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When one fluid is injected into a confined geometry such as a porous medium filled
with another immiscible fluid, even at an extremely low injection speed, rapid filling of
several pore spaces accompanied by retraction of multiple fluid–fluid interfaces can be
observed. Such processes with fast liquid redistribution within the solid structure, called
Haines jumps, are ubiquitous in many multiphase flow systems, which can impact fluid
trapping, energy dissipation and hysteretic saturation in various engineering applications.
Inspired by this mechanism, here, we propose a dual-channel structure to realise controlled
Haines jumps during fluid displacement processes. Via theoretical analysis and numerical
simulations, we show that the dynamics of fluid interfaces during Haines jumps can be
quantitatively correlated with the driving capillary pressure and dissipating viscous stress,
which enables simultaneous determination of the fluid viscosity and interfacial tension in
the dual-channel multiphase system.
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1. Introduction

Haines jumps occur during the displacement of one fluid by another in porous materials.
This process involves rapid redistribution of the liquid, quick movements of the fluid
interfaces and fluctuations in pressure (Haines 1930). Haines jumps have profound
implications for fluid trapping, energy dissipation and saturation hysteresis, relevant to
various engineering applications including enhanced oil recovery (Lake et al. 2014),
carbon geosequestration (Szulczewski et al. 2012) and underground hydrogen storage
(Heinemann et al. 2021). As a result, the dynamics of Haines jumps has been examined
in porous rocks (Berg et al. 2013), Hele-Shaw cells (Furuberg, Måløy & Feder 1996;
Armstrong et al. 2015; Holtzman et al. 2023) and irregular capillaries (Moebius &
Or 2012; Jang, Sun & Santamarina 2016). Through microfluidic experiments, Sun
& Santamarina (2019) showed that the mechanisms triggering Haines jumps include
the deformation of solids, compression of fluids and interactions of multiple menisci.
Armstrong et al. (2015) investigated the influence zone of Haines jumps under different
fluid properties in porous medium micro-models, and revealed the inverse relationship
between a Haines jump’s time and length scales.

Fundamentally, the dynamics of a Haines jump is a manifestation of the competition
between viscous and capillary forces at the pore scale. As a result, apart from being a
qualitative indicator of flow regimes of fluid displacement processes, we hypothesise that
it can be utilised to quantitatively determine the fluid properties in the multiphase system.
Thus, the objectives of this work are to answer the following questions: (i) How can we
induce controlled Haines jumps in microfluidic devices, and (ii) how can this be used
to infer the fluid properties? Here, we propose a dual-channel structure with a carefully
selected geometry. Numerical simulations are conducted for immiscible fluid displacement
under various fluid properties in the dual-channel system. Following the characterisation
of the fast interface motion during Haines jumps, an analytical model is developed to
describe the liquid redistribution process. We show that the fluid viscosity and interfacial
tension can be simultaneously determined by analysing the interfacial dynamics during a
single Haines jump.

2. Methods

2.1. Geometry of the dual-channel system
The key geometrical feature of our dual-channel geometry is the presence of a width
contrast between the two channels and the hierarchies of capillary resistances such that
the injected fluid first invades the narrower (top) channel (in the case of the drainage
process, corresponding to a contact angle θ > 90◦, which is the angle measured within
the invading fluid at the triple-contact line) such that the Haines jump can be initialised
when gaining access to the bottom channel that has a wider width associated with smaller
capillary resistance.

Figure 1(a) shows the schematic of the proposed dual-channel system geometry (not
to scale). The top channel has a width of htop = 0.7 mm, being smaller than the bottom
channel width of hbot = 1 mm. The two channels are separated by a thin wall d =
0.1 mm in width and W = 15 mm in length. The inlet and outlet channels have the same
dimensions of lin = lout = 1 mm in length and hin = hout = 1 mm in width. Triangular
barriers are placed at the front and rear sides of the bottom and top channels, respectively,
reducing the corresponding channel width at respective locations, such that the width at
the entrance of the bottom channel is htop = 0.7 mm, and the width at the rear of the top
channel is hneck = 0.5 mm.
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Figure 1. A Haines jump in the dual-channel multiphase system. (a) A schematic showing the geometry
and dimensions (not to scale). The uniform channel depth D (out-of-plane direction) is not shown in the
two-dimensional schematic. (b) Snapshots of simulated fluid invasion process in the proposed microfluidic
device. The invading fluid is coloured in yellow and the defending fluid is coloured in blue. Images (iii) to (v)
correspond to the Haines jump. The inset shows the contact angle θ which is measured within the invading
phase.

Case number μinv (Pa · s) μdef (Pa · s) Viscosity ratio M σ (N m−1) θ (◦)

1 0.010 0.001 1/10 0.07 141
2 0.010 0.001 1/10 0.15 141
3 0.003 0.001 1/3 0.07 141
4 0.001 0.003 3 0.07 141
5 0.001 0.010 10 0.07 141
6 0.001 0.010 10 0.15 141
7 0.002 0.002 1 0.07 141
8 0.002 0.002 1 0.04 141
9 0.002 0.002 1 0.07 134

Table 1. Fluid properties in the simulations.

We can rationalise the design of the dual-channel system by examining an example
of a fluid displacement process from a numerical simulation shown in figure 1(b),
with the dynamic viscosities for invading (yellow) and defending (blue) fluids being
μinv = 0.001 Pa · s and μdef = 0.003 Pa · s, respectively, an interfacial tension of σ =
0.07 N m−1, a contact angle of θ = 141◦ (a drainage process) and a constant inlet
velocity Vin = 1 mm s−1. The viscosity ratio is M = μdef /μinv = 3. These fluid properties
correspond to case 4 as shown in table 1.

When the invading fluid reaches the front (left side) of the middle wall (the thin wall
separating the two channels), the radii of both the top and bottom arc are both htop =
0.7 mm, implying equal capillary resistance. However, as the menisci move forward, the
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resistance associated with the bottom meniscus becomes greater than the top one due to the
sharp-edge-pinning mechanism. This is because the corner angle at the bottom (80◦ with
α = 10◦, defined in figure 1a) is smaller than the top one (90◦) as a result of the triangular
protrusion. Therefore, the bottom meniscus is pinned whereas the top meniscus continues
to advance (figure 1b-ii,iii). Such a sharp-edge-pinning effect, which is also termed the
‘capillary valve effect’, has been examined thoroughly in the literature and incorporated
into numerical algorithms for simulating multiphase flow in porous media with irregular
geometries (Wang, Pereira & Gan 2021; Wang et al. 2022).

Once the top meniscus reaches the rear (right) side of the channel, its capillary resistance
increases due to the geometrical contraction, resulting in greater capillary resistance
compared with the bottom one (since hneck < htop). This leads to the movement of the
bottom meniscus, triggering the start of the Haines jump: as the bottom meniscus expands
into the bottom channel with hbot = 1 mm, the smaller capillary resistance within the
bottom channel compared with the top one results in the fast retraction of the top meniscus
and advancement of the bottom meniscus (figure 1b-iv,v). As we will show later, the
liquid redistribution process occurs at a much faster speed than the injection velocity, a
typical signature of Haines jumps in the capillary-dominated flow regime during the fluid
displacement process.

We point out that the expansion angle on the left of the bottom channel α is set to
a relatively small value of 10◦. This is because a residual defending fluid film can be
developed when the geometrical expansion is large (e.g. when α = 45◦), where the fluid
interface becomes unstable and an invading fluid finger grows into the defending fluid,
leaving the contact line behind. The critical criterion for the development of the liquid
film depends on various factors such as the contact angle and interface velocity, and was
examined by Zhao et al. (2018), who found that a sudden geometrical expansion during the
fluid displacement promotes the development of a liquid film. As a result, a small value of
α = 10◦ is chosen in the current work, such that the unstable interface growth is absent.

2.2. Numerical scheme
The numerical simulations for the two-dimensional (2-D) multiphase flow process in the
dual-channel system were performed using the laminar two-phase flow-phase-field model
implemented in COMSOL Multiphysics 6.1. The governing equations for fluid motion
include the continuity and momentum equations

∇ · U = 0, (2.1)

ρ

[
∂U
∂t

+ (U · ∇)U
]

= ∇ · [μ(∇U + (∇U)T)] − ∇P + F st, (2.2)

where ρ and μ are the mass density and dynamic viscosity of the fluid, U and P are the
flow velocity and pressure while F st is the surface tension force acting at the fluid–fluid
interface.

The phase-field method is used for interface tracking and shape modelling, from which
the surface tension force F st in the momentum equation can be calculated. The order
parameter in phase-field models φ describes the distribution of different phases in the
system. When φ = 1, the fluid behaves with the property of the invading phase; when φ =
−1, the fluid behaves with the property of the defending phase; and φ = 0 corresponds
to the fluid–fluid interface location. The effective fluid properties including density ρ and
viscosity μ are calculated based on φ using linear interpolation between the two fluids.
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The governing equation for the phase field is the advective Cahn–Hilliard equation (Cahn
& Hilliard 1959)

∂φ

∂t
+ U · ∇φ = ∇ · λf

ε2 ∇ψ, (2.3)

where ε is a capillary width representative of the interface thickness, f is the magnitude
of the mixing energy, which satisfies f = 3εσ/

√
8 with σ the surface tension, and λ is the

mobility parameter that controls the rate at which concentration differences are ‘smoothed
out’ by diffusion driven by the chemical potential ψ

ψ = −∇ · ε2∇φ + φ(φ2 − 1). (2.4)

Subsequently, the surface tension force for the momentum equation is determined by

F st = G∇φ, (2.5)

G = f
[
−∇2φ + φ(φ2 − 1)

ε2

]
= f
ε2ψ. (2.6)

We refer the readers to Yue et al. (2004) for a detailed description of the phase-field model.
Constant injection velocity and constant pressure boundary conditions are applied at the

inlet and outlet, respectively,

U in = [Vin 0]T, (2.7)

Pout = 0. (2.8)

The no-slip wall condition is adopted at all solid boundaries.
The computational domain was meshed using triangular elements with a total number

of elements of 28 995 and a mesh size ranging from 7.2 × 10−4 to 0.05 mm, which are
found to be sufficient to give converged results. The maximum element growth rate and
curvature factor are set to 1.1 and 0.25, respectively. Simulations were carried out on a
Dell workstation (Precision 7920) equipped with an Intel Xeon processor (Gold 6128),
and cases in table 1 each take approximately 2 h.

3. Results and discussion

3.1. Interface motion during Haines jump in the dual-channel system
To characterise the fluid redistribution process during the Haines jump for the case in
figure 1(b), the evolution of the bottom channel meniscus velocity ubot is plotted in
figure 2(a), highlighting four distinct regimes: in regime I the bottom meniscus slowly
advances as more invading fluid is injected. In regime II, the bottom meniscus expands
into the channel with increasing width (varying from htop to hbot with the inclination angle
defined by α), which is associated with decreasing capillary resistance. In regime III, both
top and bottom menisci move within the respective channels with uniform widths (htop for
the top channel and hbot for the bottom channel). Finally, the Haines jump finishes when
the top meniscus reaches the left-most turn, which is accompanied by an oscillation in
the top and bottom menisci due to inertia. The bottom meniscus then advances again at
a much lower speed (regime IV). The liquid distributions at these regimes are shown in
figure 2(b). See supplementary movie 1 available at https://doi.org/10.1017/jfm.2024.1225
for the Haines jump phenomenon, and movie 2 for the complete process.

To gain insights into the fluid property-dependent behaviour of the meniscus velocity
during the Haines jump, we focus our attention on regime III, during which both top
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Figure 2. Interface dynamics during a Haines jump (case 4). (a) The velocity of the bottom meniscus ubot
as a function of time. (b) Snapshots of liquid distribution at four stages during the Haines jump. The region
between the red-dashed lines in (a) and in (b-III) indicates the spatial domain where subsequent analysis is
based. Arrows indicate meniscus movement direction. (c) Value of ubot as a function of location xbot. (d) The
interface location of the top meniscus xtop inferred from xbot.

and bottom menisci move within channels with constant widths. This corresponds to
the period in which the location of the bottom meniscus xbot is between the red-dashed
lines in figure 2(a,b). Since ubot is a result of the competition between capillary and
viscous forces, and the capillary contrast that drives the motion of fluids remains constant,
the decrease in ubot observed in regime III implies that the total viscous dissipation is
increasing. Given that the fluid viscosities remain unchanged, the reason for such increased
viscous resistance, intuitively, resides in the migration of the more viscous fluid (defending
fluid) into the narrower (top) channel, which causes the increase of viscous dissipation for
the whole system. We note that the fast fluid redistribution in regime III is effectively a
counterclockwise fluid circulation within the channel, as the meniscus travels at a much
larger speed (∼25 mm s−1) than the injection velocity of 1 mm s−1. Figure 2(c) shows
that, as expected, ubot decreases with xbot. Although the focus is placed on tracking the
bottom meniscus, the top meniscus location xtop can be derived from xbot based on the
conservation of mass (inset in figure 2c).

3.2. Analytical model
The dynamics of the menisci motion during Haines jumps is governed by the balance
between the driving capillary force and the dissipating viscous force. The capillary
pressure can be described by the Young–Laplace equation�P = σ(1/rin + 1/rout), where
σ , rin and rout represent the interfacial tension, in-plane and out-of-plane curvatures,
respectively. Therefore, the capillary pressure contrast between the top and bottom
channels is

�Pc = �Ptop −�Pbot = σ

(
1

rtop,in
+ 1

rtop,out

)
− σ

(
1

rbot,in
+ 1

rbot,out

)
. (3.1)

For a Hele-Shaw cell system with a uniform depth D, (3.1) becomes

�Pc = 2σ
(

cos θtop

htop
+ cos θtop

D

)
− 2σ

(
cos θbot

hbot
+ cos θbot

D

)
. (3.2)

The contact angles at the top and bottom channels can be different due to the contact
angle hysteresis (Shi et al. 2018), i.e. the difference between the contact angles during
advancing and receding processes as a result of surface imperfections such as roughness

1002 A40-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1225


Controlled Haines jumps in a dual-channel multiphase system

μinv μdef

leff,l

leff,r

1 2

3

4

Wtop

Wbot

ltop

lbot

x

y

Figure 3. A schematic showing the flow segmentation in the dual-channel geometry (not to scale). Vertical
black-dashed lines divide the circulated flow path into four segments.

and chemical heterogeneity. We note that, due to the channel geometry remaining uniform
for each meniscus during Haines jumps (stage III in figure 2b), the capillary contrast �Pc
that drives the fluid circulation can be regarded as constant.

For viscous dissipation, figure 3 shows the schematic of flow segmentation during the
Haines jump (fast circulation process). The vertical black-dashed lines divide the flow
path into four segments. The total viscous pressure drop of the system during the fluid
circulation can be calculated via the summation of individual contributions of different
flow segments

�Pv = �Pv,1 +�Pv,2 +�Pv,3 +�Pv,4. (3.3)

For laminar Newtonian flow, one should expect a linear relationship between the flow rate
and pressure drop

�Pv = μinvL1

k1
utop + μdef L2

k2
utop + μinvL3

k3
ubot + μdef L4

k4
ubot, (3.4)

where L is the effective segment length. Here, k is the permeability of the corresponding
segment. Despite commonly being used in porous medium flow, here, the term
‘permeability’ is adopted for channel flows as it captures the geometrical feature while
being independent of the fluid property, as opposed to ‘hydraulic conductivity’. The
permeability of Newtonian flow in a rectangular channel of width h and depth D is
(Boussinesq 1868; White 1991)

k = h2

12

[
1 − 192h

π5D

∞∑
n=1

1
(2n − 1)2

tanh
(2n − 1)πD

2h

]
. (3.5)

When the channel depth D is much greater than the width h, (3.5) is approximated by
k = h2/12. (Note that the viscous pressure drop for non-Newtonian flow is more complex
due to the shear-rate-dependent viscosity. We refer readers to Chun et al. (2024) and Boyko
& Stone (2021) for recent studies on the pressure drop of a Carreau fluid in rectangular
channels.)

For the considered geometry and flow pathway segmentation shown in figure 3, the
channel lengths of each segment are L1 = ltop + leff ,l, L2 = Wtop − ltop + leff ,r, L3 = lbot
and L4 = Wbot − lbot, where leff ,l and leff ,r are the effective channel lengths on the left
(purple-dashed line) and right side (orange-dashed line), respectively. Additionally, with
uniform channel depth D, k1 = k2 = ktop (same channel width htop) and k3 = k4 = kbot
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(same channel width htop). We define the channel width contrast h∗ = htop/hbot. The
meniscus location in the top channel ltop can be expressed as a function of the bottom
meniscus location lbot using conservation of mass via ltop = ltop,0 + (Wbot − lbot)/h∗,
with ltop,0 being a reference location (figure 2c). Similarly, the meniscus velocity in the
top channel can be expressed as a function of the bottom meniscus velocity and the
channel width contrast: utop = ubot/h∗. Here, we have assumed that the inlet velocity uin
is much smaller than the meniscus velocities during the Haines jumps, i.e. the invading
fluid volume injected during the Haines jump is ignored. The error associated with
this assumption will be discussed later. With the expressions above and by balancing
�Pc = �Pv , (3.4) can be rearranged into the following form:

ubot = �Pc

plbot + q
, (3.6)

where

p = μdef − μinv

kbot

(
1

h∗2
kbot

ktop
− 1

)
, (3.7)

q = μinv
ltop,0 + leff ,l + Wbot/h∗

h∗ktop
+ μdef

(
Wtop + leff ,r − ltop,0 − Wbot/h∗

h∗ktop
+ Wbot

kbot

)
.

(3.8)

Since in the considered channel geometry hbot > htop, h∗ = htop/hbot < 1 and kbot > ktop,
the term within the bracket in (3.7) is positive, which reveals three distinct regimes for the
behaviour of the bottom meniscus movement velocity ubot as the Haines jump proceeds
(increasing lbot). When the defending fluid is more viscous, p > 0 and ubot decreases with
increasing lbot; whereas ubot will increase with lbot when the invading fluid is more viscous.
When both fluids have the same viscosity, p = 0, and the meniscus velocity remains
constant.

In the following, we first examine the proposed model with 2-D numerical simulations
(D � h) with varied fluid properties. Then, results when the channel depth is comparable
to the width are discussed.

3.3. Numerical simulation
Our 2-D numerical simulation of Newtonian fluids corresponds to the cases where the
channel depth is much greater than the channel width, and the channel width dominates
the viscous dissipation. The fluid properties, including the viscosities of invading and
defending fluids, interfacial tension and contact angle are varied, and are summarised in
table 1. A constant inlet velocity Vin = 1 mm s−1 is imposed for all simulations.

Figure 4(a) plots the velocity of the bottom meniscus ubot as a function of its location
lbot during Haines jumps. It can be seen that ubot can either increase, decrease or remain
constant depending on the relative magnitude of μinv to μdef , consistent with the theory.

By defining the viscosity ratio M = μdef /μinv , and using k = h2/12 for the
permeability, one obtains the governing equation that captures the competition between

1002 A40-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1225


Controlled Haines jumps in a dual-channel multiphase system

10 20 30
0.02

0.04

0.06

0.08

2 3 4 5 6 7
5

10

15

20

25

30

35

0 5

M
10

20

40

60

80

10 20 30
5

10

15

20

25

30

35

u b
ot

 (
m

m
 s

–
1
)

ubot (mm s–1) ubot (mm s–1) from

simulation

u b
ot

 (
m

m
 s

–
1
) 

fr
o

m
 E

q
n

. 
(3

.1
0

)

l ef
f,l

 +
 M

 · 
l ef

f,r
 (

m
m

)

R
el

at
iv

e 
er

ro
r 

in
 x

bo
t

lbot (mm)

Case 1
Case 2

Case 3

Case 4
Case 5

Case 6
Case 7
Case 8
Case 9

(b)(a) (c) (d )

Figure 4. Model validation of the interface dynamics during a Haines jump. (a) Bottom interface velocity ubot
as a function of location lbot. Refer to table 1 for fluid properties. (b) The relative error in the bottom meniscus
location estimation as a function of average bottom meniscus velocity during Haines jumps. (c) A linear relation
between the viscosity ratio M and the term leff ,l + Mleff ,r demonstrates the fluid property independence of the
fitting parameters leff ,l and leff ,r . (d) Comparison between ubot from simulation and calculated from (3.9). Note
that the overlaps of yellow markers are due to the constant velocity under M = 1 (horizontal lines in (a)).

viscous and capillary forces during the Haines jump in the dual-channel system

(1 − M)
(

ltop,0 + Wbot

h∗

)
+ M(Wtop + h∗3Wbot)+ leff ,l + Mleff ,r

+ (h∗3 − 1)(1 − M)lbot = σ(cos θtop − h∗ cos θbot)h∗htop

6μinv
· 1

ubot
. (3.9)

The only parameters in (3.9) that need fitting are the geometry-dependent leff ,l and leff ,r,
which represent the effective channel lengths due to the curved channels at the left and
right sides, indicated by the purple and orange dashed curves in figure 3, respectively.
Figure 4(c) shows the term leff ,l + M · leff ,r as a function of the viscosity ratio M for all
nine cases listed in table 1, and the fitted values are leff ,l = 1.4 mm and leff ,r = 7.9 mm,
where fitting was done using the default least-squares algorithm available in the fit function
in MATLAB. The strong linear trend with a coefficient of determination R2 = 0.999
evidences that leff ,l and leff ,r are indeed fluid-property-independent. This means that,
once these parameters are fitted (model calibration process), (3.9) can be used to describe
processes with different fluid properties without the need for further fitting.

To quantify the error induced by ignoring the inlet velocity in the model, figure 4(b)
plots the relative error in estimating the top meniscus location using the bottom one based
on mass conservation without taking into account the additional invading fluid injected
from the inlet during Haines jumps. The relative error is calculated by the absolute
error in meniscus location divided by the total distance travelled during Haines jumps.
As expected, the error decreases with the average bottom meniscus velocity during Haines
jumps. The maximum error occurs when the meniscus velocity is minimum (case 5),
leading to an error of around 0.3 mm. However, this error is still less than 10 % of the
distance travelled by the bottom meniscus during Haines jumps (a relative error of less
than 0.1 in figure 4b).

To validate (3.9), figure 4(d) compares the value of ubot obtained from numerical
simulation and ubot calculated from (3.9), showing a good agreement. The markers in
yellow appear to be a single point on figure 4(d). This is because the overlaps of ubot that
remain constant during Haines jumps due to the viscosity ratio M = 1.
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Figure 5. Simultaneous determination of fluid properties during a Haines jump. (a) Viscosity ratio M,
(b) viscosity of the invading fluid μinv and (c) interfacial tension. Refer to the legend in figure 4(a) for marker
meaning. (d–f ) The corresponding relative errors of the predicted values on the top panels as a function of the
viscosity ratio.

3.4. Simultaneous determination of viscosity and interfacial tension
By examining (3.9), we notice that, apart from the fluid property-related terms M and
σ/μinv , all other parameters can be determined from the geometry (Wbot, Wtop, hbot, htop,
leff ,l, leff ,r) or measured during the Haines jump process (lbot, ubot, cos θbot, cos θtop).
As a result, the values of M and σ/μinv can be determined by analysing the dynamics of
meniscus movement during Haines jumps. In the case where, for example, the defending
fluid viscosity μdef is known, the interfacial tension σ and viscosity of the invading fluid
μinv can be simultaneously calculated using (3.9) based on the measured bottom meniscus
location, velocity and contact angles at the bottom and top channel during the Haines
jumps.

Figure 5 shows the comparisons between predicted values of fluid properties and the
respective true values (marker legend meaning is the same as figure 4a). The error bars
represent one standard deviation considering the uncertainties from: (i) measurement
uncertainty from simulation results, including the fluctuations in the measured advancing
and receding contact angles and uncertainty in interface location (i.e. the difference
between the locations of the interface tip along the channel centre and the triple-contact
lines); (ii) fitting uncertainty in the fitted values of leff ,l and leff ,r with confidence
interval 0.68; and (iii) model error, which is induced from the assumption that the inlet
velocity can be ignored during the Haines jump (as discussed in the previous section
and figure 4b). Further, the corresponding relative errors in figure 5(a–c), calculated
as |true-predicted|/true, are plotted in figure 5(d–f ). We see that the relative errors
become greater as the viscosity ratio M deviates from unity, leading to a relative error
in the predicted μinv as large as 0.59 for M = 0.1. This reveals that the intrinsic errors
(aforementioned measurement uncertainty, fitting uncertainty and model assumption) are
magnified as the fluid viscosity contrast is greater. Nevertheless, the relative errors in the
surface tension prediction remain less than 10 % in the range M ∈ [0.1, 10]. Note that
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Figure 6. The average bottom meniscus movement velocity ubot during Haines jumps normalised by the inlet
velocity Vin under different β. The black-dashed line represents the 2-D scenario.

the results in figure 5(d,e) are identical, since figure 5(a,b) essentially contains the same
information scaled by μdef .

3.5. Effect of channel depth
In previous sections, we have focused on 2-D cases corresponding to a channel geometry
with a depth D much greater than the width h, such that the calculation of permeability
is simplified to k = h2/12 according to (3.5). Practically, such microfluidic devices can be
manufactured using the selective laser etching technique (Gottmann, Hermans & Ortmann
2012), an example of which is the porous medium micromodel with a depth-to-post
diameter ratio of 20 (Haward, Hopkins & Shen 2021). However, in other conventional
methods for microfluidic device fabrication, such as soft lithography, the aspect ratio may
not be so large and the effect of channel depth cannot be ignored. In such cases, the
permeability is calculated using (3.5). As (3.5) quickly converges as the number of terms
N increases, N = 5 is used for the calculation of permeability, where a less than 0.1 %
variation is observed as N further increases.

To quantitatively explore the effect of channel depth on the flow in the dual-channel
system, we define the aspect ratio β = D/hbot. The average bottom meniscus velocity ubot
normalised by the injection velocity Vin is plotted as a function of β in figure 6. The fluid
properties of case 7 are used for calculation. The black-dashed line and red-dot-dashed
line, respectively, represent the meniscus velocity for the 2-D case (β → ∞) and the
injection velocity Vin = 1 mm s−1 in the simulation. The meniscus velocity decreases
from its maximum as β decreases, reaching below the currently imposed Vin at β = 0.1.
This means that a much smaller injection velocity is required to ensure that the speed of
interface motion during Haines jumps is much greater than Vin. In rectangular channels,
aspect ratios β of 10, 1 and 0.1 lead to the actual permeability (and meniscus velocity)
being 94 %, 42 % and 1 % of the value for a 2-D scenario (β → ∞). This highlights that
a large aspect ratio is desired whereas a small aspect ratio can lead to a drastic reduction
of meniscus velocity.
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3.6. Discussion
In the design of the dual-channel system as well as the numerical simulations, we have
considered drainage processes for which the contact angle is greater than 90◦. However, we
emphasise that the same analysis, namely the competition between viscous and capillary
forces, can also be applied to imbibition processes (θ < 90◦). Similarly, it is possible
to design dual-channel geometries with different channel widths and the placement of
barriers to create hierarchies of capillary pressures. Although Haines jumps are commonly
referred to in drainage processes, the same physical phenomenon, i.e. rapid fluid interface
motion accompanied by liquid redistribution and pressure fluctuations, are also present in
imbibition processes (Zhao, MacMinn & Juanes 2016; Primkulov et al. 2022).

An important requirement for the applicability of the current approach is the existence
of the actuation force that originates from the differences in capillary pressure between
the top and bottom menisci (described in (3.1)). However, the contact angle hysteresis
θ ′ = θadv − θrec, i.e. the difference between the advancing (bottom side) and receding (top
side) contact angles, can lead to deviations of effective contact angles from the equilibrium
ones, which hinders the driving capillary force. In the current work, the contact angle
hysteresis in the simulation is small, i.e. the difference between θtop and θbot (or the
difference between θrec and θadv) is less than 3◦. In practical applications, the contact angle
hysteresis can be greater due to surface chemical heterogeneity or roughness. Reducing
contact angle hysteresis on engineered surfaces has been an active area of research. For
example, Esmaeilzadeh et al. (2016) showed that the contact angle hysteresis can be
reduced to less than 5◦ by surface coating of nanoparticles.

To ensure a positive capillary driving force with consideration of contact angle
hysteresis, the critical channel width contrast h∗

crit should satisfy

h∗
crit = cos θtop

cos θbot + 1/β(cos θbot − cos θtop)
, (3.10)

where cos θtop = θ − θ ′/2, cos θbot = θ + θ ′/2 and β = D/hbot represents the aspect ratio
of the channel. The contour maps for h∗

crit under different β are plotted in figure 7. Here,
we consider a practical range of h∗

crit ∈ [0.1, 10]. The white region in figure 7 represents
the region where the Haines jump cannot take place. It can be seen that the minimum
channel contrast is more demanding as: (i) contact angle hysteresis increases; (ii) when
the equilibrium contact angle θ approaches the neutral condition (θ = 90◦); or (iii) the
aspect ratio β decreases, which is associated with the increasing effect of contact angle
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hysteresis from the out-of-plane direction. Thus, ensuring homogeneous solid surfaces for
small contact angle hysteresis, as well as a non-neutral solid wettability, are critical when
manufacturing the physical device. Note that the asymmetry in the contour maps for finite
values of β is due to the definition of the aspect ratio being based on the bottom channel
width.

Overall, our results (figure 5) highlight that the dual-channel configuration combined
with the developed model in the work can provide an effective approach to simultaneously
measuring the interfacial tension and fluid viscosity in a multiphase system. Despite
acknowledging the existing advanced techniques for fluid property testing, such as
those that require force sensing equipment during droplet merger (Nguyen et al.
2021), laser-light scattering apparatus (Nishio & Nagasaka 1995) or oscillations of
acoustically levitated droplets (Kremer, Kilzer & Petermann 2018) combined with rainbow
refractometry (Wu et al. 2021) or under a microgravity environment (Fujii et al. 2005),
we want to highlight the key advantages of the present approach. Firstly, such a method
only requires the imaging of the fluid distribution and control of the injection velocity,
which is straightforward compared with existing techniques and does not require advanced
equipment. Further, the fluid properties are determined by analysing the Haines jump
phenomena that occur ubiquitously in fluid–fluid displacement processes in a confined
geometry. This means that it is possible to extend the theory for in situ fluid property
characterisation during multiphase flow in an artificial porous medium that has regular
pore structures, where the capillary driving force and viscous dissipation can be accurately
quantified. Such non-intrusive real-time characterisation of the fluid property could
be particularly important in processes where fluid flow is accompanied by chemical
reaction/mass transport (Dudukovic et al. 2021; Wang et al. 2024).

4. Conclusions

Inspired by the Haines jump mechanisms commonly observed during immiscible fluid
displacement processes in porous media, we have designed a dual-channel system with
hierarchies of capillary barriers to realise the spontaneous rapid liquid redistribution
during multiphase flow. Three regimes of the interface motion behaviours are identified,
where the meniscus movement velocity can increase, decrease or remain the same during
Haines jumps, depending on the viscosity ratio of the invading and defending fluids. Based
on the competition between capillary and viscous forces, an analytical model is developed
to describe the dynamics of interface movement during Haines jumps. Results from
numerical simulations under different viscosities, surface tensions and contact angles show
that the proposed analytical model can well describe the interfacial movement. Further,
our analysis demonstrates that the dual-channel system combined with the developed
model is capable of simultaneously determining the interfacial tension and fluid viscosity.
This work provides fundamental insights into multiphase flow processes, and the results
should facilitate the development of alternative approaches for the effective measurement
of important fluid properties.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1225.
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