New Structure in the Shapley Supercluster

M. J. Drinkwater¹, D. Proust², Q. A. Parker³, H. Quintana⁴ and E. Slezak⁵

qap@rpe.ac.UK

⁴Departamento de Astronomia y Astrofisica, Pontificia Universidad Católica de Chile, Casilla 104, Santiago 22, Chile hquintana@astro.puc.cl

 $^5{\rm Observatoire}$ de Nice, 06304 Nice, Cedex 4, France slezak@obs-nice.fr

Received 1998 June 10, accepted 1999 March 3

Abstract: We present new radial velocities for 306 bright (R < 16) galaxies in a 77 deg² region of the Shapley supercluster, measured with the FLAIR-II spectrograph on the UK Schmidt Telescope. The galaxies we measured were uniformly distributed over the survey area, in contrast to previous samples which were concentrated in several rich Abell clusters. Most of the galaxies (230) were members of the Shapley supercluster: they trace out two previously unknown sheets of galaxies linking the Abell clusters of the supercluster. In a 44 deg² area of the supercluster excluding the Abell clusters, these sheets alone represent an overdensity of a factor of $2 \cdot 0 \pm 0 \cdot 2$ compared to a uniform galaxy distribution. The supercluster is not flattened in the Declination direction as has been suggested in previous papers. Within our survey area the new galaxies contribute an additional 50% to the known contents of the Shapley supercluster, with a corresponding increase in its contribution to the motion of the Local Group.

Keywords: galaxies: clusters, distances and redshifts — large-scale structure of universe

1 Introduction

The Shapley supercluster (SSC) has been investigated by numerous authors since its discovery in 1930 (Quintana et al. 1995, hereafter Paper I). It lies in the general direction of the dipole anisotropy of the Cosmic Microwave Background (CMB), and is located at 130 h₇₅⁻¹ Mpc beyond the Hydra-Centaurus supercluster ($\simeq 50 \text{ h}_{75}^{-1}$ Mpc away from us). It consists of many clusters and groups of galaxies in the redshift range 0.04 < z < 0.055. The central cluster A3558 has also been measured with a ROSAT PSPC observation by Bardelli et al. (1996), who derived a total mass of $M_{tot} = 3.1 \times 10^{14} M_{\odot}$ within an Abell radius of 2 h_{75}^{-1} Mpc. Several other X-ray clusters form part of the Shapley supercluster (Pierre et al. 1994).

The Shapley supercluster is recognised as one of the most massive concentrations of galaxies in the local universe (Scaramella et al. 1989; Raychaudhury 1989), so it is of particular interest to consider its effect on the dynamics of the Local Group. In Paper I it was estimated that for $\Omega_0 = 0.3$ and $H_0 = 75 \; \mathrm{km} \, \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ the gravitational pull of the supercluster may account for up to 25% of the peculiar velocity of the Local Group required to explain the dipole anisotropy of the CMB radiation, in which case the mass of the supercluster would be dominated by intercluster dark matter.

Previous studies of the Shapley supercluster (Paper I; Quintana et al. 1997, hereafter Paper II) have concentrated on the various rich Abell galaxy clusters in the region, but this might give a very biased view of the supercluster. As was noted in Paper I, 'the galaxy distribution inside the supercluster must be confirmed by the detection in redshift space of bridges or clouds of galaxies connecting the different clusters'.

We are continuing this project, using data from wide-field multi-fibre spectrographs to measure many more galaxy redshifts and get a more complete picture of the composition of the supercluster. Our main aims are first to define the real topology of the SSC (in Paper I it was shown that the SSC is significantly flattened, but the real extent of the concentration is not well defined) and second to analyse the individual X-ray clusters that are true members of the Shapley Supercluster, in order to estimate the cluster masses and investigate suspected substructure. Additional observations are planned before we present a full analysis of the dynamics (Proust et al. 1999, in preparation).

In Paper II we presented data from the MEFOS spectrograph on the European Southern Observatory 3.60 m telescope. This has 30 fibres in a 1 deg diameter field, so the observations were again mainly concentrated on the known clusters, determining for several of them whether they were members of the supercluster or not.

In this paper we present new data obtained with the FLAIR-II (Parker & Watson 1995; Parker 1997) multi-fibre spectrograph on the UK Schmidt Telescope at the Anglo-Australian Observatory. This has 90 fibres in a $5 \cdot 5 \times 5 \cdot 5$ deg² field and has allowed us to measure a much more uniform distribution of galaxies in the direction of the SSC, avoiding the previous bias in favour of the rich clusters. Our data reveal the existence of a sheet of galaxies connecting the main parts of the supercluster. We describe the sample and observations in Section 2. We present the results along with previous measurements in Section 3 and discuss the significance of the measurements in Section 4.

2 Observations

Although a large body of galaxy velocity data is available in the literature for the SSC, the existing samples of redshifts in each cluster are highly incomplete, even at the bright end of the luminosity function. We have therefore started a campaign to obtain complete samples down to the same magnitude below L_* for each cluster. Each selected cluster has a projected diameter of $2\cdot 5$ to $3\cdot 0$ degrees, so the FLAIR-II system on the UKST, with its $5\cdot 5\times 5\cdot 5$ deg² field, is an ideal facility for this project. The very wide field also permits us to probe the regions between the dominant clusters

that have been neglected in previous observations. In this paper we emphasise our results from these regions.

We selected targets from red ESO/SRC sky survey plates scanned by the MAMA machine at Paris Observatory (as described in Paper II; see also Infante, Slezak & Quintana 1996). The fields observed (listed in Table 1) were the standard survey fields nearest to the centre of the cluster (13:25:00, -31:00:00 B1950). These covered an area of 77 deg², allowing us to probe the limits of the SSC out to radii as large as 8 deg.

We defined a sample of galaxies to a limit of R < 16, corresponding (assuming a mean B - R = 1.5) to B < 17.5, the nominal galaxy limiting magnitude of the FLAIR-II system. This corresponds to an absolute magnitude of $M_B = -19$ at the Shapley distance of $200 h_{75}^{-1} \text{ Mpc.}$ This gave samples of 600-1000 galaxies per field. We then removed any galaxies with published measurements in the NED database or measured by H. Quintana and R. Carrasco (private communication, 1997): 46 galaxies for F382, 81 for F383 and 200 for F444. For each observing run we then selected random subsamples of about 110 targets per field from the unobserved galaxies. When preparing each field for observation at the telescope, we made a further selection of 80 targets to observe (10 fibres being reserved for measurement of the sky background). This final selection was essentially random, but we did reject any galaxies too close (less than about 1 arcminute) to another target already chosen or a bright star.

We observed a total of 3 fields with the FLAIR-II spectrograph in 1997 May and two more in 1998 April. The details of the observations are given in Table 1. In 1997, out of 6 allocated nights, we were only able to observe 3 FLAIR fields successfully due to poor weather and the first of these was repeated over 3 nights. Field F444 was observed in particularly poor weather, resulting in a much lower number of measured redshifts. In 1998 we again had poor weather, and were only able to observe two fields in an allocation of 8 half-nights.

The data were reduced as described in Drinkwater et al. (1996), using the dofibers package in IRAF (Tody 1993). We measured the radial velocities with the RVSAO package (Kurtz & Mink 1998) contributed to IRAF.

Table 1. Journal of FLAIR observations

Date	Field	RA (1950) Dec	Exposure	Seeing	Weather	N_z
1997 May 5	F382	13:12:00 -35:00:00	18 000s	2-3''	cloud	69
1997 May 6	F444	13:25:00 $-30:00:00$	$15000\mathrm{s}$	$2-3^{\prime\prime}$	cloud	47
1997 May 8	F383	13:36:00 $-35:00:00$	$18000\mathrm{s}$	3-5''	clear	73
1998 April 25	F383	13:36:00 $-35:00:00$	$15000\mathrm{s}$	$2-3^{\prime\prime}$	clear	61
1998 April 27	F382	13:12:00 $-35:00:00$	$21000\mathrm{s}$	3–5′′	cloud	56

Note: N_z is the number of galaxies with measured redshifts in each field.

Table 2. Galaxies observed

Table 2. Galaxies observed									
RA (B1950) Dec	Field	m_R	$V \ (\mathrm{km}\mathrm{s}$	σ_V	RA (B1950) Dec	Field	m_R	V (km s	σ_V
$\overline{13:00:14\cdot 3 - 36:21:34}$	382	15.86	3443	36	13:10:54 · 7 - 35:10:08	382	14.99	7527	96
$13:00:35\cdot 5 - 33:42:37$	382	$15 \cdot 53$	23713	68	$13:11:02 \cdot 1 - 36:16:46$	382	$14 \cdot 52$	14367	76
$13:01:07 \cdot 2 - 36:16:08$	382	$14 \cdot 32$	10298	56	$13:11:09 \cdot 8 - 33:39:12$	382	$14 \cdot 21$	15299	49
$13:01:28\cdot 5 - 36:11:57$	382	$15 \cdot 74$	27469	33	$13:11:22\cdot 4 -33:49:50$	382	$14 \cdot 63$	15355	81
$13:01:30\cdot 0 \ -33:36:27$	382	15.80	21437	126	$13:11:23\cdot 5 -36:57:36$	382	$15 \cdot 21$	10229	83
$13:01:34\cdot 5 - 37:14:51$	382	$15 \cdot 61$	15818	101	$13:11:30\cdot 6 - 36:55:53$	382	$14 \cdot 26$	10688	59
$13:02:11 \cdot 4 - 36:34:14$	382	15.84	17698	13	$13:11:42 \cdot 3 - 33:07:11$	382	$14 \cdot 46$	8889	69
$13:02:38 \cdot 8 - 36:15:49$	382	14.90	37525	71	$13:11:54 \cdot 3 - 33:05:46$	382	$15 \cdot 58$	14649	115
$13:02:50 \cdot 6 -34:01:55$	382	$15 \cdot 86$	25647	42	$13:12:05\cdot 7 - 33:29:36$	382	$15 \cdot 99$	30594	115
$13:03:01\cdot 9 - 36:28:58$	382	$14 \cdot 39$	10092	72	$13:12:19 \cdot 3 - 32:37:16$	382	$15 \cdot 51$	14280	90
$13:03:14 \cdot 3 - 37:20:00$	382	$15 \cdot 50$	14899	97	$13:12:23\cdot 9 -33:22:29$	382	$14 \cdot 20$	14531	79
$13:03:16 \cdot 0 \ -35:44:30$	382	$15 \cdot 70$	24066	96	$13:12:39 \cdot 3 - 36:55:29$	382	$15 \cdot 66$	10048	85
$13:03:28 \cdot 1 - 36:44:17$	382	$15 \cdot 65$	14943	69	$13:12:39\cdot 9 - 32:26:47$	444	$14 \cdot 15$	13869	96
$13:03:44\cdot 6 -35:40:23$	382	$15 \cdot 78$	14737	72	$13:13:13\cdot 3 - 36:43:06$	382	$15 \cdot 90$	31971	88
$13:03:48 \cdot 0 \ -33:55:36$	382	$15 \cdot 62$	25475	184	$13:13:21\cdot 9 - 32:37:24$	382	$14 \cdot 71$	15284	88
$13:04:03 \cdot 2 - 36:42:55$	382	$15 \cdot 92$	15011	215	$13:13:34\cdot 6 - 35:00:24$	382	$15 \cdot 81$	11473	98
$13:04:08\cdot 4 -37:06:37$	382	$15 \cdot 65$	14058	47	$13:13:37 \cdot 9 \ -32:35:56$	382	$15 \cdot 92$	14428	86
$13:04:32 \cdot 6 - 35:51:35$	382	$14 \cdot 53$	15099	75	$13:13:40\cdot 5 -37:12:41$	382	$15 \cdot 45$	14637	23
$13:04:46\cdot 9 \ -32:34:17$	382	$14 \cdot 24$	15419	132	$13:13:54\cdot 9 - 32:59:57$	382	$15 \cdot 08$	14315	98
$13:04:49 \cdot 9 \ -34:09:57$	382	$15 \cdot 97$	18872	37	$13:13:59 \cdot 8 - 35:31:47$	382	$15 \cdot 80$	32384	102
$13:04:56 \cdot 2 -37:19:11$	382	$15 \cdot 31$	15024	60	$13:14:30\cdot 4 - 31:33:07$	444	$15 \cdot 97$	14998	126
$13:05:12 \cdot 2 -37:06:25$	382	$15 \cdot 48$	13228	117	$13:14:35 \cdot 9 \ -33:11:02$	382	$14 \cdot 26$	15334	48
$13:05:19 \cdot 9 -33:00:31$	382	$15 \cdot 64$	10171	150	$13:14:37 \cdot 9 \ -33:39:08$	382	$14 \cdot 86$	15224	73
$13:05:20 \cdot 7 -34:03:32$	382	$15 \cdot 69$	15174	163	$13:14:44\cdot 4 - 31:20:39$	444	$15 \cdot 83$	15632	176
$13:05:23\cdot 1 \ -35:56:31$	382	$15 \cdot 87$	15763	139	$13:15:00 \cdot 6 -32:57:45$	382	$15 \cdot 93$	25689	64
$13:05:40 \cdot 8 - 34:09:29$	382	$15 \cdot 19$	15067	78	$13:15:08 \cdot 7 - 37:10:05$	382	$14 \cdot 68$	7330	66
$13:06:10 \cdot 3 - 37:15:19$	382	$15 \cdot 90$	14312	81	$13:15:17 \cdot 0 \ -35:32:43$	382	$14 \cdot 98$	3265	94
$13:06:34 \cdot 7 - 34:29:38$	382	$15 \cdot 21$	13201	76	$13:15:18 \cdot 1 - 29:53:31$	444	$15 \cdot 34$	9769	73
$13:06:47 \cdot 3 - 34:25:01$	382	$15 \cdot 91$	18578	77	$13:15:18 \cdot 6 - 36:43:14$	382	$15 \cdot 30$	14921	28
$13:06:55 \cdot 9 \ -35:20:35$	382	$15 \cdot 40$	28284	52	$13:15:21 \cdot 3 - 31:45:59$	444	$14 \cdot 64$	4358	114
$13:07:07 \cdot 2 - 36:52:20$	382	15.96	14350	61	$13:15:29 \cdot 4 - 37:02:54$	382	15.06	15014	63
$13:07:29 \cdot 6 - 32:36:43$	382	14.51	9507	81	$13:15:38 \cdot 5 - 33:02:17$	382	14.33	4342	51
$13:07:34 \cdot 8 - 34:20:49$	382	15.77	27522	60	$13:16:06 \cdot 6 - 33:09:45$	382	15.55	13407	47
$13:07:48 \cdot 3 - 37:02:06$	382	$14 \cdot 28$	14555	42	$13:16:07 \cdot 8 \ -31:33:17$	444	$14 \cdot 20$	15641	103
$13:08:01 \cdot 8 - 33:42:02$	382	15.72	15113	95	13:16:17 · 3 - 36:58:20	382	14.91	14311	86
$13:08:19 \cdot 8 - 32:43:36$	382	15.87	43801	44	$13:16:31 \cdot 5 - 33:02:46$	382	15.99	15047	69
$13:08:20 \cdot 1 - 32:49:07$	382	14.39	15899	84	$13:16:38 \cdot 9 - 33:05:31$	382	15.94	14960	70
$13:08:25 \cdot 4 - 36:24:37$	382	15·11	3363	89	$13:16:38 \cdot 9 - 33:05:31$	382	14.48	1247	28
$13:08:27 \cdot 2 - 33:49:39$	382	15.72	14837	25	$13:16:40 \cdot 8 - 33:15:18$	382	14.33	14981	98
$13:09:01 \cdot 9 - 34:02:24$	382	15.82	27235	66	$13:16:41 \cdot 2 - 33:39:11$	382	$15 \cdot 17$ $15 \cdot 76$	8432	37
$13:09:07 \cdot 1 - 35:47:53$	382	$14 \cdot 24$	10491	54	$13:16:49 \cdot 5 - 36:42:34$	382		11687	66
$13:09:15 \cdot 4 - 37:11:40$ $13:09:19 \cdot 3 - 34:19:50$	382	15.59	13069	119	$13:17:08 \cdot 9 - 34:02:03$	382	15.43	23525	110
$13:09:19 \cdot 3 - 34:19:30$ $13:09:34 \cdot 3 - 35:04:41$	$\frac{382}{382}$	$14.92 \\ 15.83$	3196	80 77	$13:17:24 \cdot 0 -34:50:33$ $13:17:28 \cdot 8 -36:49:52$	$\frac{382}{382}$	$15 \cdot 64$ $15 \cdot 16$	13924 2359	121
$13:09:34 \cdot 3 - 35:04:41$ $13:09:35 \cdot 1 - 37:04:57$	382	15.96	$23360 \\ 10414$	81	$13:17:28 \cdot 8 - 30:49:32$ $13:17:38 \cdot 4 - 34:04:01$	382 382	15.70 15.70	2559 15106	$47 \\ 145$
$13.09.39 \cdot 1 - 37.04.37$ $13.09.39 \cdot 0 - 33.45.40$	$\frac{382}{382}$	15.55	13063	141	$13.17.38 \cdot 4 - 34.04.01$ $13.17.47 \cdot 5 - 33.52.14$	$\frac{382}{382}$	15.70 15.72	23532	69
$13.09.53 \cdot 0 -33.45.40$ $13.09.53 \cdot 9 -33.06.23$	$\frac{382}{382}$	15.55 15.75	23141	79	$13.17.53 \cdot 0 -34.40.14$ $13.17.53 \cdot 0 -34.40.14$	$\frac{382}{382}$	15.72 15.73	15393	86
$13.09.55 \cdot 1 - 35.59.01$	$\frac{382}{382}$	15.75 15.04	14386	63	$13.17.35 \cdot 0 - 34.40.14$ $13.18.05 \cdot 5 - 37.00.34$	$\frac{382}{382}$	15.73 15.90	15980	78
$13:10:13 \cdot 6 - 34:30:54$	$\frac{382}{382}$	15.60	15159	154	$13.18.06 \cdot 6 - 27.47:20$	444	15.97	15326	122
$13:10:31 \cdot 9 - 32:40:51$	$\frac{382}{382}$	15.75	29991	72	$13.18.15 \cdot 6 - 32.47.18$	382	$15 \cdot 23$	15768	64
$13:10:47 \cdot 9 -33:06:26$	382	15.99	29645	117	$13:18:16 \cdot 1 - 35:20:17$	382	15.47	15654	85
	JO2	10 00	_5010		10.10.10 1 00.20.11	JJ2		10001	00

Table 2 (continued)

				Tubic 2 (
RA (B1950) Dec	Field	m_R	V (km s	$(\sigma_V)^{\sigma_V}$	RA (B1950) Dec	Field	m_R	V (km s	σ_V
$\overline{13:18:26\cdot7 -34:55:52}$	382	15.19	20402	58	$13:25:41 \cdot 9 - 33:44:20$	383	15.86	24911	114
$13:18:31 \cdot 3 - 35:33:05$	382	$15 \cdot 42$	15373	163	$13:25:42\cdot 1 \ -33:56:52$	383	$15 \cdot 88$	14661	129
$13:18:36 \cdot 3 - 32:30:51$	444	$14 \cdot 59$	14469	110	$13:26:14\cdot 4 - 28:34:52$	444	$14 \cdot 20$	12289	58
$13:18:38 \cdot 8 - 35:54:22$	382	$15 \cdot 02$	15345	94	$13:26:27\cdot 7 - 31:47:04$	444	$14 \cdot 74$	14060	114
$13:18:50 \cdot 7 - 34:40:34$	382	$15 \cdot 19$	15222	196	$13:26:39 \cdot 2 - 31:17:35$	444	$14 \cdot 03$	15430	87
$13:18:58 \cdot 0 \ -35:16:37$	382	$14 \cdot 53$	13903	170	$13:26:52\cdot 9 - 28:00:28$	444	$14 \cdot 44$	10015	119
$13:19:01 \cdot 6 -33:36:49$	382	$15 \cdot 83$	35049	132	$13:27:09 \cdot 0 - 28:59:02$	444	$15 \cdot 83$	14201	114
$13:19:07 \cdot 6 - 35:29:36$	382	$15 \cdot 62$	16535	91	$13:27:14 \cdot 2 - 27:43:01$	444	$15 \cdot 12$	10237	114
$13:19:15 \cdot 1 - 28:06:35$	444	$14 \cdot 58$	14030	85	$13:27:22 \cdot 6 - 32:32:55$	383	$14 \cdot 33$	15666	78
$13:19:21 \cdot 1 - 34:32:11$	382	$15 \cdot 54$	15664	126	$13:27:24 \cdot 1 - 29:14:38$	444	$15 \cdot 23$	14488	30
$13:19:26 \cdot 8 -34:21:31$	382	$15 \cdot 59$	15667	127	$13:27:39 \cdot 0 \ -34:21:48$	383	$15 \cdot 95$	21467	84
$13:19:39 \cdot 1 - 33:06:29$	382	$15 \cdot 88$	3497	96	$13:27:51\cdot 3 - 31:36:28$	444	$15 \cdot 96$	14470	75
$13:19:47\cdot 9 - 35:36:32$	382	$15 \cdot 50$	14747	142	$13:28:11\cdot 4 - 32:21:51$	383	$15 \cdot 68$	15986	64
$13:19:54 \cdot 1 - 33:10:27$	382	$14 \cdot 26$	14379	44	$13:28:19 \cdot 5 - 32:28:46$	383	$15 \cdot 73$	3468	95
$13:20:04 \cdot 8 -34:47:15$	382	$14 \cdot 97$	7237	96	$13:28:32 \cdot 5 - 33:38:26$	383	$15 \cdot 58$	22089	90
$13:20:10 \cdot 1 - 32:27:07$	382	$14 \cdot 78$	8503	67	$13:28:58 \cdot 4 - 36:41:55$	383	$15 \cdot 35$	14996	97
$13:20:13\cdot 1 -34:43:27$	382	$15 \cdot 00$	16498	84	$13:29:07 \cdot 6 - 36:03:10$	383	$15 \cdot 33$	20314	76
$13:20:24 \cdot 0 \ -35:03:57$	382	$15 \cdot 76$	14710	59	$13:29:14\cdot 5 -33:31:57$	383	$14 \cdot 93$	8770	66
$13:20:52\cdot 7 - 35:38:04$	382	$14 \cdot 80$	3792	78	$13:29:16 \cdot 4 - 33:03:38$	383	$15 \cdot 08$	13640	98
$13:20:53 \cdot 3 - 34:11:58$	382	$15 \cdot 45$	15426	126	$13:29:24 \cdot 5 -33:07:15$	383	$14 \cdot 71$	15243	81
$13:20:57 \cdot 0 \ -31:26:49$	444	$15 \cdot 92$	15170	63	$13:29:33\cdot 4 - 32:58:55$	383	$14 \cdot 95$	13916	47
$13:20:58 \cdot 5 - 27:43:52$	444	$14 \cdot 54$	13674	69	$13:29:33\cdot 7 - 37:15:24$	383	$14 \cdot 96$	15295	29
$13:21:04 \cdot 1 -34:24:00$	382	$14 \cdot 49$	14472	103	$13:29:40\cdot 1 -33:54:18$	383	$15 \cdot 87$	14770	96
$13:21:05 \cdot 8 - 31:55:18$	444	$14 \cdot 91$	15249	107	$13:29:40\cdot 9 -37:02:12$	383	$15 \cdot 58$	15687	101
$13:21:08 \cdot 5 - 29:02:44$	444	$15 \cdot 63$	14096	98	$13:29:49\cdot 3 -34:53:51$	383	$15 \cdot 23$	15122	39
$13:21:30 \cdot 5 - 31:23:03$	444	$14 \cdot 66$	14390	176	$13:30:00 \cdot 5 -34:27:42$	383	$15 \cdot 47$	36879	77
$13:21:33\cdot 1 - 32:37:59$	382	$14 \cdot 36$	14251	135	$13:30:00 \cdot 7 - 28:45:40$	444	$15 \cdot 57$	5526	93
$13:21:37 \cdot 9 - 29:59:26$	444	$14 \cdot 43$	3634	98	$13:30:04\cdot 4 - 32:54:49$	383	$15 \cdot 19$	15698	50
$13:21:39 \cdot 8 - 33:42:58$	382	$15 \cdot 35$	14827	87	$13:30:10 \cdot 9 - 32:50:38$	383	14.62	14951	53
$13:21:51 \cdot 8 - 36:02:13$	382	$15 \cdot 14$	10771	96	$13:30:13\cdot 4 - 37:14:36$	383	$15 \cdot 79$	15164	67
$13:21:58 \cdot 5 - 34:06:56$	382	15.04	8371	106	$13:30:14 \cdot 9 - 33:02:41$	383	15.65	14838	115
$13:22:02 \cdot 2 - 31:18:01$	444	16.00	14773	14	$13:30:15 \cdot 5 - 34:11:36$	383	14.84	7491	16
$13:22:20 \cdot 4 - 33:39:05$	382	15.94	27194	132	$13:30:19 \cdot 9 - 31:20:49$	444	15.96	14559	123
$13:22:46 \cdot 5 - 36:19:44$	382	$15 \cdot 34$	15208	42	$13:30:34 \cdot 1 - 33:41:34$	383	15.99	22010	143
$13:22:56 \cdot 5 - 37:01:27$	382	15.44	10225	123	$13:30:45\cdot 7 - 31:13:03$	444	14.97	15201	74
$13:23:22 \cdot 9 - 36:47:09$	382	15.98	19958	150	$13:30:53 \cdot 3 - 35:08:58$	383	15.92	15377	147
$13:23:57 \cdot 5 - 31:16:09$	444	16.00	14660	117	$13:31:01 \cdot 2 - 35:07:39$	383	15.88	21640	89
$13:24:04 \cdot 7 - 33:55:06$	382	15.89	14909	34	$13:31:17 \cdot 6 - 31:13:59$	444	15.86	14842	89
$13:24:08 \cdot 5 - 31:56:19$	444	15.71	13839	84	$13:31:17 \cdot 8 - 27:54:11$	444	14.85	9187	74
$13:24:12 \cdot 5 - 29:48:56$	444	14.88	1866	78	$13:31:19 \cdot 5 - 34:48:41$	383	15.28	14917	69
$13:24:15 \cdot 0 -30:57:58$	444	14.92	16332	122	$13:31:21 \cdot 8 - 32:43:17$	383	14.43	15177	70
$13:24:18 \cdot 1 - 36:49:27$	382	15.72	14367	76	$13:31:25 \cdot 2 - 29:07:15$	444	15.35	14008	96
$13:24:21 \cdot 4 - 37:00:34$	382	15.62	14520	36	$13:31:30 \cdot 3 - 35:09:30$	383	15.37	9416	65
13:24:28 · 2 - 36:49:27	383	15.74	15098	102	$13:31:33 \cdot 2 - 31:28:46$	444	14.89	16271	85
$13:24:28 \cdot 4 - 36:14:05$	383	15.31	14658	62	$13:31:39 \cdot 7 - 36:33:12$	383	16.00	15274	150
$13:24:35 \cdot 3 - 32:02:27$	444	15·48	14176	82	$13:31:48 \cdot 9 - 34:46:49$	383	15.55	2367	21
$13:24:58 \cdot 9 - 32:21:44$	383	15.66	11832	16	$13:31:53 \cdot 3 - 34:58:33$	383	15.35	16579	20
$13:25:13 \cdot 1 - 31:30:38$	444	15.97	15590	96	$13:32:17 \cdot 4 - 33:46:46$	383	14.98	3878	52
$13:25:14 \cdot 4 - 32:30:11$	383	15.86	11585	57	$13:32:28 \cdot 5 - 31:10:15$	444	14.86	14845	86
$13:25:20 \cdot 1 - 31:25:21$	444	$15 \cdot 17$	12200	135	$13:32:31 \cdot 3 - 33:54:20$	383	14.18	7208	66
$13:25:25 \cdot 0 -29:59:01$	444	$15 \cdot 17$	12776	81	$13:32:48\cdot 9 - 31:27:42$	444	$15 \cdot 94$	11794	98

Table 2 (continued)

Table 2 (continueu)									
RA (B1950) Dec	Field	m_R	V (km s	σ_V	RA (B1950) Dec	Field	m_R	V (km s	σ_V
$\overline{13:32:54\cdot 0 \ -35:18:55}$	383	$14 \cdot 42$	15438	54	$13:40:33\cdot 4 - 32:59:43$	383	15.55	12267	97
$13:33:21\cdot 5 -36:38:27$	383	$15 \cdot 17$	15135	51	$13:40:34\cdot 0 \ -37:23:43$	383	$15 \cdot 64$	11113	52
$13:33:37 \cdot 8 - 32:50:15$	383	$15 \cdot 46$	15688	105	$13:40:40\cdot 2 -34:31:47$	383	15.08	17030	72
$13:33:41 \cdot 2 - 33:49:11$	383	$14 \cdot 19$	3787	43	$13:40:42\cdot 0 \ -36:09:58$	383	$14 \cdot 60$	4311	59
$13:33:45\cdot 9 - 28:50:04$	444	$14 \cdot 16$	4516	89	$13:40:52\cdot 6 -34:49:27$	383	$14 \cdot 32$	16227	183
$13:34:05\cdot 6 -34:08:42$	383	$15 \cdot 14$	4133	76	$13:40:59 \cdot 8 \ -35:31:12$	383	$14 \cdot 38$	11637	28
$13:34:11 \cdot 1 - 33:34:08$	383	14.29	13931	87	$13:41:14 \cdot 7 - 34:05:19$	383	14.87	11202	76
$13:34:12\cdot 6 -28:16:45$	444	15.90	15262	98	$13:41:23 \cdot 2 - 36:22:42$	383	$15 \cdot 81$	11498	46
$13:34:28 \cdot 4 - 34:38:09$	383	$15 \cdot 50$	29247	103	$13:41:23\cdot 9 - 33:51:28$	383	$15 \cdot 21$	11818	71
$13:34:43\cdot7 -31:37:28$	444	$15 \cdot 38$	11598	98	$13:41:47\cdot 3 - 32:24:12$	383	$15 \cdot 53$	12438	76
$13:34:45\cdot 1 -34:16:42$	383	$15 \cdot 67$	22108	68	$13:41:49 \cdot 3 - 35:11:00$	383	$15 \cdot 45$	37694	72
$13:34:49 \cdot 6 -33:35:55$	383	$15 \cdot 54$	11289	85	$13:41:52 \cdot 3 - 33:21:05$	383	$14 \cdot 32$	11063	31
$13:34:50 \cdot 2 - 35:14:29$	383	$16 \cdot 00$	15162	89	$13:41:55 \cdot 5 - 34:22:45$	383	$15 \cdot 24$	14660	48
$13:34:59 \cdot 3 - 35:23:12$	383	$14 \cdot 68$	15695	71	$13:42:08\cdot 6 -34:58:58$	383	$15 \cdot 67$	17045	66
$13:35:15 \cdot 2 -34:48:29$	383	$15 \cdot 47$	15162	92	$13:42:10 \cdot 1 - 32:38:25$	383	$15 \cdot 77$	12085	83
$13:35:21\cdot 3 - 31:41:48$	444	$15 \cdot 26$	14694	127	$13:42:25 \cdot 1 - 32:23:47$	383	$14 \cdot 23$	9469	41
$13:35:27 \cdot 8 - 35:42:28$	383	$15 \cdot 50$	11327	74	$13:42:33 \cdot 6 - 36:31:58$	383	$15 \cdot 05$	11531	64
$13:35:47 \cdot 0 \ -34:17:07$	383	$15 \cdot 24$	15420	116	$13:42:38 \cdot 9 \ -35:01:09$	383	$15 \cdot 79$	17237	50
$13:35:52 \cdot 1 - 35:13:11$	383	$15 \cdot 91$	14685	37	$13:42:56 \cdot 1 - 33:46:54$	383	$15 \cdot 10$	15058	33
$13:36:00 \cdot 6 - 36:11:38$	383	$14 \cdot 66$	13789	55	$13:43:08 \cdot 2 -33:29:39$	383	$14 \cdot 32$	11662	44
$13:36:04\cdot 4 - 35:22:16$	383	$15 \cdot 50$	15223	89	$13:43:17 \cdot 6 -34:14:50$	383	$15 \cdot 67$	24806	35
$13:36:04\cdot 7 - 36:20:26$	383	$15 \cdot 80$	13755	74	$13:43:29 \cdot 2 - 32:55:23$	383	$15 \cdot 54$	11760	52
$13:36:08 \cdot 6 -32:20:51$	444	$14 \cdot 76$	16298	77	$13:43:32 \cdot 6 - 35:50:50$	383	$15 \cdot 11$	11548	27
$13:36:15 \cdot 9 - 36:39:42$	383	$15 \cdot 30$	15741	44	$13:43:33 \cdot 0 \ -32:24:59$	383	$15 \cdot 36$	12884	52
$13:36:18 \cdot 3 - 33:47:22$	383	$15 \cdot 75$	21245	28	$13:44:02 \cdot 0 \ -33:04:05$	383	$15 \cdot 98$	11113	157
$13:36:32\cdot 6 - 35:12:49$	383	$15 \cdot 47$	19147	68	$13:44:06 \cdot 5 -37:12:33$	383	$15 \cdot 71$	11357	50
$13:36:43\cdot 3 - 35:24:54$	383	$15 \cdot 19$	15791	78	$13:44:06 \cdot 7 - 35:03:53$	383	$15 \cdot 23$	11453	47
$13:36:44 \cdot 2 -33:45:54$	383	$15 \cdot 13$	15268	76	$13:44:15 \cdot 6 - 32:39:29$	383	$15 \cdot 76$	12304	159
$13:36:49 \cdot 8 \ -35:41:31$	383	$15 \cdot 49$	29346	77	$13:44:16 \cdot 1 - 33:08:38$	383	$15 \cdot 44$	11518	77
$13:36:56 \cdot 1 \ -33:24:07$	383	14.54	15381	43	$13:44:19 \cdot 6 - 33:23:43$	383	15.87	13010	70
$13:36:56 \cdot 6 - 32:49:51$	383	$15 \cdot 43$	15345	135	$13:44:22 \cdot 8 - 36:07:31$	383	15.04	10963	66
$13:37:12 \cdot 1 -32:48:53$	383	15.43	11841	59	$13:44:29 \cdot 3 -33:21:14$	383	15.38	16117	48
$13:37:14 \cdot 8 - 32:35:15$	383	14.56	7254	14	$13:44:29 \cdot 5 -32:50:50$	383	14.99	11694	49
$13:37:15 \cdot 1 - 34:05:41$	383	15.66	21441	89	$13:44:56 \cdot 8 - 32:56:05$	383	14.92	10328	29
$13:37:37 \cdot 8 - 33:44:08$	383	15.91	14867	61	$13:45:05 \cdot 5 - 32:37:12$	383	15.59	11789	80
$13:37:39 \cdot 9 - 35:25:16$	383	15.54	15641	57	$13:45:11 \cdot 0 -33:06:07$	383	14.35	11901	34
$13:37:59 \cdot 8 - 33:53:02$	383	15.99	15579	30	$13:45:18 \cdot 8 - 32:32:24$	383	15.74	12585	138
$13:38:01 \cdot 9 - 33:25:24$	383	15.47	15167	66	$13:45:29 \cdot 9 - 34:26:11$	383	15.15	13896	88
$13:38:12 \cdot 4 - 34:07:13$	383	15.57	15485	98	$13:45:37 \cdot 7 - 35:26:14$	383	15.90	30107	78 72
$13:38:22 \cdot 3 - 35:24:09$	$\frac{383}{383}$	14.38	15068	$\frac{85}{66}$	$13:45:47 \cdot 9 - 34:24:28$	$\frac{383}{383}$	$15 \cdot 29$ $15 \cdot 47$	27740 11128	73 83
$13:38:39 \cdot 8 - 34:07:45$ $13:38:40 \cdot 8 - 33:41:14$	383	15.56	16973		$13:45:49 \cdot 1 - 37:14:52$	383	13.47 14.39		65 49
$13:38:49 \cdot 2 - 33:49:06$	383	$15 \cdot 39$ $15 \cdot 76$	$15161 \\ 14610$	$\frac{48}{47}$	$13:46:04 \cdot 9 - 32:36:32$ $13:46:05 \cdot 4 - 33:09:44$	383	14.39 14.72	11603 10868	31
$13.38.52 \cdot 4 - 35.37.34$	383	14.88	11378	62	$13.46.06 \cdot 3 - 33.43.18$	383	15.06	11327	35
$13.38.57 \cdot 2 - 32.55.58$	383	15.49	11945	65	$13:46:56 \cdot 0 - 35:14:07$	383	15.60	28576	122
$13:39:27 \cdot 0 -36:56:20$	383	14.84	11288	31	13:46:59 • 9 - 33:02:31	383	15.78	16129	67
$13:39:35 \cdot 6 - 34:37:32$	383	15.61	4454	51	$13:47:03 \cdot 7 - 36:30:57$	383	$15 \cdot 22$	30091	89
$13:39:43 \cdot 7 - 37:21:55$	383	15.78	10122	76	$13:47:22 \cdot 5 - 32:49:37$	383	14.35	10522	50
$13:39:55 \cdot 3 - 35:55:15$	383	15.64	21887	155	$13:47:38 \cdot 1 - 32:25:54$	383	15.49	11098	51
$13:40:02 \cdot 0 \ -34:43:11$	383	15.07	16170	50	$13:47:48 \cdot 9 - 32:38:51$	383	$15 \cdot 12$	11270	37
$13:40:26\cdot 8\ -36:04:17$	383	$15\cdot 18$	24883	122	$13:48:08\cdot 4 - 35:50:11$	383	$15\cdot 46$	22610	95

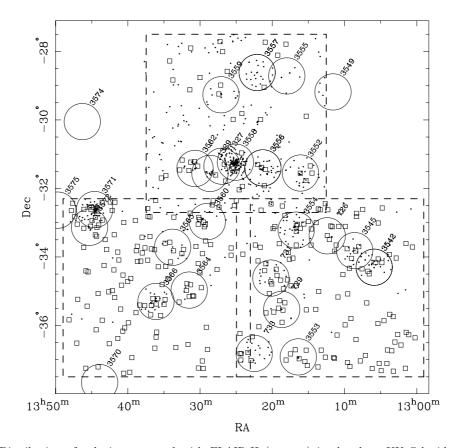


Figure 1—Distribution of galaxies measured with FLAIR-II (squares) in the three UK Schmidt fields (large dashed squares) observed. The coordinate axes are for equinox B1950. Also shown are previously measured galaxies (dots) and known Abell clusters (labelled circles).

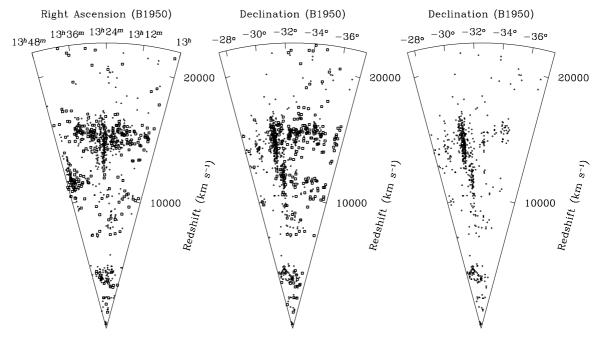


Figure 2—Cone diagrams of all known galaxy redshifts in the direction of the Shapley supercluster. Previously published galaxies are plotted as dots; the new measurements are plotted as open squares. The angular scale is enlarged by a factor of 3 for clarity. The distribution in Declination is repeated at the right for comparison without the new measurements.

Redshifts were measured for absorption-featured spectra using the cross-correlation task XCSAO in RVSAO. We decided to adopt as the absorption velocity the one associated with the minimum error from the cross-correlation against the templates. In the great majority of cases, this coincided also with the maximum R parameter of Tonry & Davis (1979). The redshifts for the emission-line objects were determined using the EMSAO task in RVSAO. EMSAO finds emission lines automatically, computes redshifts for each identified line and combines them into a single radial velocity with error. Spectra showing both absorption and emission features were generally measured with the two tasks XCSAO and EMSAO and the result with the lower error used. In two spectra with very poor signal (13:05:19.9, -33:00:31 and $13:23:22\cdot 9$, -36:47:09) the emission lines were measured manually and a conservative error of 150 km s⁻¹ assigned. We measured velocities successfully for 306 galaxies in the sample; these are presented in Table 2.

We have compared the distributions of the galaxies we measured to the input samples to check that they are fair samples. There is no significant difference in the distributions of the coordinates, but there is a small difference in the magnitude distributions in the sense that the measured sample does not have as many of the faintest galaxies as the input sample. This is to be expected, as these would have the lowest signal in the FLAIR-II spectra, but this should not affect our study of the spatial distribution significantly.

3 Results

Previous studies of the SSC have covered a very large region of sky, but we will limit our analysis in this paper to the region of sky we observed with FLAIR-II: the three UK Schmidt fields in Table 1. In some cases we will further restrict our analysis to the two southern fields F382 and F383, where our observations were much more complete. The distribution of these fields and the galaxies we observed is shown in Figure 1. We also show any previously observed galaxies and the known Abell clusters.

We present the resulting distribution of galaxies towards the SSC in Figure 2 as cone diagrams and in Figure 3 as the histogram of all velocities up to $40\,000~{\rm km\,s^{-1}}$. The importance of the SSC in this region of the sky is demonstrated by the fact that fully-three quarters of the galaxies we measured belong to the SSC with velocities in the range 7580–18 300 km s⁻¹. In all the plots the new data are indicated by different symbols to emphasise their impact (this can also be seen by comparing these figures with the equivalent ones in Paper II). It can be seen that by probing large regions of the SSC away from the rich Abell clusters, we have revealed additional structures which we discuss in the following sections.

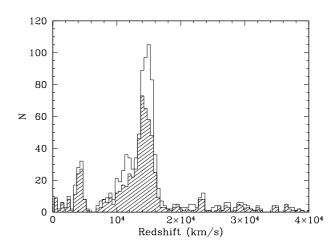


Figure 3—Histogram of galaxy redshifts in the direction of the Shapley supercluster in the region defined by the three Schmidt fields shown in Figure 1 with a step size of $500 \, \mathrm{km \, s^{-1}}$. The upper histogram is for all the data and the lower histogram gives just the previously published data.

3.1 Foreground Galaxies

First, in agreement with previous work, we note the presence of a foreground wall of 269 galaxies (Hydra–Centaurus region) at $\overline{V}=4242~\rm km\,s^{-1}$ with $\sigma=890~\rm km\,s^{-1}$ in the range 2000–6000 km s⁻¹. This distribution can be related with the nearby cluster A3627 associated with the 'Great Attractor' (Kraan-Korteweg et al. 1996).

3.2 Clusters in the Shapley Supercluster

The previous observations reported in Papers I and II concentrated on the Abell clusters, clarifying the locations of many of them. We reproduce a list of the main clusters in the SSC region in Table 3 for references and plot their positions in Figure 1. As noted above, our new measurements concentrate on galaxies outside the rich clusters in this field. In particular, we observed virtually no galaxies in foreground or background clusters. We compare the distribution of the SSC galaxies to that of the Abell clusters in two velocity slices in Figures 4 and 5.

In the near side of the SSC (7580 < v < 12 700 km s⁻¹ Figure 4) we detected several new galaxies in the clusters A3571 and A3572. This region has a very extended velocity structure with several galaxies in the higher range (Figure 5). At the velocity of the main part of the SSC (12 700 < v < 18 300 km s⁻¹ Figure 5) we have found additional galaxies in many of the clusters, especially the poorer ones like AS726, AS731 and A3564. The main conclusion, however, is that the clusters are seen as peaks in a sheet-like distribution, rather than isolated objects.

3.3 Structure of the Shapley Supercluster

The main impact of our new data is an improvement in our knowledge of the large-scale structure of the SSC obtained through the measurement of a large

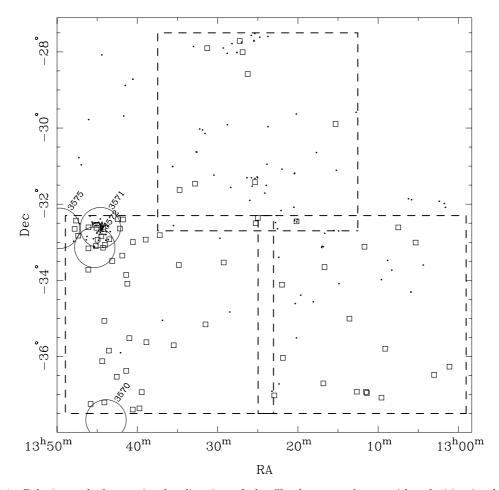


Figure 4—Galaxies and clusters in the direction of the Shapley supercluster with velocities in the range $7580 < v < 12\,700 \,\mathrm{km\,s^{-1}}$ (near side of the main supercluster). Previously reported galaxies are plotted as dots and our new measurements are plotted as open squares. Abell clusters in this velocity range are plotted as labelled circles of radius 0.5 deg (approximately 1 Abell radius at this distance).

number of galaxies away from the rich Abell clusters previously studied. The majority of the galaxies we observed were part of the SSC, so our principal result is that the SSC is bigger than previously thought, with an additional 230 galaxies in the velocity range $7580 < v < 18\,300~{\rm km\,s^{-1}}$ compared to 492 previously known in our survey area.

Looking at the cone diagrams (Figure 2) and the velocity histogram (Figure 3) our first new observation is that the SSC is clearly separated into two components in velocity space, the nearer one at $\overline{v} = 10\,800~\mathrm{km\,s^{-1}}$ ($\sigma_v = 1300~\mathrm{km\,s^{-1}}$) to the East of the main concentration at $\overline{v} = 14\,920~\mathrm{km\,s^{-1}}$ ($\sigma_v = 1100~\mathrm{km\,s^{-1}}$). The two regions contain 200 and 522 galaxies respectively. Some evidence for this separation was noted in the velocity distribution in Paper II, but it is much clearer our new data.

Secondly, it can be see from the Declination cone diagram in Figure 2 as well as the sky plots in Figures 4 and 5 that the southern part of the SSC consists of two large sheets of galaxies, of which the previously measured Abell clusters represent the peaks of maximum density.

To consider the significance of this extended distribution of galaxies, it is helpful to define an

inter-cluster sample consisting of galaxies in the southern fields (F382 and F383) outside the known Abell clusters in the SSC velocity range. We eliminated all galaxies within a 0.5 degree radius (about 1 Abell radius) of all the clusters shown in Figures 4 and 5. Very few of the previously measured galaxies remain in the sample. In Figure 6 we plot a histogram of the galaxy velocities in this inter-cluster sample compared to the predicted n(z)distribution of galaxies. The predicted distribution was based on the number counts of Metcalfe et al. (1991), normalised to the area of the southern sample after removing clusters (44 deg²) and corrected for completeness (304 out of a possible 1194 galaxies measured in total). We also show the histogram (shaded) and predictions (dashed) for the previously measured galaxies in the same field (128 out of a possible 1194). The histogram shows that even for the inter-cluster galaxies there is a large overdensity in the SSC region $(7500 < cz < 18500 \text{ km s}^{-1})$: we measure 161 galaxies compared to 74 expected. This is an overdensity of $2 \cdot 0 \pm 0 \cdot 2$ detected at the 10 sigma level. This is averaged over the whole SSC velocity range; the overdensity in individual $1000 \; \mathrm{km} \, \mathrm{s}^{-1}$ bins peaks at about 7. By comparison

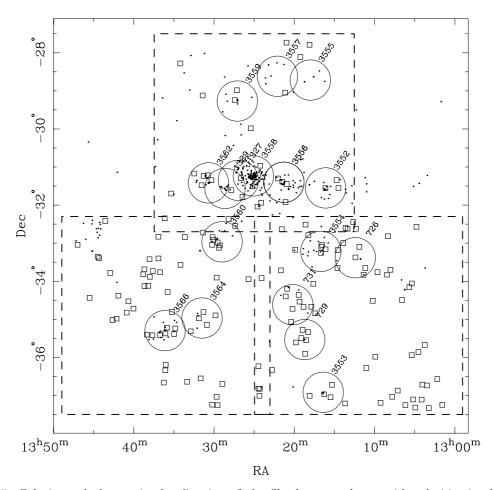


Figure 5—Galaxies and clusters in the direction of the Shapley supercluster with velocities in the range $12\,700 < v < 18\,300 \,\mathrm{km\,s^{-1}}$ (main supercluster). Previously reported galaxies are plotted as dots and our new measurements are plotted as open squares. Abell clusters in this velocity range are plotted as labelled circles of radius 0.5 deg (approximately 1 Abell radius at this distance).

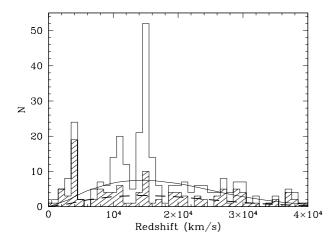


Figure 6—Histogram of all galaxy redshifts in southern inter-cluster region of the Shapley supercluster with a bin size of 1000 km s⁻¹. The upper histogram is for both our new data and the previously published data; the lower histogram gives just the old data. For each histogram a curve shows the predicted distribution, allowing for the size of the region and the completeness of the samples based on a uniform galaxy distribution (Metcalfe et al. 1991).

the previous data (42 galaxies, 33 expected) gave an overdensity of $1\cdot 3$ detected at only $1\cdot 5\sigma$. The overdensity for the whole SSC including the Abell clusters is, of course, much larger still.

These new observations mean that we must modify the conclusions of Paper I about the overall shape of the SSC. In Paper I it was concluded from the velocity distribution of the clusters that the SSC was very elongated and either inclined towards us or rotating. The SSC extends as far as our measurements to the South, so we find it is not elongated or flattened. We now suggest that it is more complex still, being composed of the known Abell clusters embedded in two sheets of galaxies of much larger extent.

4 Discussion

Our new observations of galaxies towards the Shapely supercluster have, by surveying a large area away from known clusters, revealed substantial new large

Table 3. Abell clusters in the Shapley region

RA (B1950) Dec.	cz	Name	Dist.	Ref
	$(\mathrm{km}\mathrm{s}^{-1})$			
12:47:12 - 36:29:00	_	35276	6	N
12:51:18 - 26:07:00	_	1633	6	N
12:51:36 - 28:45:00	15854	3528	4	I
12:52:54 - 30:05:00	15960	3530	4	I
12:54:24 - 32:39:00	22454	3531	5	II
12:54:36 -30:06:00	16100	3532	4	I
12:56:18 - 26:21:00	22994	1648	_	N
12:57:00 -33:24:00	14330	S718	4	II
12:58:18 - 32:10:00	5007	3537	_	N
13:05:54 - 34:18:00	27551	$3542 \cdot 1$	4	II
13:05:54 - 34:18:00	39393	$3542\cdot 2$	4	II
13:08:36 - 33:49:00	22245	3545	6	II
13:11:36 -29:11:00	22634	3549	5	II
13:12:24 - 33:23:00	17688	S726	5	I
13:16:06 - 31:33:00	14818	3552	6	I
13:16:24 - 36:55:00	15110	3553	4	I
13:16:42 - 33:13:00	14570	3554	4	II
13:18:00 -28:43:00	14810	3555	4	I
13:18:42 - 35:32:00	14960	S729	5	I
13:20:12 -34:37:00	15140	S731	4	II
13:21:18 - 31:24:00	14130	$3556 \cdot 1$	4	В
13:21:18 - 31:24:00	15066	$3556 \cdot 2$	4	В
13:22:06 -28:37:00	14270	$3557 \cdot 1$	5	II
13:22:06 -28:37:00	23084	$3557\cdot 2$	5	II
13:23:00 -36:59:00	20806	S733	-	N
13:24:06 - 26:51:00	10368	$1736 \cdot 1$	3	I
13:24:06 - 26:51:00	13357	$1736 \cdot 2$	3	I
13:25:06 -31:14:00	14403	3558	3	В
13:26:58 - 31:21:00	14841	1327	-	N
13:27:06 -29:16:00	13812	3559	4	I
13:28:38 - 31:33:43	12868	1329	-	I
13:29:00 -32:58:00	13864	3560	3	I
13:30:42 - 31:25:00	14492	3562	3	В
13:31:30 -34:58:00	14930	3564	3	I
13:33:48 -33:43:00	3268	3565	-	N
13:36:06 -35:18:00	15469	3566	4	II
13:39:24 - 26:01:00	32048	1771	-	N
13:43:54 - 37:40:00	11152	3570	-	N
13:44:36 - 32:37:00	11730	3571	2	I
13:45:18 -33:08:00	12142	3572	-	N
13:46:18 -30:03:00	4227	3574	-	N
13:49:42 - 32:38:00	11242	3575	4	II
13:51:30 -27:36:00	14870	3577	4	II
13:54:42 - 24:29:00	11152	3578	3	II
-				

References: I: Quintana et al. (1995, Paper I); II: Quintana et al. (1997, Paper II); N: NASA/IPAC, Extragalactic Database (NED; B: Bardelli et al. (1998)

structures in the region. The cluster is part of a much larger structure than was apparent from the previous observations, extending uniformly in two sheets over the whole region we surveyed to the south of the core of the SSC. We detected an additional 230 members of the SSC in our whole survey area, representing a 50% increase on the previous total of 492 SSC galaxies. Our measurements to the north of the cluster were much less complete (only one field in poor weather) so we cannot exclude the possibility that these sheets of galaxies extend equally to the north. Recent results presented by Bardelli, Zucca & Zamorani (1999) support this possibility: they have measured galaxies in 18 small

(40 arcmin) inter-cluster fields north of the core of the SSC and also find an overdensity at the SSC velocity.

In Paper I the effect of the SSC on the dynamics of the Local Group was estimated. It was found that the mass in the cluster could account for at least 25% of the motion of the Local Group with respect to the cosmic microwave background. Our new data suggest that the SSC is at least 50% more massive, with a significant part of the extra mass in the closer subregion. The SSC therefore has a more important effect on the Local Group than previously thought, although we defer a detailed calculation until we have additional data (Proust et al. 1999, in preparation).

Acknowledgments

We wish to thank Roberto de Propris for kindly providing the software to calculate the predicted galaxy n(z) distributions, and we are grateful to the staff of the UKST and AAO for their assistance in the observations. This research was partially supported by the cooperative program ECOS/CONICYT C96U04, and HQ acknowledges support from a Presidential Chair in Science. MJD acknowledges receipt of an AFCOP travel grant and a French Embassy Fellowship in support of visits to the Paris Observatory, where some of this work was carried out.

This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

Bardelli, S., Zucca, E., Malizia, A., Zamorani, G., Scaramella, R., & Vettolani, G. 1996, A&A, 305, 435

Bardelli, S., Zucca, E., Zamorani, G., Vettolani, G., & Scaramella, R. 1998, MNRAS, 296, 599

Bardelli, S., Zucca, E., & Zamorani, G. 1999, in Observational Cosmology: The Development of Galaxy Systems, Sesto 1998 (astro-ph/9811015)

Drinkwater, M. J., Currie, M. J., Young, C. K., Hardy, E., & Yearsley, J. M. 1996, MNRAS, 279, 595

Infante, L., Slezak, E., & Quintana, H. 1996, A&A, 315, 657
Kraan-Korteweg, R. C., Woudt, P. A., Cayatte, V., Fairall,
A. P., Balkowski, C., & Henning, P. A. 1996, Nature, 379, 519

Kurtz, M. J., & Mink, D. J. 1998, PASP, 110, 934

Metcalfe, N., Shanks, T., Fong, R., & Jones, L. R. 1991, MNRAS, 249, 498

Parker, Q. A., & Watson, F. G. 1995, in Wide Field Spectroscopy and the Distant Universe, 35th Herstmonceux Conference, ed. S. J. Maddox & A. Aragon-Salamanca (Singapore: World Scientific), p. 33

Parker, Q. A. 1997, in Wide Field Spectroscopy, 2nd Conference of the Working Group of IAU Commission 9 on Wide Field Imaging, ed. E. Kontizas et al. (Dordrecht: Kluwer), p. 25

- Pierre, M., Bohringer, H., Ebeling, H., Voges, W., Schuecker, P., Cruddace, R., & MacGillivray, H. 1994, A&A, 290, 725
- Quintana, H., Ramirez, A., Melnick, J., Raychaudhury, S., & Slezak, E. 1995, AJ, 110, 463 (Paper I)
- Quintana, H., Melnick, J., Proust, D., & Infante, L. 1997, A&A Suppl, 125, 247 (Paper II)
- Raychaudhury, S. 1989, Nature, 342, 251 Scaramella, R., Baiesi-Pillastrini, G, Chincarini, G., Vettolani, G., & Zamorani, G. 1989, Nature, 338, 562
- Tody, D. 1993, in Astronomical Data Analysis Software and Systems II, ASP Conf. Ser., Vol. 52, ed. R. J. Hanisch et al. (San Francisco: PASP), p. 173
- Tonry, J., & Davis, M. 1979, AJ, 84, 1511