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Uniqueness and Hyers-Ulam’s stability
for a fractional nonlinear partial integro-
differential equation with variable coefti-
cients and a mixed boundary condition®

Chenkuan Li

Abstract. Introducing a pair-parameter matrix Mittag-Leffler function, we study the uniqueness and
Hyers-Ulam stability to a new fractional nonlinear partial integro-differential equation with vari-
able coefficients and a mixed boundary condition using Banach’s contractive principle as well as
Babenko’s approach in a Banach space. These investigations have serious applications since unique-
ness and stability analysis are essential topics in various research fields. The techniques used also work
for different types of differential equations with initial or boundary conditions, as well as integral
equations. Moreover, we present a Python code to compute approximate values of our newly estab-
lished pair-parameter matrix Mittag-Leffler functions, which extend the multivariate Mittag-Leffler
function. A few examples are given to show applications of the key results obtained.

1 Introduction

In this section, we are going to introduce some basic concepts on fractional calculus, a
pair-parameter (8, y) matrix Mittag-Leffler function, Babenko’s approach dealing with
a fractional differential equation with a nonlocal initial condition, as well as the current
work on fractional partial differential equations.

Letw € [0,1]" c R™" and y € [0, 1]. Then we define for 81, -, 8, = 0[7]

1
LB - -T(Bn)

w1 wn
/ / (w1 —1)P 7 (wp = 1) A, 11, -+, T)d T, - - dT,
0 0

P B Ay, w) =

where A is a continuous mapping from [0, 1] X [0, 1]" to R.
In particular, we have

- IOy, w) = Ay, w)

from [4].
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The partial Liouville-Caputo fractional derivative .0 /0x® of order2 < @ < 3
with respect to y is defined in [7] as

LA o) = 5 [ w0 (o
,W) = - T T,W)dar.
Ix? X rd-a)Jo X X

One of the most essential subjects of differential equations is the stability theory of
Hyers-Ulam [8]. The idea of such stability for differential equations is the substitution
of the equation with a given inequality that acts as a perturbation of the equation.

In this paper, we study the uniqueness and Hyers-Ulam stability for the following
new fractional nonlinear partial integro-differential equation (FNPIDE for short) for
OQJ 20 (i: 1’2"” ’n9j: 1’27"' ’l EN)'

0
ox®
A(O’ (,L)) = ¢1((1)), A(l’w) = ¢2((,L)), A,(Lw) = ¢3(Lt)),

where (y,w) € [0,1] X [0,1]", a, ¢x € C([0,1]") for k =1,2,3,and ¢ : [0, 1] X
[0, 1]" X R — R satisfies certain conditions to be given later.

In addition, the operator 1} is the partial Riemann-Liouville fractional integral of
order a with respect to y, given by

1
A+ Y (@Y YA 0) = d(ro Ao),
=1 :

X
IyN) (x,w) = '/0 (x - 1) 'A(r,w)dr, x €[0,1].

1
['(a)

Our main techniques are to derive an equivalent integral equation of equation (1.1) by
Babenko’s approach and then to obtain the uniqueness and Hyers-Ulam stability using
Banach’s contractive principle and newly established pair-parameter Mittag-Leffler
functions below.

Assume @;; > 0,; > Oforalli =1,---,n, j =1,---,l,and thereis 1 <ip < n
such that o;,; > Oforall j = 1,--- ,]. We define

Qyp - @y @
a .« e a a

M= " A (1.2)
ap1 - Apl Ap

Definition 1.1 Let 8 > 0, y > 0. A pair-parameter (f3,y) matrix Mittag—Leffler
function is defined by

B,y) _oo 1 k
B G @) =Y r— Y (kl,--.,k,)

k=0 ki+---+ki=k

3 k;
) ...gl

’ F(ankl+-~+cy11kl+a'1)~~r‘(ozn1k1+~~+anlkl+an)’
where ; € Cfori=1,2,---,[,and

k R
ki,oe ki) ke kgl
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Uniqueness and Hyers-Ulam’s stability for a fractional nonlinear partial ... 3

It follows that

ESV (¢, ) = ESP (G, 8) = Em(Gry - 0,

where E ) is a matrix Mittag-Leffler function given in [5].
Since there exists a positive constant 8 such that

'(Bk+vy) =0,

F(a/llkl + -4 a'llkl + al) > 9,

I(apiky + -+ anky +a,) 2 0,
we claim

[EE @)

(o)

<

1 k ISl
9}1

e Wiy B0 (k1, oLk Tlaggrky + - + @ik + @)

1
= e_nE(mOw“,mOl),mo (|§l|, T, |§l|) < +00,

which implies that £ 1(\5’7/) (&1, -+, ;) is well defined as the multivariate Mittag-Leffler
function E (g, i), s, (111, -+ -, 1Z1]) converges [3]. Obviously,

ERV @ ) = RPN G )

o0 k k
D A
prr e Y ki, ki) T(aigiky + -+ + @ik + i)

= E((liol,"',(l,'ol),a/io (§l$ ) 51)9

where
0 0 1
P= a1 @i @,
0--- 0 1
and
(0,1) (0,2) S K
EVO=ECY0)=Y —=> = E, . o (0.
m (O =Ep? () ;}F(%“%) o ey (€)

which is the well-known two-parameter Mittag-Leffler function, and

0--- 0 1
P0= aiol---Oaio .
0--- 0 1
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Babenko’s approach (BA) [1] is a useful tool for dealing with various integral or
differential equations (including PDEs) with initial or boundary problems. Let f be a
continuous function on [0, 1] X R with

I/ll=" sup  [f(x,y)] < +oo.
(x,y)€[0,1]xR

To demonstrate this method in detail, we convert the following fractional differential
equation with a nonlocal initial condition into an equivalent implicit integral equation:

DYD(x) +ad(x) = f(x,D(x)), x€[0,1],

1 1.3
®(0) = B /0 O (x)dx, (13

where 0 < @ < 1, a and 3 are constants.
Evidently, we get by applying the operator I to equation (1.3)

I9(:.DY®(x)) + al “®(x) = I f(x, D(x)),
which infers that

D(x) - P(0) +al“®(x) =17 f(x, P(x)),
and

(1+al®) <I>(x)=I“f(x,d>(x))+ﬁ/0‘1¢>(x)dx.

Treating the factor (1 + al®) as a variable and using BA, we come to

O(x)=(1+al®) ' 19f(x,®x) +B(1+al®)! /1 @ (x)dx
0

(-Dka* 1%+ f(x, ®(x)) + B i(—l)kakl"k /1 @ (x)dx
k=0 0

De I

(—1)kakm /0 (x = 5)™k+ 1 £ (5, (5))ds

kaad
I

0

S k k 1 ot [
+[>’kZ=;(—1) kD /0 ®(x)dx

- / (= )7 g (—alx = 5)7) £(5, D(s))ds + B / ' O(x)dx Ea. 1 (<ax?).
0 0

by noting that

/0 (x = )% Eq.q (—alx - $)7) (5. ®(s))ds

1 3 lal*
= a £l I'(ak +a) < Fee
k=0
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Uniqueness and Hyers-Ulam’s stability for a fractional nonlinear partial ... 5

and

1
®(0) :ﬂ/o D (x)dx.

In summary, equation (1.3) is equivalent to the following integral equation

X 1
D(x) = /o (x—s)“_lE(“, (—a(x—5)) f(s, (ID(s))ds+ﬁ/0 ®(x)dx Eqo, 1(—ax?).

(1.4)
The above integral equation, in fact, plays an important role in studying the uniqueness
of equation (1.3) in the Banach space C[0, 1] with the norm

[|®|| = max |D(x)| < +oo.
x€[0,1]

We further assume there is a constant £ > 0 such that f satisfies the following Lipschitz
condition:

| £ G, y1) = f(x,y2)] < Ly = yals
and

L
B =—Eq.ala]) +|BlEa.(al) < 1.

Then equation (1.3) has a unique solution in C[0, 1].
To prove this, we define a nonlinear mapping M over C[0, 1] as

(M®)(x)

- / (= )% g (=alx = 5)7) £(5, D(s))ds + B / () dx Ea 1 (—ax®).
0 0

It follows from the above that (M®)(x) € CJO0, 1]. We are going to show that M is
contractive. For @, ®, € C[0, 1], we have

(M®1)(x) = (MP)(x)

- /0 (= )% Eq.q (—alx — )%) [f(5.®1(5)) - £ (5, ®5(s))]ds

1
B /0 [, (x) — Dy(x)]dx Eq. 1 (—ax®).

Hence,

L
IM® — MD,|| < (EEa,a(|a|) +|BlEq,1(|a]) | [|@1 — Bl = B ||D; — D,

Since B < 1, we claim that equation (1.3) has a unique solution in C[0, 1] by Banach’s
contractive principle (BCP).

We define S([0, 1] X [0, 1]™) as the Banach space of all continuous mappings from
[0,1] x [0, 1]" to R with the norm

Al = sup Ay, )], for A€ S([0,1] x[0,1]").
(> w)e[0,1]x[0,1]"

Fractional partial differential equations (a generalization of classical PDEs of integer
order) are used to model various phenomena in physics, engineering, and other fields.
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There are intensive studies on fractional PDEs using various approaches, such as inte-
gral transforms [9], analytical and numerical solutions [10], homotopy analysis technique
[2, 11], variational iteration method [12] and so on. Very recently, Li et al. [6] investi-
gated the uniqueness of solutions for the following fractional PDE with nonlocal initial
value conditions for2 < @ < 3,0 < @; < 1 and @, > 0 based on BCP, BA and the
multivariate Mittag-Leffler function for a constant 7:

0 I

3 —A(x, w) + co(w) —
X Ix™
= fx, w, Ay, w)),

1 a 1
A0 =1 [ Avoidr, 3000 = [ Ut A0.0) =0

Ay, w) + c1(W)A(x, w) + 2 (W) A(y, w)

where (y,w) € [0,1] X [0,b], ¢ € C[0,1] and f : [0, 1] X [0, b] X R — R satisfies
certain conditions.

We will first convert equation (1.1) into an equivalent implicit integral equation in a
series by BA in Section 2, and then further study the uniqueness of solutions via BCP in
the space S([0, 1] X [0, 1]™). In Section 3, we derive the Hyers-Ulam stability based on
the implicit integral equation and present several examples demonstrating applications
of the key results obtained in Section 4. Finally, we summarize the entire work in Section
5.

2 Uniqueness

We begin converting equation (1.1) to an implicit integral equation then derive sufficient
conditions for the uniqueness based on Banach’s contractive principle.

Theorem 2.1 ~ Suppose aj, ¢1, 2, ¢3 € C([0,1]") for j = 1,2,---, j, ¢ is a continuous
function on [0, 1] X [0, 1]" X R with

sup |¢| < +o0,
(x>w,y)€[0,1]x[0,1]"xR

«jj 2 0foralli=1,---,n, j=1,---,1, and thereis 1 < iy < n such that a;,; > 0 for
all j =1,---, 1. Furthermore, we assume that
o aqy Cl/lj+1
@ - @y azj+1
Mj: 2'1.' 21 2] ,
Qp1 0 Al Qpj+ 1
and

1

o1\ 1 ()
=1-|-+—-] = AE, (A, LA 0.

Q (4 Q)F(Q’)JZ:; J M; (1 l)>
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Uniqueness and Hyers-Ulam’s stability for a fractional nonlinear partial ... 7
Then equation (1.1) is equivalent to the following implicit integral equation

A=g(—1)k Z (kl,-f ,kl) (al(a))l‘l a“"'lrpzl"l)k]---(al(w)l)(:llau'“]r‘l’nl)kl

ki+--+kj=k

(1) (1= 2x + x°) + ¢2(w) 2x = x*) + ¢35 () (x* = X) + 125 (xd — X°¢)

+ I8 (9 - 2x¢)+1“¢+2a,(w>1“”--- LIS (A = XPA)
j=1

+ > @@ LI (A = 20A). @.1)
=1

In addition, A is a uniformly bounded function satisfying

AL S GES (A A max lor(@)]+ max 18a(@)]+ 5 max 103w

wel0,1]
11
137 gl 1) (a.a+1)
+ = CU(AL - ADHET T (AL LAY sup o]
0| T'(e) Mo (> @,y)€[0,1]x[0,1]1 xR
< +00,

where

airccoay 1
Mo = @ - a1
Ap1 - a1
Proof It follows from [6] that
a 6a ’ ” XZ
Iy (9_“ ()(,a))=A()(,a))—A(O,a))—AX(O,a)))(—AX(O,w)7,

where 0 < @ < 3.
Applying the integral operator /! to equation (1.1) and using the condition A(0, w) =
#1(w), we get

2
A ©) = 61(0) = A (0. w)x = Ay (0.0) %

I
+ Z aj(w)l)‘gllalj DAy, w) = 176 (x, w, A(x, w)). (2.2)
=
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Setting y = 1, we come to
, " 1
AL, w) = ¢1(w) = AL(0,w) = A, (O, a))z

!
3 af@) I I LA w) = 1 b . A w). (23)
J=1

Differentiating equation (2.2) with respect to y, we deduce that for y =1,
$3(@) = A (0.0) = A, (0, 0)

1
+ D @ @ES Y LY A @) = TS e 0, Al @), (24)
Jj=1

by the given initial condition.
From equations (2.3) and (2.4), we derive that

%A;;(o, ) = $1() - $2(w) + ¢3(w)

l
+Zaj(w)11mj TR (15:1 _I)((Y;l)/\()(’w) + (I;::l _I;:_II) P(x, w, Ay, w)),
J=1

and

A (0, ) = 2¢2(w) = 2¢1(w) — ¢3(w)

1
+ Y ag (@) (1;;11 - 21;21) Ay, w) + (1;;11 - 21;;1) d(x, 0, Ay, w)).
=1
Hence,

I
(1 +Zaj(w)1/\‘fllalj I Ay, w)

=1
= ¢1(w)(1=2x + x%) + $2() (2x = x°) + b3 () (x> = x) + [} (x$ = X°9)

1
FIL O = 20) + 120+ 3 ag (@)Y - IV I (A = x*A)
j=1

l
# D @ (@)Y LI (A = 20A).
j=1
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Uniqueness and Hyers-Ulam’s stability for a fractional nonlinear partial ... 9
Using BA, we deduce that
! -1

Aly,w) = 1+Zaj(a))lala" Y e
j=1

(1) (1= 2x + x7) + d2(w) (2x = x°) + $3(w) (x* = x) + I (xd — X ¢)

+ I (9 - 2x¢)+1“¢+2a,(w)1“” LI (eA = XPA)

+Zaj(a))lllyl'f~~ rI"’I"l()(zA 2xN))

) 1
= Z(—l)k Zaj(w)I;If"f R
k=1 j=1

(1) (1 =2x + x°) + 62 (0) 2x = X°) + $3(w) (x* = x) + 125 (xd — X°9)

k

ayj

+ I (% - 2X¢)+I“¢+Za1(w)l IS (A = XPA)

Jj=

+ Z aj(@)I M T (A = 20 A))

= i(—l)k Z (k] k kl) (al(w)lj,’lla” ...Irtlrm)k1 (Cll(w)l)?lla” ...Ir(lyn,l)kl
= SRR

ki+--+kj=k
(1) (1= 2x + x7) + $2(0) 2x = X°) + $3(w) (x* = x) + 125 (xd — X°9)

aj

+I7 (¢~ 2X¢)+I"¢>+Z aj(@)I7 LIS OcA = xPA)

+Za](w)1“”- LI (A =2¢N) =Ty +-- + T,

where

b ak ZX ZX i
T, = _1)k X 1
1 ;( ) I'(ak +1) ( T+ak @ 2+ ak)(1 +ak)) Ze—:k,:k (kl,-'- ,kz)

@ @I 1) (@@ 1) (),

a/k+1

X k
TZ—ZZ(— )kr(a/k+2) ( ak+2)k1+'§q:k (kl,"' ,kl)

ar (@) IS (@) 1) g (w),

2024/04/09 17:18

https://doi.org/10.4153/S0008414X24000348 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X24000348

10 C.Li

sl Xa/k+1 2X k
Ty= Y (-1 -1
; I'ak +2) \ak +2 k1+'Z':kl=k ki, k;

@@ 1) (@ (@) 1) g (),

n=yent Y (@ o
k=1 ) s

ki+-+kj=k
IR (- X

T5=Z(—1)k Z ( k )(al(w)llzm...]r‘l’m)kl "'(al(w)lfx”-"lf”’)kl

k=1 Kyt =k ki, ki
I (O - 2009,

T6=Z(_l)k Z (k1 k kl) (al(w)llflll,..];l’m)kl..,(al(w)llml...[r‘ll’m)kl
k=1 k k ’ ’

1+ k=

k+
° I;l a¢’

! o0
T7=Zaj(w)2(—1)k Z (kl,f' ,kl)

Jj=1 k=1 ki+-+ki=k

ki . .
. (al(w)llﬂu . ,Ir(llm)lq . (al(w)ll“” X "Ir(zlnl) 1 I/‘C/,kllflu . 'I’fllnjl)((y—l(/\/ _X2)A’

and finally,
1 co k
_ . _1\k
UEDNIOPICHINDY (kl’___’kl)
Jj=1 k=1 ki+--+kj=k

ki . .
. (al(w)ll(ln "'Ir(zlnl)kl (al(w)llml ...I;lynl) I)((rkllau _.'I:njl;l:1(/\/2 _ 2)()/\.
Let
] :AAQ .:1,27'..’1’
S laj(w)| =4, j

1
max |1 -2y +x?|=1, max |2y —x%|=1, max [y*-xl=-.
Xe[oﬁ]l X+ X’ XG[O,”I X = x°l e, I =xl=7
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Thus,

- 1 k
TV Y — ( )
— I'(ak +1) byt =k ki,- -,k
k k
AT ...All
+ (Y]]kl + 1) .- ~F(an1k1 + -

ctayk+ 1)

) F((Y”kl + .-
: ( max [¢1(w)| + maX 2 ()] + 7, max |¢3(w)|) + o1 + T2 + T3,
welo,1]" we|o,
where
1 1
o e, 2
21
I'la) koF(ak+1) ke ,oo L kg
Ak Ak
: T sup 9,
F(a'llkl + -t aqrk + 1) cee F(anlkl -tk + 1) (¢, w,y)€[0,1]x[0,1]" xR
- 1 k
St 5
pord IN'ak+a+1) e Y ki, Lk
Ak
: 1 l sup 1,
F(G,’llkl +"'+a’11kl+1)"'r(a/n1k1 + - +a’nlkl+1) (¢, w.y)€[0,1]x[0,1]" xR
and

Al &, < k
Tr2 =
2 4F(a)z Zr(ak+1) Zf ki, ks
k=0 ki+--+kj=k

J=1

k k
. All...All
F(a11k1+~-+allkl+a]j+1)-~~F(an1k1 ~-+a/nlkl+a/nj+1)
T z 2, 2 (o)
F(a+ 1) F(ak+ 1) oo <Lk
k k
. Al AT
F(a”kl+~--+a”kl+a1j+1)~~F(an1k1 c+ @k + ap; + 1)
i
lIA]l (a.1) lIA]l (a 1)
= AENTV (AL A AGE, 7 (Ar,
4r(a);’%‘(l r()Z (Ao A0
1 (a/ 1)
:”A” (_+ ) A E (Al, s )
[(a )Z
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Using our assumption

(1
1-[-+
4

_ 1
0= ) (@)

we claim that

ZA E<" Diay,--

C.Li

-, Ap) >0,

1
I GBS e A max 0@+ max 620+ max los(@)

1 1
1 4_‘ a (a' 1)
+ = (A, -
0| I(a) )
< +o00,

AN+ ESTT (A

A7)

sup
(x,w,y)€[0,1]x[0,1]" xR

which indicates that A is a uniformly bounded function. This completes the proof of

Theorem 2.1.

Theorem 2.2 Suppose aj, d1, 2, p3 € C([0,1]") for j = 1,2,---

, J, ¢ is a continuous

and bounded function on [0, 1] X [0, 1] X R, satisfying the Lipschitz condition for a positive

constant C

l¢(x, w,y1) = d(x, w,y2)| < Cly:

CYZJ Zoforalllz 1’ 9n7j: 1’

-y2|, y1,y2 €R,

.1, and thereis 1 < ip < n such that a;,; > 0 for

all j =1, -+, l. Furthermore, we assume that
a1 @q) (},’1]'+1
Mj: 21 @y A2j i
Qp1 0 Qpl Apj+ 1
and
11y 1 O, ()
=l-+=|— > A,E®V@A,,-- A
1 (4 a)l“(a);j/v‘j(l )
1 1
4 ((11) (a,a+1)
+C m Mo (Aq,-- ,A[)+EMO (A,---,AD | <1,
where
aj - oay 1l
1
Mo = a2 s
apt1 - Apl 1

Then equation (1.1) has a unique uniformly-bounded solution in the space S([0, 1] X

2024/04/09
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Proof We define a nonlinear mapping ¥ over S([0, 1] X [0, 1]") as

(FN)(x, w)
S k k ayan; ani ki agan nl ki
DYDY o (al(w)l)(ll -.-1,,") ~-(al(a))l)(ll L )
k=0 Kyt thg=k VLT R

(P (@) (1= 2x + x7) + ¢2(w) (2x = x°) + b3 () (X = x) + 175 (x¢ — X°9)

1
I (00 = 20) + 129+ > aj(@)V - LV I (yA = x?A)
=1

1
+ Z aj(a))llm'f . ~I:"'f1)‘(’:1()(2A - 2xN)).
=

It follows from the proof of Theorem 2.1 that (FA) € S([0,1] x [0, 1]"). We shall
show that F is contractive. Indeed, for Ay, A, € S([0, 1] X [0, 1]™), we have

(F A1) (x> ) = (FA) (x> w)

= k ki ki
S0t 5 (o b o) (o)
k=1 k ’ ’

kit +ky=
SIS (p O 0, M) = X PP 0, M) = 25 (xd(xs @, As) = X6, 0, A2))
+ I/{/lzl (X2¢(X’ w, Al) - 2X¢(/\/’ w, Al)) - I;/:l (X2¢(/\/» w, AZ) - 2X¢(X9 w, AZ))
[
+ 1260w, A1) = I ¢ (x, w, Az) + Z aj(@ " LIS oA = XA

Jj=1
l

l
=D @) LI (A = A + D ag (@) YT (A - 20
J=1 Jj=1
1

= D @) LI (A - 20A)
j=1

:i(—l)k Z (kl k kl) (al((l.))l/{,lllan"'I;Llnl)kl"'(a[(ll.))l/\(,l]]al["'l;ly"l)kl
VDT

1 1
O aj@) I M o= x (A= A + ) aj (@) M T
Jj=1 Jj=1
S =20 (A1 = M) + 125 (x = x ) (B0 @, Ar) = d(xs w, A))

a

+ I/\(:l(/\/z - 2X)(¢(X’ w’Al) - ¢(X’ w, AZ)) + I;(¢(X, w, Al) - ¢(X,0J,A2)))
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Therefore,
IFA — FA
1 1) 1 « ()
<l=-+—-]=— > AED (A, A) A - A
(4 a)r(a)lz_; iEp; (A D 1AL = Aql
1+1
4@ (el (@atl) , )
+C F(a/) EMO (Al, ,Al)+EMO (Al’ ’Al) ||A1 A2||
=qllA - Ayl

Since ¢ < 1, equation (1.1) has a unique uniformly-bounded solution in S([0, 1] X
[0, 1]™) by BCP. The proof is completed. |

3 The Hyers-Ulam stability

In this section, we are going to derive the Hyers-Ulam stability of equation (1.1) using
the implicit integral equation from Section 2.

Definition 3.1 We say that the FNPIDE (1.1) is Hyers-Ulam stable if there exists a
constant K > 0 such that for all € > 0 and a continuously differentiable function A
satisfying the three boundary conditions and the inequality

<
Ox ©

C@" < ayj An j
A ©) + ) @ (@) LA @) = ¢ 0, Ay, )
j=1

then there exists a solution A of equation (1.1) such that
IACY, w) = Ao(x, w)Il < Ke,
where K is a Hyers-Ulam stability constant.

Theorem 3.1  Suppose aj, ¢1, ¢, ¢3 € C([0,1]") for j = 1,2,---, j, ¢ is a continuous
function on [0, 1] X [0, 1]" X R satisfying the Lipschitz condition for a positive constant C

[y, w,y1) = d(x, w,y2)| < Cly1 = y2|, y1,y2 €R,

«jj 2 0foralli=1,---,n, j=1,---,1, and thereis 1 < iy < n such that a;,; > 0 for

all j =1,---, 1. Furthermore, we assume that
- Qg Cl/lj+1
1 ay i+ 1
Mi=1"" S
Qp1 0 Al Qpjt 1
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and
! (e
q=\- AGjE, (AL A
-3
1 1
Z+_ ( 1) ( +1)
+C DAL A FETT (AL A [ < 1,
T(a) ) (A D+E T (A 1)
where
ap-c-oay 1
M, = |22 @ 1
Ani - Q1

Then equation (1.1) is Hyers-Ulam stable in the space S([0, 1] x [0, 1]™).

Proof Let

ok L o
M) = 52 A00) + D ag @Y -
Jj=1

Then

J=1
and from our assuption
Al < €.

It follows from the proof of Theorem 2.1 that

Ay, w)

ki+-+ki=k

1
w) + Zaj(a))llalj I Ay, w) =

I;llnyjA(X’ (1)) - ¢(X’ w, A(X’ (1)))

¢(X’ “)’A(X’ (1))) +A1 (X’ (1)),

ky kl
I'(lml) (al(w)l)t(lllall I;llfnl)

(1) (1= 2x + x7) + d2(w) (2x = X°) + $3(w) (x* = x) + I (xd — X 0)

+I“ 1()( ¢ —2xp) +I”¢+Za1(a})lm’

J=

+Zaj(a))11(ll'f~~~ rI"’I"l()(zA 2xA\)

LY IS (YA = x°A)

+ 105 (e = X)) + I, (0 A = 2 Ay) +TEA),
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and
AO(X"’-))
> k k k
— -1 k a Y Ad AL L0 1'” (ll(w)lalall"‘lr?nl !
ki -k X1 n X1
k=0 kytrkg=k DT R

(1) (1= 2x + x7) + d2(w) (2x = x°) + 3(w) (x* = x) + 125 (xd — x°0)

[
I (0 = 20) + 120+ > aj(@)V - L I (Ao = X Ao)
=1

1
# Y ai @)Y LV (A = 2xA)),
j=1

by noting that ¢ is a continuous and

sup ¢ (xs w, Alx, w))|
(x,w)el0,1]x[0,1]"
= sup |¢()(,(1),A(){,0))) _¢(X7w70)+¢(/\/»w70)|

(x-w)€[0.1]x[0,1]"

<ClAll+ sup [¢(x, w,0)] < +oo,
(x,w)€e[0,1]x[0,1]"

if A e S([0,1] x [0,1]").

Hence,

IAQx @) = Ao(x, W)

(o]

k

<
ki,--

ki ki yak yayiki+-+ayk
( . kl)Al "'Al Ix I
k=0 ki+---+k;=k ’

o fgmirter el (razl G - ) (@ (xs @, A) = (¢ w, Ao))
+ 19100 = 20 (6 (. @, A) = ¢(x. . A)| + IZ (S (x. . A) = ¢ (. @, Ao))|

1
+ Z a‘/(w)llall . I:llnj[/;/l’:—ll |(X _ XZ)(/\ _ A0)|
Jj=1

1
+ Y ai @) LI O = 2x0) (A= Ao
J=1

+ 125 A = XPAD] + T2 [ AL = 2x A+ IE 1A,
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which implies that
1A = Aoll

= k
ki | pkiyak janki+tank
Z Z (k kl)Al Al [X h
0 kb thy=k N\

. I(I,,Ik1+ +an kg

ST OeA = X PAD ]+ T O A = 2 A |+ IE A )

1
1 1 1 (a,1)
+ |-+ — _EAE ’ A,...’A A — A

11
+C F( ‘;E“’”(Al,m A+ Eje ™ (A A [IIA = Aol
11
_+_ ,1) (a,a+1)
a,
= 1A = Aoll + | o NG (A Ap + BT (A A A

Finally, we have

IAGx, w) = Ao (x> W)l

1 1
1 Z a (a/ 1) (a,a+1)
< — A, AN+ ES A, A A
o | TN A A+ E Y (A [l
< Ke,
where
1 L1 1
= A @ (A A+ E T (A4 |.
1 _ q F(a) b 9 MO b b
This completes the proof. [ ]

Remark 3.2 We should point out that Theorem 3.1 does not require the condition that
¢ is a bounded function. Moreover, A is not a uniformly bounded function in general,
which is different from Theorem 2.2. Since Q = [0, 1] x [0, 1]" is bounded and closed
(compact) the Hyers-Ulam stability is guaranteed by noting the fact that all continuous
functions reach their maximum and minimum over Q. The Hyers-Ulam stability con-
stant K obtained above is the best possible in our approach. There is a possible lower
bound on the Hyers-Ulam stability constant but it would be tough and difficult to find it.
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4 Examples

We will present two examples demonstrating applications of key theorems obtained
from previous sections.

Example 41 The following fractional differential equation with a nonlocal initial
condition

(DP3P(x) +20(x) = 1= sin(x®(x)). x € [0.1],
513
A (4.1)

®0)=—= [ @
0 =135 | (x)dx,

has a unique solution in C|0, 1].

Proof Clearly,

F3) = 2 sin(o),

is bounded and

1 1
LfCey1) = fuy2)] £ — ey —xy2| £ —y1 = y2ls

513 513
if x € [0, 1]. It remains to find the value
8= ZE, () + 1BEai(la) = —=Fo505(2) + = Eos1(2)
a ’ 513 1349 ™

~ 0.851641 + 0.0807568 < 1.

Hence, equation (4.1) has a unique solution in the Banach space C[0, 1]. [ ]

Example 4.2 The following FNPIDE with a mixed boundary condition

525 4 ) )
< = Ay, w) + Z aj(w)ll(l” .- ~If4"A()(, w)
=

dx
1 4.2)
= g5 @t A )+

1 1
A, 0) =’ +1, A(l,0) = go, N'(1,0) = Z0,

where
_w 1y, B |w] 1
aj(w) = 3’ a(w) = Ew , az(w) = 3 as(w) = 9’
and
1.1 1.3 0.7 1.4
(@) rog = | 132331 2
WS4 =107 1.6 2.1 1.2]°
2 314122

has a unique uniformly-bounded solution and the Hyers-Ulam stability in the space
S([0, 1] x [0, 1]).
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Proof Clearly, a; for j = 1,2,3,4, ¢1, ¢2, ¢3 € C([0, 1]*) and

1
¢()(,(1),A) = ECOS(){(’U-FA(X’(’U))-'_XZ_{_Q)Z_'_Z,

is a continuous and bounded function on [0, 1] x [0, 1]* X R, satisfying the Lipschitz
condition with C = 1/59:

1 1
l[¢(x, w, y1) = d(x, w, y2)| < 5|COS(XCU+)’1) —cos(yw +y,y)| < Eb’l - yal.

Furthermore,
A1 =1/3, Ay=1/2, A3=1/3, Ay=1/9.

We need to compute the value

1
_ 1 1 1 (a,1)
0=+ 3) ey A a0
=

1 1
- +
4 ((x 1) (a,a+1) L

—1 L (251)
_(4+2.5) ['(2.5) Z En (1/3,1/2,1/3,1/9)

1 1

1 Z+ (251) (2535)
59| T2s) 5) (1/3,1/2,1/3,1/9) + E . (1/3,1/2,1/3,1/9) |,

where

(1.1 1.3 0.7 1.4 2.1]
1.3233.1 2 2.3
0.7 1.6 2.1 1.2 1.7
|2 314122 3|

M,

(1.1 1.3 0.7 1.4 2.3]
1.3233.1 2 3.3
0.7 1.6 2.1 1.2 2.6
| 2 3.14.1224.1]

M, =

(1.1 1.3 0.7 1.4 1.7]
1.3233.1 2 4.1
0.7 1.6 2.1 1.2 3.1

2 3.14.1225.1

(1.1 1.3 0.7 1.4 2.4]
132331 2 3
0.7 1.6 2.1 1.2 2.2
2 3.14.12232

My
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and finally

1.1 1.3 0.7 1.4 1
1.32331 2 1
071621121
2 3141221

My =

Using the following Python codes to get
g = 6.49406088226196  1072%% < 1.

Hence, equation (4.2) has a unique uniformly-bounded solution in the space S([0, 1] X
[0, 1]*) by Theorem 2.2, and it is Hyers-Ulam stable by Theorem 3.1. [ ]

# beginning codes for Example 8
import math
from sympy import gamma

def partition(n, m):
if m ==
yield (n,)
else:
for 1 in range(n+l):
for j in partition(n-i, m-1):
yield (i,) + 3

def ME (M, z, alpha, beta): # (alpha, beta)-Matrix
#Mittag-Leffler function

m = len (M)

z1l = len(z)

result = 0

for 1 in range (0, 20): #approximate value

for 1_partition in partition(l, zl):
if all (map(lambda x: x >= 0, 1_partition)):
combination = 1
for 1 in range(zl):
combination *= math.factorial (1_partition([i])

combination = math.factorial(l) / combination
gamproduct = 1
for 1 in range(m):

gaminput = sum([M[1i][]j] » l_partition[j]
for j in range(zl)]) + M[i][zl]
gamproduct +*= gamma (gaminput)

numerator = 1

for i in range(zl):
numerator x= z[1] xx 1_partition[i]
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(numerator / gamproduct) = combination
(1/gamma (alpha * 1 + beta)) =* result

result +=
result x=
return result

#The following is our calculation of g value

alpha = 2.5

beta =1

M1 =q[(x.12, 1.3, 0.7, 1.4, 2.11, (1.3, 2.3, 3.1, 2, 2.31,
(6.7, 1.6, 2.1, 1.2, 1.71, [2, 3.1, 4.1, 2.2, 31]

M2 = [[1.1, 1.3, 0.7, 1.4, 2.31, [1.3, 2.3, 3.1, 2, 3.3]1,
(6.7, 1.6, 2.1, 1.2, 2.61, [2, 3.1, 4.1, 2.2, 4.1]]

M3 = [[1.1, 1.3, 0.7, 1.4, 1.71, [1.3, 2.3, 3.1, 2, 4.171,
(6.7, 1.e¢, 2.1, 1.2, 3.11, [2, 3.1, 4.1, 2.2, 5.1]1]

M4 = [[1.1, 1.3, 0.7, 1.4, 2.41, [1.3, 2.3, 3.1, 2, 31,
(6.7, 1.6, 2.1, 1.2, 2.21, (2, 3.1, 4.1, 2.2, 3.2]]

M0 = (1., 1.3, 0.7, 1.4, 11, [1.3, 2.3, 3.1, 2, 1],
6.7, 1.6, 2.1, 1.2, 11, [2, 3.1, 4.1, 2.2, 1]]

z = [1/3, 1/2, 1/3, 1/9]

resultl = ME (M1, z, alpha, beta)

result2= ME (M2, z, alpha, beta)

result3 = ME (M3, z, alpha, beta)

result4 = ME (M4, z, alpha, beta)

result5 = ME (MO, z, alpha, beta)

result6 = ME (MO, z, alpha, alpha + 1)

result = (1/4 + 1/2.5) * (1/gamma(2.5))*(1/3 * resultl +

1/2 * result2 + 1/3 % result3 + 1/9 x resultd)
+ 1/59 % ((1/4 + 1/2.5)/gamma(2.5)) * resulth
+ 1/59 % resulté6

print ("The g value is",
#end codes

result)

Remark 4.3 We have used the Python language to find approximates values of our
newly established pair-parameter matrix Mittag-Leffler functions to study the unique-
ness of solutions to equation (1.1). Slightly changing the codes we can compute values
of the multivariate Mittag-Leffler functions. As far as we know from current research
related to computation of the Mittag-Leffler functions, this approach is efficient and
simple.

Conclusion

We have studied the uniqueness and Hyers-Ulam stability to the new equation (1.1)
based on the pair-parameter matrix Mittag-Leffler functions, Banach’s contractive
principe as well as Babenko’s approach. A few examples were provided to demonstrate
applications of main results derived. The methods used in the current work are also
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suitable for different types of differential equations with various initial or boundary con-
ditions, as well as integral equations with variable coefficients, which cannot be handled
by any existing integral transforms.
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