Vera C. Rubin and Norbert Thonnard Department of Terrestrial Magnetism Carnegie Institution of Washington

We have devised a procedure for evaluating the absolute magnitudes of galaxies from their optical rotation curves, as an extention of the conventional Fisher-Tully method. We describe here how this method can be employed to evaluate the Hubble constant. From observations of 23 Sb field galaxies with luminosities ranging from -19.5 to -23.0 (adopting $H=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$), we have produced synthetic rotation curves showing the systematic progression toward increasing velocity with increasing luminosity within a given Hubble type. (See Thonnard and Rubin, Carnegie Yrbk 80, p. 551 for details of producing such a set of curves). By matching even a small portion of a rotation curve with these curves, the absolute magnitude of an Sb galaxy can be estimated to about +0.5 mag. This magnitude, of course, is based on an assumed value for H.

Instead of assuming a value for H, we can calibrate the curves directly if we have one galaxy with a known rotation curve and a known absolute magnitude. For example, if the rotation curve of M31 matches the synthetic curve with absolute magnitude equal to that of M31, then H $=50$. But if the rotation curve of $M 31$ matches a curve with an M different from that known for M31, then $\mathrm{H} \neq 50$.

We have attempted to use the rotation curve and absolute magnitude of M31 to evaluate H, and the results are surprising. In Table 1 , we show the values of distance, internal and external extinction from Sandage-Tammann (RSA; internal extinction to face-on) and de Vaucouleurs et. al (RC2). As can be seen, the absolute magnitude of M31 differs by 0.9 mag. on the two systems! This translates to a difference in H as shown. We conclude, based solely on a comparison of the rotation curve and absolute magnitude of M31 with 23 field Sb galaxies, that $\mathrm{H}=80 \pm 25$ $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$.

TABLE 1 PARAMETERS FOR M31
SANDAGE-TAMMANN DE VAUCOULEURS

Apparent magnitude	4.38	4.36
External extinction	0.64	0.41
Internal extinction	0.82	0.36
Distance	730 kpc	660 kpc
Absolute magnitude	-21.4	-20.5
Value of H needed		
\quad to match curves	69 ± 11	$91(+16,-14) \mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$

288
Richard M. West (ed.), Highlights of Astronomy, Vol. 6, 288.
Copyright $\odot 1983$ by the IAU .

