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WALLMAN COMPACTIFICATION AND 
REPRESENTATION 

SHANKAR HEG D E 

Introduction. Let X be any set and A be a uniformly closed algebra 
of bounded real valued functions on X which contains the constants and 
separates the points. For a l a t t i c e d of subsets of X (we assume through
out that 0 and X belong toJzf ), let MR(S£) denote the space of all finite, 
finitely additive,^-regular measures defined on the field of sets generated 
b y ^ . Generalizing the notion of an integral representation, in [5] Kirk 
and Crenshaw define a standard representation of A*, the Banach dual of 
A, in MR(££) to be a linear map I of A* into MR(J£) with the property 
that if 0 ^ 0 G ^4*, then 

I4>{W) = inf { « ( / ) : / £ A, Xw Û f] 

for every W\nJ£. The space MR{S£) is said to represent A* if there exists 
a (unique) standard representation / of A* onto MR{S£) which is a 
Banach lattice isomorphism. Among other things the following theorem 
is proved therein: If i f is a normal base for the w êak topology generated 
by A on X and if A consists of precisely those continuous functions on X 
which have continuous extensions to the Wallman compactification of X 
relative to «if, then MR(J£) represents A*. 

The purpose of this paper is to derive some necessary conditions on the 
lattice i f when MR{^£) represents A*. In particular, we prove that if 
MR(J£) represents A* thenJ^7 is a separating, disjunctive lattice and A 
contains the algebra of all those functions which have continuous exten
sions to the Wallman compact space relative to «if. Furthermore, the 
algebra A coincides with the latter one, if and only if i f is normal. Thus 
if i f is a normal lattice to start with, the converse of Kirk and Crenshaw's 
theorem holds. This also generalizes an earlier result of [4]. Finally we 
give topological implications of our result. 

1. Preliminaries. Throughout the paper, A and MR{^£) are as 
described in the introduction. Let XA denote the structure space of A, 
that is, the set of all non-zero real homomorphisms of A topologized by 
the weak-star topology. Thus XA is a Hausdorff compactification of X 
where X carries the relative topology rA which is also the weak topology 
generated by A on X, and A consists of precisely those continuous 
functions on X which can be continuously extended to XA. 
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A l a t t i c e d of subsets of X is called i) separating if given distinct x and 
y in X there exists some L in«i^ such that x Ç L and 3> $ L, ii) disjunctive 
if for every L ^ ££ and x ^ I - L there exists iUf £ «if such that x Ç K 
and L H ¥ = 0, iii) normal if whenever L and Af are disjoint members 
of i f , there exist U and F in i f such that L C X -U, M C X - V and 
C/U F = X. 

Given a separating, disjunctive lattice i f of subsets of X the Woilman 
compact space relative to J£ is the space co(L) of all Jz^-ultrafilters having 
as the base for its closed sets the sets of the form L = {°ti £ 00(L): 
L ^ °l/\ where L £ ^'. Then co(L) is a JVcompactification of X where X 
carries the topology having .if as a base for its closed sets and L is 
precisely the closure of L in co(if ). Furthermore, co(«if ) is Hausdorff if 
and only if i f is normal (see [1]). 

Given a separating, disjunctive lattice «if of subsets of X, a bounded 
real valued function / on X is said to be i^-uniformly continuous if for 
every e > 0 there exists a finite family {Li, L2, . . . Ln) of members of ^ 
such that Pw=i Lt = 0 and the oscillation of f on each X — Lt is less 
than e. The set CU(J^) of all if-uniformly continuous functions on X is 
a uniformly closed algebra consisting of all those bounded real valued 
continuous functions on X which are continuously extendible to w(Çf ). 
(see (1), [3]. We note that in the proof of Theorem 2 in [3], the Haus-
dorffness of w(Sf ) is not needed). 

Given a l a t t i c e d , the set of all non-zero measures in MR(¥) which 
assume only two values 0 and 1 is denoted by IR(J£). In [6], Sultan 
showed that there is a one to one correspondence between the members 
of IR(J£) and those of co(if ) and the correspondence is given by asso
ciating with each /x in IR(J£), the «if-ultrafilter 

J ^ = { U ^ : M(£) = M-

We give IR(Jï?) the topology of transference from co(«if ) and call it the 
Woilman topology on IR(J£). Thus the Wallman topology on IR{J£) has 
a base for its closed sets, the sets of the form 

L = {Me IR{^):»{L) = 1} 

where L G i f . 
Finally, as in [3], we assume throughout that all lattices «if for which 

MR(J£) represents A* are lattices of rA-closed sets of X. 

2. Weak topology on IR(^£). Let MR{^£) represent A*. The weak 
topology on MR{^£) induced by A is the unique topology on MR{J£) 
which makes the standard representation I a topological isomorphism 
when A* has the weak-star topology. This topology on MR(J£) is 
characterized by the convergence of nets: A net {jua} in MR(J£) converges 
to a M £ MR(J^) in weak topology if and only if Jx/^Ma —>Jxfdn for 
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e v e r y / in A. As a subset of MR(J£), IR{J£) inherits the relative topology 
which we call the weak topology on IR(J£) induced by A. In the following 
proposition we prove t ha t IR{^£) with this topology is homeomorphic 
X.oXA. 

PROPOSITION 2.1. Let MR{^£) represent A*. Then IR(J£) with weak 
topology induced by A is homeomorphic to X A. 

Proof. By definition, XA is a subspace of A* where A* has the weak-
star topology. Hence to complete the proof it is enough to show t h a t the 
s tandard representation I maps XA onto IRÇ&). Since / is an integral 
representat ion (see [5]), the proof of the la t ter fact is analogous to the 
proofs of Lemmas 3.1 and 3.2 of [6]. We leave the details to the reader. 

T h u s when MR{^£) represents A*, IR(J£) with weak topology induced 
by A is a Hausdorff compactification of (X, rA). For an x (E X, let hx 

denote the bounded linear functional on A defined by hx{f) = f(x) for 
e v e r y / £ A. Let IJLX be the measure in MR(J£) representing hx. Since 
x —» hx is an embedding of X into XA, x —» JJLX is an embedding of X into 
IR(J£). Later in Section 3, we show t h a t IJLX is precisely the uni t mass 
measure concentrated a t x. 

Given a Tychonoff space, let Cb(X) denote the space of all bounded 
real valued continuous functions on X. Recall t ha t the s t ructure space 
of Cb(X) is homeomorphic to the Stone-Cech compactification 13X of X. 
Hence by Proposition 2.1, it follows t h a t if j£f is any lattice of closed 
subsets of X for which MR(J£) represents Cb(X)*, then IR{<£) is 
homeomorphic to f3X. In part icular, IR(Z[X]) is homeomorphic to (3X 
where Z[X] denotes the latt ice of zero sets on X. This la t ter result is 
due to Varadara jan (Theorem 4 of Pa r t I I I , [7]). 

Our next result gives a comparison of the weak topology on IR{^£) 
with the Wal lman topology on it. 

PROPOSITION 2.2. Let MR(££) represent A*. Then the Wallman topology 
on IR{^) is weaker than the weak topology on IR(^£) induced by A. 

Proof. I t is enough to prove t ha t the convergence of a net in the weak 
topology implies its convergence in the Wal lman topology on IR(J£). 
Let {/*«} be a net in IR(^) with /xa -> /x Ç IR&) weakly. Then 
JxfdfXa —» JxfdiJL for e v e r y / £ A. Since M is non-negative, for every W £ ^£, 

n(W) = mf{j fdp:f£A,Xw£f\-

Hence given e > 0, there exists / d A with 

XwSf and I fdn <»(W)+e. 
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We then have 

l im a sup M«(W0 ^ lima I fd\xa = I fd\x < n(W) + e. 
J x J X 

Since e > 0 is arbi t rary, it follows tha t 

lima sup fia(W) £n(W). 

In particular if n(W) = 0, then iia(W) —> 0. 
Note t ha t a base for the closed sets of Wallman topology is given 

by {W: W G i f } where W = {M G 72?(«if): M W = 1}. Hence if 
IR{f£) — W is any Wallman neighbourhood of M then /*(W0 = 0. Bu t 
then na(W) —> 0. Since each M« is {0, 1}-valued, if follows tha t y.a(W) = 0 
for all a ^ a0 for some a0. T h a t is fxa £ IR(J£) — W for all a ^ ao. This 
proves t ha t M<* —» M in the Wallman topology. 

Since compact topology is minimal among the Hausdorff topologies, 
the two topologies on IR{^£) coincide if and only if the Wal lman 
topology on IR(J£) is Hausdorff. T h a t is, if and only if whenever 
Mi 5* M2, Mi, M2 6 7 i ? ( i O there exist Wu W2 G i^7, with ^ U W2 = X 
such tha t MI{Wi) = 0 = ^ 2 ( ^ 2 ) . 

3. S o m e necessary c o n d i t i o n s o n i f . We first prove a ' lattice ver
sion' of the Urysohn's lemma. L e t i ^ be a separating, disjunctive lattice 
of subsets of a set X. We call i f a Urysohn lattice if for every pair of 
disjoint sets L and i f in i f , there exists an i f -un i formly continuous 
function / o n X such t h a t / ( L ) = 0 and f(M ) = 1. 

PROPOSITION 3.1. Let^£ be a separating, disjunctive lattice of subsets of 
a set X. Then^£ is normal if and only if L is Urysohn. 

Proof. Let i f be normal. Then the Wallman compact space co(if) is 
a Hausdorff compactification of X where X has the topology with ^£ as 
a base for its closed sets. Let L, M Ç S£ with L C\ M = 0. Then 
L C\ M = 0. By the Urysohn's lemma for normal topological spaces, 
there exists an / £ C(œÇ&)) such tha t / ( Z ) = 0 and f(M) = 1. Let 
/ = / | X . Then / i s i^-uniformly continuous and f{L) = 0 a n d / ( M ) = 1 
proving t h a t i ^ 7 is Urysohn. 

Conversely suppose fi£ is Urysohn. Consider the Wallman compact 
space co(if ) relative to i f . Recall t ha t co(if ) is Hausdorff if and only if i^7 

is normal. (See [1]). Hence we complete the proof by showing tha t co(Sf ) 
is Hausdorff. __ 

Let x, y € uÇ^), x ^ y. Since i f = {L: L Ç i f j is a base for the 
closed sets of co(if ), and {x}, {̂ } are closed, there is an L £ oâf such t ha t 
x £ L and y & L. Again for every z £ L, there exists Af2 £ i f such t ha t 
y £ M*2 and z (? M2 . Now {co(if ) — Mz : z Ç Z} forms an open cover of 
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the compact set L. Hence there exists a finite subcover, say {w(J^) — 

MZl : i = 1, 2, . . . , n\. Let 

n 

M = n Mzi. 

Then M 6 ^ and L C <*(&) - M. Hence x £ L, y £ M and 
L C\ M = ft. Then L C\ M — Q. By hypothesis, there exists an 
J>? -uniformly continuous f u n c t i o n / such t h a t / ( L ) = 0 and /(Af ) = 1. 
But then f(L) = 0 and f(M) = 1 where / is the unique continuous 
extension o f / to w(j5?). This guarantees t h a t œ(J^) is Hausdorff. 

COROLLARY 3.2. A topological space X is Tychonoff if and only if X has 
a Urysohn lattice Jzf which is a base for its closed sets. 

Proof. A TVspace X is Tychonoff if and only if X has a normal base 
for its closed sets [3]. If X is Tychonoff then it has a normal base f£ 
which is clearly Urysohn by Proposition 3.1. Conversely suppose X has 
a Urysohn lattice as a base for its closed sets. Since ^ f is separat ing and 
disjunctive X is a TVspace. Now the result follows from [3]. 

When X is a normal topological space and J?f is the latt ice of the closed 
sets of X, then MR{^£) represents Cb(X)* (see [2], p . 262). More 
generally, let X be any Tychonoff space and S£ be a disjunctive, sep
ara t ing latt ice of its closed sets which is also a base for its closed sets. If 
££ is normal then MR(J£) represents CUÇ^)*. (This follows from 
Theorem 3.12 of [5]). T h e following corollary contains a converse of these 
results. 

COROLLARY 3.3 Let££ be a disjunctive, separating lattice of subsets of a 
set X such that the algebra CU(J^) is point separating. Then MR(Jf£) 
represents Cu(f£)* if and only if ^ is normal. 

Proof. If oèf is normal, we have already pointed out t h a t MR(££) 
represents CUÇ^)*. We now prove the converse. I t is easy to see t h a t 
the members of ££ are closed sets in the weak topology generated by 
CU<J£) on X. By Proposition 3.5 of [5], if MR{&) represents the dual 4 * 
of an algebra A, then the disjoint sets in J ^ are separated by a member 
of A. T h u s when MR(££) represents CM(if )*, oèf is Urysohn, and hence 
normal by Proposition 3.1. 

We remark here t h a t if S£ is normal then the algebra CU{J£) is point 
separating. However Cu(J?f) can be point separat ing wi thout ££ being 
normal. For example, if X is a non-normal Tychonoff space then the 
l a t t i c e d of its closed sets is non-normal bu t CU(J£) = Cb(X) is point 
separating. 

Next we prove t ha t the point separat ing proper ty of an algebra A is 
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enough to ensure t h a t i f is separating and disjunctive whenever MR(f£) 
represents A*. We first prove two lemmas. 

For an x G X, let 8X denote the unit mass measure concentrated at the 
point x, that is, 8X(E) = 1 if x G E and 8X(E) = 0 if x G E for every E 
in the domain of 8X. Note that for a given l a t t i c e d , in general 8X need 
not be if-regular. 

LEMMA 3.4. Let££ be a lattice of subsets of a set X. Thenf£ is disjunctive 
if and only if the unit mass measure 8X is J£-regular for every x G X. 

Proof. Let ££ be disjunctive. Let x ^ I , Let £ be a set in the field 
of subsets of X generated by ^£. To prove that 8X is ^-regular it is 
enough to show that whenever x G E, there exists some L G J£ such that 
x G L C £ . Now E = U*=i (£* - Mt) for some » where Lu Mt G L, 
Mt C £* and 

(L t - Mi) H (L, - Mj) = 0 for i ^ 7. 

Let x (z E. Then x d Lt — Mt for some i, 1 ^ i ^ n. By hypothesis, 
there exists some M G i f such that x G M and M H Mt = 0. Let 
L = MC\ Lt. Then x d L C E. 

Conversely suppose 5* is if-regular for each x G -X". Let L G i f and 
x d L. Then ôz(X — L) = 1. By the if-regularity of <5X, there exists 
I t i ^ such that I f C X - L and ôx(Af) = 1. Then it follows that 
x G M and L P\ i f = 0. 

LEMMA 3.5. Let S£ be a disjunctive lattice of subsets of a set X. Thenf^ 
is separating if and only if 8X 9^ 8y whenever x, y G X, x ^ y. 

Proof. Suppose i f is separating. Then it is easy to see that 8X 7^ 8V 

whenever x 7^ y. Conversely let the hypothesis be true. Let x, y G X, 
x 9^ y. Then 8X ^ 8y. Hence there exists L G i f such that 8X(L) 9^ 8y(L). 
Therefore L contains exactly one of the points x or y. Now together with 
the disjunctive property of i f , it follows that i f is separating. 

We now prove 

PROPOSITION 3.6. Let S£ be a lattice of rA-closed subsets of X such that 
MR(J£) represents A*. ThenSé? is separating and disjunctive. 

Proof. For x G X, let hx G XA be the evaluation-at-x homomorphism 
and let \xx G IR(J£) represent hx (Proposition 2.1). Since nx is if-regular, 
to show that i f is disjunctive we need only show that nx = 8X. Now for 
any L G i f 

vx(L) = inf [hx(f):fe A, XL ûf\, 
= inî{f(x):feA,XLÛf}, 
= 1 if and only if x G L. 
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T h e last line follows by an application of the Urysohn 's lemma to the 
pair L and x in the normal topological space XA. 

For an arb i t ra ry E in the field of subsets of X generated b y ^ f we can 
show, by a similar a rgument applied in the proof of Lemma 3.4, t h a t 
HX(E) = 1 If and only if x Ç E. This proves t h a t ixx = 8X. Since A is 
point separat ing, hx T^ hy and hence ixx 7e ixy whenever x, y 6 X, x ^ y. 
Nowr the proof of the proposition is complete by direct applications of 
Lemmas 3.4 and 3.5. 

In Corollary 3.3, we proved t ha t if the algebra Cu(S/f) is point separat
ing, then ££ should be normal whenever MR(^£) represents CU(S£)*. 
However MR{S£) can represent the dual A* of a point separat ing 
algebra A even if ^£ is not normal. (See example Appendix (a) of [5].) In 
the following theorem, we prove t ha t MR(J£) can not represent the dual 
of any smaller point separat ing algebra than Cu(££). 

T H E O R E M 3.7. Let A be a uniformly closed algebra of bounded real valued 
functions on a set X which contains the constants and separates the points. 
Let<f£ be a lattice of rA-closed subsets of X such that MR{S£) represents A*. 
Then Cu{^£) C A. Furthermore Cu{^f) = A if and only if <f£ is normal. 

Proof. Since MR(J£) represents A*, by Proposition 3.6 J?f is separat ing 
and disjunctive. Hence the Wal lman compact space co(L) relative to i£ 
is a TVcompactification of X. T h a t is, IR(J£) with Wal lman topology 
is a 7Vcompactification of X and each / £ Cu(f£) has a unique con
t inuous extension to IR{J£) writh this topology. 

By Proposition 2.2, the Wal lman topology on IR(J£) is weaker than 
the weak topology induced by A. By Proposition 2.1, IR{S£) with the 
weak topology induced by A is homeomorphic to XA. 

Let / G Cu{^£) and let / be the unique continuous extension of / to 
IRÇSf) in the Wal lman topology. Then / is continuous on IR{S£) in the 
weak topology induced by A as well. 

T h u s / has a unique continuous extension to XA. Since A consists of 
precisely those bounded real valued functions on X which have con
t inuous extensions to XA,f £ A. Th i s proves the first pa r t of the theorem. 

Now suppose ££ is normal. Then the Wal lman topology on IR(J£') is 
Hausdorff and hence coincides with the weak topology induced by A. 
Therefore by Propositions 2.1 and 2.2 XA is homeomorphic to the 
Wal lman compactification œ(L) of X relative t o ^ 7 and a homeomorphism 
can be so chosen t ha t it leaves X pointwrise fixed. Now it follows t h a t 
A = CU<J£). 

Conversely suppose CU(J£) = A. Then the normali ty of J2? follows 
from Corollary 3.3. 

Remark 1. In [5] Kirk and Crenshaw proved t h a t if XA = to(L) for 
some normal baseJ^f on X with rA-topology, then MR{S£) represents A*. 
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Theorem 3.7 proves t ha t if we s tar t with a normal l a t t i c e d of rA-closed 
sets the converse also holds. T h a t is, if ££ is a normal lattice of rA-closed 
sets on X such tha t MR{J£) represents A*, then J?f is a normal base on X 

a n d X A = co(if). 

Remark 2. Let Z[A] denote the lattice of the zero-sets of members of A. 

In [4] we proved t ha t MR(Z[A]) represents A* if and only if A = 
CU{Z[A]). Theorem 3.7 and Corollary 3.3 together generalize this result 
which can be stated as: Let J?7 be a separating, disjunctive, normal lattice 
of rA-closed subsets of X. Then MR(J£) represents A* if and only if 
A = CU(J£). 

Every Tychonoff space has a normal base which is a separating, dis
junct ive normal lattice of its closed sets. We show by an example below 
tha t a separating, disjunctive, normal lattice of closed sets need not be 
a base for the closed sets. 

Example 3.8. Let N denote the set of all positive integers with discrete 
topology. Letoèf be the lattice of subsets of N generated by the sets of the 
form 

Amtn = {k G N : k g 2m - 1, or k ^ 2n], 

Bm,n = {k e N : 2m S k ^ 2n - 1} 

where m, n Ç N. C l e a r l y ^ consists of finite unions of Bmtn's or the unions 
of a finite number of Bm>n's and an Am>n. Since J5f itself is a field of subsets 
of N,^? is a separating, disjunctive, normal lattice of closed subsets of 
N. H owe ver «if is not a base for the closed sets of N. In fact, F = N — {1} 
is closed in N and 1 (? F. But each member of <S£ which contains F also 
contains 1. 

For a given separating, disjunctive, normal lattice ^£ of subsets of X 

let Teg denote the topology on X having ££ as a base for its closed sets. 
Then r^ is a completely regular Hausdorff topology on X. Now as an 
immediate consequence of Theorem 3.7 we have 

COROLLARY 3.9. Let ££ be a separating disjunctive normal lattice of 

rA-dosed subsets of X. Then r^ = rA if and only if MR{S£) represents A*. 

Proof. If MR(J£} represents A*, then as in the proof of Theorem 3.7 
XA = co(L). Hence the corresponding relative topologies TA and r^ on X 

coincide. 
Conversely if r^ = TA, then ££ is a normal base for the r4-closed sets 

and hence XA = co(if ). Therefore MR{f£) represents A*. 

In part icular if X is any Tychonoff space, and a separating, dis

junct ive, normal lattice of its closed sets then the topology on X having 
oSf as a base for its closed sets coincides with the original topology if and 
only if MR(J£) represents Cb(X)*. In fact, Cb(X) here can be replaced 
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by any "completely regular" algebra A, a subalgebra of Cb(X) which 
determines the topology of X. 

Finally the author thanks Professor Robert F. Wheeler for helpful 
discussions and the referee for a suggestion regarding the notation. 
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