3. (A.32)

B. Okamoto desingularisation

B.1. Details for the blow-up procedure

B.1.1. Blow up of 𝛽0, 𝛽1, 𝛽𝑥 , 𝛽∞
Let us first blow up the points 𝛽0, 𝛽1, 𝛽𝑥 .

� Recall that for 𝑖 ∈ {0, 1, 𝑥}, we have V𝑖 : {𝑢0 = 𝑖} ∪ {𝑢1 = 𝑖} ∪ {𝑢2 = 1/𝑖} ∪ {𝑢3 = 1/𝑖} and that
𝛽𝑖 ∈ V𝑖 . Note further that V𝑖 \ {𝛽𝑖} ⊂ C2

𝑢,𝑣 . So whenever we remove one of the points 𝛽𝑖 from a
chart other than C2

𝑢,𝑣 , we may just as well remove the visible part of the whole line V𝑖 , without
changing the global picture.

� Replace the chart C2
𝑢1 ,𝑣1 by the following six C2-charts:

(𝑢01, 𝑣01) :=
(
𝑢1,

𝑣1
𝑢1

)
(𝑢02, 𝑣02) :=

(
𝑢1
𝑣1
, 𝑣1

)
(𝑢11, 𝑣11) :=

(
𝑢1 − 1, 𝑣1

𝑢1−1

)
(𝑢12, 𝑣12) :=

(
𝑢1−1
𝑣1
, 𝑣1

)
(𝑢𝑥1, 𝑣𝑥1) :=

(
𝑢01 − 𝑥, 𝑣01

𝑢01−𝑥

)
=

(
𝑢1 − 𝑥, 𝑣1

𝑢1 (𝑢1−𝑥)

)
(𝑢𝑥2, 𝑣𝑥2) :=

(
𝑢01−𝑥
𝑣01

, 𝑣01

)
=

(
𝑢1 (𝑢1−𝑥)

𝑣1
, 𝑣1
𝑢1

)
.

� In each pair of charts C2
𝑢𝑖1 ,𝑣𝑖1 , C2

𝑢𝑖2 ,𝑣𝑖2 (which effectively replaces 𝛽𝑖 by the exceptional line D𝑖 :=
{𝑢𝑖1 = 0} ∪ {𝑣𝑖2 = 0}), we have to remove the points 𝛽 𝑗 for 𝑗 ∈ {0, 1, 𝑥} \ {𝑖} if visible. Yet these
points are visible only in the C2

𝑢𝑖1 ,𝑣𝑖1 charts. By the remark above, we may remove
the following visible parts of V0 : {𝑢11 = −1},
the following visible parts of V1 : {𝑢01 = 1} ∪ {𝑢𝑥1 = 1 − 𝑥},
the following visible parts of V𝑥 : {𝑢01 = 𝑥} ∪ {𝑢11 = 𝑥 − 1}.

� The three charts C2
𝑢𝑖1 ,𝑣𝑖1 with the removed lines are equivalent to a single C2-chart, namely

(�̃�1, �̃�1) :=
(
𝑢11 + 1,

𝑣11
(𝑢11 + 1) (𝑢11 + 1 − 𝑥)

)
=

(
𝑢1,

𝑣1
𝑢1(𝑢1 − 1) (𝑢1 − 𝑥)

)
.

For 𝑥 = 0, the lines V0 and V𝑥 cannot be distinguished. Yet then the pair of charts C2
𝑢𝑥1 ,𝑣𝑥1 ,C2

𝑢𝑥2 ,𝑣𝑥2

replaces the chart C2
𝑢01 ,𝑣01 . Therefore, this coordinate change is still valid.

� Similarly, we need to remove the visible points 𝛽𝑥 , 𝛽1 from the chart C2
𝑢2 ,𝑣2 , which can effectively

be done by setting

(�̃�2, �̃�2) :=
(
𝑢2,

𝑣2
(1 − 𝑢2) (1 − 𝑥𝑢2)

)
=

(
1
𝑢1
,

𝑣1𝑢1
(𝑢1 − 1) (𝑢1 − 𝑥)

)
=

(
1
�̃�1
, �̃�1�̃�

2
1

)
.
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Indeed, removing {�̃�2 ∈ {1, 1/𝑡}, this chart is isomorphic to C2
𝑢2 ,𝑣2 \ V𝑥 ∪ V1, removing {�̃�2 = 0},

this chart is isomorphic to C2
�̃�1 , �̃�1

\ {�̃�1 = 0}. Note that this holds also for 𝑥 = 0.
For the blow-up of 𝛽∞, we may stick to the standard procedure:

� Remove the point 𝛽∞ from the chart C2
�̃�2 , �̃�2

. Note that then it remains visible only in the chart C2
𝑢3 ,𝑣3 ,

as 𝛽∞ : (0, 𝜃).
� Replace the chart C2

𝑢3 ,𝑣3 by the following pair of C2-charts:

(𝑢∞1, 𝑣∞1) :=
(
𝑢3,

𝑣3 − 𝜃
𝑢3

)
, (𝑢∞2, 𝑣∞2) :=

(
𝑢3

𝑣3 − 𝜃
, 𝑣3 − 𝜃

)
.

� Note that C2
𝑢∞1 ,−𝑣∞1 (with a minus sign) corresponds to the classical chart of a certain surface, Σ𝜃

much used in publications concerning the Okamoto desingularisation of the sixth Painlevé equation
(see, for example [29]). Hence, for traditional reasons, we denote this chart by C2

�̃�3 , �̃�3
:= C2

𝑢∞1 ,−𝑣∞1 .

B.1.2. The vector field in the resulting new charts
In our seven new charts, that we have to add to the chart C2

𝑢0 ,𝑣0 to obtain the global picture after blow-up
of 𝛽0, 𝛽1, 𝛽𝑥 , 𝛽∞, the vector field, respectively, reads as follows.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̃𝑢1 = 2

(𝑥−1) �̃�1
− �̃�1 (�̃�1−1) (�̃�1−𝑥)

(𝑥−1)

(
𝜃0
�̃�1

+ 𝜃1
�̃�1−1 + 𝜃𝑥−1

�̃�1−𝑥

)
�̃𝑣1 = 𝑥𝜃0 �̃�1−1

(𝑥−1)�̃�1
− (𝑥−1) 𝜃1 �̃�1+1

(𝑥−1) (�̃�1−1) +
𝑥 (𝑥−1) 𝜃𝑥 �̃�1−1
(𝑥−1) (�̃�1−𝑥) +

(
𝜃+𝜃
𝑥−1 (�̃�1 + 𝑥 − 1) − 2 𝑥𝜃0+(𝑥−1) 𝜃1

𝑥−1

)
�̃�1+

+ 𝜃 𝜃
𝑥−1 �̃�1 (�̃�1 − 1) (�̃�1 − 𝑥)�̃�2

1,⎧⎪⎪⎨⎪⎪⎩
�̃𝑢2 = − 2

(𝑥−1) �̃�2
+ (1−�̃�2) (1−𝑥�̃�2)

𝑥−1

(
𝜃0 + 𝜃1

1−�̃�2
+ 𝜃𝑥−1

1−𝑥�̃�2

)
�̃𝑣2 = (𝜃 �̃�2−1) (𝜃 �̃�2−1)

(𝑥−1)�̃�2
+ (𝑥−1) 𝜃𝑥 �̃�2−𝑥

(𝑥−1) (1−𝑥�̃�2) −
(𝑥−1) 𝜃1 �̃�2+1
(𝑥−1) (1−�̃�2) +

(
2 𝑥𝜃1+𝜃𝑥−1

𝑥−1 − 1
)
�̃�2 + 𝜃 𝜃 �̃�2−𝜃0

𝑥−1 (𝑥�̃�2 − 𝑥 − 1)�̃�2,

⎧⎪⎪⎨⎪⎪⎩
�̃𝑢3 = �̃�3 (1−�̃�3) (1−𝑥�̃�3)

(𝑥−1)

(
2�̃�3 − 𝜃∞

�̃�3
+ 𝑥 (𝜃𝑥−1)

1−𝑥�̃�3
+ 𝜃1

1−�̃�3

)
�̃𝑣3 = − 3𝑥�̃�2

3−2(𝑥+1)�̃�3+1
𝑥−1 �̃�2

3 +
𝑥 (2𝜃−𝜃0) (2�̃�3−1)+(𝑥−1) 𝜃1−𝜃∞

𝑥−1 �̃�3 − 𝑥 𝜃 (𝜃−𝜃0)
𝑥−1 ,⎧⎪⎪⎨⎪⎪⎩

�𝑢02 = 𝑥 𝑢02−𝜃0
(𝑥−1)𝑣02

− 𝑢3
02𝑣02
𝑥−1 + 𝜃+𝜃

𝑥−1 𝑢
2
02𝑣02 − 𝜃 𝜃

𝑥−1𝑢02𝑣02

�𝑣02 = 3(𝑢02𝑣02)2−2(𝑥+1)𝑢02𝑣02+𝑥
𝑥−1 − 2 𝜃+𝜃𝑥−1 𝑢02𝑣

2
02 +

(
𝑥𝜃0
𝑥−1 + 𝜃1 + 𝜃+𝜃

𝑥−1

)
𝑣02 + 𝜃 𝜃

𝑥−1𝑣
2
02,⎧⎪⎪⎨⎪⎪⎩

�𝑢𝑥2 = − (𝜃𝑥−1) (𝑢𝑥2𝑣𝑥2+𝑥)−𝑢𝑥2+𝑥
𝑣𝑥2

− 𝑢𝑥2 (𝑢𝑥2+𝑥𝜃0)
(𝑥−1) (𝑢𝑥2𝑣𝑥2+𝑥) +

𝑢𝑥2 (𝑢𝑥2+𝜃0)
𝑥−1 − 𝜃 𝜃𝑢𝑥2𝑣𝑥2 (𝑢𝑥2𝑣𝑥2+𝑥)

𝑥−1

�𝑣𝑥2 = (𝑢𝑥2𝑣𝑥2+𝑥) (𝜃𝑣𝑥2−1) (𝜃𝑣𝑥2−1)
𝑥−1 + 𝑥 𝜃0𝑣𝑥2−1

(𝑥−1) (𝑢𝑥2𝑣𝑥2+𝑥) ,⎧⎪⎪⎨⎪⎪⎩
�𝑢12 = −𝑢12−𝜃1

𝑣12
− 𝑢3

12𝑣12
𝑥−1 + 𝜃+𝜃

𝑥−1 𝑢
2
12𝑣12 − 𝜃 𝜃

𝑥−1𝑢12𝑣12

�𝑣12 =
3𝑢2

12𝑣
2
12−2(𝑥−2) (𝑢12𝑣12)−𝑥+1

𝑥−1 − 2 𝜃+𝜃𝑥−1 𝑢12𝑣
2
12 +

(
𝑥𝜃0
𝑥−1 + 𝜃1 − 𝜃+𝜃

𝑥−1

)
𝑣12 + 𝜃 𝜃

𝑥−1𝑣
2
12,{

�𝑢∞2 = − 3𝑥 (𝑢∞2𝑣∞2)2−2(𝑥+1)𝑢∞2𝑣∞2+1
𝑥−1 − 2𝑥 2𝜃−𝜃0

𝑥−1 𝑢2
∞2𝑣∞2 +

(
𝜃∞
𝑥−1 − 𝜃1 + 𝑥 (2𝜃−𝜃0)

𝑥−1

)
𝑢∞2 − 𝑥 𝜃 (𝜃−𝜃0)

𝑥−1 𝑢2
∞2

�𝑣∞2 = 𝑣∞2+𝜃∞
(1−𝑥)𝑢∞2

− 𝑥 𝑢∞2𝑣∞2 (𝑣∞2+𝜃−𝜃0) (𝑣∞2+𝜃)
1−𝑥 .

B.2. Detailed charts of Okamoto’s space

B.2.1. The chart (𝑢0, 𝑣0) = (𝑢, 𝑣)
Domain of definition: C2.
Visible components of the infinity set: ∅.
Visible exceptional lines: ∅
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑢0, 𝑣0) = (𝑢, 𝑣)

𝜔0 = 1

𝐸 = 𝑢0 (𝑢0−1) (𝑢0−𝑥)
𝑥−1

{
𝑣2

0 − 𝑣0

(
𝜃0
𝑢0

+ 𝜃1
𝑢0−1 + 𝜃𝑥−1

𝑢0−𝑥

)
+ 𝜃 𝜃
𝑢0 (𝑢0−1)

}
.⎧⎪⎪⎨⎪⎪⎩

�𝑢0 = 𝑢0 (𝑢0−1) (𝑢0−𝑥)
𝑥−1

(
2𝑣0 − 𝜃0

𝑢0
− 𝜃1
𝑢0−1 − 𝜃𝑥−1

𝑢0−𝑥

)
�𝑣0 = − 3𝑢2

0−2(𝑥+1)𝑢0+𝑥
𝑥−1 𝑣2

0 + 2 𝜃+𝜃𝑥−1 𝑢0𝑣0 −
(
𝑥𝜃0
𝑥−1 + 𝜃1 + 𝜃+𝜃

𝑥−1

)
𝑣0 − 𝜃 𝜃

𝑥−1 .

B.2.2. The chart (�̃�1, �̃�1) =
(
𝑢, 1
𝑢 (𝑢−𝑥) (𝑢−1)𝑣

)
Domain of definition: C2 \ {𝛾0, 𝛾𝑥 , 𝛾1}, where

𝛾0 :
(
0,

1
𝑥𝜃0

)
, 𝛾𝑥 :

(
𝑥,

1
𝑥(𝑥 − 1)𝜃𝑥

)
, 𝛾1 :

(
1,

1
(1 − 𝑥)𝜃1

)
.

Visible components of the infinity set:

H∗ : {�̃�1 = 0}, D∗
0 : {�̃�1 = 0}, D∗

𝑥 : {�̃�1 = 𝑥}, D∗
1 : {�̃�1 = 1}.

Visible exceptional lines: ∅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�̃�1, �̃�1) =
(
𝑢, 1
𝑢 (𝑢−𝑥) (𝑢−1)𝑣

)
(𝑢, 𝑣) =

(
�̃�1,

1
�̃�1 (�̃�1−𝑥) (�̃�1−1) �̃�1

)
�̃�1 = −�̃�1(�̃�1 − 𝑥) (�̃�1 − 1)�̃�2

1

�𝐸 = − 𝑥
(𝑥−1)2

{
1

�̃�1 (�̃�1−𝑥)2 �̃�2
1
− (𝜃+𝜃)�̃�1−𝜃0

�̃�1�̃�1 (�̃�1−𝑥) + 𝜃𝜃 (�̃�1 − 1)
}

𝐸 = 1
𝑥−1

{
1

�̃�1 (�̃�1−𝑥) (�̃�1−1) �̃�2
1
− 1
�̃�1

(
𝜃0
�̃�1

+ 𝜃1
�̃�1−1 + 𝜃𝑥−1

�̃�1−𝑥

)
+ 𝜃𝜃 (�̃�1 − 𝑥)

}
.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̃𝑢1 = 2

(𝑥−1) �̃�1
− �̃�1 (�̃�1−1) (�̃�1−𝑥)

𝑥−1

(
𝜃0
�̃�1

+ 𝜃1
�̃�1−1 + 𝜃𝑥−1

�̃�1−𝑥

)
�̃𝑣1 = 𝑥𝜃0 �̃�1−1

(𝑥−1)�̃�1
− (𝑥−1) 𝜃1 �̃�1+1

(𝑥−1) (�̃�1−1) +
𝑥 (𝑥−1) 𝜃𝑥 �̃�1−1
(𝑥−1) (�̃�1−𝑥) +

(
𝜃+𝜃
𝑥−1 (�̃�1 + 𝑥 − 1) − 2 𝑥𝜃0+(𝑥−1) 𝜃1

𝑥−1

)
�̃�1+

+ 𝜃 𝜃
𝑥−1 �̃�1(�̃�1 − 1) (�̃�1 − 𝑥)�̃�2

1.

B.2.3. The chart (�̃�2, �̃�2) =
(

1
𝑢 ,

𝑢
(𝑢−𝑥) (𝑢−1)𝑣

)
Domain of definition: C2 \ {𝛾𝑥 , 𝛾1, 𝛽∞, 𝛽

−
∞}, where

𝛾𝑥 :
(

1
𝑥
,

𝑥

(𝑥 − 1)𝜃𝑥

)
, 𝛾1 :

(
1,

1
(1 − 𝑥)𝜃1

)
, 𝛽∞ :

(
0,

1
𝜃

)
, 𝛽−∞ :

(
0,

1
𝜃

)
.

Visible components of the infinity set:

H∗ : {�̃�2 = 0}, D∗∗
∞ : {�̃�2 = 0}, D∗

𝑥 : {�̃�2 = 1/𝑥}, D∗
1 : {�̃�2 = 1}.
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Visible exceptional lines: ∅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�̃�2, �̃�2) =
(

1
𝑢 ,

𝑢
(𝑢−𝑥) (𝑢−1)𝑣

)
(𝑢, 𝑣) =

(
1
�̃�2
, �̃�2
(1−𝑥�̃�2) (1−�̃�2) �̃�2

)
�̃�2 = �̃�2(1 − 𝑥�̃�2) (1 − �̃�2)�̃�2

2

�𝐸 = − 𝑥
(𝑥−1)2

{
1

�̃�2 (1−𝑥�̃�2)2 �̃�2
2
− (𝜃+𝜃)−𝜃0�̃�2
�̃�2�̃�2 (1−𝑥�̃�2) +

𝜃 𝜃
�̃�2

(1 − �̃�2)
}

𝐸 =
(𝜃 �̃�2−1) (𝜃 �̃�2−1)

(𝑥−1)�̃�2 �̃�
2
2

− (𝑥−1) 𝜃1 �̃�2+1
(𝑥−1)2 (1−�̃�2) �̃�2

2
− 𝑥 (𝑥−1) (𝜃𝑥−1) �̃�2−𝑥

(𝑥−1)2 (1−𝑥�̃�2) �̃�2
2
− 𝑥𝜃 𝜃

𝑥−1

⎧⎪⎪⎨⎪⎪⎩
�̃𝑢2 = − 2

(𝑥−1) �̃�2
+ (1−�̃�2) (1−𝑥�̃�2)

𝑥−1

(
𝜃0 + 𝜃1

1−�̃�2
+ 𝜃𝑥−1

1−𝑥�̃�2

)
�̃𝑣2 = (𝜃 �̃�2−1) (𝜃 �̃�2−1)

(𝑥−1)�̃�2
+ (𝑥−1) 𝜃𝑥 �̃�2−𝑥

(𝑥−1) (1−𝑥�̃�2) −
(𝑥−1) 𝜃1 �̃�2+1
(𝑥−1) (1−�̃�2) +

(
2 𝑥𝜃1+𝜃𝑥−1

𝑥−1 − 1
)
�̃�2 + 𝜃 𝜃 �̃�2−𝜃0

𝑥−1 (𝑥�̃�2 − 𝑥 − 1)�̃�2 .

B.2.4. The chart (�̃�3, �̃�3) =
(
𝑢3,− 𝑣3−𝜃

𝑢3

)
Domain of definition: C2.
Visible components of the infinity set: ∅.
Visible exceptional lines:E∞ : {�̃�3 = 0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�̃�3, �̃�3) =
(

1
𝑢 ,−𝑢(𝑢𝑣 − 𝜃)

)
(𝑢, 𝑣) =

(
1
�̃�3
,−�̃�2

3�̃�3 + 𝜃�̃�3

)
�̃�3 = 1

𝐸 = (1 − �̃�3) (1 − 𝑥�̃�3)
(
�̃�3 (�̃�3 �̃�3−2𝜃+𝜃0)

𝑥−1 + 𝜃 𝜃+𝜃1 ( �̃�3−𝜃)
(𝑥−1) (1−�̃�3) + (𝜃𝑥−1) ( �̃�3−𝑥𝜃)

(𝑥−1) (1−𝑥�̃�3)

)
⎧⎪⎪⎨⎪⎪⎩
�̃𝑢3 = �̃�3 (1−�̃�3) (1−𝑥�̃�3)

(𝑥−1)

(
2�̃�3 − 𝜃∞

�̃�3
+ 𝑥 (𝜃𝑥−1)

1−𝑥�̃�3
+ 𝜃1

1−�̃�3

)
�̃𝑣3 = − 3𝑥�̃�2

3−2(𝑥+1)�̃�3+1
𝑥−1 �̃�2

3 +
𝑥 (2𝜃−𝜃0) (2�̃�3−1)+(𝑥−1) 𝜃1−𝜃∞

𝑥−1 �̃�3 − 𝑥 𝜃 (𝜃−𝜃0)
𝑥−1 .

B.2.5. The chart (𝑢03, 𝑣03) =
(
𝑢02 − 𝜃0,

𝑣02
𝑢02−𝜃0

)
Domain of definition: C2.
Visible components of the infinity set: D∗

0 : {𝑣03 = 0}.
Visible exceptional lines: E0 : {𝑢03 = 0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢03, 𝑣03) =
(
𝑢𝑣 − 𝜃0,

1
𝑢𝑣2−𝜃0𝑣

)
(𝑢, 𝑣) =

(
𝑢2

03𝑣03 + 𝜃0𝑢03𝑣03,
1

𝑢03𝑣03

)
𝜔03 = −𝑣03

𝐸 = 1
𝑥−1

[ ( (𝑢03+𝜃0)𝑢03𝑣03−𝑥) ( (𝑢03+𝜃0)𝑢03𝑣03−1)
𝑣03

− (𝜃 + 𝜃 − 𝜃0) (𝑢03 + 𝜃0)2𝑢03𝑣03+

+𝜃𝜃 ((𝑢03 + 𝜃0)𝑢03𝑣03 − 𝑥) +
(
𝑥𝜃1 + (𝜃𝑥 − 1)

)
(𝑢03 + 𝜃0)

]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�𝑢03 = 1

1−𝑥 (𝑢03 + 𝜃0 − 𝜃) (𝑢03 + 𝜃0 − 𝜃) (𝑢03 + 𝜃0)𝑢03𝑣03 − 𝑥
(1−𝑥)𝑣03

�𝑣03 = − 1
1−𝑥 (𝑢03 + 𝜃0 − 𝜃) (𝑢03 + 𝜃0 − 𝜃) (2𝑢03 + 𝜃0)𝑣2

03 −
2(𝑢03+𝜃0)−(𝜃+𝜃)

1−𝑥 (𝑢03 + 𝜃0)𝑢03𝑣
2
03+

+ 2𝑢03+𝜃0−𝜃𝑥+1
1−𝑥 𝑣03 + 𝑥 (2𝑢03+𝜃0−𝜃1)

1−𝑥 𝑣03

.
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We have:

𝜔𝑥3 = − 1
((𝑢 − 𝑥)𝑢𝑣 − 𝑥𝜃𝑥)𝑣

= − 𝑢03𝑣03

𝑢03𝑣03 (𝑢03 + 𝜃0)2 − 𝑥(𝑢03 + 𝜃0 + 𝜃𝑥)
,

𝜔𝑥3 ∼ 𝑢03𝑣03
𝑥(𝑢03 + 𝜃0 + 𝜃𝑥)

,

𝐸 ∼ 1
𝑥 − 1

𝑥

𝑣03
,

𝐸𝜔𝑥3 ∼ 1
𝑥 − 1

𝑢03
(𝑢03 + 𝜃0 + 𝜃𝑥)

−→ 1
𝑥 − 1

,

(𝑥 − 1)𝜔𝑥3 −→ 1
𝐸
.

Further formulae:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− (𝑥−1)𝜔03
𝑥 𝐸 = 1 − 𝑣03

𝑥

[
(𝜃 + 𝜃 − 𝜃0 − 𝑢03) (𝑢03 + 𝜃0)2𝑢03𝑣03 + (𝑢03 + 𝜃0)𝑢03(𝜃𝜃𝑣03 + 𝑥 + 1)−

−𝜃𝜃𝑥 +
(
𝑥𝜃1 + 𝜃𝑥 − 1

)
(𝑢03 + 𝜃0)

]
�𝜔03
𝜔03

= − 1
1−𝑥 (𝑢03 + 𝜃0 − 𝜃) (𝑢03 + 𝜃0 − 𝜃) (2𝑢03 + 𝜃0)𝑣03 − 2(𝑢03+𝜃0)−(𝜃+𝜃)

1−𝑥 (𝑢03 + 𝜃0)𝑢03𝑣03+
+ 2𝑢03+𝜃0−𝜃𝑥+1

1−𝑥 + 𝑥 (2𝑢03+𝜃0−𝜃1)
1−𝑥

.

B.2.6. The chart (𝑢04, 𝑣04) =
(

1
𝑣03
, 𝑢03𝑣03

)
Domain of definition: C2.
Visible components of the infinity set: ∅.
Visible exceptional lines:E0 : {𝑣04 = 0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢04, 𝑣04) =
(
𝑢𝑣2 − 𝜃0𝑣,

1
𝑣

)
(𝑢, 𝑣) =

(
(𝑢04𝑣04 + 𝜃0)𝑣04,

1
𝑣04

)
𝜔04 = −1
𝐸 = 1

𝑥−1

[
((𝑢04𝑣04 + 𝜃0)𝑣04 − 𝑥) ((𝑢04𝑣04 + 𝜃0)𝑣04 − 1)𝑢04 − (𝜃 + 𝜃 − 𝜃0) (𝑢04𝑣04 + 𝜃0)2𝑣04+

+𝜃𝜃 ((𝑢04𝑣04 + 𝜃0)𝑣04 − 𝑥) + (𝑥𝜃1 + (𝜃𝑥 − 1)) (𝑢04𝑣04 + 𝜃0)
]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�𝑢04 = 1
1−𝑥 (𝑢04𝑣04 + 𝜃0 − 𝜃) (𝑢04𝑣04 + 𝜃0 − 𝜃) (2𝑢04𝑣04 + 𝜃0) − 𝜃1𝑢04−
− (𝜃+𝜃)−2(𝑢04𝑣04+𝜃0)

1−𝑥 [(𝑢04𝑣04 + 𝜃0)𝑣04 − 1]𝑢04 − 𝑥 (2𝑢04𝑣04+𝜃0)
1−𝑥 𝑢04

�𝑣04 = − 1
1−𝑥

[
[2(𝑢04𝑣04 + 𝜃0) − 𝜃]𝑣04 − 1

] [ [
2(𝑢04𝑣04 + 𝜃0) − 𝜃

]
𝑣04 − 1

]
+

+ 1
1−𝑥 [(𝑢04𝑣04 + 𝜃0)𝑣04 − 1]2 + 𝜃1𝑣04 + 𝑥

1−𝑥 [(2𝑢04𝑣04 + 𝜃0)𝑣04 − 1] .

B.2.7. The chart (𝑢𝑥3, 𝑣𝑥3) =
(
𝑢𝑥2 − 𝑥𝜃𝑥 , 𝑣𝑥2

𝑢𝑥2−𝑥𝜃𝑥

)
Domain of definition: C2 \ {𝛾0, 𝛼}, where

𝛾0 :
(
−𝑥(𝜃0 + 𝜃𝑥),−

1
𝑥𝜃0 (𝜃0 + 𝜃𝑥)

)
, 𝛼 :

(
−𝑥 𝜃𝑥

2
,

4
𝑥𝜃2
𝑥

)
.

Here, 𝛼 is an apparent base point on D0 \H, not a base point in the charts C2
𝑢03 ,𝑣03 and C2

𝑢04 ,𝑣04 .
Visible components of the infinity set: D0 \ 𝛾0 : {𝑢𝑥3𝑣𝑥3 (𝑢𝑥3 + 𝑥𝜃𝑥) = −𝑥} ,D∗

𝑥 : {𝑣𝑥3 = 0}.
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Visible exceptional lines: E𝑥 : {𝑢𝑥3 = 0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢𝑥3, 𝑣𝑥3) =
(
(𝑢 − 𝑥)𝑢𝑣 − 𝑥𝜃𝑥 , 1

( (𝑢−𝑥)𝑢𝑣−𝑥𝜃𝑥 )𝑢𝑣

)
(𝑢, 𝑣) =

(
(𝑢𝑥3 + 𝑥𝜃𝑥)𝑢𝑥3𝑣𝑥3 + 𝑥, 1

( (𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥)𝑢𝑥3𝑣𝑥3

)
𝜔𝑥3 = −((𝑢𝑥3 + 𝑥𝜃𝑥)𝑢𝑥3𝑣𝑥3 + 𝑥)𝑣𝑥3

𝐸 = 1
(𝑥−1)𝑢𝑥3𝑣𝑥3

[
− 𝑢𝑥3+𝑥𝜃𝑥+𝑥𝜃0

(𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥 − (𝜃𝑢𝑥3𝑣𝑥3 − 1) (𝜃𝑢𝑥3𝑣𝑥3 − 1) (𝑢𝑥3 + 𝑥𝜃𝑥)+

+𝜃0 − (𝑥 − 1) (𝜃𝑥 − 1)
]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�𝑢𝑥3 = −𝑢𝑥3(𝜃𝑥 − 1) − 𝑥𝜃2
𝑥 −

(𝑢𝑥3+𝑥𝜃𝑥+𝜃0) (𝑢𝑥3+𝑥𝜃𝑥 )
1−𝑥 + 1

𝑣𝑥3
+ (𝑢𝑥3+𝑥 (𝜃0+𝜃𝑥 )) (𝑢𝑥3+𝑥𝜃𝑥 )

(1−𝑥) ( (𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥) +
+ 𝜃 𝜃

1−𝑥 ((𝑢𝑥3 + 𝑥𝜃𝑥)𝑢𝑥3𝑣𝑥3 + 𝑥) (𝑢𝑥3 + 𝑥𝜃𝑥)𝑢𝑥3𝑣𝑥3

�𝑣𝑥3 = ( (𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥)𝑣𝑥3
1−𝑥

[
−𝜃𝜃 (2𝑢𝑥3 + 𝑥𝜃𝑥)𝑣𝑥3 + (𝜃 + 𝜃)

]
−

− (2𝑢𝑥3+𝑥𝜃𝑥 )𝑣𝑥3
(1−𝑥) ( (𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥) +

(𝜃0+𝜃𝑥 )𝑣𝑥3
1−𝑥

(
1 + 𝑥𝜃𝑥 (𝑢𝑥3+𝑥𝜃𝑥 )𝑣𝑥3−2𝑥

(𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥

)
− 𝑣𝑥3.

Further formulae:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜔𝑥3𝐸 = −
[
𝑥 (𝜃 𝜃𝑢𝑥3𝑣𝑥3−(𝜃+𝜃+𝜃𝑥−1))+(𝜃+𝜃−𝜃1)+(𝜃𝑢𝑥3𝑣𝑥3−1) (𝜃𝑢𝑥3𝑣𝑥3−1) (𝑢𝑥3+𝑥𝜃𝑥 )

1−𝑥

]
(𝑢𝑥3 + 𝑥𝜃𝑥)𝑣𝑥3+

+
(
1 + 𝑥

𝑢𝑥3

)
�𝜔𝑥3
𝜔𝑥3

= − ((𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥) (2𝑢𝑥3+𝑥𝜃𝑥 )𝑣𝑥3
1−𝑥 · 𝜃𝜃 + 2𝑢𝑥3+𝑥𝜃𝑥

𝑥−1 +
+ 𝜃+𝜃1−𝑥 (2(𝑢𝑥3 + 𝑥𝜃𝑥)𝑢𝑥3𝑣𝑥3 + 𝑥) − 𝑥(𝜃0 + 𝜃𝑥) 𝜃𝑥 (𝑢𝑥3+𝑥𝜃𝑥 )𝑣𝑥3−1

(𝑥−1) ( (𝑢𝑥3+𝑥𝜃𝑥 )𝑢𝑥3𝑣𝑥3+𝑥)

= 2𝑢𝑥3+𝑥𝜃𝑥
1−𝑥

(
𝜃𝜃𝜔𝑥3 − (𝜃0 + 𝜃𝑥)𝜃𝑥 𝑥𝑣𝑥3

𝜔𝑥3
𝑣𝑥3 + 1

)
− 𝑥 𝜃+𝜃1−𝑥 (2

𝜔𝑥3
𝑥𝑣𝑥3

+ 1) − (𝜃0+𝜃𝑥 )
𝑥−1

𝑥𝑣𝑥3
𝜔𝑥3

.

B.2.8. The chart (𝑢𝑥4, 𝑣𝑥4) =
(
𝑢𝑥2−𝑥𝜃𝑥
𝑣𝑥2

, 𝑣𝑥2

)
Domain of definition: C2 \ {𝛾0, 𝛼}, where

𝛾0 :
(
−𝑥(𝜃0 + 𝜃𝑥)𝜃0 ,

1
𝜃0

)
, 𝛼 :

(
𝑥
𝜃2
𝑥

4
, − 2

𝜃𝑥

)
.

Visible components of the infinity set: D0 \ 𝛾0 : {𝑣𝑥4(𝑢𝑥4𝑣𝑥4 + 𝑥𝜃𝑥) = −𝑥}.
Visible exceptional lines: E𝑥 : {𝑣𝑥4 = 0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢𝑥4, 𝑣𝑥4) =
(
((𝑢 − 𝑥)𝑢𝑣 − 𝑥𝜃𝑥)𝑢𝑣, 1

𝑢𝑣

)
(𝑢, 𝑣) =

(
(𝑢𝑥4𝑣𝑥4 + 𝑥𝜃𝑥)𝑣𝑥4 + 𝑥, 1

( (𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑣𝑥4+𝑥)𝑣𝑥4

)
𝜔𝑥4 = −((𝑢𝑥4𝑣𝑥4 + 𝑥𝜃𝑥)𝑣𝑥4 + 𝑥)
𝐸 = 1

(𝑥−1)𝑣𝑥4

[
− 𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥+𝑥𝜃0

(𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑣𝑥4+𝑥 − (𝜃𝑣𝑥4 − 1) (𝜃𝑣𝑥4 − 1) (𝑢𝑥4𝑣𝑥4 + 𝑥𝜃𝑥)+

+𝜃0 − (𝑥 − 1) (𝜃𝑥 − 1)
]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�𝑢𝑥4 = ( (𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑣𝑥4+𝑥)

1−𝑥

[
𝜃𝜃 (2𝑢𝑥4𝑣𝑥4 + 𝑥𝜃𝑥) − (𝜃 + 𝜃)𝑢𝑥4

]
+

+ (2𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑢𝑥4
(1−𝑥) ( (𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑣𝑥4+𝑥) −

𝜃0+𝜃𝑥
1−𝑥

(
𝑢𝑥4 + 𝑥𝜃𝑥 (𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )−2𝑥𝑢𝑥4

(𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑣𝑥4+𝑥

)
+ 𝑢𝑥4

�𝑣𝑥4 = − (𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑣𝑥4+𝑥
1−𝑥 (𝜃𝑣𝑥4 − 1) (𝜃𝑣𝑥4 − 1) + 𝑥 𝜃0𝑣𝑥4−1

(𝑥−1) ( (𝑢𝑥4𝑣𝑥4+𝑥𝜃𝑥 )𝑣𝑥4+𝑥)

.

We also have:

𝜔𝑥3 = −((𝑢𝑥4𝑣𝑥4 + 𝑥𝜃𝑥)𝑣𝑥4 + 𝑥)
1
𝑢𝑥4

.
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B.2.9. The chart (𝑢13, 𝑣13) =
(
𝑢12 − 𝜃1,

𝑣12
𝑢12−𝜃1

)
Domain of definition: C2.
Visible components of the infinity set: D∗

1 : {𝑣13 = 0}.
Visible exceptional lines: E1 : {𝑢13 = 0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢13, 𝑣13) =
(
(𝑢 − 1)𝑣 − 𝜃1,

1
(𝑢−1)𝑣2−𝜃1𝑣

)
(𝑢, 𝑣) =

(
𝑢2

13𝑣13 + 𝜃1𝑢13𝑣13 + 1, 1
𝑢13𝑣13

)
𝜔13 = −𝑣13

�𝐸 = −𝑥 𝑢13+𝜃1
(𝑥−1)2

[
(𝑢13 + 𝜃1 − 𝜃) (𝑢13 + 𝜃1 − 𝜃)𝑢13𝑣13 + 𝑢13 − (𝜃𝑥 − 1)

]
𝐸 = (𝑢13+𝜃1−𝜃) (𝑢13+𝜃1−𝜃)

𝑥−1 ((𝑢13 + 𝜃1)𝑢13𝑣13 + 1) − 𝑥 𝜃 𝜃−𝜃0 (𝑢13+𝜃1)
𝑥−1 − (𝑢13+𝜃1)𝑢13𝑣13+1

𝑣13

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�𝑢13 = − 1

𝑣13
+ 1

1−𝑥 (𝑢13 + 𝜃1 − 𝜃)
(
𝑢13 + 𝜃1 − 𝜃

)
(𝑢13 + 𝜃1)𝑢13𝑣13

�𝑣13 = −(2𝑢13 + 𝜃1)𝑣13 − 1
1−𝑥 (𝑢13 + 𝜃1 − 𝜃)

(
𝑢13 + 𝜃1 − 𝜃

)
(2𝑢13 + 𝜃1)𝑣2

13−

− 1
1−𝑥

(
2𝑢13 + 2𝜃1 − 𝜃 − 𝜃

)
(𝑢2

13𝑣13 + 𝜃1𝑢13𝑣13 + 1)𝑣13 − 𝑥𝜃0
1−𝑥 𝑣13

.

B.2.10. The chart (𝑢14, 𝑣14) =
(
𝑢12−𝜃1
𝑣12

, 𝑣12

)
Domain of definition: C2.
Visible components of the infinity set: ∅.
Visible exceptional lines:E1 : {𝑣14 = 0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢14, 𝑣14) =
(
(𝑢 − 1)𝑣2 − 𝜃1𝑣,

1
𝑣

)
(𝑢, 𝑣) =

(
𝑢14𝑣

2
14 + 𝜃1𝑣14 + 1, 1

𝑣14

)
𝜔14 = −1
𝐸 = (𝑢14𝑣14+𝜃1−𝜃) (𝑢14𝑣14+𝜃1−𝜃)

𝑥−1 ((𝑢14𝑣14 + 𝜃1)𝑣14 + 1) − 𝑥 𝜃 𝜃−𝜃0 (𝑢14𝑣14+𝜃1)
𝑥−1 −

−((𝑢14𝑣14 + 𝜃1)𝑣14 + 1)𝑢14

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�𝑢14 = (2𝑢14𝑣14 + 𝜃1)𝑢14 + (2𝑢14𝑣14+𝜃1)
1−𝑥 (𝑢14𝑣14 + 𝜃1 − 𝜃)

(
𝑢14𝑣14 + 𝜃1 − 𝜃

)
+

+2 (𝑢14𝑣
2
14+𝜃1𝑣14+1)𝑢14

1−𝑥

(
𝑢14𝑣14 + 𝜃1 − 𝜃+𝜃

2

)
+ 𝑥𝜃0𝑢14

1−𝑥

�𝑣14 = − 𝑣2
14

1−𝑥 (𝑢14𝑣14 + 𝜃1 − 𝜃)
(
𝑢14𝑣14 + 𝜃1 − 𝜃

)
− 1 − 2

(
𝑢14𝑣14 − 𝜃0−𝜃1

2

)
𝑣14−

− 𝜃0𝑣14
1−𝑥 − 2 (𝑢14𝑣

2
14+𝜃1𝑣14+1)𝑣14

1−𝑥

(
𝑢14𝑣14 + 𝜃1 − 𝜃+𝜃

2

) .

B.2.11. The chart (𝑢∞3, 𝑣∞3) =
(
𝑢∞2,

𝑣∞2+𝜃∞
𝑢∞2

)
Domain of definition: C2.
Visible components of the infinity set: ∅.
Visible exceptional lines: E−

∞ : {𝑢∞3 = 0}, E∞ : {𝑢∞3𝑣∞3 = 𝜃∞}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢∞3, 𝑣∞3) =
(

1
𝑢2𝑣−𝜃𝑢 , (𝑢𝑣 − 𝜃) (𝑢𝑣 − 𝜃)𝑢

)
(𝑢, 𝑣) =

(
1

(𝑢∞3𝑣∞3−𝜃∞)𝑢∞3
,
(
𝑢∞3𝑣∞3 + 𝜃

)
(𝑢∞3𝑣∞3 − 𝜃∞)𝑢∞3

)
𝜔∞3 = −1
𝐸 = 𝜃1 (𝑢∞3𝑣∞3 + 𝜃) + 𝑥

𝑥−1 (𝑢∞3𝑣∞3 + 𝜃 − 𝜃0) (𝑢∞3𝑣∞3 + 𝜃) [𝑢∞3(𝑢∞3𝑣∞3 − 𝜃 + 𝜃) − 1]−
−𝜃𝜃 − 𝑣∞3

𝑥−1 [𝑢∞3(𝑢∞3𝑣∞3 − 𝜃 + 𝜃) − 1]
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�𝑢∞3 = −
(
𝜃1 + 𝜃∞

1−𝑥

)
𝑢∞3 − 2(𝑢∞3𝑣∞3−𝜃∞)𝑢∞3−1

1−𝑥 − 𝑥 (𝑢2
∞3𝑣∞3−𝜃∞𝑢∞3−1)2

1−𝑥 +

+ 𝑥
1−𝑥

(
(2𝑢∞3𝑣∞3 − 𝜃 − 𝜃0 + 2𝜃)𝑢∞3 − 1

) (
(2𝑢∞3𝑣∞3 − 𝜃 + 2𝜃)𝑢∞3 − 1

)
�𝑣∞3 = 𝑣∞3 (2𝑢∞3𝑣∞3 + 𝜃1 − 𝜃∞) − 𝑥 𝜃 (𝜃−𝜃0)

1−𝑥 (2𝑢∞3𝑣∞3 − 𝜃∞)−
− 𝑥

1−𝑥

[
2(2𝑢∞3𝑣∞3 − 𝜃∞)(𝑢2

∞3𝑣∞3 − 𝜃∞𝑢∞3 − 1)−

−(𝜃 + 𝜃 − 𝜃0)
(
1 − 3𝑢2

∞3𝑣∞3 + 2𝜃∞𝑢∞3
) ]
𝑣∞3

.

B.2.12. The chart (𝑢∞4, 𝑣∞4) =
(

𝑢∞2
𝑣∞2+𝜃∞ , 𝑣∞2 + 𝜃∞

)
Domain of definition: C2.
Visible components of the infinity set: D∗∗

∞ : {𝑢∞4 = 0}.
Visible exceptional lines: E−

∞ : {𝑣∞4 = 0}, E∞ : {𝑣∞4 = 𝜃∞}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢∞4, 𝑣∞4) =
(

1
(𝑢𝑣−𝜃) (𝑢𝑣−𝜃)𝑢

, 𝑢𝑣 − 𝜃
)

(𝑢, 𝑣) =
(

1
(𝑣∞4−𝜃∞)𝑢∞4𝑣∞4

,
(
𝑣∞4 + 𝜃

)
(𝑣∞4 − 𝜃∞)𝑢∞4𝑣∞4

)
𝜔∞4 = −𝑢∞4

�𝐸 = 𝑥 (𝑣∞4−𝜃∞)𝑢∞4𝑣∞4−1
(𝑥−1)2

[
1
𝑢∞4

− (𝑣∞4 + 𝜃 − 𝜃0) (𝑣∞4 + 𝜃)
]

𝐸 = 𝜃1 (𝑣∞4 + 𝜃) + 𝑥
𝑥−1 (𝑣∞4 + 𝜃 − 𝜃0) (𝑣∞4 + 𝜃) [𝑢∞4𝑣∞4 (𝑣∞4 − 𝜃 + 𝜃) − 1]−

−𝜃𝜃 − 1
(𝑥−1)𝑢∞4

[𝑢∞4𝑣∞4 (𝑣∞4 − 𝜃 + 𝜃) − 1]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�𝑢∞4 = −𝑢∞4(2𝑣∞4 + 𝜃1 − 𝜃∞) + 𝑥 𝑢∞4
1−𝑥

[
𝜃 (𝜃 − 𝜃0) (2𝑣∞4 − 𝜃∞)𝑢∞4+

+(𝜃𝑥 + 𝜃1 − 1) (3𝑢∞4𝑣
2
∞4 − 2𝜃∞𝑢∞4𝑣∞4 − 1) +

+2(2𝑣∞4 − 𝜃∞)(𝑢∞4𝑣
2
∞4 − 𝜃∞𝑢∞4𝑣∞4 − 1)

]
�𝑣∞4 = 1

(1−𝑥)𝑢∞4
− 𝑥

1−𝑥 (𝑣∞4 + 𝜃) (𝑣∞4 + 𝜃 − 𝜃0) (𝑣∞4 − 𝜃∞)𝑢∞4𝑣∞4

.

C. Estimates near D∗∗
∞ \H∗ and D∗

1 \H∗

Lemma C.1 (Behaviour near D∗
1 \H∗). If a solution at a complex time t is sufficiently close to D∗

1 \H∗,
then there exists unique 𝜏 ∈ C, such that (𝑢(𝜏), 𝑣(𝜏)) belongs to line E1. In other words, the pair
(𝑢(𝑡), 𝑣(𝑡)) has a pole at 𝑡 = 𝜏.

Moreover, |𝑡 − 𝜏 | = 𝑂 (|𝑑 (𝑡) | |𝑢13 (𝑡) |) for sufficiently small 𝑑 (𝑡) and bounded 𝑢13.
For large 𝑅1 > 0, consider the set {𝑡 ∈ C | |𝑢13 (𝑡) | ≤ 𝑅1}. Its connected component containing 𝜏

is an approximate disk Δ1 with centre 𝜏 and radius |𝑑 (𝜏) |𝑅1, and 𝑡 ↦→ 𝑢13(𝑡) is a complex analytic
diffeomorphism from that approximate disk onto {𝑢 ∈ C | |𝑢 | ≤ 𝑅1}.
Proof. For the study of the solutions near D∗

1 \H∗, we use coordinates (𝑢13, 𝑣13) (see Section B.2.9).
In this chart, the set D∗

1 \H∗ is given by {𝑣13 = 0} and parametrised by 𝑢13 ∈ C. Moreover, E1 is given
by 𝑢13 = 0 and parametrised by 𝑣13.

Asymptotically, for 𝑣13 → 0, bounded 𝑢13 and 𝑥 = 𝑒𝑡 bounded away from 0 and 1, we have:

�𝑢13 ∼ − 1
𝑣13

(C.1a)

�𝑣13 ∼ −2𝑢13𝑣13
2 − 𝑥
1 − 𝑥 − (3𝜃1 − 𝜃 − 𝜃 − 𝜃0)𝑣13 −

𝜃0
1 − 𝑥 𝑣13 (C.1b)

𝜔13 = −𝑣13 (C.1c)
�𝜔13
𝜔13

= −(2𝑢13 + 𝜃1) −
1

1 − 𝑥

(
2𝑢13 + 2𝜃1 − 𝜃 − 𝜃

)
− 𝑥𝜃0

1 − 𝑥 +𝑂 (𝜔13) (C.1d)

𝐸𝜔13 ∼ 1. (C.1e)
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Integrating (C.1d) from 𝜏 to t, we get:

𝜔13 (𝑡) = 𝜔13(𝜏)𝑒−𝜃1 (𝑡−𝜏)𝑒𝐾 (𝑡−𝜏) (1 + 𝑜(1)),

with

𝐾 = −2𝑢13 (𝜏) −
1

1 − 𝑒 �̃�
(
2𝑢13 (𝜏) + 2𝜃1 − 𝜃 − 𝜃

)
− 𝑒 �̃�𝜃0

1 − 𝑒 �̃�

and 𝜏 being on the integration path.
Arguments similar to those in the proof of Lemma 6.6 show that 𝑣13 is approximately equal to a

small constant, from (C.1a) follows that:

𝑢13 ∼ 𝑢13(𝜏) −
𝑡 − 𝜏
𝑣13

.

Thus, if t runs over an approximate disk Δ centred at 𝜏 with radius |𝑣13 |𝑅, then 𝑢13 fills an approximate
disk centred at 𝑢13(𝜏) with radius R. Therefore, if |𝑣13 | � |𝜏 |, the solution has the following properties
for 𝑡 ∈ Δ:

𝑣13 (𝑡)
𝑣13(𝜏)

∼ 1,

and 𝑢13 is a complex analytic diffeomorphism from Δ onto an approximate disk with centre 𝑢13 (𝜏)
and radius R. If R is sufficiently large, we will have 0 ∈ 𝑢13(Δ), which means that the solution of the
Painlevé equation will have a pole at a unique point in Δ . Now, it is possible to take 𝜏 to be the pole
point. For |𝑡 − 𝜏 | � |𝜏 |, we have:

𝑑 (𝑡)
𝑑 (𝜏) ∼ 1, that is

𝑣13 (𝑡)
𝑑 (𝜏) ∼ −𝜔13 (𝑡)

𝑑 (𝜏) ∼ −1, 𝑢13(𝑡) ∼ − 𝑡 − 𝜏
𝑣13

∼ 𝑡 − 𝜏
𝑑 (𝜏) .

Let 𝑅1 be a large positive real number. Then the equation |𝑢13 (𝑡) | = 𝑅1 corresponds to |𝑡−𝜏 | ∼ |𝑑 (𝜏) |𝑅1,
which is still small compared to |𝜏 | if |𝑑 (𝜏) | is sufficiently small. Denote byΔ1 the connected component
of the set of all 𝑡 ∈ C, such that {𝑡 | |𝑢13 (𝑡) | ≤ 𝑅1} is an approximate disk with centre 𝜏 and radius
2|𝑑 (𝜏) |𝑅1. More precisely, 𝑢13 is a complex analytic diffeomorphism from Δ1 onto {𝑢 ∈ C | |𝑢 | ≤ 𝑅1},
and 𝑑 (𝑡)

𝑑 (𝜏) ∼ 1 for all 𝑡 ∈ Δ1.
From (C.1e), 𝐸 (𝑡)𝜔13(𝑡) ∼ 1 for the annular disk Δ1 \Δ ′

1, where Δ ′
1 is a disk centred at 𝜏 with small

radius compared to radius of Δ1. �

Lemma C.2 (Behaviour near D∗∗
∞ \ H∗). If a solution at a complex time t is sufficiently close to

D∗∗
∞ \ H∗, then there exists unique 𝜏 ∈ C, such that (𝑢(𝑡), 𝑣(𝑡)) has a pole at 𝑡 = 𝜏. Moreover,

|𝑡 − 𝜏 | = 𝑂 (|𝑑 (𝑡) | |𝑣∞4 (𝑡) |) for sufficiently small 𝑑 (𝑡) and bounded 𝑣∞4.
For large 𝑅∞ > 0, consider the set {𝑡 ∈ C | |𝑣∞4 | ≤ 𝑅∞}. Its connected component containing 𝜏

is an approximate disk Δ∞ with centre 𝜏 and radius |𝑑 (𝜏) |𝑅∞, and 𝑡 ↦→ 𝑣∞4(𝑡) is a complex analytic
diffeomorphism from that approximate disk onto {𝑢 ∈ C | |𝑢 | ≤ 𝑅∞}.

Proof. For the study of the solutions near D∗∗
∞ \H∗, we use coordinates (𝑢∞4, 𝑣∞4) (see Section B.2.12).

In this chart, the set D∗∗
∞ \ H∗ is given by {𝑢∞4 = 0} and parametrised by 𝑣∞4 ∈ C. Moreover, E∞ is

given by {𝑣∞4 = 𝜃∞} and parametrised by 𝑢∞4, while E−
∞ is given by {𝑣∞4 = 0} and also parametrised

by 𝑢∞4.
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Asymptotically, for 𝑢∞4 → 0, 𝑣∞4 bounded and 𝑥 = 𝑒𝑡 bounded away from 0 and 1, we have:

�𝑢∞4 ∼ (2𝑣∞4 − 𝜃∞)(𝑥 + 1) + 𝜃1 + 𝑥(𝜃𝑥 − 1)
𝑥 − 1

· 𝑢∞4, (C.2a)

�𝑣∞4 ∼ − 1
(𝑥 − 1)𝑢∞4

, (C.2b)

𝜔∞4 = −𝑢∞4 (C.2c)

�𝜔∞4
𝜔∞4

∼ 2𝑣∞4 − 𝜃∞ + 𝜃𝑥 − 1 + 4𝑣∞4 − 2𝜃∞ + 𝜃1 + 𝜃𝑥 − 1
𝑥 − 1

(C.2d)

𝐸𝜔∞4 ∼ − 1
𝑥 − 1

. (C.2e)

Integrating (C.2d) from 𝜏 to t, we get:

𝜔∞4 (𝑡) = 𝜔∞4 (𝜏)𝑒 (𝜃𝑥−𝜃∞−1) (𝑡−𝜏)𝑒𝐾 (𝑡−𝜏) (1 + 𝑜(1)),

with

𝐾 = 2𝑣∞4 (𝜏) +
4𝑣∞4 (𝜏) − 2𝜃∞ + 𝜃1 + 𝜃𝑥 − 1

𝑒 �̃� − 1

and 𝜏 being on the integration path.
Arguments similar to those in the proof of Lemma 6.6 show that 𝑢∞4 is approximately equal to a

small constant, and from (C.2b) follows that:

𝑣∞4 ∼ 𝑣∞4(𝜏) +
𝑡 − 𝜏 − log 1−𝑒𝑡

1−𝑒𝜏

𝑢∞4
.

Thus, for large R, if t runs over an approximate disk Δ centred at 𝜏 with radius |𝑢∞4 |𝑅, then 𝑣∞4 fills
an approximate disk centred at 𝑣∞4 (𝜏) with radius R. Therefore, if |𝑢∞4 | � |𝜏 |, the solution has the
following properties for 𝑡 ∈ Δ:

𝑢∞4 (𝑡)
𝑢∞4(𝜏)

∼ 1

and 𝑣∞4 is a complex analytic diffeomorphism from Δ onto an approximate disk with centre 𝑣∞4 (𝜏) and
radius R. If R is sufficiently large, we will have 0 ∈ 𝑣∞4 (Δ), that is the solution the Painlevé equation
will have a pole at a unique point in Δ . Now, it is possible to take 𝜏 to be the pole point. For |𝑡−𝜏 | � |𝜏 |,
we have that 𝑑 (𝑡) ∼ 𝑑 (𝜏) implies:

1 ∼ (1 − 𝑥)𝜔∞4(𝑡)
𝑑 (𝜏) ∼ (𝑒𝑡 − 1)𝑢∞4(𝑡)

𝑑 (𝜏) , 𝑣∞4 (𝑡) ∼
𝑡 − 𝜏
𝑢∞4

∼ (𝑡 − 𝜏) (𝑒𝑡 − 1)
𝑑 (𝜏) .

Let 𝑅∞ be a large positive real number. Then the equation |𝑣∞4 (𝑡) | = 𝑅∞ corresponds to | (𝑒𝑡−1) (𝑡−𝜏) | ∼
|𝑑 (𝜏) |𝑅∞, which is still small compared to |𝜏 | if |𝑑 (𝜏) | is sufficiently small. Denote by Δ∞ the connected
component of the set of all 𝑡 ∈ C, such that {𝑡 | |𝑣∞4 (𝑡) | ≤ 𝑅∞} is an approximate disk with centre
𝜏 and radius 2|𝑑 (𝜏) |𝑅∞. More precisely, 𝑣∞4 is a complex analytic diffeomorphism from Δ∞ onto
{𝑣 ∈ C | |𝑣 | ≤ 𝑅∞}, and 𝑑 (𝑡)

𝑑 (𝜏) ∼ 1 for all 𝑡 ∈ Δ∞.
From (C.2e), 𝐸 (𝑡)𝜔∞4(𝑡) ∼ 1/(1 − 𝑒𝑡 ) for the annular disk Δ∞ \ Δ ′

∞, where Δ ′
∞ is a disk centred at

𝜏 with small radius compared to radius of Δ∞. �
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D. The vector field in the limit space⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐸0 = −𝑢{(𝑢 − 1)𝑣(𝑢𝑣 − 2𝜃 + 𝜃∞) − 𝜃1𝑣 + 𝜃 (𝜃 − 𝜃∞)}
�𝑢 = −2𝑢2(𝑢 − 1)𝑣 + (𝜃 + 𝜃)𝑢(𝑢 − 1) + 𝜃1𝑢

�𝑣 = (3𝑢 − 2)𝑢𝑣2 − 2(𝜃 + 𝜃)𝑢𝑣 +
(
𝜃 + 𝜃 − 𝜃1

)
𝑣 + 𝜃𝜃 .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�̃�1, �̃�1) =
(
𝑢, 1
𝑢2 (𝑢−1)𝑣

)
𝐸0 = − 1

�̃�2
1 (�̃�1−1) �̃�2

1
+ 1
�̃�1

(
𝜃+𝜃−𝜃1
�̃�1

+ 𝜃1
�̃�1−1

)
− 𝜃𝜃�̃�1

�̃𝑢1 = − 2
�̃�1
+ �̃�2

1(�̃�1 − 1)
(
𝜃+𝜃−𝜃1
�̃�1

+ 𝜃1
�̃�1−1

)
�̃𝑣1 = 1

�̃�1
− 𝜃1 �̃�1−1

�̃�1−1 −
(
(𝜃 + 𝜃) (�̃�1 − 1) + 2𝜃1

)
�̃�1 − 𝜃𝜃�̃�2

1(�̃�1 − 1)�̃�2
1 .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�̃�2, �̃�2) =
(

1
𝑢 ,

1
(𝑢−1)𝑣

)
𝐸0 = − (𝜃 �̃�2−1) (𝜃 �̃�2−1)

�̃�2 �̃�
2
2

+ 𝜃1 �̃�2−1
(1−�̃�2) �̃�2

2

�̃𝑢2 = 2
�̃�2
+ 𝜃1 − (1 − �̃�2)

(
𝜃 + 𝜃 − 𝜃1

)
�̃𝑣2 = − (𝜃 �̃�2−1) (𝜃 �̃�2−1)

�̃�2
− 𝜃1 �̃�2−1

(1−�̃�2) − (𝜃 + 𝜃 − 𝜃1)�̃�2 + 𝜃𝜃�̃�2
2 .⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(�̃�3, �̃�3) =
(

1
𝑢 ,−𝑢(𝑢𝑣 − 𝜃)

)
𝐸0 = −(1 − �̃�3)�̃�2

3�̃�3 − (𝜃∞ + 𝜃1)�̃�3�̃�3 + 𝜃∞�̃�3 − 𝜃 (𝜃 − 𝜃1)
�̃𝑢3 = −2�̃�3 (1 − �̃�3)�̃�3 + 𝜃∞(1 − �̃�3) − 𝜃1�̃�3
�̃𝑣3 = (−2�̃�3 + 1)�̃�2

3 − (𝜃1 + 𝜃∞)�̃�3 .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢03, 𝑣03) =
(
𝑢𝑣 − 𝜃0,

1
𝑢𝑣2−𝜃0𝑣

)
(𝑢, 𝑣) =

(
𝑢2

03𝑣03 + 𝜃0𝑢03𝑣03,
1

𝑢03𝑣03

)
𝐸0 =

[
−(𝑢03 + 𝜃0)𝑢03𝑣03

(
𝑢03 + 𝜃0 − (𝜃 + 𝜃 − 𝜃0)

)
− 𝑢03(𝜃𝜃𝑣03 − 1) − (𝜃𝑥 − 1)

]
(𝑢03 + 𝜃0)

�𝑢03 = (𝑢03 + 𝜃0 − 𝜃) (𝑢03 + 𝜃0 − 𝜃) (𝑢03 + 𝜃0)𝑢03𝑣03
�𝑣03 = −(𝑢03 + 𝜃0 − 𝜃) (𝑢03 + 𝜃0 − 𝜃) (2𝑢03 + 𝜃0)𝑣2

03 − (2(𝑢03 + 𝜃0) − (𝜃 + 𝜃)) (𝑢03 + 𝜃0)𝑢03𝑣
2
03+

+(2𝑢03 + 𝜃0 − 𝜃𝑥 + 1)𝑣03⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢04, 𝑣04) =
(
𝑢𝑣2 − 𝜃0𝑣,

1
𝑣

)
𝐸0 =

[
𝑢04𝑣04 − (𝑢04𝑣04 + 𝜃0 − (𝜃 + 𝜃)) (𝑢04𝑣04 + 𝜃0)𝑣04 − 𝜃𝜃𝑣04 − (𝜃𝑥 − 1)

]
(𝑢04𝑣04 + 𝜃0)

�𝑢04 = (𝑢04𝑣04 + 𝜃0 − 𝜃) (𝑢04𝑣04 + 𝜃0 − 𝜃) (2𝑢04𝑣04 + 𝜃0) − 𝜃1𝑢04−
−[(𝜃 + 𝜃) − 2(𝑢04𝑣04 + 𝜃0)] [(𝑢04𝑣04 + 𝜃0)𝑣04 − 1]𝑢04

�𝑣04 = −
[
(2(𝑢04𝑣04 + 𝜃0) − 𝜃)𝑣04 − 1

] [(
2(𝑢04𝑣04 + 𝜃0) − 𝜃

)
𝑣04 − 1

]
+

+[(𝑢04𝑣04 + 𝜃0)𝑣04 − 1]2 + 𝜃1𝑣04⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑢𝑥3, 𝑣𝑥3) = (𝑢𝑥2, 𝑣𝑥2/𝑢𝑥2) =
(
𝑢2𝑣, 1

𝑢3𝑣2

)
𝐸0 =

1−(𝜃+𝜃−𝜃1)𝑢𝑥3𝑣𝑥3+𝑢2
𝑥3𝑣𝑥3

(𝑢𝑥3𝑣𝑥3)2 + 𝜃𝜃𝑢2
𝑥3𝑣𝑥3 − (𝜃 + 𝜃)𝑢𝑥3

�𝑢𝑥3 = −(𝑢𝑥3 + 𝜃 + 𝜃 − 𝜃1)𝑢𝑥3 + 2
𝑣𝑥3

+ 𝜃𝜃𝑢4
𝑥3𝑣

2
𝑥3

�𝑣𝑥3 = −2𝜃𝜃𝑢3
𝑥3𝑣

3
𝑥3 + (𝜃 + 𝜃)𝑢2

𝑥3𝑣
2
𝑥3 −

2
𝑢𝑥3

+ (𝜃 + 𝜃 − 𝜃1)𝑣𝑥3⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑢𝑥4, 𝑣𝑥4) = (𝑢𝑥2/𝑣𝑥2, 𝑣𝑥2) =
(
𝑢3𝑣2, 1

𝑢𝑣

)
𝐸0 = 1−(𝜃+𝜃−𝜃1)𝑣𝑥4

𝑣2
𝑥4

+ (𝜃𝑣𝑥4 − 1) (𝜃𝑣𝑥4 − 1)𝑢𝑥4

�𝑢𝑥4 = 𝜃𝜃𝑢2
𝑥4𝑣

3
𝑥4 − (𝜃 + 𝜃)𝑢2

𝑥4𝑣
2
𝑥4 +

2𝑢𝑥4
𝑣𝑥4

− (𝜃 + 𝜃 − 𝜃1)𝑢𝑥4

�𝑣𝑥4 = −𝑢𝑥4𝑣
2
𝑥4(𝜃𝑣𝑥4 − 1) (𝜃𝑣𝑥4 − 1)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢13, 𝑣13) =
(
(𝑢 − 1)𝑣 − 𝜃1,

1
(𝑢−1)𝑣2−𝜃1𝑣

)
𝐸0 = −(𝑢13 + 𝜃1 − 𝜃) (𝑢13 + 𝜃1 − 𝜃) ((𝑢13 + 𝜃1)𝑢13𝑣13 + 1) − (𝑢13 + 𝜃1)𝑢13 − 1

𝑣13

�𝑢13 = − 1
𝑣13

+ (𝑢13 + 𝜃1 − 𝜃)
(
𝑢13 + 𝜃1 − 𝜃

)
(𝑢13 + 𝜃1)𝑢13𝑣13

�𝑣13 = −(2𝑢13 + 𝜃1)𝑣13 − (𝑢13 + 𝜃1 − 𝜃)
(
𝑢13 + 𝜃1 − 𝜃

)
(2𝑢13 + 𝜃1)𝑣2

13−

−
(
2𝑢13 + 2𝜃1 − 𝜃 − 𝜃

)
(𝑢2

13𝑣13 + 𝜃1𝑢13𝑣13 + 1)𝑣13⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢14, 𝑣14) =
(
(𝑢 − 1)𝑣2 − 𝜃1𝑣,

1
𝑣

)
𝐸0 = −

[
(𝑢14𝑣14 + 𝜃1 − 𝜃) (𝑢14𝑣14 + 𝜃1 − 𝜃) + 𝑢14

]
((𝑢14𝑣14 + 𝜃1)𝑣14 + 1)

�𝑢14 = (2𝑢14𝑣14 + 𝜃1)
[
(𝑢14𝑣14 + 𝜃1 − 𝜃)

(
𝑢14𝑣14 + 𝜃1 − 𝜃

)
+ 𝑢14

]
+

+2(𝑢14𝑣
2
14 + 𝜃1𝑣14 + 1)𝑢14

(
𝑢14𝑣14 + 𝜃1 − 𝜃+𝜃

2

)
�𝑣14 = −𝑣2

14(𝑢14𝑣14 + 𝜃1 − 𝜃)
(
𝑢14𝑣14 + 𝜃1 − 𝜃

)
− 1 − 2

(
𝑢14𝑣14 − 𝜃0−𝜃1

2

)
𝑣14−

−𝜃0𝑣14 − 2(𝑢14𝑣
2
14 + 𝜃1𝑣14 + 1)𝑣14

(
𝑢14𝑣14 + 𝜃1 − 𝜃+𝜃

2

)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝑢∞3, 𝑣∞3) =

(
1

𝑢2𝑣−𝜃𝑢 , (𝑢𝑣 − 𝜃) (𝑢𝑣 − 𝜃)𝑢
)

𝐸0 = (𝜃1 − 𝜃)𝜃 + 𝑢∞3𝑣∞3 (𝜃1 − 𝜃∞) + (𝑢∞3𝑣∞3)2 − 𝑣∞3
�𝑢∞3 = (𝜃∞ − 𝜃1)𝑢∞3 − 2𝑢2

∞3𝑣∞3 + 1
�𝑣∞3 = 𝑣∞3 (2𝑢∞3𝑣∞3 + 𝜃1 − 𝜃∞)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝑢∞4, 𝑣∞4) =
(

1
(𝑢𝑣−𝜃) (𝑢𝑣−𝜃)𝑢

, 𝑢𝑣 − 𝜃
)

𝐸0 = (𝜃1 − 𝜃)𝜃 + 𝑣∞4 (𝑣∞4 − 𝜃∞ + 𝜃1) − 1
𝑢∞4

�𝑢∞4 = −𝑢∞4 (2𝑣∞4 + 𝜃1 − 𝜃∞)
�𝑣∞4 = 1

𝑢∞4

.
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