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Abstract

A semi-numerical method is derived to compute the Laplace transform of the equilibrium
busy period probability density function in a fluid queue with constant output rate when
the buffer is nonempty. The input process is controlled by a continuous-time semi-Markov
chain (CTSMC) with n states such that in each state the input rate is constant. The holding
time in states with net positive output rate—so-called emptying states—is assumed to be
an exponentially distributed random variable, whereas in states with net positive input
rate—so-called filling states—it may have an arbitrary probability distribution. The result
is demonstrated by applying it to various systems, including fluid queues with two on–off
input sources. The latter exercise in part shows consistency with prior results but also
solves the problem in the case where there are two emptying states. Numerical results
are presented for selected examples which expose discontinuities in the busy period
distribution when the number of emptying states changes, e.g. as a result of increasing
the fluid arrival rate in one or more states of the controlling CTSMC.
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1. Introduction

Fluid models have long been used to approximate traffic flows in systems comprising very
large numbers of discrete entities flowing around a network. The traditional ‘building block’
node in such models is a fluid queue fed by one or more sources, each of which is governed
by some modulated arrival process. The states, also termed phases, of the modulating process
have an associated fluid arrival rate and state holding time probability distribution that can be
used, for example, to distinguish different classes of traffic, including ‘off’, or ‘silent’, periods
where the traffic arrival rate is 0. Fluid queueing models have seen widespread application,
particularly in the analysis of packet flows in communication networks and in the analysis of
congestion control regimes; see, for example, [9] and [13].

Fluid queues have been analysed by various methods, and for a variety of models of their
inputs, to yield equilibrium performance measures such as the distribution and moments of the
fluid level [6], [10]–[12], [14] and of the busy period. The busy period has been analysed by
Boxma and Dumas [4] for the case where the queue is fed by an arbitrary number of on–off
arrival streams. The off-periods are assumed to be exponentially distributed, but the on-periods
may have an arbitrary distribution. The fluid arrival rate of each input stream that is in the
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on-state is constant and assumed to be larger than the service rate of the queue. Thus, the queue
can become empty only when all arrival streams are in the off-state. The analysis of [3] relaxes
this restriction, but requires that the on-periods have exponentially distributed state holding
times. Their analysis exploits this property to allow the continuous fluid flow process to be
modelled as a discrete ‘counting’ process, by uniformization.

As well as being useful in their own right, modulated fluid queues are also important as
a building block queue in a compositional approximation for networks of fluid queues, as
described in [5]. This leads to exact results for the equilibrium mean fluid level in each buffer
in a tandem network of queues at equilibrium, using intermediate Markov-modulated arrival
processes (MMAPs) with three states; exact results for the variance can be achieved by using
MMAPs with four states [7]. However, the current approach requires that the fluid arrival rate
in each input phase is either 0 or greater than the constant output rate of the fluid server. This is
because the MMAP parameterisation is based on matching moments against those of the busy
period of the upstream queue, using the results of [4]. In more general fluid systems, however,
there will be input states in which fluid arrives at a positive rate less than the node’s maximum
output rate, and on-periods will be generally distributed (e.g. nonexponential) random variables.
We remark that a similar compositional approach has been developed in [2] for linear tandem
networks fed by an M/M/1 source queue. In that work, the fluid flow between each pair of
queues in the chain is represented by an on–off process whose on-period is distributed as the
busy period of an intermediate M/M/1 queue.

In this paper, we consider a queue whose fluid arrival rate is piecewise constant in time, its
value being determined by the current state of an independent, continuous-time semi-Markov
chain (CTSMC)—the modulating chain. The holding time of a CTSMC state in which the net
output rate is positive (i.e. the server’s output rate exceeds the input rate in this state) is assumed
to be an exponentially distributed random variable; we refer to these states as emptying states.
A state with net positive input rate (where the server’s output rate is less than the input rate in
this state) may have an arbitrary holding time probability distribution; we refer to these states
as filling states.

A busy period is defined to be the contiguous length of time that the buffer’s fluid level is
greater than 0, i.e. the time elapsed between the end of one idle period, when the buffer is
continually empty, to the beginning of the next idle period. The system is assumed to be at
equilibrium so that it has almost surely finite busy periods. Idle periods can occur only in input
states with net positive output rate. Importantly, this includes situations where the buffer is
empty and the fluid arrival rate is positive but less than the specified constant output rate. In
such a case, the actual output rate is nonzero, equal to the arrival rate.

Note that if the fluid arrival rate is constrained to be either 0 or greater than the output rate,
as in previous treatments, then the busy period is synonymous with a period during which the
server is continually emitting fluid at a positive rate. In the present contribution, however, it is
possible for the server to be emitting fluid even though the buffer is empty. This is a significantly
more general queue than one with a simple on–off input process, the solution to which is well
known even when on-periods have an arbitrary probability distribution [4], [5]. It is also more
general than a fluid queue with multiple on–off sources, each of which must have input rate
greater than the service rate in its on-state, as in the model of [4] referred to above. Moreover, it
extends the model of [3] in that the filling states can have an arbitrarily distributed state holding
time, although the assumed input models are quite different.

One of the main contributions of the paper is an expression for the Laplace transform of
the busy period’s probability density function in the above queue (Section 3.3). This leads
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to a numerical solution method that can be applied to systems with an arbitrary number of
emptying and filling states. In general, this requires the numerical solution of a complex
system of fixpoint equations for each point in the Laplace domain and, in turn, the solution
of a polynomial equation of degree ne, the number of emptying states. Although complex,
the method is shown to be tractable for systems of modest size using MATHEMATICA® (see
http://www.wolfram.com/products/mathematica/index.html) (Section 5.1). We demonstrate
the application of the result to some specific scenarios that are simple enough to be treated
symbolically in Section 4. Furthermore, in cases for which there is a known analytical solution,
we verify that our results are consistent with the literature.

The mth moment of the busy period can, in principle, be computed numerically via the mth
derivative of the above Laplace transform at the origin. The direct numerical approach turns out
to be unstable for derivatives higher than the first. The alternative, symbolic approach requires
the calculation of the nth derivative of each root of the corresponding polynomial equation, for
1 ≤ n ≤ m. Again, the numerical computation of these root derivatives is unstable, except
for the mean value (Section 5). A key result, presented in Proposition 3 of Section 5.1.1,
defines the mth derivative of a root of an arbitrary polynomial in terms of the derivatives of
the polynomial’s coefficients. This is a direct recursive formulation that avoids the need for
numerical differentiation, requiring only the numerical value of the root of the given polynomial
equation at the point concerned (the origin for the present problem), which is usually quickly
computed by standard mathematical software. This approach to calculating moments is not only
efficient, but is also numerically stable for all the test cases considered. The robust computation
of moments is of particular significance to the compositional approach outlined above, which
is based on moment matching between the busy period of a fluid queue and the state holding
times in an MMAP.

Some numerical results for both the moments and density function of the busy period
are presented in Section 5. These results show that the busy period distribution exhibits
discontinuities at the instants where the number of emptying states changes, e.g. as a result
of a continuous scaling of one or more load parameters. This behaviour is counterintuitive, but
is shown to be a natural consequence of the instantaneous transition of one or more states in
the underlying CTMC from being emptying states to filling states. We further show that the
discontinuities can lead to either a positive or negative jump in the moments of the busy period
distribution, depending on the parameterisation of the model.

2. The model

We first formally describe the model in terms of its semi-Markov-modulated input process
and its net output rate in each state of that process. The solution for the busy period is then derived
as the Laplace–Stieltjes transform of its probability distribution function, using conditional
expectation arguments.

2.1. Model definition

We consider a single fluid queue, comprising a server that outputs fluid at a constant rate
when it has a positive quantity of fluid stored in its reservoir, or buffer, and a time-homogeneous
semi-Markov-modulated input (or arrival) stream. We use the following notation:

• there are n states, or phases, in the state space S of the CTSMC, which has probability
transition matrix P = (pij | 1 ≤ i, j ≤ n), defined at state transition instants;
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• the state holding time in state i, given that the next state is j , is Hij;

• the fluid arrival rate in phase i is the constant λi volume units of fluid per unit time;

• the rate at which the server outputs fluid when its buffer is nonempty is µ volume units
of fluid per unit time;

• the diagonal (net input) rate matrix R = diag(r1, . . . , rn), where ri = λi − µ for
1 ≤ i ≤ n, and the rate vector �r = (ri, . . . , rn);

• the subset of filling states with positive net input rate is F = {i ∈ S | ri > 0} ⊂ S;

• the subset of emptying states with negative net input rate is E = {i ∈ S | ri < 0} = S\F ;

• nf = |F | and ne = |E | so that nf + ne = n;

• each state i is assumed to be associated with a nonzero net arrival rate of fluid (ri �= 0);

• the vector e = (1, 1, . . . , 1).

For a generic continuous random variable X, we denote its probability distribution function
by X(t) = P(X ≤ t) and the Laplace–Stieltjes transform (LST) of this distribution by X∗(θ) =
E[e−θX], where E[·] and E[· | ·] denote the expectation and conditional expectation operators,
respectively. We denote the density function by x(t) = X′(t), the derivative of the distribution
function, with Laplace transform X∗(θ).

The modulating CTSMC is defined with more rigour in terms of the Markov renewal process
{(Xn, Tn) : n ≥ 0}, where Tn is the time of the nth transition (T0 = 0) and Xn is the state at
(just after) the nth transition. The required CTSMC is therefore {Z(t) = XN(t), t ≥ 0}, where
N(t) = max{n : Tn < t} and the (time-homogeneous) kernel K of (Xn, Tn) is (for all n)

K(i, j, t) = P(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i) = pijHij(t),

where pij = P(Xn+1 = j | Xn = i).
We further define the following random variables.

Tij The time elapsed between entry to state i ∈ F and the first subsequent transit from
some state in F to state j ∈ E—representing the sum of the lengths of the on-periods
entered and the event of exit out of F to state j ∈ E .

Yij The net volume of fluid collected in the buffer during the period Tij, i.e. during successive
on-periods that start on entry to state i ∈ F and end on transit from some state in F to
state j ∈ E .

Vij The busy period starting in filling state i ∈ F (immediately after a transition from an
emptying state) and ending in emptying state j ∈ E .

Rij(x) The time to clear the buffer when it has x units of fluid in it, the current state is i ∈ E ,
and the buffer becomes empty in state j ∈ E (just after that time has elapsed).

Ei Exponentially distributed holding time for state i ∈ E , with mean value 1/γi . Thus, for
i ∈ E , Hij is equal in distribution to Ei for all j ∈ S.

We define Tij = Yij = ∞ if the first subsequent transition after leaving state i ∈ F to a state in
E is to l �= j .

Finally, let Lij(β, α) be the Laplace transform of R∗
ij(x, α)—itself the LST of Rij(x)(t)—

with respect to x, i.e.

Lij(β, α) =
∫ ∞

0
e−βxR∗

ij(x, α) dx.
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2.1.1. Server vacations. We remark that the above formulation in terms of the net input rate (ri
in state i) allows for the service rate to also depend on the phase of the underlying CTSMC.
It is thus possible, for example, to model server vacations, provided the vacation policy is
independent of the state of the buffer.

2.2. The busy period

The analysis of a busy period is based on the observation that it comprises an initial filling
phase, followed by a sequence of emptying phases interspersed with nested, or ‘pseudo’, busy
periods. A pseudo-busy period ends when the fluid level (which is rising at the commencement
of the pseudo-busy period) falls back to its original level.

For a simple two-state on–off process (n = 2, λ1 = 0 (off), λ2 = λ (on)), the Laplace trans-
form of the busy period (V ∗(θ)) is easily obtained, e.g. by conditional expectation arguments,
in terms of the LST of the on-period’s probability distribution, W ∗(θ):

V ∗(θ) = W ∗(θρ + b(ρ − 1)(1 − V ∗(θ))) (see, e.g. [5]).

For the more general case, where the input process is governed by the semi-Markov process
defined earlier, the situation is complicated by the fact that there can now be phase transitions
during both a filling period, where the input process follows a succession of filling states, and
an emptying period, where the input process follows a succession of emptying states.

Following the line of reasoning typically used for the simple on–off case above, we observe
that the time required to clear a units of fluid from an instant of entering a state f ∈ F has
the same probability distribution as the sum of a busy period Vfe, that starts in state f and ends
in state e ∈ E , and the time to remove a units of fluid starting in state e (see Figure 1). The
argument is that the original a units are served last, the order of service being immaterial as far
as busy periods are concerned.

Using the nomenclature introduced earlier, a busy period begins at a transition instant from
some state l ∈ E to a state i ∈ F when the buffer is empty. When the system next returns to
a state k ∈ E , after a time Tik , the buffer will hold Yik units of fluid, which will eventually be
cleared in state j ∈ E after a time Rkj(Yik). The length of the busy period that started in state

State e

State f

State j

Time

State k

State i

Fluid level

a

V·

Vij

V·VfeTik

Yik

Rkj ik( )Y

Rej( )a

Figure 1: The busy period for an n-phase arrival process.
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i ∈ F and ends in state j ∈ E is then

Vij = Tik + Rkj(Yik).

This is illustrated in Figure 1. Note that the problem differs from that considered in [4] in that
it generalises the notion of a single off-state, where the fluid arrival rate is 0, to any number
of emptying states in which the fluid arrival rate is less than the output rate of the server. In
particular, the duration of an emptying period is no longer, in general, exponentially distributed;
cf. the simple on–off process outlined above and other processes with a single emptying state
that has a negative exponential holding time.

3. Model solution

The primary objective of this paper is to determine the Laplace transform, V ∗
ij (α), of the

probability density function of the busy period in the above queue, and (in Appendix A) its
moments. The busy period has two components: the initial filling period, which accumulates x

(say) units of fluid, and the period required to clear those x units. Therefore, V ∗
ij (α) is defined in

terms of the (joint) Laplace transform of the joint probability density of the dependent random
variables Tik and Yik , for states i ∈ F and k ∈ E , and the Laplace transform of the clearing
time’s probability density, i.e. R∗

kj(x, α) for states k, j ∈ E . These are derived in Sections 3.1
and 3.2, respectively. The derivation of V ∗

ij (α), in terms of these two transforms, appears in
Section 3.3.

3.1. Time to clear a buffer

We first examine the time to clear a given amount of fluid x in the buffer when in one of the
emptying states. Since the holding time in such a state is exponentially distributed, it makes no
difference how long the modulating chain has already spent in it up to the present time instant.
We first prove the following result.

Lemma 1. For i, j ∈ E ,[
β − α + γi

ri

]
Lij(β, α) = δij −

∑
k∈E

γipikLkj(β, α)

ri
−

∑
k∈F

∑
l∈E

γipikV
∗
kl(α)Llj (β, α)

ri
.

Proof. Following the line of reasoning described in Section 2.2, commonly applied to busy
period analysis, let the current (emptying) state be i ∈ E . We then have

Rij(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if Ei > −x/ri ∧ i �= j,

−x/ri if Ei > −x/ri ∧ i = j,

Ei + Rkj(x + riEi) if Ei ≤ −x/ri ∧ i → k ∈ E ,

Ei + Vkl + Rlj (x + riEi) if Ei ≤ −x/ri ∧ i → k ∈ F ∧ l ∈ E ,

where the right arrow symbol denotes a single-step transition in the modulating CTSMC. Hence,

R∗
ij(x, α) = E[e−αRij(x)]

= E[E[e−αRij(x) | Ei]]

= δije
γix/ri eαx/ri +

∑
k∈E

pik

∫ −x/ri

0
γie

−γi t E[e−α(t+Rkj(x+ri t))] dt

+
∑
k∈F

∑
l∈E

pik

∫ −x/ri

0
γie

−γi t E[e−α(t+Vkl+Rlj (x+ri t))] dt
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= δije
(α+γi )x/ri +

∑
k∈E

pik

∫ −x/ri

0
γie

−(α+γi )tR∗
kj(x + ri t, α) dt

+
∑
k∈F

∑
l∈E

pikV
∗
kl(α)

∫ −x/ri

0
γie

−(α+γi )tR∗
lj(x + ri t, α) dt.

Therefore,

Lij(β, α) = δij

∫ ∞

0
e−(β−(α+γi )/ri )x dx

+
∑
k∈E

γipik

∫ ∞

x=0

∫ −x/ri

t=0
e−βx−(α+γi )tR∗

kj(x + ri t, α) dx dt

+
∑
k∈F

∑
l∈E

γipikV
∗
kl(α)

∫ ∞

x=0

∫ −x/ri

t=0
e−βx−(α+γi )tR∗

lj(x + ri t, α) dx dt

= δij(β − (α + γi)/ri)
−1

+
∑
k∈E

γipik

∫ ∞

t=0

∫ ∞

y=0
e−βyR∗

kj(y, α)e−(α+γi−βri )t dt dy

+
∑
k∈F

∑
l∈E

γipikV
∗
kl(α)

∫ ∞

t=0

∫ ∞

y=0
e−βyR∗

lj(y, α)e−(α+γi−βri )t dt dy,

by changing the domains of integration to 0 ≤ t < ∞ and −ri t ≤ x < ∞, and the integration
variable from x to y = x + ri t . The result now follows.

In order to solve for R∗
i,j (x, α), we make the observation that the Laplace transform of R∗

itself with respect to x can be expressed in partial fractions, each of which is in a form that can
be inverted analytically. This enables us to write R∗

i,j (x, α) in closed form as a sum of weighted
exponential terms. To this end, we define the following matrices:

• the ne × ne matrix L = (Lij(β, α)) for i, j ∈ E ;

• the ne × ne identity matrix Ie;

• the ne × n matrix U = (uij) by uij = −pijγi/ri for i ∈ E and j ∈ S;

• the ne × ne diagonal matrix D = (dij) by dij = [β − (α + γi)/ri]δij for i, j ∈ E ;

• and the n × ne matrix W = (wij) by

wij =
{

V ∗
ij (α) if i ∈ F ,

δij if i ∈ E ,

for j ∈ E .

Then the lemma above may be written in the form DL = Ie+UWL so that L = (D−UW )−1.
Note that of the matrices other than L (the dependent variable), only matrix D depends on

β, and in it every matrix element is a linear function of β. The same therefore also applies
to the ne × ne matrix M = D − UW so that its determinant, � := |M|, is a polynomial of
degree ne in β and all its cofactors are polynomials of degree ne − 1. If {bs(α) | 1 ≤ s ≤ r}

https://doi.org/10.1239/jap/1276784904 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784904


Busy periods in fluid queues 481

are the distinct roots of the equation � = 0 (in β) and ms is the multiplicity of root bs(α) (so
that

∑
ms = ne), then the determinant of M can be written as � = ∏r

s=1(β − bs)
ms .

Each element in the inverse matrix L = (D − UW )−1 (assuming this exists, i.e. that � is
nonzero) is a rational function of β and can therefore be written in partial fractions as

Lij(β, α) = (D − UW )−1
ij =

r∑
s=1

ms∑
k=1

ask;ij(α)

(β − bs(α))k

for i, j ∈ E , where the ask;ij(α) are independent of β, defined by (dropping the parameter α

when the meaning is clear)

ask;ij = 1

(ms − k)!
[

dms−k

dβms−k

(
cji

�s

)]
β=bs

,

where C = (cij | i, j ∈ E) is the cofactor matrix of M , whence L = C�/�, and �s =
�/(β − bs)

ms . We define �s to emphasize the fact that the term (β − bs)
ms must symbolically

cancel the corresponding term in �, when computing numerically, in order to avoid infinities;
indeed, �s ≡ ∏

1≤i �=s≤ne
(β − bi)

mi .
Since ne will usually be small—no more than about 10—the constants {ask;ij, bs, ms} can

easily be computed, for each α, by mathematical software such as MATHEMATICA, the
choice of the authors. Note that the coefficients in the equation |M| = 0 are functions of the
sought after V ∗

ij (α). Hence, fixpoint equations must be posed, which are solved iteratively.
Except in very simple cases, the values of the ask;ij (α) must be calculated numerically on
each iteration. Note also that, unless there is some structural symmetry in the construction of
the modulating CTSMC (such as may happen in a network with identical queues and external
arrival processes), it is very rare to find any ms �= 1. In this case we have the much simpler
expression ask;ij = [cji/�s]β=bs .

Symbolic solutions are not usually feasible for ne > 2—impossible for ne > 5—and we
will be relying on numerical methods, for example in calculating moments.

We note that the following properties must hold in order for equilibrium to exist:

• |M| �= 0 so that M has an inverse;

• the roots bs all have negative real part, unless the corresponding terms ask;ij are 0.

Certainly these apply to all the examples we have considered. The Laplace transform can now
be inverted to give the following result.

Proposition 1. For i, j ∈ E and real x > 0,

R∗
ij(x, α) =

r∑
s=1

ms∑
k=1

ask;ij
(ms − k)!x

ms−kebsx .

Proof. The proof is immediate, using the standard result for the Laplace transform of a
gamma density function, or by noting that

dm

dθm

∫ ∞

0
e−θxf (x) dx = (−1)m

∫ ∞

0
e−θxxmf (x) dx

for all functions f when the integrals and derivatives exist.
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3.2. Volume of fluid collected

To find the busy period, all we now have to do is find out how much fluid is collected in the
buffer during a sequence of filling states (e.g. Yik in Figure 1). If the buffer was empty just prior
to starting this sequence then the busy period is the sum of the times taken to pass through the
sequence and then to clear the buffer as per the preceding analysis. To this end, we compute
the following joint Laplace transforms for i ∈ F and j ∈ E :

Gij(θ, φ) = E[e−θTij−φYij ].
These are simply determined as follows.

Proposition 2. For i ∈ F and j ∈ E ,

Gij(θ, φ) = pijH
∗
ij (θ + φri) +

∑
k∈F

pikH
∗
ik(θ + φri)Gkj(θ, φ). (1)

Proof. We have

Tij =
{

Hij if i → j ∈ E ,

Hik + Tkj if i → k ∈ F ,

and, similarly,

Yij =
{

riHij if i → j ∈ E ,

riHik + Ykj if i → k ∈ F .

Consequently,

Gij(θ, φ) = pij E[e−θHij−φriHij ] +
∑
k∈F

pik E[e−θHik−φriHik e−θTkj−φYkj ]

= pijH
∗
ij (θ + φri) +

∑
k∈F

pikH
∗
ik(θ + φri)Gkj(θ, φ),

by the Markov property that holds at the instant when i → k.

3.3. The busy period

We are now in a position to determine the busy period itself. Such a time interval begins
at a transition instant from a state l ∈ E to a state i ∈ F when the buffer is empty. When the
system next returns to a state k, say, in E , after a time Tik , the buffer will hold Yik units of fluid,
which will be cleared in state j ∈ E after a time Rkj(Yik). The length of the busy period that
started in state i ∈ F and ends in state j ∈ E is then Tik + Rkj(Yik).

We therefore have the main result of this paper.

Theorem 1. For i ∈ F and j ∈ E ,

V ∗
ij (α) =

∑
k∈E

r∑
s=1

ms∑
l=1

(−1)ms−lasl;kjG
(0,ms−l)
ik (α, −bs)

(ms − 1)! ,

where

G
(0,m)
ij (x, y) = ∂mGij(θ, φ)

∂φm

∣∣∣∣
θ=x, φ=y

.
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Proof. Let the random variable K denote the first state in E entered by the modulating
CTSMC after its initial state i ∈ F . Then

Vij = TiK + RKj(YiK ),

and so

V ∗
ij = E[E[e−αTiK e−αRKj(YiK ) | K, TiK ]]

= E[e−αTiK R∗
Kj(YiK , α)]

=
r∑

s=1

ms∑
l=1

E

[
asl;Kj

(ms − l)! E[Yms−l
iK e−αTiK ebsYiK | K]

]

=
r∑

s=1

ms∑
l=1

(−1)ms−l

(ms − l)! E[asl;KjG
(0,ms−l)
iK (α, −bs)]

=
∑
k∈E

r∑
s=1

ms∑
l=1

(−1)ms−lasl;kjG
(0,ms−l)
ik (α, −bs)

(ms − l)! .

4. Some examples

4.1. Single off-state

Consider a fluid queue with a single source defined by a CTSMC with a single emptying
state, 0 say, typically called the ‘off-state’ and n − 1 filling states (or ‘on-states’) 1, . . . , n − 1.
Then Proposition 2 gives, for 1 ≤ i ≤ n − 1,

Gi0(θ, φ) = pi0H
∗
i0(θ + φri) +

∑
k∈F

pikH
∗
ik(θ + φri)Gk0(θ, φ).

The matrix M is 1 × 1 with single element β − (α + γ0)/r0 + ∑n−1
j=1 p0j γ0V

∗
j0(α)/r0, so that

r = 1, m1 = 1, a11;00 = 1, and b1 = [α + γ0(1 − ∑n−1
j=1 p0jV

∗
j0(α))]/r0.

In the special case that there is also a single on-state, labelled 1, with p10 = p01 = 1 and
G10(θ, φ) = H ∗

10(θ + φr1), Theorem 1 then yields

V ∗
10(α) = a11;11G10(α, −b1) = H ∗

10

(
α − [α + γ0(1 − V ∗

10(α))]r1

r0

)
.

This is the well-known result for the single on–off source with general on-time and exponential
off-time [4], [5]. Of course, in this very simple case, we can use Lemma 1 directly in Theorem 1,
by-passing Proposition 2.

4.1.1. Multiple sources. Consider first the case of two on–off sources, with exponential off-
periods, to a single fluid queue with output rate less than either of the input rates of the sources
in their on-states. This is the situation in [4] when there are two sources, each with exponential
on-period. The modulating CTSMC is now a CTMC with state transition diagram as in Figure 2.
The single off-state is labelled 0, the state with only source 1 on is labelled 1, the state with only
source 2 on is labelled 2, and the state with both sources on is labelled 3. The off-to-on and
on-to-off rates at source i = 1, 2 are respectively denoted by γi and κi . The fluid arrival rates
for sources 1 and 2 are λ1 and λ2, respectively. The arrival rate in each state of the modulating
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The modulating CTMCTwo-source queue

0

0

λ1

λ2

0

0

1

32

λ1 � λ2

κ2 γ2 γ2

λ2

λ1

κ1

γ1

γ1

κ2

κ1

Figure 2: A fluid queue with two on–off sources.

CTSMC is written next to the state in the figure, and we have λ1 < µ, λ2 < µ, and λ1+λ2 > µ.
As before, the output rate of the server, when busy, is µ. From Theorem 1 we have, for i = 1, 2,

V ∗
i0(α) = Gi0

(
α, −α + γ0(1 − ∑n−1

j=1 p0jV
∗
j0(α))

r0

)
,

where γ0 = γ1 + γ2 and the generating functions Gj0, j = 1, 2, 3, are the solutions for gj in
the equations given by Proposition 2:

g1 = e1p10 + p13e1g3, g2 = e2p20 + p23e2g3, g3 = e3p31g1 + e3p32g2, (2)

where ej = E∗
j (sj ) = ηj/(ηj +sj ), sj = α−b1rj = α−[α+γ0(1−∑n−1

j=1p0jV
∗
j0(α))]rj /r0,

and 1/ηj is the mean holding time in state j , so that η1 = κ1 +γ2, η2 = κ2 +γ1, η3 = κ1 +κ2.
The state transition probability matrix of the modulating CTSMC, P = (pij | 0 ≤ i, j ≤ 3), is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
γ1

γ1 + γ2

γ2

γ1 + γ2
0

κ1

κ1 + γ2
0 0

γ2

κ1 + γ2
κ2

κ2 + γ1
0 0

γ1

κ2 + γ1

0
κ2

κ1 + κ2

κ1

κ1 + κ2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Eliminating g3 from (2) and simplifying, we find that

(κ1 + κ2 + ω1 + ω2)[(κ1 + ω1)g1 − κ1]
+ γ2[(κ1 + κ2 + ω1 + ω2)g1g2 − κ2g1 − κ1g2] = 0,

(κ1 + κ2 + ω1 + ω2)[(κ2 + ω2)g2 − κ2]
+ γ1[(κ1 + κ2 + ω1 + ω2)g1g2 − κ2g1 − κ1g2] = 0,

where ω1 = s1 + γ2(1 − g2) and ω2 = s2 + γ1(1 − g1) so that s3 = ω1 + ω2. These
equations have the solution gi = κi/(κi + ωi) for i = 1, 2, which is that obtained by Boxma
and Dumas [4], as expected.
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In fact, their result allows generally distributed on-times, provided the input rate of every
source exceeds the output rate of the server, giving only one off-state. This was proved using
properties specific to the busy period random variable: by observing that if a source i turns
on at time T1 when the fluid level in the buffer is X1 > 0 (i.e. during a busy period), the time
that elapses up to the instant T2 when the fluid level next returns to X1 is just a busy period
that starts (during an off-period) with source i turns on. Our method cannot be applied as it
stands because the corresponding input process is not a CTSMP. This is because when a new
source turns on during the on-period of some other source, the Markov property does not hold
since the residual on-period is not independent of the partially completed on-period, i.e. of the
time in the past at which the source turned on. However, using the same busy period ‘trick’,
our method could be adapted similarly, if required. Instead of repeating this work, we consider
input processes with more than one off-period (ne > 1) so that, for example, we can deal with a
fluid queue with multiple input sources, not all of which have input rates greater than the output
rate of the server.

4.2. Two off-states

In general, when ne > 1, we first need to compute the determinant �(α, β) to get the inverse
matrix (L) of M , expanded in partial fractions. This is a polynomial equation of degree ne,
which in general requires numerical methods to solve. However, in the special case that ne = 2,
representing two input states with net positive fluid output rate, we can continue symbolically.
This situation occurs when exactly one of several sources to a fluid queue has input rate less
than the server’s output rate, µ say.

In this model, state 0 represents both sources being off, state 1 represents source 1 only being
on, emitting fluid at rate λ1 < µ, state 2 represents source 2 only being on, emitting fluid at rate
λ2 > µ, and state 3 represents both sources being on. The state transition system is the same as
that in Figure 2, except that states 0 and 1 are now both emptying states. We assume the same
transition rates as above (κi, γi, i = 1, 2) and state holding time distributions (exponential in
all cases).

4.2.1. The functions Gij . The net input rates in this model are r0 = −µ, r1 = λ1 − µ, r2 =
λ2 − µ, and r3 = λ1 + λ2 − µ, and (1) then becomes

G20(θ, φ) = E∗
2 (θ + φr2)p20 + E∗

2 (θ + φr2)p23G30(θ, φ),

G21(θ, φ) = E∗
2 (θ + φr2)p23G31(θ, φ),

G30(θ, φ) = E∗
3 (θ + φr3)p32G20(θ, φ),

G31(θ, φ) = E∗
3 (θ + φr3)p31 + E∗

3 (θ + φr3)p32G21(θ, φ).

Using the above parameters, E∗
2 (s2) = (κ2 +γ1)/(κ2 +γ1 +s2), E

∗
3 (s3) = (κ1 +κ2)/(κ1 +κ2 +

s3), p20 = κ2/(κ2 + γ1), p23 = γ1/(κ2 + γ1), p31 = κ2/(κ1 + κ2), and p32 = κ1/(κ1 + κ2).
The matrix G = (Gij | i = 2, 3, j = 0, 1) is therefore defined by

G = κ2

(κ2 + γ1 + s2)(κ1 + κ2 + s3) − γ1κ1

(
κ1 + κ2 + s3 γ1

κ1 κ2 + γ1 + s2

)
,

where s2 = θ + φr2 and s3 = θ + φr3.

4.2.2. Determination of bs and as1;ij . To use Theorem 1, we now need the matrix M to calculate
the terms bs and as1;kj for j, k, s = 1, 2; we restrict ourselves to the case where the roots bs are
distinct. Using the notation of Section 3.1, the matrix D = diag(β − (α + γi)/ri) (i = 0, 1),
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uij = −pijγi/ri (i = 0, 1, j = 0, 1, 2, 3), and wij = V ∗
ij (α) if i = 2, 3, j = 0, 1, and wij = δij

if i, j = 0, 1. Hence,

M =

⎛
⎜⎜⎝

β − α + γ1 + γ2(1 − V ∗
20(α))

r0

γ1 + γ2V
∗
21(α)

r0

κ1 + γ2V
∗
30(α)

r1
β − α + κ1 + γ2(1 − V ∗

31(α))

r1

⎞
⎟⎟⎠

and b1(α), b2(α) are the roots (assumed distinct) of the equation

β2 −
(

α + γ1 + γ2(1 − V ∗
20(α))

r0
+ α + κ1 + γ2(1 − V ∗

31(α))

r1

)
β

+ (α + γ1 + γ2(1 − V ∗
20(α)))(α + κ1 + γ2(1 − V ∗

31(α))) − (γ1 + γ2V
∗
21(α))(κ1 + γ2V

∗
30(α))

r0r1
= 0.

The terms a11;ij and a21;ij are the (i, j)th elements of the matrices

A11 = 1

b1(α) − b2(α)

⎛
⎜⎝b1(α) − α + κ1 + γ2(1 − V ∗

31(α))

r1
−γ1 + γ2V ∗

21(α)

r0

− κ1 + γ2V ∗
30(α)

r1
b1(α) − α + γ1 + γ2(1 − V ∗

20(α))

r0

⎞
⎟⎠

and

A21 = − 1

b1(α) − b2(α)

⎛
⎜⎝b2(α) − α + κ1 + γ2(1 − V ∗

31(α))

r1
−γ1 + γ2V ∗

21(α)

r0

− κ1 + γ2V ∗
30(α)

r1
b2(α) − α + γ1 + γ2(1 − V ∗

20(α))

r0

⎞
⎟⎠ .

Defining the matrix V = (V ∗
ij (α) | i = 2, 3, j = 0, 1), we finally have

V ∗
ij (α) =

1∑
k=0

2∑
s=1

as1;kjGik(α, −bs(α)),

V = G(α, −b1(α)) · A11 + G(α, −b2(α)) · A21.

5. Numerical experiments

We present below numerical results for some simple single-server systems. For each case
considered, we are able to produce identical behaviour, modulo confidence intervals, from
an equivalent fluid queue simulation. (We used a fluid extension of the JINQS library, see
http://www.doc.ic.ac.uk/∼ajf/Research/manual.pdf, for this purpose.)

First we outline the main issues involved in the numerical computations of the density
function and moments of the busy period.

5.1. Computational algorithms

The LST of the busy period probability distribution is given by the equation in Theorem 1.
Since the asl;kj(α) and bs(α) terms all depend on {V ∗

ij (α) | i ∈ F , j ∈ E}, which is what we
seek, this is a complex fixpoint equation for the matrix

V ∗(α) = (V ∗
ij (α) | i ∈ F , j ∈ E).
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The natural algorithm for computing the value of V ∗(α) at any given value of α is to make
an initial guess and successively update the current guess by substituting it into the right-hand
side of the equation. The existence of a fixpoint solution follows from Brouwer’s theorem,
V ∗ being bounded, but convergence of this particular algorithm has not been proved. Our
implementation converged quickly for all the examples we tried, in which values were required
at very many points α in calls from a Laplace transform numerical inverter (see below).

5.1.1. Moments. The moments of the busy period can be obtained by differentiating V ∗ at the
origin, avoiding the need to invert V ∗. However, the derivatives of asl;kj and bs are not simple
to obtain, as the defining expressions are functions of V ∗ themselves, as noted above. Their
nth derivatives can be expressed in terms of all the derivatives of V ∗ up to the nth, leading to an
incremental sequence of fixpoint problems for the ith derivative, i = 1, 2, . . . , n. Numerical
solutions can then be computed iteratively in the same way as described above for the LST.
In particular, the derivatives of b1, . . . , bne require care, these being the roots of a polynomial
equation of degree ne. For ne = 1 or 2, the roots can be computed as relatively simple symbolic
expressions. This is more problematic for higher ne and impossible for ne > 4.

The problem can be overcome using the following proposition, which defines the mth
derivative of a root, b, of an arbitrary polynomial at a specified point in terms of the derivatives
of the polynomial’s coefficients and the value of b at that point.

Proposition 3. For the polynomial equation

n∑
i=1

ci(α)xi = 0, (3)

the mth derivative of a root x = b(α) with respect to α is

b(m) = − 1∑n
i=0 icibi−1

×
( n∑

i=0

m−1∑
k=0

(
m

k

)
c
(m−k)
i Dk−1,0(i) +

n∑
i=0

ci

m−2∑
j=0

(
m − 1

j

)
Dm−1−j,1(i)b

(j+1)

)
,

where, for 0 ≤ l ≤ k,

Dkl(i) = I (l ≤ i − 1)
i!

(i − l − 1)!b
i−l−1b(k−l+1) +

k−l−1∑
j=0

(
k − l

j

)
Dk−j,l+1(i)b

(j+1),

wherein D−1,0(i) = bi and I (·) is the indicator function.

The proof is given in Section A.2 of Appendix A. This result can be used to compute the
required mth derivatives of the roots of the polynomial equation of Section 3.1 at α = 0 (the
roots themselves being obtained numerically), whilst avoiding the numerical problems outlined
above. The details of functions that compute the derivatives of the asl;kj and Gi,j , and, hence,
the moments of V ∗, are also given in Appendix A.

In principle, the derivatives of the bi could be computed numerically. In practice, however,
the computation of derivatives higher than the first turns out to be unstable for step sizes less
than about 10−8, using the default precision of MATHEMATICA. For step sizes greater than
this, accuracy is inadequate (more than 10% error) even for the second derivative, although it is
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satisfactory for the first derivative. Working with the highest level of precision available might
make some more derivatives numerically viable, but the computational cost would be greater
and almost certainly instability would arise in higher derivatives.

5.2. Results

In the examples we now consider, both the moments and probability density function of the
busy period were computed using MATHEMATICA. The moments were calculated by directly
coding the functions listed in SectionA.2, using the above proposition in particular. The density
functions were computed by using the fixed Talbot method to numerically invert the Laplace
transform V ∗, itself computed iteratively as described above [1].

We assume throughout that there is a single server with a fixed service rate of µ = 10.
We consider first a system with two independent input processes, each defined by a Markov-
modulated on–off process with the following characteristics.

• Exponentially distributed state holding times in each state, with transition rates 1 (off →
on) and 2 (on → off) for both inputs.

• A fluid arrival rate of λ1 or λ2 for the first or, respectively, second input process when
that process is in the on-state.

The composite arrival process therefore has a modulating CTMC with four states, as per Figure 2.
Its probability transition matrix was given in Section 4.2. The fluid arrival rates for states 0–3
are respectively 0 (both off), λ1 (input 1 on), λ2 (input 2 on), and λ1 + λ2 (both on).

We compute the mean fluid level of the busy period, using the result in [5], as λ2 is increased,
whilst fixing λ1 at 12; the experiment is then repeated for λ1 = 16. Note that the stability
condition is λ1 + λ2 < 30, since the proportion of time spent by each (independent) source
in its on-state is 1

3 and so the sources contribute net traffic at rate (λ1 + λ2)/3. For λ2 < 10,
there are two emptying states (0 and 1) and, for λ2 > 10, there is only one emptying state (0).
We are particularly interested in the behaviour of the system across the transition point where
λ2 = µ = 10.

Figure 3 shows the mean fluid level in the buffer which, as expected, increases continuously
with λ2. Figure 4 shows the mean busy period. The immediately striking artefact is the discon-
tinuity at λ2 = µ. With this parameterisation, the mean busy period drops at λ2 = µ and then
increases continuously in accordance with the results reported in [4] (see Section 4.1.1). The
behaviour of the busy period for λ2 < µ (two off-states) illustrates the additional capabilities of
our model. Note that a similar discontinuity is exhibited in the higher moments, as illustrated in
Figure 5, which shows the standard deviation of the busy period for the same parameterisation.

The discontinuity occurs when there is a change in the number of emptying states (or filling
states), here as a result of modifying the load on the system in terms of the fluid arrival rate in one
of the states of the controlling CTSMC. (Note that if an emptying state becomes a filling state
as a result of a change in load, the state holding time is required to be distributed exponentially.)
We might expect, therefore, that if two similar load parameters are modified together, so that the
number of emptying states varies between 1 and 3, then a discontinuity will emerge along each
of the two dimensions of change. This is verified in Figure 6, which shows the behaviour of
the mean busy period as both λ1 and λ2 are varied between 6 and 12; note that four continuous
subregions are formed.
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Figure 3: Mean fluid level (MFL) in a queue with two inputs, λ1 = 16 (solid line) and λ1 = 12 (dashed
line).
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Figure 4: Mean busy period (MBP) in a queue with two inputs, λ1 = 16 (solid line) and λ1 = 12 (dashed
line).
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Figure 5: Standard deviation of busy period (SDBP) in a queue with two inputs, λ1 = 16 (solid line) and
λ1 = 12 (dashed line).
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Figure 6: Mean busy period for a four-state model, as a function of λ1 and λ2.

5.3. Discontinuity

The observed discontinuity in the distribution of the busy period is counterintuitive and
warrants further explanation. The behaviour is a consequence of the instantaneous transition of
a state from being an emptying state to a filling state (or vice versa) as the load is increased (or
decreased), and can be understood by considering how busy periods are formed. To illustrate
the effect, consider a slightly simpler model in which there are just three states (0,1,2) whose
fluid arrival rates are respectively λ0 = 0, λ1 = µ − ε for some ε > 0, and λ2 > µ. This has
two emptying states (0 and 1) and one filling state (2).

A possible sample path of such a process is illustrated in Figure 7. The first time series (top)
shows the fluid arrival rate as a function of time and the second time series (bottom) shows
the volume of fluid in the buffer. For the time period shown, the input process first oscillates
between states 0 and 1, both of which are emptying states, at a time when the buffer is empty.
The buffer remains empty throughout this time since the fluid arrival rate in both states is less
than µ. On the next transition to state 2, the buffer begins to fill, since λ2 > µ. At the end of
the ensuing busy period, the buffer empties whilst the input process is in state 1.

Now consider what would happen for the identical sequence of transitions in the case where
λ1 = µ + ε, so that state 1 now becomes a filling state. This is illustrated in Figure 8. Busy
periods that existed previously will be extended in length by two mechanisms. Firstly, by the
fact that state 1 is now a filling state, so that the buffer volume is increasing in state 1, rather
than decreasing, this extra fluid requires additional time to be removed. Secondly, the busy
period may start earlier than before, as the result of a transition from state 0 to state 1, when the
buffer used to be empty prior to the start of the busy period considered above. If this additional
fluid is not drained in time, during a sojourn in state 0, the effect is to add a prefix to that busy
period. Both of these effects are illustrated in Figure 8.

Counter to this lengthening of the busy period is the possibility that new busy periods formed
by the above mechanism may ‘die young’ as a result of the system later transiting to the (only
remaining) empty state, and the buffer draining completely before the next busy period forms.
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Figure 7: Sample path for a three-phase input process with two emptying states.
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Figure 8: Sample path for a three-phase input process with one emptying state.

The effect of this is to introduce additional busy periods of relatively short duration. This is
illustrated in Figure 8, where the first two transitions from state 0 to state 1 introduce short-lived
busy periods that terminate following a subsequent transition back to state 0.

For this example, the intuition is thus as follows. If there is a relatively high probability of
state 2 being entered on a transition from state 1, then the first effect dominates, and the busy
periods will, on average, be extended in length. If the converse is true, however, then the second
effect dominates and sufficiently many short-lived busy periods will be formed to reduce their
average duration overall. In short, the effect of crossing the transition point is a step change in
the shape of the busy period distribution.

Note that a reduction in the average length of a busy period does not imply that the server
does less work overall. Clearly, if more fluid is introduced per unit time on average, then
the server must spend more time removing that additional fluid. Note also that the change in
behaviour is instantaneous at the point where λ1 exceeds µ, hence the discontinuity.

In order to illustrate the effect quantitatively, we set up the three-state system as follows.

• Constant service rate 10.

• Exponentially distributed state holding times in each state, with a transition rate para-
meter of 0.5 in each case.

• Fluid arrival rate 0 in state 0 and 12 in state 1, with the rate in state 2 varying from 9.7 to
10.3, i.e. crossing the transition point where the state-2 rate matches the service rate.
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Figure 9: Mean busy period for a three-state input process, p2,0 = 0.1 (solid line) and p2,0 = 0.9
(dashed line).
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Figure 10: Busy period density and cumulative distribution function (CDF) for the three-state model.
The flatter density corresponds to λ1 = 9.99 (lower curve on the CDF). When λ1 is increased to 10.01
(upper curve on the CDF), proportionally more short-lived busy periods are formed and the density shifts

upwards at t = 0.

• Probability transition matrix ⎛
⎝ 0 0.5 0.5

0.5 0 0.5
0.1 0.9 0

⎞
⎠ .

In this scenario a transition from state 2 to state 1 is significantly more likely than a transition
from state 2 to state 0, and the effect is to cause a shift upwards in the mean length of the busy
period across the discontinuity. This is illustrated in Figure 9 (p20 = 0.1).

If the transition matrix is modified so as to reverse the bias in the transition probabilities (i.e.
by setting p20 = 0.9 and p21 = 0.1) then, for λ1 > µ, more short-lived busy periods will be
formed, as there is a relatively much higher probability of entering the emptying state than the
other filling state. This is borne out in Figure 9 (p20 = 0.9). Note that similar behaviour can
be effected by adjusting the state holding times, instead of the state transition probabilities, e.g.
by decreasing (then increasing) the rate parameter of the exponential distribution for the state
2 holding time when the state transition probabilities are all set to 0.5.

The effect on the busy period distribution of crossing the discontinuity is shown in Figure10
forλ2 = 9.99 andλ2 = 10.01 (ε = 0.01) for the second scenario above (p20 = 0.9, p21 = 0.1).
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The increased abundance of relatively short busy periods when λ > µ, compared with when
λ < µ, can be seen clearly by comparing the two density functions. In general, the effect on the
busy period distribution of a change in the number of emptying (hence filling) states depends
subtly on the relationship between the transition probabilities and state holding times in the
modulating CTSMC. It is not immediately obvious how to predict the effect for a specific
parameterisation.

6. Conclusion

We have derived an equation for the Laplace transform (V ∗) of the busy period density
function in a fluid queue fed by a CTSMC. The fluid arrival rate in each state can be an arbitrary
constant, provided that the system is stable overall. Furthermore, for those states for which the
arrival rate exceeds the service rate, the state holding time can have an arbitrary probability
distribution, all other state holding times being exponentially distributed.

The busy period can be a useful measure in its own right (it measures the time that the server
is ‘pumping’ at its full capacity, for example), but the ability to compute moments of the busy
period is also significant in the compositional analysis of fluid queueing networks, where each
queue is modelled by ring-fencing it from the rest of the network. The actual input process is
then approximated by an intermediate MMAP, whose parameters are determined by matching
moments with the busy period(s) of the upstream queue(s). The analysis we have developed
enables a richer class of networks to be analysed, partly because of the relaxed assumption about
state holding times, but also because of our ability to handle arbitrary numbers of emptying
states. This is important in complex networks where the aggregate instantaneous fluid arrival
rate at a queue may often be less than the queue’s service rate. The ability to handle an arbitrary
number of emptying states is also likely to be important when modelling systems with large
numbers of inputs. For the system to be stable, it is inevitable that many of those inputs will
be emitting ‘work’, i.e. fluid, at low rates.

Our approach leads to exact analytical results in some cases, but in general involves
numerical methods to obtain the busy period density function and/or its moments. We have
demonstrated that our approach is computationally tractable, in that the computation of V ∗(α),
which involves a complex fixpoint calculation, converges successfully for the (many) para-
meter values that were required to complete the numerical Laplace transform inversions pro-
viding the density functions reported. Where only the moments of the busy period are required,
there is no need to work with V ∗ directly; numerically differentiating V ∗(α) at α = 0, using the
equations provided in Appendix A, yields corresponding fixpoint equations for the moments.
This direct calculation of the moments (as opposed to numerical integration using the density
function obtained by inverting V ∗(α)) is more efficient as only one set of fixpoint equations is
needed for each moment, corresponding to α = 0; recall that one fixpoint equation is required
for each α when dealing with V ∗(α).

Numerical experiments with selected case study systems showed somewhat unexpected
behaviour in respect of the busy period, as the load on the system is scaled. For example, a
continuous increase in the load (fluid arrival rate) in an emptying state was shown to lead to a
discontinuity in the busy period distribution as the load parameter exceeds the service rate. At
this point the state switches from being an emptying state to a filling state. As expected, the
fluid level distribution behaves continuously over the same parameter range. We found that,
for each such transition, leading to either an increase or decrease in the number of emptying
states, a discontinuity is found in the busy period distribution, although it proved hard to predict
in advance the direction of the discontinuity, e.g. whether the moments shift up or down. The
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effect observed depends subtly on the parameterisation of the model and it would be interesting
to see whether it could be predicted in advance in a simple way. The parameterisation of the
experiments used to explain the discontinuity effects in Section 5.3 were arrived at by a mixture
of educated guesses and trial and error.

Finally, we note that our result for the busy period can be used to compute the distribution
of the response time in a priority fluid queue that is partitioned into low- and high-priority fluid
compartments. The modulating input process is a CTMC with three states: high priority fluid
is assumed to arrive in state 1, low priority fluid is assumed to arrive in state 2, and state 0
represents the off-state (no input). Analogously with conventional priority queues, fluid in
the low priority compartment is only drained when the high priority compartment is empty.
The high priority fluid is processed as if the low priority fluid is completely absent from the
system, which corresponds to making state 2 an off-state. In this case, the set of off-states is
thus E = {0, 2} and the set of all states is S = {0, 1, 2}, so that ne = 2 and n = 3. We have
previously used this approach to model response times in a flash memory device with correlated
streams of read, write, and erase requests [8].

Appendix A. Moments of the busy period

Denoting the nth derivative of a function F by F (n), i.e. F (n)(α) = dnF/dαn for n ≥ 0, we
compute the mth moment of a busy period that starts in state i ∈ F and ends in state j ∈ E
as (−1)mV

∗(m)
ij (0). Applying Leibnitz’s rule to Theorem 1 requires us to determine the nth

derivatives (1 ≤ n ≤ m) of asl;kj and bs at α = 0, as well as the moments of the holding
times Hij. These are obtained in the subsections below, after which we give the result for the
moments of Vij. We will find the following results useful.

A.1. Higher derivative chain rules

Let f and g be (i + 1)th order differentiable functions in R → R, and, for nonnegative
integers j ≤ i, define the functions Dij : ((R → R) × (R → R)) → (R → R) by

Dij(f, g)(x) = di−j

dxi−j
(f (j+1)(g(x))g(1)(x)) (4)

so that, for i ≥ 0, Dii(f, g, x) = f (i+1)(g(x))g(1)(x). For ease of reading, we omit the
arguments f and g where the meaning is clear.

Lemma 2. For 0 ≤ j ≤ i,

Dij(x) = f (j+1)(g(x))g(i−j+1)(x) +
i−j−1∑
m=0

(
i − j

m

)
Di−m,j+1(x)g(m+1)(x).

Proof. Using definition (4) for 0 ≤ j ≤ i and applying Leibnitz’s rule, we obtain

Dij(x) = di−j

dxi−j
[f (j+1)(g(x))g(1)(x)]

=
i−j∑
m=0

(
i − j

m

)[
di−j−m

dxi−j−m
f (j+1)(g(x))

]
g(m+1)(x)
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=
i−j−1∑
m=0

(
i − j

m

)[
di−j−1−m

dxi−j−1−m
f (j+2)(g(x))g(1)(x)

]
g(m+1)(x)

+ f (j+1)(g(x))g(i−j+1)(x).

Given the functions f and g, we assume that f (i) and g(i) are known for 0 ≤ i ≤ k+1, given
integer k. Thus, certainly each Dii is also known. These values are used as base cases in the
recursion to calculate all the Dij for 0 ≤ j ≤ i ≤ k, from which Di0 = di+1f (g(x))/dxi+1,
evaluated at x = 0, computes the numerical values of the (i + 1)th moments.

More generally, for a suitably differentiable function F of n variables, we denote the
partial derivative ∂j1 · · · ∂jnF (x1, . . . , xn)/∂x

j1
1 · · · ∂x

jn
n by F ( �j)(x1, . . . , xn), where the vector

�j = (j1, . . . , jn). We define the n-component unit vectors 1k = (0, . . . , 0, 1, 0, . . . , 0), i.e.
1k
k = 1,1k

i = 0 for i �= k and the zero vector �0 = (0, . . ., 0). Then the above functions Dij

generalise to

D
i �j (f, g1, . . . , gn)(x) = di−J

dxi−J

( n∑
k=1

F ( �j+1k)(g1(x), . . . , gn(x))g
(1)
k (x)

)
,

where J = ∑n
i=1 ji . Thus, for i ≥ 0, D

i �j (F, g1, . . . , gn)(x) = ∑n
k=1 F ( �j+1k)(g1(x), . . . ,

gn(x))g
(1)
k (x) for all �j with J = i, i.e. whose components sum to i. This expression can be

computed directly from the definitions of F, g1, . . . , gn and their derivatives. Similarly,

Di�0(F, g1, . . . , gn)(x) = di+1f

dxi+1

since, by the chain rule,

dF

dx
=

n∑
k=1

F (1k)(g1(x), . . . , gn(x))g
(1)
k (x).

Using Leibnitz’s rule as in the lemma above now yields the following.

Proposition 4. For vectors of nonnegative components �j such that 0 ≤ J ≤ i,

D
i �j (f, g1, . . . , gn)(x) =

n∑
k=1

(
F ( �j+1k)(g1(x), . . . , gn(x))g

(i−J+1)
k (x)

+
i−J−1∑
m=0

(
i − J

m

)
D

i−m, �j+1k (x)g
(m+1)
k (x)

)

(omitting the function arguments of D
i−m, �j+1k on the right-hand side).

A.2. Proof of Proposition 3

Differentiating (3) m times with respect to x, we obtain

n∑
i=0

m∑
k=0

(
m

k

)
c
(m−k)
i (bi)(k) = 0. (5)
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From Lemma 2, with f (y) ≡ yi, g ≡ b, and writing Dkl(i) to abbreviate Dkl(f, b)(x), we
have, for i > 0 and m > 0,

(bi)(m) = Dm−1,0(i) = ibi−1b(m) +
m−2∑
j=0

(
m − 1

j

)
Dm−1−j,1(i)b

(j+1). (6)

The result now follows by substituting for (bi)(m) from (6) and separating out the terms b(m)

in (5), and then using (bi)(k) = Dk−1,0(i).

A.3. Derivatives of ask;ij

These are given by direct differentiation of the cofactor matrix C� of M in the following
proposition.

Proposition 5. Let As(α, β) = C�/
∏

1≤t �=s≤r (β − bt )
mt for 1 ≤ s ≤ r . Then a

(m)
sk;ij is the

(i, j)th element of the matrix

1

(ms − k)!Dm−1,�0
([

∂ms−kAs

∂βms−k

]
β=bs

, I, b1, . . . , br

)
(0),

where I is the identity function, �0 is the zero vector of length r , and the function D is applied
elementwise to the matrix As .

Proof. The defining expression,

ask;ij = 1

(ms − k)!
[

dms−k

dβms−k

(
cji

�s

)]
β=bs

,

is differentiated m times with respect to α at α = 0 using Proposition 4.

Note that the ms − k times partial differentiation of As with respect to β is straightforward
since the terms V ∗

ij are independent of β. A generalised version of Leibnitz’s rule can be used
if symbolic differentiation is not available.

The situation does not arise when the roots of the equation � = 0 are distinct, whereupon
a

(m)
s1;ij simplifies to the (i, j)th element of the matrix:

Dm−1,�0(As , I, b1, . . . , br )(0).

A.4. Derivatives of Gij

Proposition 6. For i ∈ F and j ∈ E ,

G
(m)
ij (α, φ(α)) =

∑
k∈F

pikH
∗
ik(α + φri)G

(m)
kj (α, φ) + pijH

∗(m)
ij (α + φri)

+
∑
k∈F

pik

m∑
l=1

(
m

l

)
H

∗(l)
ik (α + φri)G

(m−l)
kj (α, φ).

Proof. Differentiating (1) with respect to α, again using Leibnitz’s rule, we obtain

G
(m)
ij (α, φ(α)) = pijH

∗(m)
ij (α + φri) +

∑
k∈F

pik

m∑
l=0

(
m

l

)
H

∗(l)
ik (α + φri)G

(m−l)
kj (α, φ).
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For m = 1, this is a collection of ne × nf linear equations in the same number of variables
G

(1)
ij (α, φ(α)), functions of α only, which can be solved numerically at any given α: we will

only need α = 0 to compute moments. For m = 2, 3, . . . , the same applies to the variables
G

(m)
ij since the lower derivatives G

(n)
ij for n < m are known from previous steps. However, we

do need to compute H
∗(l)
ij (α + φri) for l = 1, 2, . . . . The functions H ∗

ij are given, so all we
need to do is apply Proposition 2, with f ≡ H ∗

ij , g(α) ≡ α + riφ(α) for the specified φ, giving
H

∗(l)
ij (α + φri) = Dl−1,0.

A.5. Moments of Vij

For the case of distinct roots bs , Theorem 1 gives V ∗
ij (α) = ∑

k∈E

∑ne
s=1 as1;kjGik(α, −bs).

Leibnitz’s rule then immediately gives the following result.

Theorem 2. The mth moment of a busy period that starts in state i ∈ F and ends in state
j ∈ E is

V
∗(m)
ij (0) = (−1)m

∑
k∈E

ne∑
s=1

m∑
l=0

(
m

l

)
a

(m−l)
s1;kj G

(l)
ik (0, −bs(0)).

All the derivatives in the summations on the right-hand side can be computed using the
results of the previous sections. A MATHEMATICA implementation of these results has been
used to solve the numerical examples given earlier.
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