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Abstract

Subcritical Markov branching processes {Zt } die out sooner or later, say at time T < ∞.
We give results for the path to extinction {ZuT , 0 ≤ u ≤ 1} that include its finite
dimensional distributions and the asymptotic behaviour of xu−1ZuT , as Z0 = x → ∞.
The limit reflects an interplay of branching and extreme value theory. Then we consider
the population on the verge of extinction, as modelled by ZT −u, u > 0, and show that
as Z0 = x → ∞ this process converges to a Markov process {Yu}, which we describe
completely. Emphasis is on continuous time processes, those in discrete time displaying
a more complex behaviour, related to Martin boundary theory.
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1. Introduction

In an earlier paper [8] we considered big, general, nonlattice subcritical branching popula-
tions, starting from, say, x individuals. Here ‘general’ stands for single-type general branching
processes, i.e. populations where no particular life span distribution is assumed and where
individuals may give birth repeatedly and in random litters [7]. Writing r for the absolute value
of the Malthusian parameter (which must be negative for subcritical populations), in [8] we
showed that the time T to extinction must satisfy

T − ln x

r

d−→ η + ln c

r
, x → ∞,

where the random variable η has a standard Gumbel distribution,

P(η ≤ y) = exp(−e−y), −∞ < y < ∞,

0 < c < 1 is the constant appearing inYaglom’s limit theorem [3] and ‘
d−→’denotes convergence

in distribution. (For Markov branching processes and Galton–Watson processes these or
corresponding asymptotics were obtained by Pakes [10, 11].)

The main results of [8], however, were those yielding population size ‘half-way’to extinction,
i.e. at times uT , for 0 < u < 1, for example u = 1

2 . In the continuous time case, it was shown
that if the population starts from x individuals at time zero and Zt denotes its size at time
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t ≥ 0, then as x → ∞ the properly scaled population size xu−1ZuT converges weakly to
a process of the form Cc−ue−uη, for fixed u. In this, the constant C is defined by C =
limt→∞ ert E1[Zt ], explicitly determined by life span and reproduction distributions. Integer
suffices on expectations and probabilities refer to the starting number; in the formula for C the
population thus starts from one (newborn) Eve. Here and in the sequel, Ex and Px denote the
expectation and probability, respectively, when the population is started from x individuals.

This was obtained through an L2-argument presupposing, besides a bounded birth-and-death
intensity, essentially a second moment of the number of offspring per individual. In the case of
Markov branching processes, it turns out that the quadratic mean analysis can be replaced by
conditioning at the nonstopping time uT and a total probability argument, which may have wider
relevance for Markovian paths until hitting a designated state, zero or not. As a by-product,
the second moment assumption can be relaxed to the (mathematically) natural condition of the
offspring number X having a finite x log x moment (see (7), below). Furthermore, the time
uT < T can be replaced by others strictly preceding T , rendering it possible to study the path
of the processes on the eve of extinction, i.e. at times T − u, u > 0, rather than long before.

This is the programme of the present paper, which will concentrate on subcritical continuous
time Markov branching, but also deal with the Galton–Watson case.

2. Facts about Markov branching in continuous time

Continuous time Markov branching processes Zt yield the number of particles at times
t ≥ 0 in a population of independently existing and reproducing particles. Each particle lives
for an exponential time with parameter a and at the moment of death it splits into k offspring
with probabilities pk , k = 0, 1, 2, . . . , and mean m = ∑∞

k=1 kpk . The word ‘particle’ is quite
appropriate, reminding us that these are unbiological, nonageing, and splitting entities.

In this section we present some well-known results in the subcritical case m < 1, which are
needed in the rest of the paper. The specific function defined in terms of the parameters of the
process given by (4), below, is central for the theory and systematically used.

The offspring generating and process generating functions

f (s) =
∞∑

k=0

pks
k,

F (s, t) = E1[sZt ]
are the classical tools of analysis. The latter satisfies the forward Kolmogorov equation

∂F (s, t)

∂t
= φ(s)

∂F (s, t)

∂s
, (1)

where φ(s) = a(f (s) − s), and the backward Kolmogorov equation

∂F (s, t)

∂t
= φ(F (s, t)), (2)

with the boundary condition F(s, 0) = s; see [3], [6], and [12] for this and a more leisurely
presentation of Markov branching as a whole. Differentiating (2) with respect to s and then
letting s ↑ 1, we obtain a differential equation for the mean of Zt ,

d

dt
E1[Zt ] = φ′(1) E1[Zt ],
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with the following solution:

E1[Zt ] = e−rt , r = a(1 − m). (3)

In other words, the generally true asymptotic relation E1[Zt ] ∼ Ce−rt holds exactly for Markov
branching, with C = 1. In the present subcritical case, m < 1, φ(0) = ap0 > 0, and the
function

π(s) =
∫ s

0

dv

φ(v)
, (4)

is well defined. It plays a crucial role in the rest of the paper.

Lemma 1. In the subcritical case

π(s) ∼ −r−1 ln(1 − s), s ↑ 1. (5)

Furthermore, there is a constant 1 < b < ∞ such that

π(s) = −r−1(ln(1 − s) + ln b) + o(1), s ↑ 1, (6)

if and only if the following x log x-condition holds:

∞∑
k=2

(k ln k)pk < ∞. (7)

Proof. Equation (5) holds since the positive function

D(s) = 1

(1 − m)(1 − s)
− 1

f (s) − s

is o(1/(1 − s)) as s ↑ 1. Relation (6) follows from the fact that the integral
∫ 1

0 D(v) dv is finite
if and only if (7) holds (see [3, Chapter I.10, Corollary 2]).

Proposition 1. Suppose that m < 1 and (7) holds. Then the survival probability Q(t) =
P1(Zt > 0) has the asymptotics

Q(t) ∼ b−1e−rt , t → ∞, (8)

implying that
E1[Zt | Zt > 0] → b. (9)

Moreover,
P1(Zt = k | Zt > 0) → bk, k ≥ 1, t → ∞, (10)

where b = ∑∞
k=1 kbk , and

B(s) :=
∞∑

k=1

bks
k = 1 − e−rπ(s). (11)

Thus, for Markovian branching processes, the Yaglom constant c is equal to b−1.
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Proof of Proposition 1. It follows from (2) that Harris’s representation

π(F (s, t)) = π(s) + t (12)

holds. Since Q(t) = 1 − F(0, t), Lemma 1 and (12) imply that

−ln Q(t) = rt + b + o(1), t → ∞,

which in its turn yields (8).
On the other hand, for any fixed s, it follows from (12) that

F(s, t) = F(0, t + π(s)). (13)

Together with (8), this implies that

1 − F(s, t) ∼ b−1e−r(t+π(s)), t → ∞.

Hence,
1 − F(s, t)

Q(t)
→ e−rπ(s), t → ∞, (14)

which leads further onto (10), since

E1[sZt | Zt > 0] = 1 − 1 − F(s, t)

Q(t)
.

The convergence in (9) follows from

E1[Zt | Zt > 0] = E1[Zt ]
Q(t)

,

(3), and (8). Finally, the equality b = ∑∞
k=1 kbk is a consequence of (11), (6), and

lim
s↑1

B ′(s) = lim
s↑1

rπ ′(s)e−rπ(s)

= b.

Proposition 1 is known as Yaglom’s theorem. Assuming finite second moments, Yaglom
proved the result for Galton–Watson processes, whereas the present case is due to Sevast´yanov.
See [3, p. 114], for a brief proof and see [12, pp. 67–72] for a more complete exposition.

3. The path to extinction

As before, T denotes the extinction time of the Markov branching process Zt , i.e. the time
when it hits zero. If the initial population has only one member, the distribution function of the
time to extinction is

G(t) = P1(T ≤ t) = P1(Zt = 0) = F(0, t).

It will be convenient to write g(t) = G′(t) and F ′(s, t) = (∂/∂s)F (s, t), so that

F ′(s, t) = φ(F (s, t))

φ(s)
(15)
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from (1) and (2). The backward equation (2) yields

g(t) = φ(F (0, t)). (16)

By (8) we obtain
g(t) ∼ r(1 − F(0, t)) ∼ rb−1e−rt as t → ∞. (17)

The object studied in this section is the process {ZuT , 0 ≤ u < 1}, depicting the path to
extinction. In the following result, we see that its probability law permits a basic representation.

Theorem 1. Let x, y ∈ {1, 2, . . . }, u ∈ [0, 1), and κ = u/(1 − u). The distribution of ZuT is
given by

Px(ZuT = y) = y

1 − u

∫ ∞

0
Gy−1(t) Px(Zκt = y)g(t) dt, (18)

with the generating function

Ex[sZuT ] = sx

1 − u

∫ ∞

0
Fx−1(sG(t), κt)F ′(sG(t), κt)g(t) dt. (19)

Finite dimensional distributions are given by

Px(Zu1T = y1, Zu2T = y2, . . . , ZunT = yn)

= yn

1 − un

∫ ∞

0
Gyn−1(t) Px(Zκ1t = y1, . . . , Zκnt = yn)g(t) dt, (20)

for 0 < u1 < u2 < · · · < un < 1 and κi = ui/(1 − un).

Proof. By the law of total probability we obtain

Px(ZuT = y) =
∫ ∞

0
Px(ZuT = y, T ∈ dt)

=
∫ ∞

0
Px(Zut = y, T ∈ dt)

=
∫ ∞

0
Px(Zut = y) Px(T ∈ dt | Zut = y)

=
∫ ∞

0
Px(Zut = y) Py(T

′ + ut ∈ dt).

The last equality holds by the following probabilistic argument. Conditionally on ZuT = y,
the probability of the original population dying out at T is the same as the probability that
a population of y individuals at uT dies out after time T ′ = T (1 − u). Furthermore, by
independence we obtain

Py(T ≤ t) = G(t)y.

Hence, this turns into

Px(ZuT = y) =
∫ ∞

0
Px(Zut = y)yGy−1(t (1 − u))g(t (1 − u)) dt,

and (18) follows.

https://doi.org/10.1239/aap/1183667624 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667624


574 P. JAGERS ET AL.

The generating function is obtained by direct calculations

Ex[sZuT ] =
∑
y

Px(ZuT = y)sy

from (18).
The very same total probability argument works for finite dimensional distributions. Indeed,

with 0 < u1 < u2 < · · · < un < 1 and κi = ui/(1 − un), we obtain

Px(Zu1T = y1, Zu2T = y2, . . . , ZunT = yn)

=
∫ ∞

0
Px(Zu1t = y1, . . . , Zunt = yn)ynG

yn−1((1 − un)t)g((1 − un)t) dt

= yn

1 − un

∫ ∞

0
Gyn−1(t) Px(Zκ1t = y1, . . . , Zκnt = yn)g(t) dt,

which is (20). The joint generating function can now be obtained similarly as in (19).

With the representation theorem in our hands we can state and prove the main result on the
path between start and demise.

Theorem 2. Suppose that m < 1 and that the x log x condition (7) holds. As Z0 = x tends to
infinity, the finite dimensional distributions converge, i.e.

{xu−1ZuT , 0 ≤ u < 1} fd−→ {bue−uη, 0 ≤ u < 1},
where η has a standard Gumbel distribution and ‘

fd−→’denotes convergence in finite dimensional
distribution.

The question of tightness is left open here. We plan to address it in a forthcoming paper, in
the context of general branching processes.

Proof of Theorem 2. The proof relies on dominated convergence. We show convergence of
one-dimensional distributions by establishing the asymptotics of the function under the integral
in (19) and exhibiting a dominating function. We then show how the Markov property can be
used on the right-hand side of (20) to reduce the convergence of n-dimensional distributions to
those of lesser dimensionality.

First, by (13) for t → ∞ and st ↑ 1, we obtain

1 − F(st , κt) = Q(κt + π(st )) ∼ b−1 exp(−r(κt + π(st ))) ∼ (1 − st )e
−rκt . (21)

Taken together with (15), this gives

F ′(st , t) ∼ 1 − F(st , t)

1 − st
∼ e−rκt . (22)

Combining (22), (21), and (17), we conclude that

xFx−1(st , κt)F ′(st , κt)g(t) ∼ x(1 − (1 − st )e
−rκt )xe−rκt rb−1e−rt

∼ rb−1x exp(−x(1 − st )e
−rκt ) exp

(
− r

1 − u
t

)
, (23)

as st ↑ 1 and t → ∞.
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With st = e−vxu−1
G(t) and

rt = (1 − u)(z + ln x − ln b), (24)

we obtain
e−rt = e−z(1−u)xu−1b1−u

and
1 − st ∼ vxu−1 + e−z(1−u)xu−1b−u as x → ∞,

and it follows from (23) that

xFx−1(st , κt)F ′(st , κt)g(t) → r exp(−vbue−uz)e−z exp(−e−z). (25)

Using a change of variable from (24), (19) therefore yields

Ex[exp(−vxu−1ZuT )] = exp(−vxu−1)x

1 − u

∫ ∞

0
Fx−1(st , κt)F ′(st , κt)g(t) dt

→
∫ ∞

−∞
exp(−vbue−uz) exp(−e−z)e−z dz

= E[exp(−vbue−uη)],
provided that dominated convergence applies.

Dominated convergence does apply here. A function dominating the convergence (25) can
be obtained in the following way from the monotonicity in s of the generating function and its
derivative and the inequality ln x ≤ x − 1 (where the ci are suitable positive constants):

0 ≤ xFx−1(st , κt)F ′(st , κt)g(t) ≤ c1x exp(−(x − 1)(1 − F(st , κt)))F ′(1, κt)e−rt .

Since
xF ′(1, κt)e−rt = xe−rt E1(Zκt )

= xe−rt/(1−u)

= be−z,

we obtain

xFx−1(st , κt)F ′(st , κt)g(t) ≤ c2 exp(−c3x(1 − F(st , κt)))e−z.

Now, by (21) it holds for some c3 > 0 that

x(1 − F(st , κt)) ≥ cx(1 − st )e
−rκt ≥ cxQ(t)e−rκt ≥ c3e−z.

The reduction argument works in the same way from any dimension to the one before, so
we content ourselves with the step of going from dimension two to dimension one.

We let
F (s1, s2; t1, t2) = E1[sZt1

1 s
Zt2
2 ],

so that, for 0 < u1 < u2 < 1 and κi as above,

Ex[sZu1T

1 s
Zu2T

2 ]
=

∑
y1,y2

s
y1
1 s

y2
2

y2

1 − u2

∫ ∞

0
Gy2−1(t) Px(Zκ1t = y1, Zκ2t = y)g(t) dt (26)

= s2x

1 − u2

∫ ∞

0
F x−1(s1s2G(t); κ1t, κ2t)F2(s1s2G(t); κ1t, κ2t)g(t) dt,
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where F2 denotes the partial derivative with respect to the second argument of F . Here the
Markov property yields

F (s1, s2; κ1t, κ2t) = E1[sZκ1t

1 EZκ1t [s
Z(κ2−κ1)t

2 ]]
= E1[sZκ1t

1 E
Zκ1t

1 [sZ(κ2−κ1)t

2 ]]
= F(s1F(s2, (κ2 − κ1)t), κ1t),

which can be differentiated with the following result:

F2(s1, s2G(t); κ1t, κ2t) = F ′(s1F(s2, (κ2 − κ1)t), κ1t)s1F
′(s2, (κ2 − κ1)t).

To complete the proof, insert this into (26) and repeat the various estimates in the one-dimen-
sional part.

4. On the eve of extinction

The limiting process of Theorem 2 does not tell what happens shortly before extinction.
Indeed, this dramatic phase is abruptly summarized into the jump down to zero from the limit
value when u ↑ 1, i.e. be−η.

To obtain a more detailed picture of the last stage of the population’s life, we consider ZT −u,
for u > 0, and the limit of Px(ZT −u1 = y1, . . . , ZT −un = yn) as x → ∞ in the spirit of [2]. In
Section 5 we exhibit a time-reversed process {Yu, u ≥ 0}, which is homogeneous and Markov
and approximates ZT −u for Z0 = x large.

Lemma 2. The expected occupation time at the state j ≥ 1 satisfies
∫ ∞

0
Px(Zt = j) dt → πj as x → ∞, (27)

where all πj > 0 and the generating function

π(s) =
∞∑
i=1

πis
i (28)

coincides with (4). The sequence {πj }j≥1 defines a unique (up to a multiplying factor) stationary
measure for Zt in that

πj =
∞∑
i=1

πipij (t), t ≥ 0, j = 1, 2, . . . , (29)

in terms of pij (t) = Px(Zt+u = j | Zu = i).
Furthermore,

p11(t) = g(t)π1 = g(t)

ap0
. (30)

Proof. The key asymptotic relation is that, for rt = tx − ln b + z,

x(1 − F(s, t)) ∼ xe−rπ(s)Q(t)

→ (1 − B(s))e−z as x → ∞, (31)
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which follows from (14) and (8). From (31) we obtain

Ex[sZt ] − Px(Zt = 0) = Fx(s, t) − Fx(0, t)

→ exp(−(1 − B(s))e−z) − exp(−e−z)

= exp(−e−z)(exp(B(s)e−z) − 1).

Hence,
∞∑

y=1

sy

∫ ∞

0
Px(Zt = y) dt =

∫ ∞

0
(Ex[sZt ] − Px(Zt = 0)) dt

→ r−1
∫ ∞

−∞
exp(−e−z)(exp(B(s)e−z) − 1) dz

= r−1
∫ ∞

−∞
exp(−e−z)

∞∑
k=1

Bk(s)e−kz

k! dz

= r−1
∞∑

k=1

Bk(s)

k!
∫ ∞

0
e−vvk−1 dv

= r−1
∞∑

k=1

Bk(s)

k

= r−1 ln

(
1

1 − B(s)

)

= π(s).

To prove (30), we write (15) in the form

∞∑
j=1

jsj−1p1j (t) = φ(F (s, t))

φ(s)

and note that s = 0 yields

p11(t) = φ(F (0, t))

ap0

= g(t)π1,

by (16) and (4).

Proposition 2. If m < 1 and the x log x-condition (7) holds, then for u > 0 we obtain

Px(ZT −u = y) → πyyGy−1(u)g(u) as x → ∞.

Similarly, for u1 > u2 > · · · > un > 0, we obtain

Px(ZT −u1 = y1, . . . , ZT −un = yn)

→ πy1 Py1(Zu1−u2 = y2, . . . , Zu1−un = yn)ynG
yn−1(un)g(un),

so that the measure {πj }j≥1 acts as an entrance law.
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�

y1

t − u1

y2

t − u2

yn

t − un
×
t

T ∈ (t, t + dt)

T ′ ∈ (un, un + dt)

Figure 1.

Proof. The asserted convergence follows from Lemma 2 and the following equality (which
is illustrated in Figure 1):

Px(ZT −u1 = y1, . . . , ZT −un = yn)

=
∫ ∞

u1

Px(Zt−u1 = y1, . . . , Zt−un = yn) Pyn(T
′ + t − un ∈ dt)

= ynG
yn−1(un)g(un)

∫ ∞

u1

Px(Zt−u1 = y1, . . . , Zt−un = yn) dt

= ynG
yn−1(un)g(un) Py1(Zu1−u2 = y2, . . . , Zu1−un = yn)

∫ ∞

0
Px(Zt = y1) dt.

5. Looking back from extinction

The process {Zt , t ≥ 0} has the following simple hold and jump description (which is
illustrated in Figure 2):

• at state i it holds for an exponential time with parameter ai

• and then jumps to state j ≥ i − 1 with probability pij = pj−i+1.

As indicated by Figure 2 the population will consist of one single member during its last stage,
before extinction. Turning our eyes back from that stage, we define a time reversed branching
process, {Yu, u ≥ 0}, which will emerge as the large population limit of {ZT −u, u ≥ 0}.
Definition 1. The process {Yu, u ≥ 0} starts from Y0 = 1. At state i it holds for an exponential
time with parameter ai, then it jumps to state j with probability

p̃ij = jπj

iπi

pi−j+1, j = 1, . . . , i + 1

(see Figure 3). To validate this, we need to check that the {p̃ij }i+1
j=1 are really probabilities.

Lemma 3. For any i ≥ 1, we obtain

i+1∑
j=1

p̃ij = 1.

Proof. The transition probabilities of the original process {Zt } satisfy

pji(t) = ajpi−j+1t + o(t) as t → 0,
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for i 
= j , where pk = 0 for negative k, and

pii(t) = 1 − ai(1 − p1)t + o(t) as t → 0.

Now, we insert this into (29) to obtain

0 = πi −
∞∑

j=1

πjpji(t)

= at

(
iπi −

i+1∑
j=1

jπjpi−j+1

)
+ o(t).

The result follows from the definition of p̃ij .

Proposition 3. The time-reversed branching process Yu starting from Y0 = 1 has transition
probabilities

p̃ij (u) = πj

πi

pji(u). (32)

The marginal distribution of Yu is given by

E[sYu ] = sφ(G(u))

φ(sG(u))
. (33)

Proof. The backward Kolmogorov equation for the original branching process

dpji(u)

du
= a

i+1∑
k=1

pjk(u)kpi−k+1 − aipji(u)

together with (32) implies

dp̃ij (u)

du
= ai

i+1∑
k=1

p̃ikp̃kj (u) − aip̃ij (u).

https://doi.org/10.1239/aap/1183667624 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667624


580 P. JAGERS ET AL.

This is the forward Kolmogorov equation for the process Yu and therefore (32) indeed gives
the transition probabilities of the time-reversed process. Due to the independence between
individuals, we have

pj1(u) = jGj−1(u)p11(u)

and
P(Yu = j) = p̃1j (u)

= πj

π1
pj1(u)

= πj

π1
jGj−1(u)p11(u).

Therefore, by (30) we obtain

P(Yu = j) = jGj−1(u)g(u)πj (34)

and

E[sYu ] = dπ(sG(u))

du

= sφ(G(u))

φ(sG(u))
.

Theorem 3. For subcritical Markov branching processes satisfying the x log x condition (7),

the functional convergence ZT −u
d−→ Yu, u > 0, as Z0 → ∞, holds. As u → ∞, e−ruYu

converges in distribution to an exponentially distributed random variable, with expectation b.

Thus, looking backwards from the last survivor, population sizes constitute a time homoge-
neous Markov process, which in the long run grows exponentially like Weru, with W expo-
nential with mean b.

Proof of Theorem 3. For 0 < u1 < u2 < · · · < un ≤ T (compare with the proof of
Proposition 2), we have

Px(ZT −u1 = y1, ZT −u2 = y2, . . . , ZT −un = yn)

= y1G
y1−1(u1)g(u1)pyn,yn−1(un − un−1) · · · py2,y1(u2 − u1)

∫ ∞

0
Px(Zt = yn) dt.

Together with (32), (34), and (27) this yields the desired convergence, i.e.

Px(ZT −u1 = y1, ZT −u2 = y2, . . . , ZT −un = yn)

→ P(Yu1 = y1, Yu2 = y2, . . . , Yun = yn).

Now, it follows from (33) that

E[exp(−θe−ruYu)] = exp(−θe−ru)φ(G(u))

φ(exp(−θe−ru)G(u))

∼ (1 − m)(1 − G(u))

(1 − m)(1 − exp(−θe−ru)G(u))

∼ ce−ru

1 − exp(−θe−ru) + ce−ru

→ c

θ + c
as u → ∞.
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It remains to prove tightness. We use [5, Theorem 2.1] concerning (not necessarily Markov)
jump processes. This theorem and [5, Remark 4.2] suggest three conditions, (i∞), (ii∞), and
(iii), that yield tightness. In our framework, the key condition (ii∞) requires that, for each
0 < a1 < a2 < ∞,

lim sup
x→∞

sup
a1≤s≤a2

Px(ZT −u has at least two jumps in u ∈ [s, s + δ)) = o(δ) as δ → 0. (35)

Condition (i∞) stipulates that for each a, η > 0 there exists a K such that

sup
x≥1

Px

(
sup

0≤u≤a

ZT −u > K
)

≤ η.

In accordance with [4, Corollary, p. 140], this condition follows from (35) and convergence of
finite dimensional distributions. Finally, condition (iii) can be specified as follows. For each
ε > 0, we have

lim sup
x→∞

Px

(
sup

0<u≤a

|ZT −u − 1| > ε
)

→ 0 as a → 0. (36)

Now to the proof of (35). As in the deduction of Proposition 2,

Px(ZT −u has at least two jumps in u ∈ [s, s + δ])

=
∞∑

k1=1

∞∑
k2=1

∫ ∞

s+δ

Px(Zt−s−δ = k1, Zt−s = k2,

Zt−u has at least two jumps in u ∈ [s, s + δ], T ∈ dt)

=
∞∑

k1=1

∞∑
k2=1

k2G
k2−1(s)g(s)

∫ ∞

0
Px(Zt = k1) dt

× Pk1(Zδ = k2, Zu has at least two jumps in u ∈ [0, δ]).
Since

Pk1(Zδ = k2, Zu has at least two jumps in u ∈ [0, δ]) ≤ c1

∞∑
k=k1−1

k1kδ2pk−k1+1pk2−k+1,

for a suitable constant c1, we have

lim sup
x→∞

sup
a1≤s≤a2

Px(ZT −u has at least two jumps in u ∈ [s, s + δ])

≤ c1δ
2 sup

a1≤s≤a2

∞∑
k1=1

∞∑
k=k1−1

∞∑
k2=k−1

πk1k2G
k2−1(s)g(s)k1kpk−k1+1pk2−k+1.

If we recall that

k+1∑
k1=1

k1πk1pk−k1+1 = kπk,
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this unwieldy expression simplifies in a drastic manner as follows:

∞∑
k1=1

∞∑
k=k1−1

∞∑
k2=k−1

πk1k2G
k2−1(s)g(s)k1kpk−k1+1pk2−k+1

=
∞∑

k=1

∞∑
k2=k−1

kπkk2G
k2−1(s)g(s)pk2−k+1

=
∞∑

k2=1

k2πk2G
k2−1(s)g(s) = 1.

This takes us to the proof of (36). We then have to estimate

Px(ZT −u has at least one jump in u ∈ (0, v], T ≥ v)

=
∞∑

k=1

∫ ∞

v

Px(Zt−v = k, Zt−u has at least one jump in u ∈ (0, t], T ∈ dt)

≤
∞∑

k=2

∫ ∞

v

Px(Zt−v = k, T ∈ dt)

+
∫ ∞

v

Px(Zt−v = 1, Zt−u has at least one jump in u ∈ (0, t], T ∈ dt)

≤ c1

∞∑
k=2

πkkGk−1(v)g(v)

+ c2 P1(Zu has at least one jump in u ∈ [0, v) | T = v).

Since g(v) = φ(G(t)) → φ(0) = ap0 = 1/π1, as t ↓ 0, we obtain

∞∑
k=2

πkkGk−1(v)g(v) = 1 − π1g(v) <
ε

2
,

for small v, and it remains only to verify that

P1(Zu has at least one jump in u ∈ [0, v) | T = v) → 0 as v → 0.

Example 1. For birth and death processes we have

p0 = 1

1 + q
, p2 = q

1 + q
, 0 < q < 1,

and all other reproduction probabilities vanish. Hence,

m = 2q

1 + q
, r = a(1 − q)

1 + q
.

The function (4) can be found explicitly as follows:

π(s) = r−1 ln

(
1 − qs

1 − s

)
. (37)
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Due to (11) we have

B(s) = (1 − q)s

1 − qs
,

and the limit distribution is geometric, i.e. bk = qk−1(1 − q) and b = 1/(1 − q).
From (28) and (37) πj can be explicitly computed as follows:

πj = r−1 1 − qj

j
.

Thus,

p̃i,i−1 = 1 − qi−1

1 − qi
p2,

p̃i,i+1 = 1 − qi+1

1 − qi
p0.

In particular p̃10 = 0 and p̃12 = 1. Notice the change upwards, which is however asymptoti-
cally negligible as i → ∞,

p̃i,i−1 < pi−1,i ,

p̃i,i+1 > pi+1,i .

6. The lattice case

Somewhat strangely, in discrete time a limit distribution for the time to extinction exists
only when the initial number of individuals tends to infinity along certain sequences of positive
integers xn (see [10]). The appropriate sequences have the form

xn = m−n−zn , zn → z, z ∈ [0, 1), n → ∞. (38)

Indeed, since P(T1 > n) ∼ cmn

lim
n→∞ P(Txn ≤ n + k) = lim

n→∞(1 − cmn+k)xn = exp(−cmk−z),

for any integer k. leading to a discrete version of the extreme value distribution

lim
n→∞ P(Txn = n + k) = exp(−cmk−z) − exp(−cmk−z−1), k = 0, ±1, ±2, . . . ,

which involves an extra parameter z ∈ [0, 1).
The Yaglom constant c in this is implicitly defined, in terms of the generating function

B(s) = ∑∞
k=1 bks

k of the limit distribution (10) in the lattice case. Namely (see [3, p. 16]),
with f and m as before, B is the unique solution to the equation

B(f (s)) = mB(s) + 1 − m

among probability generating functions vanishing at zero. Also, c = 1/B ′(1).
In the special case of a linear-fractional reproduction [3, p. 6]

f (s) = p0 + (1 − p0)(1 − p)s

1 − ps
, (39)

https://doi.org/10.1239/aap/1183667624 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667624


584 P. JAGERS ET AL.

both the limit distribution (10) and the constant c can be expressed explicitly in terms of the
parameters p0 ∈ (0, 1) and p ∈ (0, 1). This is the case of geometric reproduction modified at
zero, with offspring probabilities pk defined by

pk = (1 − p0)(1 − p)pk−1, k = 1, 2, . . . .

Since m = (1 − p0)/(1 − p), p < p0 in the subcritical case. The superposition of two linear-
fractional functions is again linear fractional, as is well known, implying that the solution B(s)

of (11) remains linear fractional. It is straightforward to verify that the solution is B(s) =
(p0 − p)s/(p0 − ps) corresponding to the geometric distribution

bk =
(

1 − p

p0

)(
p

p0

)k−1

having c = 1 − p/p0.
However, the normed process {xu−1ZuT } does not converge as Z0 → ∞, not even along

subsequences like (38), since

xn Exn [Zu(n+k)] = m−u(n+zn)m[u(n+k)] ∼ m−uzm[u(n+k)]−un as n → ∞,

for any fixed u and k, the exponent ([u(n + k)] − un) is oscillating without convergence to any
limit. So there is no lattice counterpart of Theorem 2.

7. A lattice version of Theorem 3

Alsmeyer and Rösler [1], [2] have a process Yk approximating a subcritical Galton–Watson
process ZT −k , k seasons before extinction, k ≥ 0, as a possibly random initial number Z0 = x

tends to infinity. The time reversal {Yk} is a time-homogeneous Markov chain with Y0 = 0
whose transition probabilities Qij = P(Yk+1 = j | Yk = i) are related to the forward transition
probabilities Pij = Pj (Z1 = i) through

Qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i = j = 0,

ηjp
j
0 if i = 0, j ≥ 1,

ηj

ηi

Pji if i ≥ 1, j ≥ 1

by means of a so-called quasi-invariant measure ηi of the branching process,

∞∑
i=1

ηiPij = ηj , j ≥ 1.

It is straightforward to verify that the n-step backward and forward transition probabilities relate
as

Q
(n)
ij = ηj

ηi

P
(n)
ji , i ≥ 1, j ≥ 1.

An important family of quasi-invariant measures ηi(z), z ∈ [0, 1), is described by the
generating function

∞∑
i=1

ηi(z)s
i =

∞∑
k=−∞

(exp(−cmk−z(1 − B(s))) − exp(−cmk−z)).
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It gives the time-reversal approximation under the initial condition (38). Every quasi-invariant
measure ηi has a representation ηi = ∫ 1

0 ηi(z)λ(dz), in terms of this family and a finite Borel
measure λ(dz) on [0, 1), the latter reflecting randomness in the initial number of individuals.
When nothing is known about the initial number, except that it is large, it may be natural to use
the ηi with the uniform distribution λ(dz) = dz. In such a case we have

∞∑
i=1

ηis
i =

∞∑
k=−∞

∫ 1

0
(exp(−cmk−z(1 − B(s))) − exp(−cmk−z)) dz

= 1

ln m−1

∫ ∞

0
(exp(−c(1 − B(s))x) − e−cx)x−1 dx

= 1

ln m−1

∫ ∞

0

∫ c

c(1−B(s))

e−ux du dx

= ln(1 − B(s))

ln m
.

For linear fractional processes we can be much more specific about details. Recall that
B(s) = (p0 − p)s/(p0 − ps), m = (1 − p0)/(1 − p), and c = 1 − p/p0, so that

∞∑
k=−∞

(exp(−cmk−z(1 − B(s))) − exp(−cmk−z))

=
∞∑

k=−∞
exp(−cmk−z)

∞∑
j=1

(cmk−zB(s))j

j !

=
∞∑

k=−∞
exp(−cmk−z)

∞∑
j=1

c2jm(k−z)j sj

j !
∞∑
i=0

j (j + 1) · · · (j + i − 1)

i! ((1 − c)s)i

=
∞∑
l=1

sl
l∑

j=1

(
l − 1

j − 1

)
(1 − c)l−j c2j

j !
∞∑

k=−∞
exp(−cmk−z)m(k−z)j .

Hence,

ηi(z) =
∞∑

k=−∞
exp(−cmk−z)

i∑
j=1

(
i − 1

j − 1

)
(1 − c)i−j (c2mk−z)j

j ! .

This generalizes the example in [3, pp. 71–72], with p = 0, which describes the moribund
process where the number of offspring cannot exceed one.

In the linear fractional case, uniform prior reversal gives

∞∑
i=1

ηis
i = ln(1 − B(s))

ln m

= ln(1 − s)

ln m
− ln(1 − (1 − c)s)

ln m

= 1

ln m−1

∞∑
i=1

1 − ρ−i

i
si .
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Here

ρ = 1

1 − c
= p0

p

is a fixed point of the generating function (39) in the subcritical case r > 1. The corresponding
time-reversal has transition probabilities

Qij =

⎧⎪⎨
⎪⎩

0 if i = j = 0,

(1 − ρ−j )p
j
0

j ln m−1 if i = 0, j ≥ 1

and if i, j ≥ 1

Qij = i(1 − ρ−j )

j (1 − ρ−i )

i∑
l=1

(
i − 1

l − 1

)(
j

l

)
pi−l (1 − p)lp

j−l
0 (1 − p0)

l .

In the last formula we used an expression for P
(n)
ij derived in [9], which also entails a similar

explicit expression for the n-step transition probabilities.
The generating function of the uniform prior reversed process has the simple expression

E[sYk+n | Yk = i] = f i
n(ρs) − f i

n(s)

ri − 1
, i ≥ 1, (40)

implying (recall that Y0 = 0)

E(sYn) =
∞∑
i=1

(f i
n−1(ρs) − f i

n−1(s))p
i
0

ρii ln m−1

= 1

ln m
ln

1 − pfn−1(ρs)

1 − pfn−1(s)
.

Thus, the time-reversed chain grows exponentially

E[exp(−λmnYn)] = 1

ln m
ln

1 − pρf̂n−1(exp(−λmn))

1 − pfn−1(exp(−λmn))

→ 1

ln m
ln

1 − p0 E(exp(−λW))

1 − p
as n → ∞.

The conclusion builds upon the fact that the dual reproduction with generating function f̂ (s) =
f (ρs)/ρ yields a supercritical Galton–Watson process {Ẑn} with mean reproduction m̂ = 1/m

and Ẑn/m̂
n → W .

We conclude the paper by showing that (40) holds. From [9], we can conclude

∞∑
i=1

siP
(n)
ij = sρ1−j f ′

n(ρs)f
j−1
n (ρs), j ≥ 1.

For j ≥ 1, we therefore obtain

d

ds

∞∑
i=1

si

i
P

(n)
ij = ρ1−j f ′

n(ρs)f
j−1
n (ρs)

= j−1ρ−j d

ds
(f

j
n (ρs)),
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so that
∑∞

i=1(s
i/i)P

(n)
ij = j−1ρ−j f

j
n (ρs). Therefore, neglecting the constant 1/ln m−1, we

obtain
∞∑
i=1

siηiP
(n)
ij =

∞∑
i=1

si − (s/ρ)i

i
P

(n)
ij

= j−1ρ−j (f
j
n (ρs) − f

j
n (s)).

Thus,
∞∑

j=1

sj ηj

ηi

P
(n)
ji = f i

n(ρs) − f i
n(s)

ρi − 1
, i ≥ 1,

which is equivalent to (40).
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