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ON THE (SUB)LOGARITHMIC PROPERTY OF THE
POLE-, ZERO- AND ALGEBRAIC MULTIPLICITY OF

OPERATOR FUNCTIONS

by G. PHILIP A. THIJSSE1

(Received 12th December 1978)

This paper contains an extension of a result obtained by H. Bart, M. A. Kaashoek and
D. C. Lay in (2). These authors studied the reduced algebraic multiplicity RM(A; Ao) of a
meromorphic operator function at a point Ao 6 C. They proved that under certain
conditions this quantity has logarithmic behaviour, i.e.,

RM(AB; Ao) = RM(A; Ao) + RM(B; Ao).

For more restricted cases such results had been proved by others, notably I. C. Gohberg
and E. I. Sigal (see (4) and (5)). Here we shall prove that such a result also holds for a larger
class of operator functions than the diagonable functions considered in (2).2

The reduced algebraic multiplicity is the difference of two quantities (not explicitly
introduced in (2)), namely the reduced zero multiplicity rmo(A; Ao) and the pole multi-
plicity mp(A; Ao). We present a characterisation of these quantities in terms of spaces of
germs of holomorphic vector functions. The pole multiplicity has sublogarithmic
behaviour, i.e., the inequality mp(AB; A0) = mp(A; \0) + mp(B; Ao) holds. We present
necessary and sufficient conditions on A and B in order that mp(AB; Xo)

 =

mp(A; Xo) + mp(B; Ao) if all these quantities are finite. Such conditions are of interest in
system theory (see (9)), and J. Vandewalle and P. Dewilde have obtained other conditions
in order that mp has logarithmic behaviour; we explain the relationship between their
conditions and ours. Finally, we prove that the reduced zero multiplicity has also
sublogarithmic behaviour, albeit under rather restrictive conditions.

1. Examples and characterisation of multiplicities

In this paper we shall use without further explanation all notations from (2). Through-
out, X, Y and Z will denote Banach spaces.

Let A e H(A0, L(X, Y)). We define the pole multiplicity mp(A; Ao), the zero multi-
plicity mo(A; Ao) and the reduced zero multiplicity mio(A; Ao) of A at Ao by

- i

mp(A; Ao) = £ dim Km[A; Ao],
m=—oo

1 The research for this paper was done while the author was employed at the Vrije Universiteit in
Amsterdam.

2 This result was proved earlier in the author's thesis (8, Theorem IV, 3.7).
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mo(A; Ao) = I dim Hm[A; Ao],
m=O

rmo(A;Ao)= 2 dim (Hm[A; A0]/W[A; Ao]).
m=O

These quantities were mentioned, but not considered explicitly, in (2). From formulae
(2) and (3) in (2) one sees that the algebraic multiplicity M(A;A0) and the reduced
algebraic multiplicity RM{A; Ao) of A at Ao are given by

M(A; Ao) = /no(A; Ao)- mp(A; Ao),

RM{A; Ao) = rmo(A; Ao)- mp(A; Ao).

First we present some examples concerning the zero multiplicity.

Example 1. Let A(A)= T0 + AT1 + ... + A"Tn(A e C), where

To, T,,..., TneL(X, Y).

Then %(A; Ao) is equal to the number of linearly independent solutions of the equation

• ( ! ) *> -

which are of the form x{t) = p(t)e*"', where p is a polynomial with coefficients in X.
A proof for this statement can be found in (8), Example II, 1.1. It relies on the

observation that

implies that pm e Hm[A; Ao] and that each element pm e Hm[A; Ao] gives rise to a chain
Pm, Pm-i, ••-, Po in Xsuch that (1) holds. This relationship between the zero multiplicity
and the number of solutions of a differential equation was already indicated by M. V.
Keldysh (7).

Example 2. Let A(A)= T—X.I, where T e L(X) and / denotes the identity on X.
Then for m^O one has

Hm[A; Ao] =

and hence

mo(A;Ao) = dim( U N(A(\0)
m))-

The pole multiplicity plays a role in system theory where it is called the polar degree
(see, e.g., (10)).

For an arbitrary Banach space Z we denote through H(Z) the space of germs of
Z-valued functions which are holomorphic at the (fixed) complex point Ao. With M(Z) we
denote the space of germs of Z-valued functions which are meromorphic at Ao- If
A e M(L(X, Y)), then A induces a linear map A : M(X)^>M( Y) defined by (A>)(A) =
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for A near Ao- Our first theorem relates mp(A; AO) and rmo(A; Ao) to properties
of A.

Theorem 1. Let A e H(X0,L(X, Y)) be mewmorphic at Ao- Then

= dim
(A[H(X)]nH(Y)Y

If, moreover, A is finite-mewmorphic at Ao, R(Ao) is closed and rmo{A; Ao)<°°

If, in addition to the conditions mentioned above, we have H[A; Ao] = {0}, then

A~l\H(Y\\
rmo(A; Ao) = mo(A; Ao) = dim ( A - , [ f l ( Y ) ] n H ( x ) ) - (4)

Proof. The second identity in (2) follows from the observation that <f>u ..., <f>n e
/ / ( X ) a r e linearly independent modulo A~\H( Y)]nH(X) if and only if A<t>u ..., A<f>n are
linearly independent modulo A[H(X)]nH(Y). To prove the first identity in (2), assume
that mp(A; Ao) is finite but non-zero. Let / = — v(A; \0)- Then / > 0 . Choose a basis
yi , . . . , yk for K-X\_A; Ao] such that there exist integers k = ii^ i2 = • • •= ii>0 with

K-m[A; A0] = sp{y!,..., yim}

for m = 1, 2 , . . . , / . Set i(+1 = 0 and assume that is=j> h+i- Then there exists (/>; e
such that v(0j•,; AO) = s and A<j)j—> y;. Define </>yi(( = 1,2,..., s) by

Then </>;i e H(X) for ; = is+l + 1 , . . . , /„ i = 1, 2 , . . . , / . It can be proved (see (8), Example
IV, 1.3) that

{A<t>j,,\j= is+l + l,..., is, i = l , 2 , . . . , 5, s = 1 ,2 , . . . , /} (5)

forms a basis for A [ H ( X ) ] modulo A [ / / ( X ) ] n / / ( Y). Note the the number of elements in
(5) is given by

X s.(is-is+1)= I dimK-s[A;Ao]=mp(A;Ao).
S = l 5 = 1

This proves our claim.
Next we prove equality (3). We restrict ourselves to the case where 0 < rmo( A; Ao). Let

q = min{n| Hn[A; Ao] = H[A; Ao]}. As

dim (Hn[A; \0]/H[A; A0]) = dim (X[A; A0]/Kn[A; Ao])

(cf. (1), formula (1-2)) we have that K[A; Ao]= K,[A; Ao]; moreover,

rmo(A;Ao)= I dim
i=O il/\, AQJ
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There exist vectors y,,..., yk e K^A; Ao], which are linearly independent
modulo Ko[A; Ao], and integers 0 S= i'i ̂ . . . Si iq = k such that

Ky[ A; Ao] = Ko[A; Ao]0 sp {y,,..., y;.}

for j= 1, 2, . . . , q. Set /0 = 0. For each y,-(/,_i</^ is) there exists <£y e M(X) such that
A<f>j—> y, and ^(t^; Ao) = —s. Note that the set

{A(A - XoYh \j = is,...,k,s = O,l,...,q-l} (6)

has exactly rmo(A; Ao) elements. It is not difficult to prove (cf. (8), Example IV, 1.4) that
(6) is a subset of H( Y)n A[M(X)] which is linearly independent modulo H( Y)C\ A[H(X)].
This shows that

rmo(A; Ao)= dim

In order to prove the reverse inequality we need our extra assumptions on A. These enable
us to write A = SB, where S is holomorphic at Ao and X0[S; Ao] = K[S; Ao] = K[A; Ao],
whereas B is of the form

B(\) = (I- P, + (A - AO)S'P,)...(/- Pn + (A - A0)
5"PJ

where all P, are degenerate projections of X and all s, are integers (cf: (8)). According to
Theorem II, 3.1 in (8) we may choose B such that mo(B; Ao) = mio(A; Ao). As B(A) is
bijective for A^A0, the operator B maps M(X) onto itself in a bijective way. From
Proposition I, 3.7 in (8) we have

H(Y)r)A[M(X)]= H(Y)nS[M(X)] = H(Y)r)S[H(X)].

Hence, with A = SB,

(H(Y)nA[M(X)J)
dim

= dim

g dim

(H(Y)nA[H(X)])

(H(Y)nS[H(X)])
(H(Y)nA[H(X)])

(H(X)nB[M(X)])
(H(X)nB[H(X)])

—1 r T ?v \T\ ~\
i _n i _ / \ 11 -

= d l l T 1 ^ r ^ n A - l r , , / ^ = "»p(^" S Ao).

According to Lemma II, 1.4 in (8) we have mp(B~l; Ao) = mo(B; Ao). This completes the
proof of (3).

Finally, if H[A; Ao] = {0}, then mo(A; Ao) = rmo(A; Ao), and the other assumptions on
A assure that A is injective, as A(X) is injective for all A in some deleted neighbourhood of
Ao (cf. (1), Corollary 6.4). So (4) follows immediately from (3).

The characterisations obtained in Theorem 1 will be used for the proof of the
(sub)logarithmic behaviour of the multiplicities.
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2. (Sub)logarithmic behaviour of the pole multiplicity

In this section we present a new proof for the sublogarithmic property of the pole
multiplicity and we give necessary and. sufficient conditions in order that mp(AB; Ao)
behaves logarithmically. We use these conditions in order to derive a result on the stability
of this logarithmic behaviour under holomorphic perturbations on A and B.

Theorem 2. Let A e H(A0, L(Y, Z) and B e H(\o, L(X, Y)) be finite-meromorphic at
Ao- Then

mp(AB; Ao)^ mp(A; \0)+mp(B; Ao). (7)

Further, mp{AB; Ao) = mp(A; Ao)+ mp(B; Ao) if and only if the following conditions are
satisfied

(i)
(ii) H-t[A; Ao] + KdB; Ao] = Y

Proof. Set H0=H(X), H, = H{X)C\B'\H{ Yj], H2 = H(X)n(AB-l[H(Z)],
H3 = H,nH2. As Ker (B |H(X)) c H3 and B[//3] = B[Hi]H A'\H{Z)]r\H{ Y), we have

= dim

Thus

mp(AB; Ao) = dim —- ^ dim —°

f-f J-f J-f
= dim - ^ + dim - ^ =i dim - ^ + mp( A; Ao)

= mp(B;Ao)+mp(A;Ao),

which proves (7). At the same time we see that equality holds in (7) if and only if

0) H2 = H3

(9)
.... B[H,] H(Y) y '
(n) ~

It is not difficult to see that conditions (9) are satisfied and only if

(i)
(ii)

Indeed, (9, ii) is satisfied if and only if B[Hl] + (A~1[H(Z)]nH(Y)) = H(Y). As
B[H(X)]nH( Y), this proves that (9, ii) and (10, ii) are equivalent; further, if (9, i) is not
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satisfied, then <f> e H2\Hl exists, i.e., there is a <f> e H(X) such that B<f> fi H(Y) and
AB<f> e H(Z). Then B<f> e (B[//(X)]nA"1[//(Z)])\//( Y), i.e., (10, i) does not hold.
Finally (9) implies (10, i). To see this let tp e (B[H(X)]+H(Y))n(A~l[H(Z)] +H( Y))
and assume that i//£ H{Y). Without loss of generality we may take if/=B<p with
<j> e H(X). Then <£ g / / , . From (9, ii) (which implies (10, ii)) it follows that there exist
0 e H(X), T) e A~l[H(Z)]nH(Y) such that B0 e B[H(X)]nH(Y) and

B^-Bd-t] e A-'[H(Z)];

in particular, B(<f>-9) e A'^HiZ)] and <j>-6 e H2\Hu thus contradicting (9, i).
We complete the proof by showing that (10, i) is equivalent with (8, i) and (10, ii)

with (8, ii). First, assume that (10, i) does not hold, i.e., there exists ifi e
((B[H(X)] +H(Y))n(A~*[H(Z)]+H(Y)))\H(Y). Without loss of generality, ifi e
A~l[H{Z)] and ip=B9+-q, with 0 e H(X) and -q e H(Y). Let - k = v{<\f, Ao). Then
(A-Ao)fci/'(A)^y^0, i.e., B(\)(\-\0)

k9(\)-*y. As k>0 this proves y e K-^B; A0].
Moreover, v(A(X)(X - A0)"iA(A); Ao) = k+ v{Aty\ Ao) g fc, so y e H0[A; Ao]- This proves
that (8.1) does not hold. If, conversely, Q^y e H0[A; \o]C\K-i[B; Ao], then there exist
ip e H(Y), 0 e H(X) such that «KA)-»y, v{6; AO)S1, (B6))(A)^y and
Then (A-A0)"V 6 A"'[//(Z)], (A-Ao)"1^ 6 -B[H(X)], so

Y)))\H(Y)
and (10, i) does not hold.

Next, assume that (10, ii) holds. Then the function y(A) = y can be represented as
y = B0+r], where 6 e H(X), -q e H(Y) and ATJ e //(Z). Then T/^T/ 0 6 H_,[A;Ao],
BO^y — -rjo e ^o[6; Ao], which proves (8, ii). Finally, assume that (8, ii) holds. Let
y e H(Y) and y(A)—*y0. Then yo= M0, +'"?O, where B0O—*"o, tAo^^o for some 0O 6
*/(*), ^o 6 A- ' [ / / (Z)]n/ / (y) . Consider (A-Aor1(y(A)-(B0o)(A)-^0(A)) 6 H(Y).
Repeating the above construction we obtain 0j € H(X), ^ e H(Y)C\A~\H(Z)] such
that

Let q = — v(A; Ao>0. Repeating the described procedure we obtain 0O, 0U ..., #<,_, e
), fe <Ai,-.., *,-i 6 H(Y)nA"'[//(Z)] such that B0o,B6u...,B9q^ e H(Y)and

v ( y- B ( V (A - Ao)'0y) - V (A - Ao)%; Ao) S 9.
\ \y=o / y=o '

Then

u = y-B("Z (A-Ao)1'^ - "l^A-Ao)'^ e A'l[H(Z)]
\/=o / y=o

and so y e (B[H(X)]nW(Y)) + (A"'[H(Z)]nH(y)). This completes the proof.

Let A, C e H(A0, L( Y, Z)) and B, D e H(X0, L(X, Y)) be finite-meromorphic at Ao,
and assume that conditions (8) are satisfied for A and B, i.e., mp(AB; An) has logarithmic
behaviour. It is interesting to ask whether mp((A + C)(B + D); Ao) has logarithmic
behaviour too. Conditions (8) reduce this question to a relatively simple question on
Hi[A + C; Ao] and Kj[B + D; Ao] for i — -1, 0. For example, if Cand D are holomorphic
at Ao and have a zero at Ao, then H[A + C; Ao] = H;[A; Ao], Kt[B + D, Ao] = K^B; Ao] for
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i = - 1 , 0 and mp((A + C)(B + D); Ao) has logarithmic behaviour. Theorem 3 extends this
observation to the case where C and D are holomorphic at Ao and their values in Ao are
small in norm.

Theorem 3. Let A, B, C and D be as above and assume that mp(AB; Ao) =
mp{A; \0)+mp(B; Ao)- // the constant terms of the Laurent expansions of A and B are
operators with closed range, then there exists e > 0 such that if Q D are holomorphic atX0 and
max {|| C(A0)||, ||D(A0)||} < e, then

mp((A + Q(B + D); Ao) = mp(A + C; Ao) + mpB + D; Ao).

Proof. As C, D are holomorphic at Ao we have H_i[A + C; Ao]= H-^A; Ao],
K-][B + D; Ao]= KTl[B; Ao]. Moreover, K0[B; Ao] is closed, as the constant term of the
Laurent expansion of B at Ao has closed range. Let et be given by

e, = min {y(K0[B; Ao], H^[A; Ao]), y(K^[B; Ao], H0[A; Ao])},

where y denotes the (asymmetric) minimal gap (see (6), Ch. IV, §4.1, formula 4.4). One
can prove that if e is chosen sufficiently small, then

; Ao], K0[B + D; Ao]), S(H0[A+C; Ao], H0[A; Ao])}<e,, (11)

where 5 is the asymmetric distance (see (6), Ch. IV, §2.1, Formula (2.1)). It follows from
Theorem IV, 4.24 in (6) that

D;Ao]= Y, H0[A+ C, A0]nX_,[B; Ao] = {0}

if (11) is satisfied. This completes the proof.

In (9) J. Vandewalle and P. Dewilde present necessary and sufficient conditions for the
logarithmic behaviour of the pole multiplicity, or polar degree as they call it (9, conditions
(73)). These conditions are entirely different from our conditions (8), but we shall explain
that our conditions (10) are in fact a variant of their conditions (73). To this end, let P(X)
denote the space of germs of principal parts at Ao. Then M(X) = H{X)@P{X). If F(X)
denotes the projection of M(X) onto H(X) along P(X) and E(X) = I-F(X) then
conditions (10) may also be expressed as

(i) (Im(BF(X)) + Im F( Y))n(Ker (E(Z) A)+ Im F(Y)) = Im F(Y),
(ii) (Im (BF(X))nim F( Y)) + (Ker (£(Z) A)nim F( Y)) = Im F( Y).

In this formulation our conditions are already much like conditions (73) in (9). There,
however, a notion of orthogonality is involved. In our setting this can be achieved by
denning

. . , I f <4>W, *(A)> Jt
< < M > = 2 ^ J r A-A0

 dk

for <$> e M(X*), x e M(X) and F a sufficiently small circle around Ao- We define
(A)* = A* and with E(X)* we denote the projection of M(X*) onto the subspace of all
germs of holomorphic X*-valued functions which have a zero in Ao along the subspace of
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all polynomials in (A - Ao)~'. Further, F(X)* = I- E(X)*. Note that E(X)* ? E(X*). It is
not difficult to prove that A*, E(X)*, F(X)* behave like conjugates, i.e.,

where C, D are operators like A, E(X), F(X). We may also define annihilators setting

M± = {<f> e M(X*)\(4>, m) = 0 for all m e M}

if M C M(X) and

±N={x e M(X)\(n,x) = 0 forall n e TV}

if N(ZM(X*). From these annihilators the usual relations like (M+N)± = M±<1NJ-,
(MDN)±DM±+NX are valid. Moreover

KerC=xImC*,

where C is an operator like A, E(X), F(X) or a product of these. Using these notions,
conditions (12) can be rewritten as

(i) x(Im (A*JE(Z)*)nim (E( Y)*))n(Im (BF(X)) + Im F( Y)) = Im F( Y)
(ii) (Im (A*£(Z)*) + Im (£(Y)*))n(Im(B^A))nim F( Y))± = Im (£( Y)*)

and if A and B are both finite-meromorphic then conditions (13) are in fact equivalent
with conditions (12), and therefore also with conditions (8). Conditions (13) are, however,
identical to conditions (73) in (9).

3. Logarithmic behaviour of the reduced algebraic multiplicity and sublogarithmic
behaviour of the reduced zero multiplicity

In this section we prove an extension of Theorem 2 in (2). First we deal with the special
case where A(A) is an injective 4>~-operator and B(\) a surjective 3>+-operator for A in a
deleted neighbourhood of Ao (cf. (8), Proposition IV, 3.5), as the general case can be
reduced to this case.

Proposition 1. Let A e H(\o, L(Y, Z)) and B e H(k0, L(X, Y)) be finite-
meromorphic atko and assume that the constant terms of the Laurent expansions of A and B
at Ao are semi-Fredholm operators. IfA(X) is an injective Q>~ -operator and B(\) a surjective
4>^-operator fork in a deleted neighbourhood o/A0 then

o). (14)

Proof. Observe that both A and B have finite zero multiplicity as for both operator
functions the constant term of the Laurent expansion at Ao is a semi-Fredholm operator. It
is not difficult to prove that AB has finite reduced zero multiplicity as well (cf. (8), Lemma
IV, 3.4), so the characterisations of Theorem 1 hold for A, B and AB. Note that A is
injective, so (4) holds for mo(A; Ao); it is well-known that B is surjective (cf. (3), Lemma
1.7 and (8), Theorem II, 3.1), so B[M(X)] = M( Y). Formula (14) can be verified by direct

https://doi.org/10.1017/S0013091500003084 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003084


MULTIPLICITY OF OPERATOR FUNCTIONS 215

calculation. For simplicity we use the following notation: H=H(Y), K= A'l[H(Z)],
L=B[H{X)]. Then

A- WZ)nAB[M(X)]) AB[H(X)]
= dim ,TTfrnn ^ r , , , ^ - dim •(H(Z)DAB[H(X)]) (H(Z)DAB[H(X)]y

As A is injective and B surjective this reduces to

(17)

Note that (15), (16) and (17) remain valid if all denominators are replaced by HOKHL.
Thus we obtain

-dim-
(HOKDL) (HOKHL)

L
+ dim —-——-—— — dim

(HnKDL) (HDKDL)

=dim (HnffiZj "dim
 (HF^L) = RM{AB'Ao)

and the proof is complete.

Theorem 4. Let A e H(\o, L(Y, Z)) and B e H(\o, L(X, Y)) be finite-
meromorphic at\0, and assume that the constant terms of the Laurent expansions of A and B
at Ao are operators with closed range and that both rmo(A; Ao) and rmo(B; Ao) are finite. If
K[B; A0]©H[A; Ao]= Y then AB is finite-meromorphic at Ao, the constant term of its
Laurent expansion at Ao has closed range, its reduced zero multiplicity is finite and

RM(AB; Ao) = RM(A; \0) + RM(B; Ao). (18)

Proof. All statements, except formula (18) follow from Lemma IV, 3.4 in (8). As
K[B; Ao] is a complemented subspace of Y there exists an operator function E, holomor-
phic at Ao and with invertible values in L(Y) such that E(\)K[B; A] = K[B; Ao]. Put
M = K[B; Ao]. For A in a neighbourhood of Ao we may consider E(A) B(A) as an element of
//(Ao, L(X, M)). Define A, by A J M E U ) " 1 \M. Then A, and EB satisfy the conditions of
Proposition 1, so

RM(AB; Ao) = RM(A,EB; Ao) = M(Au X0) + RM(EB; Ao).

It is easily seen that RM(B; Ao) = RM(EB; Ao), as Hm[EB; Ao] = Hm(B; Ao] for each
m 6 Z. Finally, it is not difficult to prove that

AMM)] = A[H(.Y)l A,[M(M)] = A[M( Y)],

(cf. (8), Lemma IV, 3.6), so RM(A; Ao) = M(At; Ao). This completes the proof.
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The final theorem of this paper deals with the sublogarithmic behaviour of the reduced
zero multiplicity. As follows from Theorems 2 and 4, one has rnio(AB; Ao) =
rmo(A; Xo) + rnio(B; Ao) if H[A; A0]©#[B; Ao]= Y, and the example at the end of (2)
shows that conditions of this kind are necessary in order to obtain sublogarithmic
behaviour.

Theorem 5. Let A e H(A0, L(Y, Z)) and B e H(\o, L(X, Y)) be finite meromorphic
at Ao, and assume that the constant terms of the Laurent expansions of A and B at Ao are
operators with closed range and that both rmo(A;Ko) and rnio(B; \0) arefinite. If one of the
following conditions

(i) H[A;\o] = {0}
(ii) K[B;\o]=Y
(iii) H[A; \0]@K{B; \0]= Y

holds, then AB is finite- meromorphic at Ao, the constant term of its Laurent expansion at Ao

has closed range, its reduced zero multiplicity is finite and

rmo{AB; Ao) =i m^A; Ao) + rmo(B; Ao). (19)

Proof. All statements, except formula (19), follow from Lemma IV, 3.4 in (8). If (iii)
holds, then formula (19) follows from formulae (7) and (18). Assume that (i) holds. Then A
is injective. In the proof we use the following notations:

U=A[M{Y)l V=A[H(Y)l W=AB[M(X}], J=AB]_H{X)},

K=A[B[M(X)]nH(Y)l L = A[B[H(?Q]nH(Y)l H=H(Z).

As A is injective we have H(l W(l V= HHK and hence

HD WD HD WD V= HHKZ) HHL

HDWDHDJDHnL.

Further

HHU

J . HDK _,. K ,
dim ^^^ ^dim - = rmdB; Ao),

.. Hnw
dm17nr7

and so
Hnw ,. HnK ,. HnJ

s mo(A; Ao) + rmo(B; Ao)-dim ^ mo(A; Ao) + rnio(B; Ao).
ti\\L

If (ii) holds then (19) may be proved by considering B*A*, as wio(B*; Ao) = rmo(B; Ao),
rmo(A*; Ao) = rmo(A; Ao) and rmo{B*A*; Ao) = rmo(AB; Ao) (see (1), Proposition 5.9).
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Clearly, one may derive conditions in order that

rmo(AB; Ao)= rmo(A; \0)+rmo(B; Ao).

For example, if condition (i) in Theorem 5 is satisfied, then rmo(AB; Ao) behaves
logarithmically if and only if (in the notation of the proof of Theorem 5) the following
conditions are satisfied

(a) (HnW) + (Hr\V) = HDU,
(b)'(HDK) + L = K, (20)
(c) HHJ=HnL.

If condition (iii) in Theorem 5 is satisfied, then evidently logarithmic behaviour is obtained
if and only if conditions (8) are satisfied. It is not clear whether conditions like (8), which
are in terms of Hm- and Km-spaces rather than in terms of subspaces of M(Z) or M{Y),
might be derived also in the case where conditions (i) and (ii) of Theorem 5 hold.
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