WALLMAN COMPACTIFICATION AND REPRESENTATION

SHANKAR HEGDE

Introduction. Let X be any set and A be a uniformly closed algebra of bounded real valued functions on X which contains the constants and separates the points. For a lattice \mathcal{L} of subsets of X (we assume throughout that \emptyset and X belong to \mathcal{L}), let $MR(\mathcal{L})$ denote the space of all finite, finitely additive, \mathcal{L} -regular measures defined on the field of sets generated by \mathcal{L} . Generalizing the notion of an integral representation, in [5] Kirk and Crenshaw define a standard representation of A^* , the Banach dual of A, in $MR(\mathcal{L})$ to be a linear map I of A^* into $MR(\mathcal{L})$ with the property that if $0 \leq \phi \in A^*$, then

$$I\phi(W) = \inf \{ \phi(f) : f \in A, \chi_W \le f \}$$

for every W in \mathscr{L} . The space $MR(\mathscr{L})$ is said to represent A^* if there exists a (unique) standard representation I of A^* onto $MR(\mathscr{L})$ which is a Banach lattice isomorphism. Among other things the following theorem is proved therein: If \mathscr{L} is a normal base for the weak topology generated by A on X and if A consists of precisely those continuous functions on X which have continuous extensions to the Wallman compactification of X relative to \mathscr{L} , then $MR(\mathscr{L})$ represents A^* .

The purpose of this paper is to derive some necessary conditions on the lattice $\mathscr L$ when $MR(\mathscr L)$ represents A^* . In particular, we prove that if $MR(\mathscr L)$ represents A^* then $\mathscr L$ is a separating, disjunctive lattice and A contains the algebra of all those functions which have continuous extensions to the Wallman compact space relative to $\mathscr L$. Furthermore, the algebra A coincides with the latter one, if and only if $\mathscr L$ is normal. Thus if $\mathscr L$ is a normal lattice to start with, the converse of Kirk and Crenshaw's theorem holds. This also generalizes an earlier result of $[\mathbf 4]$. Finally we give topological implications of our result.

1. Preliminaries. Throughout the paper, A and $MR(\mathcal{L})$ are as described in the introduction. Let X_A denote the structure space of A, that is, the set of all non-zero real homomorphisms of A topologized by the weak-star topology. Thus X_A is a Hausdorff compactification of X where X carries the relative topology τ_A which is also the weak topology generated by A on X, and A consists of precisely those continuous functions on X which can be continuously extended to X_A .

Received July 27, 1979 and in revised form November 6, 1979.

A lattice $\mathcal L$ of subsets of X is called i) *separating* if given distinct x and y in X there exists some L in $\mathcal L$ such that $x\in L$ and $y\notin L$, ii) *disjunctive* if for every $L\in \mathcal L$ and $x\in X-L$ there exists $M\in \mathcal L$ such that $x\in M$ and $L\cap M=\emptyset$, iii) *normal* if whenever L and M are disjoint members of $\mathcal L$, there exist U and V in $\mathcal L$ such that $L\subset X-U$, $M\subset X-V$ and $U\cup V=X$.

Given a separating, disjunctive lattice \mathscr{L} of subsets of X the Wallman compact space relative to \mathscr{L} is the space $\omega(L)$ of all \mathscr{L} -ultrafilters having as the base for its closed sets the sets of the form $\bar{L} = \{\mathscr{U} \in \omega(L) : L \in \mathscr{U}\}$ where $L \in \mathscr{L}$. Then $\omega(L)$ is a T_1 -compactification of X where X carries the topology having \mathscr{L} as a base for its closed sets and \bar{L} is precisely the closure of L in $\omega(\mathscr{L})$. Furthermore, $\omega(\mathscr{L})$ is Hausdorff if and only if \mathscr{L} is normal (see [1]).

Given a separating, disjunctive lattice \mathscr{L} of subsets of X, a bounded real valued function f on X is said to be \mathscr{L} -uniformly continuous if for every $\epsilon > 0$ there exists a finite family $\{L_1, L_2, \ldots L_n\}$ of members of \mathscr{L} such that $\bigcap_{i=1}^n L_i = \emptyset$ and the oscillation of f on each $X - L_i$ is less than ϵ . The set $C_u(\mathscr{L})$ of all \mathscr{L} -uniformly continuous functions on X is a uniformly closed algebra consisting of all those bounded real valued continuous functions on X which are continuously extendible to $\omega(\mathscr{L})$. (see (1), [3]. We note that in the proof of Theorem 2 in [3], the Hausdorffness of $\omega(\mathscr{L})$ is not needed).

Given a lattice \mathscr{L} , the set of all non-zero measures in $MR(\mathscr{L})$ which assume only two values 0 and 1 is denoted by $IR(\mathscr{L})$. In [6], Sultan showed that there is a one to one correspondence between the members of $IR(\mathscr{L})$ and those of $\omega(\mathscr{L})$ and the correspondence is given by associating with each μ in $IR(\mathscr{L})$, the \mathscr{L} -ultrafilter

$$\mathscr{F}_{\mu} = \{ L \in \mathscr{L} \colon \mu(L) = 1 \}.$$

We give $IR(\mathcal{L})$ the topology of transference from $\omega(\mathcal{L})$ and call it the Wallman topology on $IR(\mathcal{L})$. Thus the Wallman topology on $IR(\mathcal{L})$ has a base for its closed sets, the sets of the form

$$\bar{L} = \{ \mu \in IR(\mathcal{L}) \colon \mu(L) = 1 \}$$

where $L \in \mathcal{L}$.

Finally, as in [3], we assume throughout that all lattices \mathcal{L} for which $MR(\mathcal{L})$ represents A^* are lattices of τ_A -closed sets of X.

2. Weak topology on $IR(\mathcal{L})$. Let $MR(\mathcal{L})$ represent A^* . The weak topology on $MR(\mathcal{L})$ induced by A is the unique topology on $MR(\mathcal{L})$ which makes the standard representation I a topological isomorphism when A^* has the weak-star topology. This topology on $MR(\mathcal{L})$ is characterized by the convergence of nets: A net $\{\mu_{\alpha}\}$ in $MR(\mathcal{L})$ converges to a $\mu \in MR(\mathcal{L})$ in weak topology if and only if $\int_X f d\mu_{\alpha} \to \int_X f d\mu$ for

every f in A. As a subset of $MR(\mathcal{L})$, $IR(\mathcal{L})$ inherits the relative topology which we call the *weak topology* on $IR(\mathcal{L})$ induced by A. In the following proposition we prove that $IR(\mathcal{L})$ with this topology is homeomorphic to X_A .

Proposition 2.1. Let $MR(\mathcal{L})$ represent A^* . Then $IR(\mathcal{L})$ with weak topology induced by A is homeomorphic to X_A .

Proof. By definition, X_A is a subspace of A^* where A^* has the weak-star topology. Hence to complete the proof it is enough to show that the standard representation I maps X_A onto $IR(\mathcal{L})$. Since I is an integral representation (see [5]), the proof of the latter fact is analogous to the proofs of Lemmas 3.1 and 3.2 of [6]. We leave the details to the reader.

Thus when $MR(\mathcal{L})$ represents A^* , $IR(\mathcal{L})$ with weak topology induced by A is a Hausdorff compactification of (X, τ_A) . For an $x \in X$, let h_x denote the bounded linear functional on A defined by $h_x(f) = f(x)$ for every $f \in A$. Let μ_x be the measure in $MR(\mathcal{L})$ representing h_x . Since $x \to h_x$ is an embedding of X into X_A , $X \to \mu_x$ is an embedding of X into $IR(\mathcal{L})$. Later in Section 3, we show that μ_x is precisely the unit mass measure concentrated at x.

Given a Tychonoff space, let $C_b(X)$ denote the space of all bounded real valued continuous functions on X. Recall that the structure space of $C_b(X)$ is homeomorphic to the Stone-Čech compactification βX of X. Hence by Proposition 2.1, it follows that if $\mathscr L$ is any lattice of closed subsets of X for which $MR(\mathscr L)$ represents $C_b(X)^*$, then $IR(\mathscr L)$ is homeomorphic to βX . In particular, IR(Z[X]) is homeomorphic to βX where Z[X] denotes the lattice of zero sets on X. This latter result is due to Varadarajan (Theorem 4 of Part III, [7]).

Our next result gives a comparison of the weak topology on $IR(\mathcal{L})$ with the Wallman topology on it.

PROPOSITION 2.2. Let $MR(\mathcal{L})$ represent A^* . Then the Wallman topology on $IR(\mathcal{L})$ is weaker than the weak topology on $IR(\mathcal{L})$ induced by A.

Proof. It is enough to prove that the convergence of a net in the weak topology implies its convergence in the Wallman topology on $IR(\mathcal{L})$. Let $\{\mu_{\alpha}\}$ be a net in $IR(\mathcal{L})$ with $\mu_{\alpha} \to \mu \in IR(\mathcal{L})$ weakly. Then $\int_X f d\mu_{\alpha} \to \int_X f d\mu$ for every $f \in A$. Since μ is non-negative, for every $W \in \mathcal{L}$,

$$\mu(W) = \inf \left\{ \int_X f d\mu : f \in A, \chi_W \leq f \right\}.$$

Hence given $\epsilon > 0$, there exists $f \in A$ with

$$\chi_W \le f$$
 and $\int_X f d\mu < \mu(W) + \epsilon$.

We then have

$$\lim_{\alpha} \sup \mu_{\alpha}(W) \leq \lim_{\alpha} \int_{X} f d\mu_{\alpha} = \int_{X} f d\mu < \mu(W) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, it follows that

$$\lim_{\alpha} \sup \mu_{\alpha}(W) \leq \mu(W)$$
.

In particular if $\mu(W) = 0$, then $\mu_{\alpha}(W) \to 0$.

Note that a base for the closed sets of Wallman topology is given by $\{\hat{W} \colon W \in \mathcal{L}\}$ where $\hat{W} = \{\mu \in IR(\mathcal{L}) \colon \mu(W) = 1\}$. Hence if $IR(\mathcal{L}) - \hat{W}$ is any Wallman neighbourhood of μ then $\mu(W) = 0$. But then $\mu_{\alpha}(W) \to 0$. Since each μ_{α} is $\{0, 1\}$ -valued, if follows that $\mu_{\alpha}(W) = 0$ for all $\alpha \geq \alpha_0$ for some α_0 . That is $\mu_{\alpha} \in IR(\mathcal{L}) - \hat{W}$ for all $\alpha \geq \alpha_0$. This proves that $\mu_{\alpha} \to \mu$ in the Wallman topology.

Since compact topology is minimal among the Hausdorff topologies, the two topologies on $IR(\mathcal{L})$ coincide if and only if the Wallman topology on $IR(\mathcal{L})$ is Hausdorff. That is, if and only if whenever $\mu_1 \neq \mu_2, \ \mu_1, \ \mu_2 \in IR(\mathcal{L})$ there exist $W_1, \ W_2 \in \mathcal{L}$, with $W_1 \cup W_2 = X$ such that $\mu_1(W_1) = 0 = \mu_2(W_2)$.

3. Some necessary conditions on \mathscr{L} . We first prove a 'lattice version' of the Urysohn's lemma. Let \mathscr{L} be a separating, disjunctive lattice of subsets of a set X. We call \mathscr{L} a *Urysohn lattice* if for every pair of disjoint sets L and M in \mathscr{L} , there exists an \mathscr{L} -uniformly continuous function f on X such that f(L)=0 and f(M)=1.

Proposition 3.1. Let \mathcal{L} be a separating, disjunctive lattice of subsets of a set X. Then \mathcal{L} is normal if and only if L is Urysohn.

Proof. Let \mathscr{L} be normal. Then the Wallman compact space $\omega(\mathscr{L})$ is a Hausdorff compactification of X where X has the topology with \mathscr{L} as a base for its closed sets. Let $L,\ M\in\mathscr{L}$ with $L\cap M=\emptyset$. Then $\bar{L}\cap \bar{M}=\emptyset$. By the Urysohn's lemma for normal topological spaces, there exists an $\bar{f}\in C(\omega(\mathscr{L}))$ such that $\bar{f}(\bar{L})=0$ and $\bar{f}(\bar{M})=1$. Let $f=\bar{f}|X$. Then f is \mathscr{L} -uniformly continuous and f(L)=0 and f(M)=1 proving that \mathscr{L} is Urysohn.

Conversely suppose \mathscr{L} is Urysohn. Consider the Wallman compact space $\omega(\mathscr{L})$ relative to \mathscr{L} . Recall that $\omega(\mathscr{L})$ is Hausdorff if and only if \mathscr{L} is normal. (See [1]). Hence we complete the proof by showing that $\omega(\mathscr{L})$ is Hausdorff.

Let $x, y \in \omega(\mathcal{L})$, $x \neq y$. Since $\overline{\mathcal{L}} = \{\overline{L} : L \in \mathcal{L}\}$ is a base for the closed sets of $\omega(\mathcal{L})$, and $\{x\}$, $\{y\}$ are closed, there is an $L \in \mathcal{L}$ such that $x \in \overline{L}$ and $y \notin \overline{L}$. Again for every $z \in \overline{L}$, there exists $M_z \in \mathcal{L}$ such that $y \in \overline{M}_z$ and $z \notin \overline{M}_z$. Now $\{\omega(\mathcal{L}) - \overline{M}_z : z \in \overline{L}\}$ forms an open cover of

the compact set \bar{L} . Hence there exists a finite subcover, say $\{\omega(\mathcal{L}) - \bar{M}_{z_i} : i = 1, 2, \ldots, n\}$. Let

$$M = \bigcap_{i=1}^{n} M_{z_i}.$$

Then $M \in \mathcal{L}$ and $\bar{L} \subset \omega(\mathcal{L}) - \bar{M}$. Hence $x \in \bar{L}$, $y \in \bar{M}$ and $\bar{L} \cap \bar{M} = \emptyset$. Then $L \cap M = \emptyset$. By hypothesis, there exists an \mathcal{L} -uniformly continuous function f such that f(L) = 0 and f(M) = 1. But then $f(\bar{L}) = 0$ and $f(\bar{M}) = 1$ where \bar{f} is the unique continuous extension of f to $\omega(\mathcal{L})$. This guarantees that $\omega(\mathcal{L})$ is Hausdorff.

COROLLARY 3.2. A topological space X is Tychonoff if and only if X has a Urysohn lattice \mathcal{L} which is a base for its closed sets.

Proof. A T_1 -space X is Tychonoff if and only if X has a normal base for its closed sets [3]. If X is Tychonoff then it has a normal base $\mathscr L$ which is clearly Urysohn by Proposition 3.1. Conversely suppose X has a Urysohn lattice as a base for its closed sets. Since $\mathscr L$ is separating and disjunctive X is a T_1 -space. Now the result follows from [3].

When X is a normal topological space and \mathcal{L} is the lattice of the closed sets of X, then $MR(\mathcal{L})$ represents $C_b(X)^*$ (see [2], p. 262). More generally, let X be any Tychonoff space and \mathcal{L} be a disjunctive, separating lattice of its closed sets which is also a base for its closed sets. If \mathcal{L} is normal then $MR(\mathcal{L})$ represents $C_u(\mathcal{L})^*$. (This follows from Theorem 3.12 of [5]). The following corollary contains a converse of these results.

COROLLARY 3.3 Let \mathcal{L} be a disjunctive, separating lattice of subsets of a set X such that the algebra $C_u(\mathcal{L})$ is point separating. Then $MR(\mathcal{L})$ represents $C_u(\mathcal{L})^*$ if and only if \mathcal{L} is normal.

Proof. If \mathscr{L} is normal, we have already pointed out that $MR(\mathscr{L})$ represents $C_u(\mathscr{L})^*$. We now prove the converse. It is easy to see that the members of \mathscr{L} are closed sets in the weak topology generated by $C_u(\mathscr{L})$ on X. By Proposition 3.5 of $[\mathbf{5}]$, if $MR(\mathscr{L})$ represents the dual A^* of an algebra A, then the disjoint sets in \mathscr{L} are separated by a member of A. Thus when $MR(\mathscr{L})$ represents $C_u(\mathscr{L})^*$, \mathscr{L} is Urysohn, and hence normal by Proposition 3.1.

We remark here that if \mathscr{L} is normal then the algebra $C_u(\mathscr{L})$ is point separating. However $C_u(\mathscr{L})$ can be point separating without \mathscr{L} being normal. For example, if X is a non-normal Tychonoff space then the lattice \mathscr{L} of its closed sets is non-normal but $C_u(\mathscr{L}) = C_b(X)$ is point separating.

Next we prove that the point separating property of an algebra A is

enough to ensure that \mathcal{L} is separating and disjunctive whenever $MR(\mathcal{L})$ represents A^* . We first prove two lemmas.

For an $x \in X$, let δ_x denote the unit mass measure concentrated at the point x, that is, $\delta_x(E) = 1$ if $x \in E$ and $\delta_x(E) = 0$ if $x \notin E$ for every E in the domain of δ_x . Note that for a given lattice \mathcal{L} , in general δ_x need not be \mathcal{L} -regular.

Lemma 3.4. Let \mathscr{L} be a lattice of subsets of a set X. Then \mathscr{L} is disjunctive if and only if the unit mass measure δ_x is \mathscr{L} -regular for every $x \in X$.

Proof. Let \mathscr{L} be disjunctive. Let $x \in X$. Let E be a set in the field of subsets of X generated by \mathscr{L} . To prove that δ_x is \mathscr{L} -regular it is enough to show that whenever $x \in E$, there exists some $L \in \mathscr{L}$ such that $x \in L \subset E$. Now $E = \bigcup_{i=1}^n (L_i - M_i)$ for some n where L_i , $M_i \in L$, $M_i \subset L_i$ and

$$(L_i - M_i) \cap (L_j - M_j) = \emptyset$$
 for $i \neq j$.

Let $x \in E$. Then $x \in L_i - M_i$ for some $i, 1 \le i \le n$. By hypothesis, there exists some $M \in \mathcal{L}$ such that $x \in M$ and $M \cap M_i = \emptyset$. Let $L = M \cap L_i$. Then $x \in L \subset E$.

Conversely suppose δ_x is \mathscr{L} -regular for each $x \in X$. Let $L \in \mathscr{L}$ and $x \notin L$. Then $\delta_x(X - L) = 1$. By the \mathscr{L} -regularity of δ_x , there exists $M \in \mathscr{L}$ such that $M \subset X - L$ and $\delta_x(M) = 1$. Then it follows that $x \in M$ and $x \in M$ and

LEMMA 3.5. Let \mathcal{L} be a disjunctive lattice of subsets of a set X. Then \mathcal{L} is separating if and only if $\delta_x \neq \delta_y$ whenever $x, y \in X, x \neq y$.

Proof. Suppose \mathcal{L} is separating. Then it is easy to see that $\delta_x \neq \delta_y$ whenever $x \neq y$. Conversely let the hypothesis be true. Let $x, y \in X$, $x \neq y$. Then $\delta_x \neq \delta_y$. Hence there exists $L \in \mathcal{L}$ such that $\delta_x(L) \neq \delta_y(L)$. Therefore L contains exactly one of the points x or y. Now together with the disjunctive property of \mathcal{L} , it follows that \mathcal{L} is separating.

We now prove

Proposition 3.6. Let \mathcal{L} be a lattice of τ_A -closed subsets of X such that $MR(\mathcal{L})$ represents A^* . Then \mathcal{L} is separating and disjunctive.

Proof. For $x \in X$, let $h_x \in X_A$ be the evaluation-at-x homomorphism and let $\mu_x \in IR(\mathcal{L})$ represent h_x (Proposition 2.1). Since μ_x is \mathcal{L} -regular, to show that \mathcal{L} is disjunctive we need only show that $\mu_x = \delta_x$. Now for any $L \in \mathcal{L}$

$$\mu_x(L) = \inf \{ h_x(f) \colon f \in A, \chi_L \leq f \},$$

= \inf \{ f(x) \cdot f \in A, \chi_L \leq f \},
= 1 \text{ if and only if } x \in L.

The last line follows by an application of the Urysohn's lemma to the pair \bar{L} and x in the normal topological space X_A .

For an arbitrary E in the field of subsets of X generated by \mathscr{L} we can show, by a similar argument applied in the proof of Lemma 3.4, that $\mu_x(E) = 1$ if and only if $x \in E$. This proves that $\mu_x = \delta_x$. Since A is point separating, $h_x \neq h_y$ and hence $\mu_x \neq \mu_y$ whenever $x, y \in X, x \neq y$. Now the proof of the proposition is complete by direct applications of Lemmas 3.4 and 3.5.

In Corollary 3.3, we proved that if the algebra $C_u(\mathcal{L})$ is point separating, then \mathcal{L} should be normal whenever $MR(\mathcal{L})$ represents $C_u(\mathcal{L})^*$. However $MR(\mathcal{L})$ can represent the dual A^* of a point separating algebra A even if \mathcal{L} is not normal. (See example Appendix (a) of [5].) In the following theorem, we prove that $MR(\mathcal{L})$ can not represent the dual of any smaller point separating algebra than $C_u(\mathcal{L})$.

Theorem 3.7. Let A be a uniformly closed algebra of bounded real valued functions on a set X which contains the constants and separates the points. Let \mathcal{L} be a lattice of τ_A -closed subsets of X such that $MR(\mathcal{L})$ represents A^* . Then $C_u(\mathcal{L}) \subset A$. Furthermore $C_u(\mathcal{L}) = A$ if and only if \mathcal{L} is normal.

Proof. Since $MR(\mathcal{L})$ represents A^* , by Proposition 3.6 \mathcal{L} is separating and disjunctive. Hence the Wallman compact space $\omega(L)$ relative to \mathcal{L} is a T_1 -compactification of X. That is, $IR(\mathcal{L})$ with Wallman topology is a T_1 -compactification of X and each $f \in C_u(\mathcal{L})$ has a unique continuous extension to $IR(\mathcal{L})$ with this topology.

By Proposition 2.2, the Wallman topology on $IR(\mathcal{L})$ is weaker than the weak topology induced by A. By Proposition 2.1, $IR(\mathcal{L})$ with the weak topology induced by A is homeomorphic to X_A .

Let $f \in C_u(\mathcal{L})$ and let \bar{f} be the unique continuous extension of f to $IR(\mathcal{L})$ in the Wallman topology. Then \bar{f} is continuous on $IR(\mathcal{L})$ in the weak topology induced by A as well.

Thus f has a unique continuous extension to X_A . Since A consists of precisely those bounded real valued functions on X which have continuous extensions to X_A , $f \in A$. This proves the first part of the theorem.

Now suppose \mathscr{L} is normal. Then the Wallman topology on $IR(\mathscr{L})$ is Hausdorff and hence coincides with the weak topology induced by A. Therefore by Propositions 2.1 and 2.2 X_A is homeomorphic to the Wallman compactification $\omega(L)$ of X relative to \mathscr{L} and a homeomorphism can be so chosen that it leaves X pointwise fixed. Now it follows that $A = C_n(\mathscr{L})$.

Conversely suppose $C_u(\mathcal{L}) = A$. Then the normality of \mathcal{L} follows from Corollary 3.3.

Remark 1. In [5] Kirk and Crenshaw proved that if $X_A = \omega(L)$ for some normal base \mathcal{L} on X with τ_A -topology, then $MR(\mathcal{L})$ represents A^* .

Theorem 3.7 proves that if we start with a normal lattice \mathcal{L} of τ_A -closed sets the converse also holds. That is, if \mathcal{L} is a normal lattice of τ_A -closed sets on X such that $MR(\mathcal{L})$ represents A^* , then \mathcal{L} is a normal base on X and $X_A = \omega(\mathcal{L})$.

Remark 2. Let Z[A] denote the lattice of the zero-sets of members of A. In [4] we proved that MR(Z[A]) represents A^* if and only if $A = C_u(Z[A])$. Theorem 3.7 and Corollary 3.3 together generalize this result which can be stated as: Let $\mathscr L$ be a separating, disjunctive, normal lattice of τ_A -closed subsets of X. Then $MR(\mathscr L)$ represents A^* if and only if $A = C_u(\mathscr L)$.

Every Tychonoff space has a normal base which is a separating, disjunctive normal lattice of its closed sets. We show by an example below that a separating, disjunctive, normal lattice of closed sets need not be a base for the closed sets.

Example 3.8. Let N denote the set of all positive integers with discrete topology. Let \mathscr{L} be the lattice of subsets of N generated by the sets of the form

$$A_{m,n} = \{k \in N : k \le 2m - 1, \text{ or } k \ge 2n\},\$$

 $B_{m,n} = \{k \in N : 2m \le k \le 2n - 1\}$

where $m, n \in N$. Clearly \mathscr{L} consists of finite unions of $B_{m,n}$'s or the unions of a finite number of $B_{m,n}$'s and an $A_{m,n}$. Since \mathscr{L} itself is a field of subsets of N, \mathscr{L} is a separating, disjunctive, normal lattice of closed subsets of N. However \mathscr{L} is not a base for the closed sets of N. In fact, $F = N - \{1\}$ is closed in N and $1 \notin F$. But each member of \mathscr{L} which contains F also contains 1.

For a given separating, disjunctive, normal lattice \mathscr{L} of subsets of X let $\tau_{\mathscr{L}}$ denote the topology on X having \mathscr{L} as a base for its closed sets. Then $\tau_{\mathscr{L}}$ is a completely regular Hausdorff topology on X. Now as an immediate consequence of Theorem 3.7 we have

COROLLARY 3.9. Let \mathcal{L} be a separating disjunctive normal lattice of τ_A -closed subsets of X. Then $\tau_{\mathscr{L}} = \tau_A$ if and only if $MR(\mathcal{L})$ represents A^* .

Proof. If $MR(\mathcal{L})$ represents A^* , then as in the proof of Theorem 3.7 $X_A = \omega(L)$. Hence the corresponding relative topologies τ_A and $\tau_{\mathcal{L}}$ on X coincide.

Conversely if $\tau_{\mathscr{L}} = \tau_A$, then \mathscr{L} is a normal base for the τ_A -closed sets and hence $X_A = \omega(\mathscr{L})$. Therefore $MR(\mathscr{L})$ represents A^* .

In particular if X is any Tychonoff space, and \mathscr{L} is a separating, disjunctive, normal lattice of its closed sets then the topology on X having \mathscr{L} as a base for its closed sets coincides with the original topology if and only if $MR(\mathscr{L})$ represents $C_b(X)^*$. In fact, $C_b(X)$ here can be replaced

by any "completely regular" algebra A, a subalgebra of $C_b(X)$ which determines the topology of X.

Finally the author thanks Professor Robert F. Wheeler for helpful discussions and the referee for a suggestion regarding the notation.

References

- 1. R. M. Brooks, On Wallman compactifications, Fund. Math. 60 (1967), 157-173.
- 2. N. Dunford and J. T. Schwartz, *Linear operators, Part I* (Interscience, New York, 1958).
- 3. O. Frink, Compactifications and seminormal spaces, Amer. J. Math. 86 (1964), 602-607.
- 4. S. Hegde, A characterization of z-separating algebras, Proc. Amer. Math. Soc. 73 (1979), 40-44.
- R. B. Kirk and J. A. Crenshaw, A generalized topological measure theory, Trans. Amer. Math. Soc. 207 (1975), 189-217.
- A. Sultan, Measure, compactification and representation, Can. J. Math. 30 (1978), 54-65.
- 7. V. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228.

Northern Illinois University, DeKalb, Illinois