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Abstract
Complete exploration of design spaces is often computationally prohibitive. Classical search
methods offer a solution but are limited by challenges like local optima and an inability to
traverse dislocated design spaces. Quantum computing (QC) offers a potential solution by
leveraging quantum phenomena to achieve computational speed-ups. However, the prac-
tical capability of current QC platforms to deliver these advantages remains unclear. To
investigate this, we apply and compare two quantum approaches – the Gate-Based Grover’s
algorithm and quantum annealing (QA) – to a generic tile placement problem. We
benchmark their performance on real quantum hardware (IBM and D-Wave, respectively)
against a classical brute-force search. QA on D-Wave’s hardware successfully produced
usable results, significantly outperforming a classical brute-force approach (0.137 s vs 14.8 s)
at the largest scale tested. Conversely, Grover’s algorithm on IBM’s gate-based hardware was
dominated by noise and failed to yield solutions.While successful, the QA results exhibited a
hardware-induced bias, where equally optimal solutions were not returned with the same
probability (coefficient of variation: 0.248–0.463). These findings suggest that for near-term
engineering applications, QA shows more immediate promise than current gate-based
systems. This study’s contribution is a direct comparison of two physically implemented
quantum approaches, offering practical insights, reformulation examples and clear recom-
mendations on the utilisation of QC in engineering design.

Keywords: Configuration design, Quantum computing, Data-driven design, Engineering
design

1. Introduction
Numerical algorithms, simulations and modelling techniques enable designers to
explore vast design spaces and identify optimal solutions. Examples include finite
element analysis for thermomechanical analyses (Belhocine & Abdullah 2020),
generative design for structural optimisation (Gonzalez-Delgado, Jaen-Sola &
Oterkus 2023), and Monte-Carlo cost–benefit analyses for supply chain optimisa-
tion (Schiffmann et al. 2023). Design processes that make significant use of these
techniques are often referred to as data-driven design.

All these methods enable designers to discover key information about their
problem and its potential solutions. Examples include sensitivity scores against
design parameters, the number of valid options, and scores assessing the ‘fit’ of a
solution to a design problem. The role of the designer therefore shifts from the
generation of solutions to the definition of design problems and the evaluation of
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solutions with design options generated and scored computationally (Biskjaer,
Dalsgaard & Halskov 2014).

In this new role, designers continue to push the boundaries of what classical
computation can achieve in the time constraints of the design process. Designers
often wish to evaluate more options, encode more requirements and represent
more complex design problems. Each of these factors increases the computational
complexity and time for a classical computer to reach a solution. For example,
integrated circuit design used to contain a handful of transistors, and their design
could be handled manually using relatively simple computational tools. However,
today’s integrated circuits can contain trillions of transistors (Lécuyer 2022), and
their design requires sophisticated computer-aided design software. This increase
in transistor count has also led to a dramatic increase in the number of design
variables, constraints, and objectives that must be considered.

However, the benefit of classical computational methods is plateauing as
problem complexity increases. This limitation primarily stems from the inherent
complexity in computationally representing, resolving, and exploring design
spaces. This increasing complexity becomes a limitation as we reach the upper
end of our manufacturing abilities for classical processors. Despite increasing
numbers of transistors the clock speed of classical computers is capped at around
5GHz (Sutter 2005). This indicates we have almost exhausted our vertical scaling
potential. As we work in this processing-speed-limited world, understanding and
addressing the challenges with problem complexity is crucial to enhance the design
process. Key challenges relevant to engineering design include:

• High-dimensionality:Design problems often involve a vast number of variables
and constraints, resulting in high-dimensional solution spaces. Navigating and
optimising these spaces efficiently is a complex task, requiring advanced algo-
rithms and computational power (Gopsill, Schiffmann & Hicks 2022).

• Trade-offs and multi-objective optimisation: In many engineering design
scenarios, there are conflicting objectives that must be carefully balanced.
Achieving the optimal trade-offs between parameters such as cost, performance,
reliability and sustainability presents a significant challenge (Sun et al. 2018).

• Design space exploration: Traditional design approaches often rely on human
intuition and experience, limiting the exploration of alternative design options.
Expanding the search space to consider a wider and more diverse range of
solutions is essential to discovering globally optimal designs.

• Computational bottlenecks: As design complexity increases, so does the com-
putational cost and time required to perform detailed analyses, simulations and
optimisations. This leads to longer design cycles and potentially hampers the
ability to iterate and explore design alternatives.

• Incorporating uncertainty: Engineering design is subject to various sources of
uncertainty, includingmaterial properties, environmental conditions andmanu-
facturing variations. Effectively addressing and quantifying uncertainty is vital
for robust design decisions (Schiffmann et al. 2023).

Note that limited processing speed only reduces our ability to handle uncer-
tainty by hampering methods that rely on exploring more solutions – such as
Monte Carlo simulation. Other methods, such as probabilistic ones, can help to
incorporate uncertainty within processing speed constraints.
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Gopsill et al. (2022) illustrate these challenges through an example 3-stage
gearbox design problem. The design parameters for this system were as follows:

• 17 gear options for the 6 gears;
• 5 materials for the 4 shafts;
• 9 bearing options for the 8 bearings; and,
• 8 electric motors for the motor.

While only a relatively small number of options exist for each component
choice, the combinatorial nature of the design space results in solution space
featuring 5:18 × 1018 possible design options. Evaluating all these solutions would
require 164 years if each design option were able to be evaluated in a single clock
cycle on a 1GHz processor. This demonstrates the coupling between computa-
tional complexity and the scale of design space.

There are some subtleties, however, in that not every design option takes the
same time to compute, and one may not need to compute every option to identify
the optimum. Also, this gearbox argument uses the full factorial design space. This
was chosen not to overstate the limitations of classical approaches but to keep the
argument simple and highlight the speed at which problem spaces can grow with
only a few variables.

Having evaluated a set of options, it may be useful to store the results for later
analysis or selection. Assuming 5 bits are required to store a gear option, 3 bits for
thematerial, 4 for the bearings and 8 for themotors then a total of 15 bits or 2 bytes
is required to store a single design option. Multiplying this by the number of
possible options yields the storage required to capture the entire design space –
1:036 × 107 TB. With modern hard disk drives storage capacity in the 10s of TBs, a
designer can quickly create a design problem that cannot be resolved and stored in
its entirety under classical computation.

The gearbox selection task exemplifies the challenge of navigating vast design
spaces, even when the computation of a single design option remains trivial. The
computational time to evaluate a single design option can also pose a significant
challenge. Work that exemplifies this problem is concerned with the design of
winding strands in electrical machines – specifically their lay and how it affects AC
losses (Mellor, Hoole & Simpson 2021; Hoole et al. 2021). The authors discuss the
development of a conductor placement algorithm. For the algorithm to fill a single
slot with approximately 130 conductors, a run time of around 3 hours is required.
This is for a single slot, of which there will be multiple in an electric machine.
Further, this is for a single set of design parameters. Should the designer wish to
explore even a small number of design options this task quickly becomes intract-
able. Figure 1 demonstrates how the challenges of computing many solutions and
computing complex solutions combine to create the classically tractable problem
space.

To overcome these challenges, designers use design exploration (often referred
to as meta-heuristics) and optimisation algorithms that intelligently navigate the
problem space to find optimal solutions. Examples include gradient descent
methods, evolutionary algorithms, particle swarm optimisation and generative
approaches. Statistical methods also exist, such as those developed by Genichi
Taguchi, that focus on eliminating variables of lower impact from the problem to
shrink design spaces and make them more manageable (Ghani, Choudhury &
Hassan 2004).
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However, these each face their own issues as design spaces become increasingly
complex. For example, gradient descent struggles with convergence to local optima
and traversing discontinuous design spaces (Gopsill, Johns & Hicks 2021). At
these levels of increased problem complexity, the limitations of classical com-
putational methods become more apparent, particularly as the number of
variables, constraints and objectives grows. This presents a challenge in a world
where designers seek to continuously improve existing solutions, evaluate trade-
offs and integrate the latest knowledge into their design process. As a result, there
is a growing need formethods that canmore efficiently represent andmanipulate
design information.

1.1. A quantum computing primer

Quantum computing (QC) uses quantum phenomena to represent and process
information, which could overcome some of the barriers faced by designers using
classical computation. The field of QC remains an evolving field, within which
there are a variety of techniques being developed. Figure 2 provides a simple
comparison between two classical and two quantum algorithms, which are the
focus of this paper, applied to a layout style design puzzle. This is intended to give
readers unfamiliar with QC an idea as to how these quantum phenomena can be
leveraged to enable different approaches to computation.

The smallest unit of information represented in a quantum computer is a
quantum bit – referred to as a qubit. Classical computers process information in
binary states (0 or 1). The power of a qubit lies in its ability to exist in a state of 0, 1,
or both simultaneously. This property, known as superposition, is a core principle
of quantum mechanics.

An intuitive analogy for superposition is a spinning coin. Whilst spinning, it is
neither heads nor tails but has a probability associated with both outcomes. Only
when it lands does it settle into a single, definite state (either heads or tails).
Similarly, during the execution of a quantum computation a qubit can remain in a
superposition of 0 and 1.

Another crucial quantum phenomenon is entanglement. This occurs when two
or more qubits become linked in such a way that their fates are intertwined,
regardless of the distance separating them. To extend the coin analogy, imagine

Figure 1. A figure showing how the type of problems we can tackle using classical
computation are bounded by the number of options we can compute and the
complexity of evaluating a single option.
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Figure 2. A figure showing the comparison between two classical and two quantum
algorithms applied to a design puzzle. Here the puzzle is a layout type problem
requiring the placement of entities in a grid.
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two “entangled” coins. The outcome of one coin’s flip immediately influences the
outcome of the other. This interconnectedness allows for creating complex com-
putational states and is essential for many quantum algorithms.

While these analogies are helpful, the behaviour of qubits is formally described
throughDirac notation. The state of a qubit is represented by a vector called a “state
vector.” For a single qubit, the two basic states, the “heads” and “tails” of our
system, are defined as:

• The state 0, represented by the notation∣0〉
• The state 1, represented by the notation∣1〉

A qubit in superposition is described as a linear combination, or a weighted
sum, of these two basic states. This is shown mathematically in Equation (1):

∣ϕ〉= α∣0〉þβ∣1〉 (1)

where ∣ϕ〉 represents the superposition state created by superimposing the two
binary states ∣0〉 and ∣1〉, α and β are their linear coefficients, respectively. These are
complex numbers called probability amplitudes. Operations can then be per-
formed on a state, ∣ϕ〉, as part of a computational process. ∣ϕ〉 can eventually be
measured to extract an answer from the quantum computer. This answer would
be one of the basis states ∣0〉 and ∣1〉 and the probability of each being returned
would be αj j2 or βj j2, respectively (Yingchareonthawornchai, Aporntewan &
Chongstitvatana 2012).

A “universal” quantum computer can be used to perform the same tasks as
classical computers. However, quantum computer specific algorithms can take
advantage of quantum phenomena to provide a speed-up by skipping steps
required in classical algorithms. The superposition shown in Equation (1) is one
example of such quantum phenomena. Qubits can exist in a state of superposition.
This allows a single qubit to represent multiple possibilities at once, increasing the
information multiple qubits can hold compared to a classical bit.

Grover’s Algorithm is a classic example of a quantum algorithm. Designed for
unstructured search, it provides a theoretical quadratic speed-up. Similarly, Shor’s
algorithm, designed for integer factorisation, holds significant implications for
cryptography (Nielsen&Chuang 2001). In the Section 3.2.1 amore comprehensive
explanation of howwe can create an algorithmusing the building blocks of qubits is
provided, as well as an explanation of Grover’s algorithm since it is a key approach
investigated in this work. These quantum algorithms are primarily designed within
the framework of gate-based quantum computation. In this paradigm qubits are
manipulated through quantum gates, analogous to classical bits and logic gates in
classical computing.

An alternative to gate-based quantum computation is quantum annealing
(QA). Simply put, QA uses quantum phenomena to find the minimum value of
a function, making it well-suited for optimisation problems. It leverages quantum
entanglement and quantum tunnelling (Venegas-Andraca et al. 2018; Hauke et al.
2020) to define an energy landscape (similarly to that used in many classical
optimisation techniques) through a combination of penalty functions. In this
landscape, more optimal solutions have lower energies (less optimal ones experi-
ence higher positive penalties). QA can be thought of as an analogue form of
computation (Yang, Zolanvari & Jain 2023) as it involves running a physical
process that evolves over time and is described by a Hamiltonian. It is also called
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analogue as it can only solve problems of a certain form, whereas gate-model
computation is often called digital because theoretically it can perform any type of
computation.

A Hamiltonian is a mathematical construct that represents the time evolution
of quantum states. The Hamiltonian, H tð Þ, that represents the energy landscape
during QA is shown in Equation (2):

H tð Þ=A tð ÞH0þB tð ÞH1 (2)

where A tð Þ and B tð Þ are values varied from 0 to 1 and 1 to 0 over the course of the
computation, respectively, and H1 is some initial Hamiltonian in its ground state
andH0 is theHamiltonian whose ground state encodes an optimal solution (lowest
energy in the energy landscape) (Hauke et al. 2020). Here, you can think of the
process as slowly morphing one energy landscape into another. We start with a
simple, known landscape, H0, whose lowest point is easy to find. We then slowly
turn on the Hamiltonian for our actual engineering problem, H1, which contains
the complex landscape we want to explore. The functions A tð Þ and B tð Þ act like
control knobs, smoothly decreasing the influence of the simple landscape from 1 to
0 while increasing the influence of the problem landscape from 0 to 1.

If this evolution is slow enough, or adiabatic, such that no energy is added then
the final solution should be the global optimum. This is an interesting property for
engineering designers as it offers the potential to avoid local minima in rugged or
discontinuous design spaces (Koshka & Novotny 2020; Koh & Nishimori 2022).

QA is not using past results to generate and investigate a new population of
possible solutions, as many popular classical methods do. Instead, the process
begins with an initial quantum state that encodes the known optimal solution to a
simpler problem. This state is then evolved until it represents a solution to the
desired problem. This makes the probability of achieving a globally optimum
solution a function of different variables. This means there may be possible
problem scenarios that would benefit from a QA approach.

It should be noted that unlike some gate-based algorithms (see the Sec-
tion 3.2.1), the expected speed-up for QA has not been theoretically quantified.
However, there is evidence that QA can outperform classical alternatives for
certain classes of problems (Rajak et al. 2023). In fact, during the review of this
manuscript D-Wave, a major QA company, have claimed to be able to achieve
classically impossible results through QA (King et al. 2025). This development is a
result of QA systems maturing considerably in recent years (Hauke et al. 2020).
This hardware advancement affirms QA as a suitable area for exploration in this
Noisy Intermediate-Scale Quantum (NISQ) era. NISQ devices are those devices
that, while capable of outperforming some classical approaches, suffer from
substantial error in their results due to quantum noise (Dasgupta &Humble 2020).

1.2. Research opportunity

An important feature of quantum computing research is the recognition that both
gate-based and QA methods hold promise in the near and long term. This
realisation underpins the importance of exploring all avenues until a dominant
method emerges such that we can take full advantage when/if it does. The field is
still in its infancy and development of hardware is rapid. Many approaches exist,
including those just discussed and hybrid versions – approaches that combine
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classical and quantum processing. It is unclear exactly how we will gain
“advantage” over classical computation usingQC. For engineers a central challenge
emerges: how to represent problems effectively to exploit the unique strengths of
both gate-based and annealing approaches? Further, a gap exists in the current
research that specifically addresses how to implement the developing approaches
within existing hardware. As such, it is of value to engineering designers to explore
a variety of QCmethods to evaluate their potential in supporting design processes.

It is timely as recent years have seen an acceleration in the development and
maturity of quantum hardware, a trend summarised in Figure 3. This progress has
not only increased the number of available qubits and the variety of hardware
architectures but has also democratised access to these systems. Researchers can
now execute algorithms on various quantum computers through cloud platforms.
Furthermore, the development process has been significantly streamlined, with
software development kits (SDKs) emerging that provide a unified interface to a
multitude of quantum backends, including both physical hardware and increas-
ingly powerful classical simulators. This consolidation simplifies the process of
comparing different quantum approaches and hardware, lowering the barrier to
entry for engineers.

The contribution of this work provides an insight into the readiness of the
different hardware options for a generalised instance of a configuration-based
design task involving large numbers of options/combinations and comprising
many constraints. Configuration/layout design is a common class of problem in
engineering (Khalafallah & El-Rayes 2011; Dimitrova &Maréchal 2015; Chen et al.
2021), and this work utilises a generalised (non-context specific) instance of this
class.

This insight could be used to eliminate the investigation of certain options for
unsuitable problem architectures, as well as provide examples for how problems
can be refactored to be quantum-solvable. It also provides readers with a demon-
stration of how the same problem can be formulated in different ways and the
implications of such a formulation. In addition, a methodology is laid out for
applying two QCmethods to an engineering design problem. This methodology is
applied to two case studies, giving a demonstration of the process from problem
choice all the way to obtaining results from today’s quantum devices. Finally, this
methodology and its efficacy are reflected on to suggest improvements.

This paper continues with a Related Work section, which provides the reader
with an overview of the ways in which some quantum methods have already been
employed by engineering designers and to what extent they have considered the
available hardware in their applications. This is followed by the Experimental
Setup, covering the steps taken throughout the study to achieve results enabling
hardware, results, and problem formulation comparison. The results achieved via
the experimental process are then presented, showing how the different quantum
approaches perform. The implications of these results are then explored in the
Discussion section. Finally, the contribution of this paper is summarised in the
Conclusion.

2. Related work
The RelatedWork provides a summary of the field investigating the applications of
QC to justify the timeliness and nature of the investigation. QC application areas is
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Figure 3. A figure showing the major developments in QC relevant to engineering design. This figure shows
how the field is rapidly progressing from creation to developing deployable methods and the required
supporting hardware. The sources for the information presented in this figure are detailed in Appendix B:
Source for Figure 3 inside Tables B1 and B2.
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a young yet rapidly maturing field (Gill et al. 2022; Mahmoudi et al. 2022) with the
earliest works dating 2001 (Williams 2001). The research has been grouped
according to types of QC hardware:

• dedicated (meaning only quantum hardware contributes significantly to the
computation) gate-based;

• dedicated QA based;
• hybrid (quantum-classical) versions of gate-based computation;
• hybrid QA

Hybrid quantum algorithms can be defined as one requiring non-trivial
amounts of both quantum and classical computation and could not be sensibly
described without reference to the classical computation (Callison & Chancellor
2022). This definition is necessary as almost all forms of QC currently require at
least some amount of classical computing (this could be as small as repeating the
quantum algorithm). Variational QC is a subset of hybrid quantum computation
that represent a promising avenue for NISQ usefulness. They rely on a classical
optimiser to tweak elements of a quantum algorithm, improving the results of the
quantum algorithm with each iteration (Cerezo et al. 2021). It is also worth noting
that QA is not considered by all to truly be QC as QA devices cannot be
programmed to tackle any problem. However, it is included in this comparison
as it is a novel means of computation that utilises quantum phenomena to
potentially overcome some of the barriers faced by classical methods. Additionally,
it is a more mature option for utilising quantum phenomena in this way and gives
us something to compare other methods against. For simplicity, it will continue to
be referred to as QC in this paper.

There is a growing body of research targeting each of these areas as QC remains
a rapidly developing field without an established industry standard approach for
application. Ullah et al. (2022) discuss how QC might help manage the increasing
computational complexity of smart grids. The complexity has come from the shift
away from fossil fuels to more distributed energy resources (DERs), such as
photovoltaic cells, wind turbines and electric vehicles. The non-linearity and
uncertain nature of these DERs increases the complexity of smart grid decision.
The algorithms discussed include dedicated gate-based approaches such as the
quantumHarrow–Hassidim–Lloyd algorithm (for tackling systems of linear equa-
tions), hybrid approaches such as the Variational Quantum Eigensolver algorithm
(a hybrid quantum-classical computational approach for finding the ground state
of a Hamiltonian), QA approaches for minimising objective equations and quan-
tummachine learning (QML). This review highlights the fact that we need a robust
methodology for identifying and testing promising QC approach and problem
pairings as there are numerous potential options.

2.1. Gate-based applications

Dalal et al. (2024) investigate the use of a quantum algorithms to solve NP-hard
logistics scheduling problems. The study focuses on two specific use cases: the
travelling salesperson problem and an industrial job-shop scheduling problem for
an automated laboratory robot. The study investigated a both a pure and hybrid
version of the same newly proposed quantum algorithm for solving combinatorial
optimisation problems. Their performance was benchmarked against existing
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quantum methods for solving combinatorial problems like the quantum approxi-
mate optimisation algorithm (QAOA) and digitised quantum annealing. These
algorithms were implemented and tested on cloud-based quantum hardware,
including IonQ’s trapped-ion processors and IBM’s superconducting processors.
This study exemplifies the need to explore across the different avenues for
applying QC.

Another example of research investigating a hybrid gate-based approach is the
report by Liu et al. (2024). Their paper demonstrates an integrated pipeline that
combines the classical finite element method (FEM) with a quantum algorithm to
solve eigenvalue problems in solid mechanics and structural engineering. The
primary goal is to calculate the fundamental natural frequency for three distinct
mechanical systems. The quantum algorithm used is the variational quantum
Eigensolver (VQE), a hybrid quantum-classical method that finds the minimal
eigenvalue of a system. The framework was implemented on the IBM Qiskit
platform, with studies conducted on a noise-free simulator and final demonstra-
tions performed on IBM’s quantum processors. While the results on real hardware
showed larger errors compared to the simulator, the work successfully validates the
integrated FEM-VQE methodology for mechanical analysis.

Examples of work exploring the use of simulated methods include Correa-
Jullian et al. (2022) and Li et al. (2022). Both were looking at fault diagnosis in wind
turbines and roller bearings, respectively. Their QML approaches improve the
ability of machine learning algorithms to process large amounts of data. Correa-
Jullian et al. (2022) operated on a dataset containing 42.2million useful data entries
and Li et al. (2022) used data sets containing 4 and 16million sample points. Li et al.
(2022) state that QC hardware with sufficient coherent times are not available at
present and so explored a simulated approach to demonstrate the feasibility of their
quantum support vector machine approach. Correa-Jullian et al. (2022) also
explore a simulated quantum approach and compared it to classical approach
implemented on a GPU. Correa-Jullian et al. (2022) found that the proposed
quantum approachwas comparable to conventionalMLmodels and outperformed
some other models while Li et al. (2022) showed that a fault diagnosis model based
on a quantum least square support vector machine was feasible.

2.2. Quantum annealing applications

Moving on from gate-based approaches, QA has also shown promise in practical
applications, with several successful implementations in industry reported by
D-Wave Systems (D-Wave n.d.c). These successes suggest that QA is a viable tool
for solving complex engineering problems, even in the absence of a demonstrated
quantum speed-up. The relative ease of use of QA algorithms, which do not require
deep-domain expertise in the classical algorithms they aim to outperform (Hauke
et al. 2020), further enhances their appeal for engineering applications.

Morstyn (2023) discusses the practical implementation of annealing-based
quantum computing for combinatorial optimal power flow problems. These are
problems that involve arranging controllable power sources to meet demand at a
minimum cost – a problem complicated by the rise of DERs. In the paper, results
obtained from the real D-wave quantum processing unit (QPU) are presented
and compared against classical simulated annealing. The author concludes that
while current quantum processors are too small for realistic, distribution-scale
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applications, the required number of qubits scales linearly with the number of
electric vehicles and network constraints, suggesting a promising opportunity for
the future as quantum hardware continues to develop. This work is an example of a
body of literature focused on the application of current quantum annealers to
industrial problems. This may indicate that these devices are more mature than
alternative quantum options and provide a viable option for gaining a quantum
advantage in the near term, an opinion supported by Leymann & Barzen (2020).

The use of hybrid annealing devices has also been explored by Quinton et al.
(2025). This paper benchmarks the performance of D-Wave’s hybrid solver against
classical solvers for a real-world mixed-integer linear programming (MILP) prob-
lem. The chosen case study is the Unit Commitment problem, a complex opti-
misation challenge that involves scheduling power generation to meet demand at
minimum cost. The problem was tested at three different scales, including a full-
scale version with over 44,000 variables and two smaller, reduced versions. The
D-Wave constrained quadratic model (CQM) hyrbid solver was utilised and its
performance was compared to industry-leading classical solvers. For the full-scale
problem, the hybrid solver failed to find any feasible solutions with its default
settings and produced highly suboptimal results even with significantly increased
run times. On the smaller, reduced-scale problems, the solver found feasible
solutions, but they were still far from the optimal values found classically and took
longer to compute. The authors conclude that while D-Wave can solve MILP
problems, its hybrid solver is not currently effective for this type of large-scale
linear problem, suggesting that a computational advantage is likely limited to
problems with inherent quadratic structures. This work suggests that we should
continue to investigate annealing approaches to find where they can be most
effectively applied in engineering design.

These recent works are summarised in Table 1 and show that there is a wealth of
recent literature exploring applications for QC to engineering relevant problems.
Additionally, these approaches are making use of the entire suite of available
hardware. This highlights a need for comparison between approaches and an

Table 1. A table summarising each of the related works discussed in this section

Ref. Engineering problem Approach

Ullah et al. (2022) Increased complexity in smart
grids due to DERs

Summary of available QC techniques

Dalal et al. (2024) NP-hard logistics and scheduling
problems

Dedicated and hybrid versions of gate-based
algorithm using real QPUs

Liu et al. (2024) Finding natural frequency for
mechanical systems

Hybrid gate-based algorithm using real and
simulated QPUs

Correa-Jullian
et al. (2022)

Fault detection in wind turbines QML using simulators

Li et al. (2022) Fault detection in roller bearings QML using simulators

Morstyn (2023) Optimal power flow problems Dedicated quantum annealing using real QPUs

Quinton et al.
(2025)

Scheduling power generation to
meet demand

Hybrid quantum annealing using real QPUs
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investigation tailored to the engineering design community so that we are not left
behind. The works also help to contextualise the approaches explored here by
showing which options were left unexplored.

3. Experimental setup
Figure 4 details the five steps of the experimental setup designed to study the ease of
translating a constraint-based design optioneering problem to a form solvable via
QC and produce results using real-world QC machines. Here optioneering is
defined as a design approach focused on systematically generating and evaluating
a wide range of valid solutions, or “options,” to a complex problem. Step 1 defined
the constraint-based design optioneering problem to be solved. Step 2 explores the
identifiedQC approaches and their requirement for use. Step 3 involves translating
the optioneering problem into a form appropriate for solution using the identified
method. Step 4 details the analysis used to establish the feasibility of each approach.
Step 5 details the analysis used to evaluate the suitability/readiness of the QC
methods.

3.1. Step 1: problem design

A problem was generated that was representative of a typical engineering design
problem. The selected problem builds on the constraint-based tile placement
problem first presented in Gopsill et al. (2021) and then developed in Gopsill
et al. (2022). The problem is analogous to many engineering design problems,
including:

• Very large-scale integration (VLSI) chip design: In VLSI chip design, engineers
need to place numerous electronic components like transistors, logic gates, and
interconnects efficiently on a silicon wafer. The objective is to minimise the size,
power consumption and maximise the performance of the chip (Held et al.
2011).

• Factory floor layout: In manufacturing, optimising the layout of machines and
workstations on the factory floor is crucial for efficiency and productivity.
Engineers need to consider factors such as workflow, material handling and
safety (Ripon & Torresen 2014).

• Optical fibre network design: In telecommunications, engineers design optical
fibre networks by deciding where to lay fibre optic cables to connect cities or

Figure 4. A figure showing the major steps to be executed as part of the experimental process.
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regions efficiently. This involves minimising the total cable length while consid-
ering geography (Ranaweera et al. 2019).

• Placement of sensors in environmental monitoring: In environmental moni-
toring, the placement of sensors (e.g., for air quality or weather) is critical.
Engineers need to determine the best locations to obtain accurate data while
minimising costs (Al-Turjman, Hassanein & Ibnkahla 2013).

The problem affords the ability to compare between the processes of imple-
mentation for different quantum approaches (an approach being a combination of
algorithm, executing hardware and the software required to interface with the
hardware) as well as the performance. The problem was also not so complex as to
make these comparisons difficult or prohibit the investigation into what is cur-
rently an emerging technology.

The examples presented above give an idea of how ubiquitous these layout-
style, or configuration design, tasks are within the study of engineering design.
Creating a simple abstracted version of these kinds of problems keeps the findings
generalisable to the wider engineering design audience. To construct this general-
ised configuration design problem we can consider the constraints and objectives
common across different examples found in literature (such as those already
presented). Features common to configuration design problems are:

• The task is to arrange a series of entities (PCB components, sensors, machinery,
etc…) within a physical space.

• Certain positions are out of bounds for placement (a component or feature
already exists there in the chip or factory, some prohibitive geography prevents
laying cable or sensing is not allowed).

• Entities cannot occupy the same space (components, features, facilities cannot
occupy the same physical space or use the same resources).

• There is at least one objective with which solutions can be ranked (minimise the
total area required for PCB components, maximise the area covered by sensors,
keep the centre of gravity for a ships cargo as close to the centre line as possible).

3.1.1. Formal problem statement
These features were used to define the tiling problem depicted in Figure 5. The goal
is to find the optimal placement of two tiles on an 8x8 grid according to a defined
objective and a no-overlap constraint. The problem is defined by 12 binary
variables (6 for each tile, 3 for each tile coordinate). For each tile t ∈ 1,2f g, its
position on the grid, denoted by the coordinate pair Xt ,Ytð Þ, is determined by a set
of binary variables:

• X-coordinate variables:xt,1,xt,2,xt,3 ∈ 0,1f g
• Y-coordinate variables:yt,1,yt,2,yt,3 ∈ 0,1f g

The integer value for each coordinate (from 0 to 7) can be derived from these
binary variables using the following conversion:

Xt = 4xt,1þ2xt,2þxt,3
Yt = 4yt,1þ2yt,2þ yt,3
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The objective is to place the tiles as close to the eastern wall as possible. This
could correspond tomaximising the sum of the integer X-coordinates of both tiles,
given below as Z.

Maximise Z = 4x1,1þ2x1,2þx1,3ð Þþ 4x2,1þ2x2,2þx2,3ð Þð Þ (3)

There is one primary constraint: the two tiles cannot be placed in the same grid
position. This means the coordinate pair for Tile 1 must not be equal to the
coordinate pair for Tile 2.

X1,Y1ð Þ≠ X2,Y2ð Þ (4)

The grid was varied in size – 16x16, 32x32, and 64x64 – to explore the scaling
behaviour of the gate and annealing approach, however, the initial configuration
for testing is an 8x8 grid as depicted in Figure 5. An 8x8 grid problem setup results
in 642 = 4096 potential solutions with 56 unique valid solutions. The tiles were
considered non-identical so a switch of positions would be also considered valid
and unique solution.

Since this is a rather universal problem, with some real world examples
having nearly unlimited constraints (e.g., city planning has many stakeholders
enabling numerous complex constraints/objectives) it is likely that a problem
of this form (or a problem that could be formulated this way) has reached a
fidelity where the classical methods employed for solution generation begin to
struggle.

Figure 5. A figure showing the combinatorial problem of placing two tiles (orange
and pink) in an 8x8 grid. Grid coordinates are shown represented by binary strings
(000, 001, 010…). The tiles preferred positions are shown by the green area. Tiles
placed closer to this eastern wall/green area are considered better solutions. Three
example solutions are shown. The top example shows both tiles overlapping as
representing an invalid solution.
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3.2. Step 2: quantum approaches

The study explored the applicability of quantum gate and annealing-based
approaches. The two approaches were compared against a classical brute-force
approach to provide conclusions about the readiness of QC for use in engineering
design. Both a simulated and real-world implementation of the approach were
tested. Simulation of QC will not yield any computational benefits but was
performed to identify if issues in the results should be attributed to quantum
hardware’s limitations or problem formulation.

These approaches were selected primarily to demonstrate how problem for-
mulation can vary between two of the leading approaches to QC. The problem
formulation for the gate-based approach (Grover’s algorithm) was carried over
from the authors’ previous work (Gopsill et al. 2021, 2022). This meant that only
one additional formulation needed development for this study, enabling the results
to be sharedmore quickly –which is important in such a fastmoving field. QAused
a very different problem formulation, therefore this study details 2 reference
models for engineering designers.

Further justification for the inclusion of Grover’s algorithm is its design for use
with a gate-model (or digital) quantum computer. An end goal for the development
of this kind of QC hardware is a universal QC, one that can perform any kind of
computation that a classical device could. A criticism of approaches developed for
NISQ hardware (such as QA) is that they are designed to operate onmachines with
developmental constraints. This means their code must be continually updated
alongside the hardware to remain efficient. The problem formulation discussed for
the gate-model approach in this study should be implementable on this future
hardware which is free from NISQ quirks. Such a device is often called a fault-
tolerant quantum computer (FTQC) as it has been developed to the point where it
can tolerate the errors that affect QC. Therefore, these two approaches should
provide the study with a balance between near and long-term relevance.

3.2.1. Quantum gate model
Grover’s algorithm is a method for searching through an unstructured database,
executable on a gate-model quantum computer. This means that it is a set of rules,
understandable by the archetypal quantum computer, which finds an entry or
entries that possess a certain property in a database which is completely unsorted.
As an example, imagine searching for all the books with titles that contain “design
methodology” in a bookshelf that has never been organised.

This algorithm is of great interest as the operations required to find the desired
solution are reduced versus if you attempted the same problem using a classical
computer. This means we would be able to tackle a larger problem in the same
space of time. An example of the impressive potential improvement offered by a
quantum search algorithm is given inNielsen &Chuang (2001). If you were given a
map of many cities and wished to find the shortest route passing through all of
them, one option would be to search all possible routes through every city whilst
maintaining a record of the shortest route so far. On a classical computer, if there
are N possible routes then it would take O Nð Þ operations. Grover’s algorithm
requires only O

ffiffiffiffi
N

p� �
operations.

How canwe create an algorithm such as this from the building blocks of qubits?
The most common approach to quantum algorithm construction can be
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understood through the classical analogue of logic gates. In a classical computer
bits are used to represent information, perhaps a problem variable and logic gates
which are built up from transistors are used to operate on the information. In a
quantum computer, a qubit can be used to represent a problem variable and
quantum gates perform operations on the qubits. An example that is consistent
in classical and quantum computation would be the NOT gate. The difference
between the classical and quantum approach is that quantum bits have more
properties and quantum gates can performmore operations using these properties.
This enables the quantum algorithms to skip steps that would be required in a
classical algorithm. This means that the quantum algorithm has the potential to
find the solution in fewer steps. Examples of such gates are the Hadamard gate, H ,
which creates quantum superpositions, and the Controlled NOT (CNOT) gate,
⊕ , which enables entanglement between qubits.

This logic gate style algorithm construction is typically applied using gate-based
quantum computers. Algorithms in such devices can be depicted using circuit
diagrams, which are graphical models that depict the evolution of qubits through a
series of quantum gates. The circuit combines quantum gates, resulting in a
procedure that transforms the initial state (of qubits) into a final state, which
encodes a potential solution to the problem (Nielsen & Chuang 2001). For more
information on the quantum gate model, circuits and their use, see Nielsen &
Chuang (2001) for a coverage of the fundamentals. Alternatively, the tutorials
available on the IBM Quantum Learning platform (IBM 2023b) offer a more
implementation focused explanation using Qiskit. A pictorial representation of
Grover’s algorithm is presented in Figure 2.

Amore detailed explanation as to how this gate model approach can be used to
construct such an algorithm can be found in Appendix A. It should be noted that
the reader need not fully understand the operation of Grover’s algorithm to
understand the contribution of this work. The key point to understand from this
section is the gate-model approach to QC – utilising quantum gates to encode
solutions in the states of qubits before a measurement is applied.

3.2.2. Problem formulation for gate-based algorithms
This study continues from the authors previous work where simulated results were
achieved for Grover’s algorithm applied to the same tiling problem. To solve a
problem using a gate-based approach, the problem variables must be repre-
sented by a register (collection) of n qubits. This requires the problem to be
represented by binary variables. The representation of of this tiling problem via
qubits is presented in the Section titled “Grover’s Algorithm using Qiskit.” A
detailed version of the problem formulation can be seen in the authors previous
work (Gopsill et al. 2021, 2022).

3.2.3. Quantum annealing
QA is a heuristic quantum optimisation algorithm for solving complex combina-
torial optimisation problems. Adiabatic quantum computation (AQC) is a theor-
etical framework for quantum computing that utilises the adiabatic theorem
(Amin 2009) from quantum mechanics to perform computations. This theorem
states that if a quantum system starts in its ground state and theHamiltonian of the
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system is changed slowly enough, the system will remain in its ground state at all
times – Equation (2). This property of adiabatic evolution allows AQC to solve
optimisation problems by transforming the initial Hamiltonian, which represents
the starting problem, into a final Hamiltonian, which encodes the solution.

QA is a specific implementation of AQC, it is the generic name for quantum
algorithms that use quantum mechanical fluctuations (quantum tunnelling) to
search for the solution of an optimisation problem (Morita & Nishimori 2008).
QA’s classical counterpart, simulated annealing (SA), can be used to help under-
stand the process. “Quantum tunnelling between different classical states replaces
thermal hopping in SA” (Morita & Nishimori 2008).

Themain challenge for QA is evolving the system slowly enough (adiabatic-ally
enough) such that it does not jump from the lowest energy state to a higher energy
state. The minimum disparity between the lowest energy state and the next lowest
one is called the energy gap. Issues arise when this gap becomes so small such that
the time required to avoid crossing it becomes infeasibly long (Hastings 2021).
There is not a general predicted speed up for QA as there is for Grover’s algorithm,
however, the required annealing time does scale inversely with energy gap size
(Hauke et al. 2020). As the complexity of the problem increases (more constraints,
objectives and variables) then the energy landscape can becomemore “rugged,” the
energy gap will shrink and the annealing time will need to increase, or more
samples will need to be taken.

3.2.4. Problem formulation for QA using D-wave devices
With an understanding of how QA differs from gate-based approaches, problem
formulation for QA devices can be discussed. QA can be considered as a form of
analogue computation and so the problem formulation is dependent on the
hardware chosen (Yang et al. 2023). For this work, the QPUs offered by the
company D-wave were chosen. D-wave provide instructional guides on how to
use, formulate problems, and submit jobs to their devices. This implementation
can be done in Python using their Ocean SDK (D-Wave n.d.b).

There are three classes of problem that can be tackled when considering
the whole suite of D-wave devices. These are binary quadratic models (BQM),
discrete quadratic models and constrained quadratic models (CQM). Each of these
can handle a different class of variable, binary, discrete, and integer, respectively
(D.-W. Developers 2022). However, to make use of a dedicated device you must
formulate the problem as BQM.

BQMs are made up of two classes. These are quadratic unconstrained binary
optimisation (QUBO) problems and Ising models. These are mathematically
equivalent but some problems may see better results with one option. For this
work the QUBO approach was selected. It is also possible to convert between the
approaches once the problem has been formulated. The QUBO approach followed
for this work was taken from the resources provided by D-wave in their “Problem
Formulation Guide” (D-Wave n.d.b). It should be noted that problem formulation
is restricted to QUBOs instead of higher-order polynomial unconstrained binary
optimisation problems due to experimental devices only being able to handle
2-local interactions (Hauke et al. 2020). The general form for a QUBO can be
seen in Equation (5)
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min
X
i

aixiþ
X
i

X
j > i

bi,jxixjþ c

 !
(5)

where ai and bi,j are constants that are chosen to define the problem, xi and xj
are the binary variables for the problem, and c is a constant term. Note that
Equation (5) is minimised because annealing devices are always trying to find
the lowest energy state.

This QUBO equation describes the problem as an energy landscape; imagine a
3D surface with hills and valleys. The specific shape of this landscape – the position
and depth of its valleys - is determined by translating the formal objectives and
constraints into the coefficients (ai and bi,j) of the QUBO. This translation
generally conforms to the following:

• The linear terms (aixi) represent the problem’s primary objective. For instance,
in our tiling problem, the goal to place tiles near the eastern wall maps directly
onto these terms, creating a general slope towards the optimal region.

• The quadratic terms (bi,jxixj) are for enforcing constraints. A large “penalty”
value is added to the energy for any invalid solution, such as overlapping tiles,
effectively creating high-energy hills that a valid solution must avoid.

If formulated correctly, the combination of binary variables that finds the
lowest possible energy (the deepest valley in this landscape) encodes the optimal
and valid solution to the original problem. The final Hamiltonian (H0 in
Equation (2)) is the physical implementation of this optimisation problem’s energy
landscape on the quantum annealer.

The formulation of a problem as a QUBO is needed to programme the problem
onto a D-wave device. The D-Wave QPU is a lattice of interconnected qubits.
These qubits are connected via couplers – although the qubits are not fully
connected. To programme a D-Wave quantum computer is to set values for its
qubit biases and coupler strengths. The coefficients for the linear terms in
Equation (5) set the values for the bias and the quadratic terms set the values for
the coupler strengths (D-Wave n.d.a).

3.3. Step 3: implementation

Step 3 closes the gap between theoretical problem formulation for Grover’s
algorithm and QA and the physical steps that will need to be taken by engineering
designers wishing to make use of these techniques. This subsection covers the
implementation of both approaches with specific reference to the SDKs used –

Qiskit and Ocean. It also discusses how a classical brute force algorithm was
constructed to provide comparative results. The repository that stores the code
used for this work can be found at the following address: https://github.com/
OliverSchiffmann/comparingGateAndAnnealing.

Once the problem’s construction for each approach has been validated using
the simulators, it can be submitted to the respective dedicated devices. This step
would provide a reader following thismethodwith results that indicate whether the
approach shows promise for near-term use. Should the results returned be usable
(meaning they can be used to determine valid solutions that meet the constraints)
then further investigation into how the quantum methods perform at different
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problem scales can be conducted. In combination with a scaling investigation, one
could begin to optimise their approach for the chosen hardware. For gate-model
approaches this could involve finding ways to reduce the circuit depth, or use gates
with lower error rates. However, this optimisation is outside the scope of this study.

3.3.1. Grover’s algorithm using Qiskit
The algorithm was implemented using the Python SDK Qiskit (IBM n.d.c). Qiskit
is an open-source toolkit for developing and compiling quantum circuits. These
circuits can then be sent as jobs to be executed using the compute resources
supported by the IBM Quantum Platform (IBM n.d.a). Other SDKs exist (cirq,
Quantum Development Kit (QDK), TKET…) and there are other suppliers of
quantum computing resources (Google, Microsoft, IonQ…) (Ullah et al. 2022).
The approach adopted for this work was chosen due to the author’s prior experi-
ence with python, Qiskit and IBM’s quantum experience.

Before the construction of any quantum circuit, the representation of the
problem variables must be decided. For the tiling problem shown in Figure 5 the
variables are the x and y coordinates of each tile. Since quantum gates in IBM’s
devices operate on the computational basis ∣0〉 and ∣1〉, which collapse to the binary
digits 0 and 1, respectively, we can represent the problem variables in terms of
binary digits. Since our placement grid begins as 8 cells long in each dimension we
can represent each coordinate of a tile with 3 binary bits (23 = 8). With 3 digits for
each coordinate, and two coordinates per tile, and two tiles total we need a problem
register of 12 qubits. Therefore, a solution to the tiling problem will take the form

q1,q2,q3,|fflfflfflfflffl{zfflfflfflfflffl}
x1

q4,q5,q6,|fflfflfflfflffl{zfflfflfflfflffl}
y1

q7,q8,q9,|fflfflfflfflffl{zfflfflfflfflffl}
x2

q10,q11,q12|fflfflfflfflfflffl{zfflfflfflfflfflffl}
y2

(6)

where qn is the measured value from the nth qubit in the problem qubit register,
capable of taking the value 0 or 1.

Now that the representation of variables using qubits has been decided, the
circuit that will implement Grover’s algorithm can be constructed. This circuit
construction was taken from the tutorials provided by Qiskit (Tapia 2024) and is
discussed in Gopsill et al. (2022).

Once the quantum circuit has been created it can be sent to a device for
execution. IBM offers two options – the simulator and the dedicated device. For
this work, the IBMQ_QASM_Simulator was chosen to obtain simulated
(classically achieved) results and ensure that the quantum circuit was correct. Its
IBMs general purpose simulator and it has access to 32 simulated qubits. For real
quantum achieved results, the IBMQ_Brisbane device was used. The device has
access to 127 qubits and was selected as it was, at the time, the only device large
enough to runGrover’s algorithm available for free on the IBMQuantumPlatform.
This is because although only 12 qubits are required to represent the solutions to
the tiling problem 6 additional computational qubits and one Oracle qubit are
required bringing the total to 19. At the time of writing, two additional devices with
127 qubits have become available – IBMQ_Osaka and IBMQ_Kyoto. These devices
differ in their values for Error Per Layered Gate (EPLG) IBM (2023a).

These seven additional qubits form the Oracle workspace shown in Figure A1.
These were required for some of the quantum gates that were used in the iterations
of Grover’s algorithm, G. This can be more easily understood using the classical
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example or RAM, or short termmemory. In a classical computer you needmemory
for the bits that represent your problem variables, and you must also have enough
memory to perform operations (or logic gates to continue the earlier examples) on
these problem variables. In a quantum computer this oracle workspace must use
quantum bits, not classical bits, as otherwise to use information from the qubits
representing the problem variables you would need tomeasure them, which would
destroy any superposition/entanglement between qubits. These 19 qubits are
enough to complete the execution of Grover’s algorithm on an 8x8 grid. If the
problem scale increases more will be needed as more qubits will be required to
encode the position of the tile in the grid, since coordinate values above 8 will
require more than 3 bits to encode (4 bits up to 16, 5 up to 32 and 6 up to 64).

Devices are often referred to as samplers in the SDK documentation. A sampler
is something that runs a solver multiple times and returns the distribution of
results. Hence, the number of runs for the entire quantum circuit, not just G,
should be chosen. 1000 runs was chosen as this kept the problem below the
maximum allowable estimated run time, kept classical simulations of reasonable
length, and provided a sufficient number of results to visualise the distribution – as
there are only 56 valid solutions for the 8x8 problem scale.

3.3.2. Quantum annealing using ocean
The Ocean SDK in Python was used to construct the problem for D-wave devices
(D-Wave n.d.a). To submit a problem to a dedicated D-wave device, you must
formulate a BQM as either a QUBO or Ising model. The following is a coverage of
the key components for creating a BQM using the QUBO approach and Ocean
SDK:

1. The implementation begins with the creation of an empty BQM as a binary
model: “bqm = BinaryQuadraticModel(‘BINARY’).” This sets up a model
where variables (q1�12 in Equation (6)) will be binary (0 or 1).

2. Variables must then be added into the empty BQM. This is initially done with
0 as the linear coefficient (ai in Equation (5)): “bqm.add_variable(qi, 0).”Where
“qi” is q1�12 from Equation (6).

3. The east wall placement constraint was then added. This was included as an
objective equationbymodifying the bias for certain variables (those that determine
the x coordinate of both tiles). “bqm.add_variable(qi, �east_wall_weight)” was
used tomodify the bias of the x coordinate variables to a value equal to the negative
of the variable “east_wall_weight.” The negative is used to help promote (decrease
the energy of) solutions that are on the east wall. Choosing this value is a matter of
balancing the relative importance of each constraint. A higher value will prioritise
solutionswhichmeet this constraint over the other. A value of 3was found towork
well through simulator and dedicated device testing.

4. The no-overlap constraint was incorporated indirectly by defining quadratic
interactions between variables. For instance, “bqm.add_interaction(qi, qj,
penalty)” adds a quadratic term to themodel. The value of “penalty” determines
the weighting of this no-overlap constraint. The major challenge with repre-
senting this problem as a BQM was implementing the no-overlap constraint.
This is because it requires the consideration of more than two variables at once
(for example the tiles can share their two digits that make up their y coordinate
so long as they do not share the third). Remember that due to manufacturing
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constraints problems must be formulated as QUBOs instead of HUBOs. To
overcome this, an ancillary variable can be used. An ancillary variable z with a
large negative bias to encourage z = 1 is used in conjunction with other variables
to model these more complex constraints.

5. The BQM can then be solved using D-wave’s resources. For this work both a
simulated and dedicated approach was utilised. As with the Grover’s approach,
this required specifying the number of runs. 1000 was chosen for this approach
as well. Ocean supports the “SimulatedAnnealingSampler()” for simulating
results locally, and “EmbeddingComposite(DwaveSampler())” was used for
obtaining quantum achieved results.

An important note is the concept of embedding. The lattice of qubits is not a fully
connected lattice and hence the BQM must undergo a process of embedding where
qubits are grouped using different topologies so that the interactions between them
canbe represented. “EmbeddingComposite()” is the default option offered byD-wave
and was sufficient for a problem of the complexity considered here.

3.3.3. The classical brute force approach
A classical brute force approach was also created for comparison. The brute-force
approach simply iterated through every solution and checking if it meets the two
constraints. This way it can be certain the classical approach would have found
every valid solution.

Functionally, the script was a for loop that checks each combination of variable
values to see if they meet the constraints. First, it checks if both tiles are in the same
position. If they are, it appends the combinations of variables to the list of invalid
solutions. If they are not, then it checks to see if both tiles are on the eastern wall. If
they are, then it appends the variable combination to the list of valid solutions. If
they are not, on the eastern wall then, again, it appends the variable combination to
the list of invalid solutions.

3.4. Steps 4 and 5: evaluation using dedicated devices

These steps describe a methodology developed and tested during this study for the
purpose of comparing approaches in terms of solution time and quality. This
comparison protocol should be approach agnostic and therefore applicable to
other QC approaches to this tiling problem. It provides results for comparing the
performance of approaches; however, comparisons can still be made about prob-
lem formulations and implementation challenges by completing the previous steps
in this experimental setup.

The performance of QC approaches can be determined by looking at three
factors: time-to-solution, error levels in the results and the closeness of the valid
results to a uniform distribution. Time to solution is important as a major barrier
faced by classical computation is a limitation on the number or in the complexity of
solutions that can be explored in a given time. The time to solution will bemade up
of two distinct components: processing time on the QPU or CPU (for quantum or
classical approaches, respectively) and queue time. These can then be summed to
find the total time for job completion.

Timing results for a gate-based approach were taken from the job manager on
the IBMquantumplatform, whereQiskit runtime usage was taken as theQPU time
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and CPU time is worked out by subtracting queue time from total time. Simulated
QA times can be obtained by timing script execution. Real QA timings can be
obtained by extracting the timings returned as part of the results. QPU time is taken
as QPU_access_time. An explanation of the annealing time components can be
seen in Figure 6 which is taken from the operation and timing section of D-Wave
(n.d.a). The CPU times for the locally run classical approaches were achieved using
an M1 pro chip (approximate clock speed of 3.2GHz) and measured using the
timeit module.

Jobs used to investigate time-to-solution, error and uniformity were repeated
50 times, and mean values reported. This is to reduce the impact of the inherent
variability in quantum achieved results on any observations made. The classical
approach will also be repeated 50 times and averaged to find a mean time.

Error was defined as the percentage of solutions returned that do not meet the
constraints. The number of solutions violating each constraint can be divided by
the total number of returned solutions. This gave an error level for each constraint,
which was then be combined to obtain the total error. Error levels provide an
insight into the readiness of the chosen hardware for the scale and type of problem
considered in this paper. High levels of error would indicate that the delicate
quantum state used to represent information is being interfered with too much.

Finally, the distribution of valid results (those in which both tiles are placed on
the eastern wall) will be compared to a uniform distribution. This is done using the
coefficient of variation. This is calculated by dividing the standard deviation of the
frequencies for valid positions by the mean. A lower value indicates that the results
are closer to uniformly distributed. Understanding how close the results returned
by a quantum computer are to a uniform distribution is useful for several reasons.
In quantum computing, jobs submitted to these devices often undergo multiple
executions due to inherent noise affecting the hardware and the probabilistic
nature of results. Examining the closeness to a uniform distribution enables us
to assess whether there are any systematic biases present within the quantum
computer. By analysing this closeness, we gain insights into the reliability and
accuracy of the quantumdevice for specific problem scales. Additionally, it helps us
determine the number of times we may need to sample the results to effectively
mitigate these biases. Note that coefficient of variation results for the classical
approach will not be collected. The classical brute force algorithm iterates through
every possible solution and checks if it meets the constraints. It does not return
results, as the quantum samplers do, and hence has no coefficient of variation.

Figure 6. A figure showing the contributors to total time to solution for QA. Taken
from the system documentation provided by D-wave (D-Wave n.d.a).
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4. Results
This section presents the results obtained through the use of simulated and real
quantum devices for both the Grover’s algorithm and the QA approach to solving
the tiling problem. These are the results of executing steps 3, 4 and 5 in Figure 4.

4.1. Simulated and feasibility results

Results were collected in two stages, preliminary results for assessing the feasibility
of each approach and more detailed results concerning performance at different
problem scales. Preliminary results for both approaches are presented.

The results obtained from simulators and for testing the feasibility of each
approach consist of 3-D histograms. These show the frequency withwhich each tile
is placed in each position for the simulated and quantum computations of both
approaches (Figures 7 and 8). In these Figures “T1” and “T2” refer to results
showing the placement of Tile 1 and Tile 2, respectively.

These results consider only 8x8 grids and are used to confirm if further
investigation (increasing problem scale) was warranted. Grover’s algorithm does

Figure 7. Figures showing the results fromGrover’s Algorithm using both a quantum
simulator (IBMQ_qasm_sim) and a real quantum computer (IBMQ_Brisbane). The
frequency of tile placement at each position on the grid is indicated by the height of
the bar at that coordinate. Figures (a) and (c) show the results for the placement of
Tile 1 using simulated and real quantum computation, respectively. (b) and (d) show
the same for Tile 2, respectively.
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not produce any useable quantum achieved results when executed using IBM’s
device. This was expected as it is not an approach that has been designed for NISQ
application. However, the results are presented and discussed to complete the loop
for application of this study’s methodology. QA did produce useable results when
executed on a D-wave QPU. However, the tile positions were subject to a strong
bias – a point discussed further in the Section 5.1.

4.1.1. Error
From these histograms, the error present in the returned results could be calculated
as described in the Experimental Setup Section. The error levels from these
preliminary results are presented in Table 2.

The combination of the 3-D histograms for Grover’s approach, Figure 7, and
the error levels, Table 2, shows that a simulated approach obtains good results. It is
clear that the approach is more likely to return a result that meets the constraints
and that there is a roughly uniform distribution of results across the 8 valid tile
positions. This provides assurance that the quantum circuit for Grover’s algorithm
has been constructed appropriately for our problem. Although not benefiting from
the potential advantages of QC, the opportunity to model problems using QC
principles with the view to one day using a real-world device is beneficial. However,

Figure8. Figures showing the results of both simulated and realQA approaches to the
tiling problem. The frequency of tile placement at each position on the grid is
indicated by the height of the bar at that coordinate.
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when looking at the results obtained fromone of IBM’s dedicated quantumdevices,
it is clear that the results become dominated by error.

The 3-D histograms in Figure 8 and error levels in Table 2 for the annealing
approach show improved performance over the Grover’s approach. The simulated
results show that the problem has been formulated correctly. Further, the results
achieved using a dedicated D-wave device suffer from 0% error, as opposed to the
99.4% error when using IBM devices. This is promising as it implies that D-wave
devices can be used to obtain useful results.

4.1.2. Time to solution
Timing results for the preliminary results were also collected as described in the
Experimental Setup Section. Table 3 contains time-to-solution values for the
preliminary results. The classical brute force approach is 2 orders of magnitude
faster than QA and seven orders faster than the quantum implemented Grover’s
approach. A quantum speed-up has not been demonstrated; however, this rela-
tively small problem may not fully leverage the promised scaling benefits of
QC. Comparing QA and Grover’s approach in Table 3, QA proves faster, in both
queue time and QPU time. Note that these timings are for single jobs and were not
averaged over multiple jobs.

4.2. QA results at varying problem scales

The preliminary results show that only QA has produced feasible results for the
chosen problem. It was also of interest to examine if this would change at increased

Table 2. A table containing the percentage error present in both the simulated and real quantum results
obtained for Grover’s and QA approaches, broken up as they apply to each constraint

No overlap (%) Eastern wall (%) Total (%)

Grover’s simulated 1.5 42.0 43.5

Grover’s quantum 1.6 97.8 99.4

QA simulated 0.0 0.0 0.0

QA real 0.0 0.0 0.0

Table 3. A table containing the times required for obtaining the results presented in Figures 7 and 8.
Note that a queue time of N/A is given for locally run approaches

QPU/CPU time Queue time Total time

Grover’s simulated ≈ 5 m 45 s less than 1 s 5 m 45 s

Grover’s quantum 1 m 27 s 2 h 17 m 17.5 s 3 h 0 m 25.3 s

QA simulated 0.243 s N/A 0.243 s

QA real 0.126 s 0.136 0.262 s

Brute force 0.00367 s N/A 0.00367 s
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problem scales. Figures 9 and 10 show the results returned from a single job for
each grid size. Taking these figures in conjunction with the data presented in
Table 4 reveals how QA performance changes at increased problem scales. The
solutions remain usable at all scales, meaning that almost all solutions returned are
valid. However, the coefficient of variation does increase with grid size. This is to be
expected, as QA is a sampling method, and so when there are more valid solutions,
the results on the eastern wall are less uniformly distributed. The QPU time and
percentage error exhibit small increases with problem scale. Since annealing time is
specified as a problem parameter, there would be no expected increase in QPU
access time aside from an increased time to programme the problem onto the
annealing device. The most significant observation from these results is that QA’s
usability remains relatively constant at increased scales, but the classical brute force
approach suffers significantly. Between a 16x16 and 32x32 grid, QA overtakes the
brute force approach in time to solution.

5. Discussion
This work set out to investigate two different QC approaches for tackling a
generalised configuration-design problem. The aim of this investigation was to
develop and test a methodology for assessing the suitability of each approach for
engineering designers. The collected results provide insight into the quality of

Figure 9. Figures showing the results for Tile 1 obtained using D-wave’s
Advantage_system4.1 at varying grid sizes.
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results through the percentage error, distribution of valid solutions, and the time to
solution of the respective approaches. As a result of executing the methodology,
observations about the ease of implementation for the respective approaches can
also be made. Development of two reference models for QC application also
enables comparisons and conclusions focused around problem formulation, whilst
expanding the available library of such models.

Table 4. A table containing data comparing the time to solution for the classical brute force approach
(CPU time) and the QA approach, as well as error and coefficient of variation values for QA, at
different problem scales. Note that a lower value for coefficient of variation indicates less deviation
from a uniform distribution. The CPU times for the locally run classical approaches were achieved
using an M1 pro chip (approximate clock speed of 3.2GHz)

Grid size CPU time/s QPU time/s Error / % Coefficient of variation

8x8 0.00292 0.125 0.01 0.248

16x16 0.04512 0.131 0.006 0.291

32x32 0.72754 0.133 0.002 0.370

64x64 14.7632 0.137 0.002 0.463

Figure 10. Figures showing the results for Tile 2 obtained using D-wave’s
Advantage_system4.1 at varying grid sizes.
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5.1. Issues with quantum achieved results

The properties of the IBM_Brisbane device can be checked using IBM’s Quantum
Platform. At the time of writing its circuit layer operations per seconds (CLOPS) is
listed as 180,000 (IBM n.d.a). The depth (number of operations/gates applied in
sequence) of the Grover’s circuit with 9 Oracle repetitions is 289. This means it
would take ≈ 1606μs to complete the circuit. The same device has a median
coherence time (called T1 by IBM) of 230.58μs. This indicates that the qubits
inside the IBM devices may well be decohering (having their quantum state
disrupted by environmental factors) before useful results can be obtained. The
coherence time is ≈ 7 times too short. This could explain the error dominated
results shown in Figure 7. Furthermore, NISQ devices suffer from other forms of
error, such as gate errors caused by poor calibration (Yang et al. 2023). This means
it is not just the coherence time that must increase but the rate of error must also
fall. The depth of the circuit could be reduced by decreasing the number of applied
oracles, at the expense of reducing the probability of returning a correct solution.
This negative influence may be offset by increasing the number of runs. A small
experiment was run that investigated a single oracle version for 8000 runs.
However, this was found to be just as dominated by error and so the Grover’s
approachwas not investigated further as part of Step 5 in Figure 4. It is important to
note that these values are updated regularly so developing a knowledge of the
hardware milestones needed for an algorithm to be executable is valuable.

The histograms in Figure 8 show an inherent bias that is known to affect
D-wave’s devices (Hauke et al. 2020). This means that whilst the annealing
approach does return valid results, its solution space exploration capacity might
be limited. Furthermore, real-world problems are likely to contain many more
constraints and objectives which will complicate the energy landscape. As such,
increased error would be expected to appear in results obtained via annealing.

5.2. Speed of QA versus brute force

It is important to note that there are classical algorithms superior to the brute force
approach used here. As such, the data in Table 4 are not a demonstration of
quantum speed-up. However, these QA annealing results were obtained without
using the problem specific knowledge that would be needed to choose and make
use of the appropriate classical algorithm. Instead, knowledge of the QA procedure
and how to formulate the problem as a BQM was needed.

5.3. Ease of implementation between hardware options

The ease of implementation for the hardware used in each approach can be
discussed subjectively as a result of completing this methodology. The classical
analogy of logic gates for the gate-based Grover’s approach could be argued to aid
understanding of the algorithm operation. However, the annealing approach does
not require the construction of a circuit. Instead it requires the selection of
coefficients in Equation (5). Whilst this is a more abstract approach, it is an
approach that remains constant, even for other problem formulations. Further,
the energy landscape considered throughout the annealing approach is analogous
to the solution space engineering designers are used to exploring. The documen-
tation supporting Qiskit as well as the job manager provided by IBM appeared
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more developed than D-wave’s counterparts. In the authors’ opinion, the back-
ground theory required for the gate-based approach was more demanding, whilst
the problem formulation for annealing was more complex. Considering all these
points, the authors would consider the barrier to implementation lower for
annealing methods. The formulation of problems as QUBO/Ising models is also
studied in other fields like physics, especially the formulation of graph problems
(Lucas 2014; Arai & Haraguchi 2021. This research is partly driven by excite-
ment around QC. It may therefore be possible to reduce the burden of problem
formulation by building on existing QUBO/Ising formulations published in
literature.

5.4. Observations about problem formulation for engineering
designers

Observations drawn from this work regarding gate-based versus QA methods for
engineering design applications suggest that reducing circuit depth in gate-based
approaches may enhance usability. D-wave’s QA approach can yield rapid and
usable results compared to Grover’s method, but users should be cautious of
inherent biases. In more complex cases, as with increasing scale and a more
intricate energy landscape, error in QA results may increase due to a reduced
energy gap. Bias drawbacks may intensify if valid solutions represent a smaller part
of the solution space. However, the scaling benefits of QC reduce the time disparity
between QA and classical approaches. Notably, most of the QPU time for QA was
spent on problem programming, suggesting potential for increases in annealing
time andmore runs without significantly affecting time to solution. The number of
runs should be increased as problem scale increases to maintain even coverage of
equally optimal solutions.

Perhaps the most significant observation made during this work concerns the
formulation of problem QUBOs for D-wave’s annealing devices.

The dedicated QA devices at D-wave accept BQM problems in the QUBO or
Ising format. A QUBO formulation was chosen for this work as it appeared more
intuitive. To formulate a problem as a QUBO, an equation with all the binary
variables needed to represent the problem must be created. The coefficients for
those variables and their quadratic combinations in the QUBO equation must also
be selected. This should be done such that the equation would reach a minimum
value when the variables take values that represent the optimal solution. However,
when dealing withmany constraints and objectives it is not obviouswhat the values
of these coefficients should be, particularly when considering the weighting of each
constraint. Fortunately, each constraint/objective can be considered individually,
and their respective QUBOs summed to form the overall BQM (D-Wave 2022).
However, when constraints start to concern more than two variables, ancilla
variables are required so that no terms become of a higher order than quadratic.

The example seen in D-Wave (2022) is for a small two variable problem. It uses
a constraint satisfaction table to generate a system of linear equations which can
then be solved for exact QUBOcoefficient values representing the constraint. If this
method was followed for the problem discussed in this paper, then the number of
equations exceeded the number of variables and the system became over-
constrained. Instead, the bqm.add_variable() method was used. This method sets
the bias value for a variable, meaning it determines the degree to which a variable
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tends to a particular outcome (D-Wave n.d.b). Essentially, it rewards when the
variable takes the value 1 and penalises when it takes the value 0 when the bias is
negative (or vise versa if the bias is positive). This method when combined with the
binary string problem formulation shown in Equation (6) makes it difficult to
create certain constraints and objectives. For example, imagine that the objective
was to place a tile as close to the centre of the grid as possible. The number of 1’s and
0’s in the binary string dictating the solution is roughly equal. How would you
penalise a solution closer to the eastern wall? Penalising more 1’s would result in
the optimum solution being placed on the western wall. Rewarding more 1’s would
move the optimum towards the eastern wall. Additionally, this binary string
formulation makes it hard to create smoothly varying constraints. This is best
seen in Figure 11. This figure is a visual representation of the energy landscape for
Tile 1’s position, where a higher energy represents a more probable returned
solution. It can be seen that solutions on the eastern wall are best, and hence they
are returned most often (seen in the results as part of Figures 8 and 9). However, it
can also be seen (most clearly at x = 5) that not every solution performs better than
its westerly neighbour. This is due to the way that counting in binary works, and
that as the integer value the string represents increases, the number of 1’s within the
string does not always increase (011! 100).

The impact of this is that engineering designers must consider the types of
constraints and objectives they will be creating during the formulation of the
problem. Whilst the number of variables (qubits) required for solution represen-
tation scales well with problem size for this approach, it is less flexible when
creating constraints and objectives. An alternative problem formulation may be
better. An example could be one variable per tile per space for each axis. So for
an 8x8 grid there would be 8 variables for the x-coordinate of Tile 1, 8 for the
y-coordinate of Tile 1, and 16 more for Tile 2. The position of a tile could then be
indicated by a single variable taking the value 1 for each coordinate. This would
scale less well with the problem space and would come with the added constraint
that not all value combinations for the variables constitute a possible solution
(when more than one variable is 1, for example). The scaling problem is less of a

Figure 11. A figure showing how the difficulty in creating a smoothly varying energy
landscape using the binary string solution representation. Note that for visual clarity
the sign of all energies have been changed to make them positive.
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concern since D-wave devices havemanymore qubits than were used in this study.
However, it is important to remember that not all qubits can be used for variables,
as some are needed to connect qubits within the device.

5.5. Methodology reflection

An objective of this study was to address a gap in the existing body of research, as
highlighted in the Related Work section. Specifically, this gap concerns the
evaluation of different hardware options for use by engineering designers.

A key aspect of this investigation was assessing the quality of results achievable
with quantum hardware. However, this analysis is inherently limited, as Grover’s
algorithmwas unable to produce usable results on any available device for the given
problem formulation. To better evaluate the potential of gate-based approaches for
engineering design problems, a more suitable method could have been selected—
one that aligns more closely with the capabilities of today’s or near-term quantum
devices.

In answer to the question “Is the method applied in this study suitable for
identifying promising QC approaches for engineers?,” it may be improved by
modifying Steps 1 and 2 shown in Figure 4. The study initially approached the
problem by first identifying a broadly relevant engineering challenge that might
benefit from a QC approach, followed by a search for two suitable quantum
algorithms. This strategy ensures that, if a successful quantum approach is iden-
tified, the findings on problem implementation would be valuable to a wider
audience. However, a drawback of this method is that the theoretical advantages
of QC may be hampered by current hardware limitations.

An alternative approach that could have improved the experimental setup
would be to first identify promising near-term quantum techniques before review-
ing existing computational engineering design tasks to determine which align with
known applications of those techniques. While this approach might result in
selecting an application area that stands to benefit less from QC in the long term,
it would increase the likelihood of identifying a realistic and feasible quantum
alternative in the near future.

5.6. Future work

The first area identified for further investigation would be to explore a different,
more NISQ-suitable (e.g., shallower) gate-model approach. This would enable a
more relevant comparison between the most promising gate-based option and QA
from a performance perspective. Such a comparison would help direct engineering
designers’ learning as they begin to adopt this new technology. The author’s
highlight the QAOA as a promising method (Blekos et al. 2024). Combining a
QAOA investigation with the researchmethodology restructuring suggested in the
previous subsection should allow strong conclusions to be drawn about suitable
avenues for QC to be applied in engineering design. Furthermore, QAOA can solve
problems using the same QUBO formulation as QA. This would allow the
comparison of performance to be problem formulation agnostic, giving clearer
insights into the suitability of different hardware options.

This QAOA investigation could be supplemented by exploring various types of
engineering design problem currently addressed with classical computation,
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providing insights into potential areas for QC. This could involve a review of the
literature looking for problems or sub-problems for which there is a direct
quantum alternative. This should help to develop approaches that avoid the
limitations discussed in this study.

Another avenue for exploration is other gate-based QC hardware options. IBM
uses superconducting qubits, but other options with longer coherence times are
available. This could involve exploring what options are offered by other hardware
developing companies such as Microsoft that use nuclear magnetic resonance QC
or IonQ that use trapped ion QC (Hassija et al. 2020; Cheng et al. 2023) as these are
said to have long coherence times.

6. Conclusion
QA facilitated through D-Wave stands out as an appropriate quantum computing
platform for near-term use. The robustness of simulators is crucial in building
experience that will enable quantum computing principles for engineering prob-
lem solving to be leveraged. These can also be used to help decide if a design
problem is a good candidate for a quantum approach by enabling experimentation
with problem formulation, different algorithms, and even hardware options at zero
financial cost. This is particularly useful given the rapid development of QC
hardware and its constantly evolving capabilities.

An important future direction involves determining the optimal size of design
problems for quantum computing applications, considering scalability and com-
putational limits. It is difficult to say the exact problem scale where QC will
outperform classical methods once you implement your approach onto real
hardware. This issue is exemplified in recent work investigating D-wave’s hybrid
solvers published in Nature Quinton et al. (2025). They showed that performance
varies heavily between binary quadratic problems and non-binary problems, non-
quadratic problems, or combinations of the latter two. It is therefore unlikely we
will be able to identify universal values for problem scales where QC achieves
advantage. This is why it is essential that engineering designers begin to develop,
deploy, and test QC approaches to their own problems so that these critical tipping
points can start being identified. This requirement provides justification for this
study, as engineering designers will need an introduction to the field of QC, and we
will need the development of robust methods for comparison across problems and
solving methods.

This work demonstrates the relatively straightforward representation of a
generalised instance of a configuration-based design problem for both QA and
gate-based approaches, with QA already yielding usable results. Whilst the Gro-
ver’s approach investigated was not suitable for NISQ implementation, the sur-
rounding discussion covering problem formulation could remain useful for
engineering designers in an FTQC future, as it is independent from gate-model
hardware variations. It has also been shown that engineering designers should pay
particular attention to the type of constraints and objectives that they will be using
when deciding their problem formulation. Expanding research in quantum com-
puting offers hope for improved hardware, including longer coherence times,
reduced bias in annealing devices, increased CLOPS and more qubits. As a result,
this work provides a foundation for engineering designers to consider how they can
adapt their problems to leverage potential quantum speed-up in the future.
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A summary of this studies findings are as follows:

1. The reference models presented accurately translate the layout problem into a
form appropriate for their respective quantum solving methods.

2. IBM devices are currently incapable of executing this Grover’s algorithm
approach for the 8x8 grid problem formulation,

3. D-wave’s device was able to achieve correct results with almost no error for
every problem scale tested; however, the results were skewed by hardware
biases.

4. D-wave device was able to achieve its results for the 64x64 scale problem
approximately 100 times faster than the brute force approach.

5. It is non-trivial to transition from classical to quantummethods and a degree of
training is required; however, the major difficulty with annealing can be
alleviated by making use of problem formulations already published in litera-
ture.

6. When formulating a problem for tackling with QA, engineering designers must
pay careful attention to the type of constraints and objectives present in their
problem. Those with a greater than quadratic order will introduce additional
qubit overhead.

7. Our approach for identifying suitable application areas for QC in engineering
design could be improved by comparing a NISQ-suitable gate-based method
across multiple problem types instead of trying to find a suitable method/
algorithm for a problem of wide interest.
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spanning the width of the diagram and represent a qubit as it passes through/is
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such as the one containing “G” on top of the wires in Figure A1.

Figure A1 shows us that Grover’s algorithm requires a register of n qubits
(problem qubits) and a second register of computational bits (or the oracle
workspace). The problem qubits are used to represent the problem variables and
encode the solution to our problem when measured. The computational bits allow
computations to be performed on the problem qubits throughout the algorithms
operation. The circuit begins with all the problem qubits in the ground state ∣0〉
then applies a Hadamard gate to each wire, or qubit. This places each qubit in a
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state of equal superposition between the states ∣0〉 and ∣1〉, shown in
Equation (7) (and shown pictorially in Figure 2).

∣0〉! ∣0〉þ ∣1〉ffiffiffi
2

p (A.1)

The square of the coefficients of the states represent the probability of that state
being returned (1=

ffiffiffi
2

p Þ2 = 1=2). We call this an equal superposition as there is a
50% chance that the qubit, if measured at this stage, would return a 0 and a 50%
chance it would return a 1.

Once in this state of superposition, the circuit undergoes its first iteration of
Grover’s algorithm, G. An iteration is shown on the circuit diagram by the
rectangle containing the letter G. This iteration can be broken up into four steps
(Nielsen & Chuang 2001) (and how these steps might affect the solution space can
be seen in Figure 2):

1. Apply the Oracle. The Oracle is another combination of more elementary gates
whose purpose is to mark or recognise a solution to the problem. This marking
is carried out by flipping a qubit in the Oracle workspace (or in the computa-
tional qubit register) from ∣0〉 to ∣1〉 if a solution is detected.

2. Apply a Hadamard to each qubit in the problem qubits register.
3. Perform a “phase shift” which has the effect of increasing the amplitude of the

target state, or the probability of it being returned.
4. Apply a Hadamard to each qubit in the problem qubits register.

This G can be repeated many times, and the optimum number is a function of
problem size. For problems where there are M valid solutions in a space of size N
the Oracle, O, should be applied O

ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
times. For our problem that isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4096=56
p

= 8:5≈ 9 times.
Finally, Figure A1 shows that the qubits in the problem qubits register are

measured, as indicated by the block containing a dial symbol. This means that state
represented by the linear combination of the problem qubit states collapses into a
binary string, 1 digit per problem qubit. This binary string can be decoded to return
the solution we were searching for.

Figure A1. A figure showing the schematic circuit for Grover’s algorithm (Nielsen &
Chuang 2001).

41/42

https://doi.org/10.1017/dsj.2025.10028 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10028


Appendix B: Sources for Figure 3

Table B1. A table detailing the supporting references used to create Figure 3, organised by the QC era

Quantum computing era Supporting references

Foundational algorithms
and early theory

Feynman (2018), Apolloni, Cesa-Bianchi &De Falco (1990), Shor (1994),
Grover (1996), Harrow, Hassidim & Lloyd (2009)

Rise of physical qubits and
early hardware

Monroe et al. (1995), Chuang, Gershenfeld&Kubinec (1998), Nakamura,
Pashkin & Tsai (1999), Dumke et al. (2002), Pittman et al. (2003),
O’Brien et al. (2003), Johnson et al. (2011), Schindler et al. (2011)

Democratisation of
quantum hardware

Devitt (2016), Prickett (2017), IBM (n.d.c), Team (2017), Knight (2017),
Preskill (2018), Kelly (2018), Ball (2018), D-Wave (2018), Arute et al.
(2019), IBM (n.d.b), Choi (2020), Trueman (2025)

Scaling qubits and
improving processors

AbuGhanem (2025), Svore (2021), Postler et al. (2022), Kim et al. (2023),
Swayne (2024), Main et al. (2025), Google Quantum AI and
Collaborators (2024), D-Wave (2025), King et al. (2025)

Table B2. A table detailing the supporting references for the maximum qubit count achieved by each
quantum compute provider, organised by provider

Compute
provider Supporting references

IBM Knight (2017), AbuGhanem (2025), Devitt (2016)

Google Kelly (2018), Reynolds (2017), Neven (2017)

Rigetti Zeng (2017), Shankland (2019), Pelofske, Bärtschi & Eidenbenz (2022), Computing
(2024)

Xanadu Xanadu (2020), Xanadu (2022)

D-wave Prickett (2017), Trueman (2025), Merali (2011), Jones (2013), Wang (2015), D-Wave
(2025)
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