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1. Introduction

Let Y beacomplex algebraic surface. Let usdenoteby Y (C) theset of closed points
of Y endowed with the Euclidean topology and let Hg'g(Y(C), 7.) bethe subgroup
of the homology group H>(Y (C),Z) generated by the fundamental classes of
algebraic curveson Y. If Y is an Enriques surface, we have

H(Y (0),2) = Ho(Y(C), Z).

Oneof the goals of the present paper isto proveasimilar property for real Enriques
surfaces with orientable real part. See Theorem 1.1 below.

By an algebraic variety Y over R we mean a geometrically integral, separated
scheme of finite type over the real numbers. The Galoisgroup G = {1, 0} of C/R
actson Y (C), theset of complex pointsof Y, viaan antiholomorphicinvolution and
thereal part Y (R) isprecisely the set of fixed points under thisaction. An algebraic
variety Y over R will be called areal Enriques surface, areal K3-surface, etc., if
the complexification Yo = Y ® C isacomplex Enriques surface, resp. a complex
K 3-surface, etc. Consider the following two classification problems:
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e classification of topological types of algebraic varietiesY over R (the mani-
folds Y (C) up to equivariant diffeomorphism),
e classification of topological types of the real parts Y (R).

For real Enriques surfacesthetwo classificationshave beeninvestigated recently
by Nikulinin[Ni2]. Thetopological classification of thereal partswascompleted by
Degtyarev and Kharlamov, who givein [DKh1] adescription of al 87 topological
types. Let us mention here that the real part of areal Enriques surface Y need not
be connected and that a connected component V' of Y (R) is either anonorientable
surface of genus < 11 or it is homeomorphic to a sphere or to atorus.

The problem of classifying Y (C) up to equivariant diffeomorphism still lacks a
satisfactory solution. Intheattemptsto solvethis problem, equivariant (co)homol ogy
plays an important role (see [Ni2], [NS], [DKh2]). It establishesfor any algebraic
variety Y over R alink between the action of G' on the (co)homology of Y (C) and
the topology of Y (RR). For example, if Y isof dimension d, the famousinequalities

dimH, (Y (R), Z/2) < idimHl(G,Hr(Y(C),Z/Z)), )
r=0
dim Heven (Y (R), Z/2) < idimHZ(G,Hr(Y(C),Z)), @)
r=0
im Hae(Y (2).2/2) < S dim (G 1, (V(©), 2) 3
r=0

(cf. [Kr1] or [Si]) can be proven using equivariant homology.

We will say that Y is Galois-Maximal or a GM-variety if the first inequality
turns into equality, and Y will be called Z-Galois-Maximal, or a Z-GM-variety if
inequalities (2) and (3) are equalities. When the homology of Y (C) istorsion free,
the two notions coincide (see [Krl, Prop. 3.6]).

A nonsingular projective surface Y over R with Y(R) # 0 is both GM and
Z-GM if it is simply connected (see [Krl, Sect. 5.3]). If H1(Y (C),Z) # 0O, asin
the case of an Enriques surface, the situation can be much more complicated. The
necessary and sufficient conditionsfor areal EnriquessurfaceY to beaGM-variety
were found in [DKh2]; in the present paper we will give necessary and sufficient
conditionsfor Y to be Z-GM. See Theorem 1.2.

As far as we know, this is the first paper on real Enriques surfaces in which
equivariant (co)homol ogy withintegral coefficientsisstudiedinstead of coefficients
inZ /2.\We expect that the extrainformation that can be obtained thisway (compare
for example equations (1)—(3)) will be useful in the topological classification of
real Enriques surfaces.

In Section 6 we demonstratethe usefulnessof integral coefficientsby computing
the Brauer group Br(Y") of any real Enriques surface Y. This completesthe partial
results on the 2-torsion of Br(Y") obtained in [NS] and [Ni1]. See Theorem 1.3.
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1.1. MAIN RESULTS

Let Y be an algebraic variety over R. Denote by Hﬁ'g(Y(]R), 7,/ 2) the subgroup
of the homology group H, (Y (R),Z/2) generated by the fundamental classes of
n-dimensional Zariski-closed subsetsof Y (R), see[BH] or [BCR]. Wewill say that
these classes can be represented by algebraic cycles. The problem of determining
these groupsis still open for most classes of surfaces.

For areal rational surface X we always have H39(X (C),7) = Hy(X(C),7)
and Hf'g(X(]R), 7]2) = H1(X (R),Z/2), see[S]. For real K3-surfaces, the situa-
tionisnot so rigid. In most connected components of the moduli space of real K3-
surfaces the points corresponding to a surface X with dim H f'g(X (R),Z/2) > k
form a countable union of real analytic subspaces of codimension k for any &k <
dim H1(Xo(R), Z/2), where X is any K3-surface corresponding to a point from
that component. In some componentsthisisonly truefor & < dim H1(Xo(R), Z/2);
these components do not contain any point corresponding to a surface X with
HY(X(R),Z/2) = Hy(X(R),Z/2), see [Ma2]. For real Abelian surfaces the
Situation is similar, see [Hu] or [Mal, Ch.V].

THEOREM 1.1. LetY beareal Enriquessurfacewith Y (R) # (). If all connected
components of thereal part Y (R) are orientable, then

H®(Y (R), 2./2) = Hi(Y (R), Z/2).
Otherwise,
dim H39(Y (R), z/2) = dim H1(Y (R),Z/2) — 1.

See Theorem 4.4 for more details.

In order to state further results we should mention that the set of connected
componentsof thereal part of areal EnriquessurfaceY hasanatural decomposition
into two parts Y (R) = Y7 U Y>. Following [DKh1] we will refer to these two parts
as the two halves of the real Enriques surface. In [Nil] it isshownthat Y is GM
if both halves of Y (R) are nonempty. It follows from [DKh2, Lem. 6.3.4] that if
precisely one of the halves of Y (R) isempty, thenY isGM if and only if Y'(R) is
nonorientable. Thisresult plays an important role in the proof of many of the main
results of that paper (see Sect. 7 inloc. cit.).

In the present paper we will seein the course of proving Theorem 1.1 that areal
Enriques surface with orientable real part is not a Z-GM-variety. In Section 5 we
also tackle the nonorientable case and combining our results with the results for
coefficientsin Z /2 that were already known we obtain the following theorem.

THEOREM 1.2. Let Y beareal Enriques surface with nonempty real part.

(i) Supposethetwo halvesY; and Y> are nonempty. Then Y is GM. Moreover, Y
isz-GMif and only if Y (R) is nonorientable.
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(i) Supposeoneof thehalvesY; or Yz isempty. ThenY isGM if and only if Y (RR)
is nonorientable. Moreover, Y is Z-GM if and only if Y (R) has at least one
component of odd Euler characteristic.

There are examples of all cases described in the above theorem (see [DKh1,
Figure 1]).

In Section 6 we study the Brauer group Br(Y') of a rea Enriques surface
Y using the fact that Br(Y") is isomorphic to the cohomological Brauer group
Br'(Y) = HE(Y,Gy,), since Y is a nonsingular surface. In [NS] Nikulin and
Sujatha gave various equalities and inequalities relating the dimension of the 2-
torsion of Br(Y") to other topological invariants of areal EnriquessurfaceY'. It was
shownin [Nil] that

dimy > Tor(2,Br(Y)) > 2s — 1,

where s is the number of connected components of Y'(R), and that equality holds
if Y is GM. Using the results in Section 5 on equivariant homology with integral
coefficients we can compute the whole group Br(Y').

THEOREM 1.3. LetY beareal Enriquessurface. Let s bethe number of connected
componentsof Y (R). If Y/(R) # ) is nonorientable then

Br(Y) ~ (z/2)> 1

If Y(R) # 0 isorientable then

BI(Y) = { (Z/2)25*2.® 7/4 if.both halves are nonempty,
(7./2)% if one half is empty.
IfY(R) = 0 then
Br(Y) =~ 7./2.

We wereinformed by the referee that Theorems 1.2 and 1.3 and aresult similar
to Theorem 1.1 have independently been obtained by V.A. Krasnov. His paper will
be published in 1zv. Ross. Akad. Nauk Ser. Math. 60 (1996), No. 5.

2. Equivariant homology and cohomology

Since the group G = Gal(C/R) actsin anatural way on the complex points of an
algebraicvariety Y defined over R, the best homology and cohomology theoriesfor
studying the topology of Y (R) arethe onesthat take this group action into account.
In[NS] étalecohomology H (Y, Z /2) isused, and in[Nil] the observationis made
that this is essentially the same as equivariant cohomology H*(Y (C); G,Z/2).
In [DKh2] Degtyarev and Kharlamov do not use equivariant cohomology as
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such, but instead a ‘stabilized” form of the Hochschild-Serre spectral sequence
Eiq(X; G,7/2) = HP(G,H(X,7Z/2)). This construction, due to I. Kalinin, is
based on the fact that if G = 7 /2then HP*2(G, M) = HP(G, M) for any group
M andany p > 0, andif M isaz/2-moduletheneven H?+1(G, M) = HP(G, M)
forany p > 0, soit is possible to squeeze the Hochschild—Serre spectral sequence
into 1, or at most 2 diagonals. They also use the analogue of this Kalinin spectral
sequence in homology. In the present paper we stick to the original equivariant
cohomology supplemented with a straightforward dual construction which we call
eguivariant Borel-Moore homology.

First we will recall some properties of equivariant cohomology for a spacewith
anactionof G = Z /2. Thenwewill givethe definition of equivariant Borel-Moore
homology and list the properties that we are going to need. In Section 3 we give
ashort treatment of the fundamental class of G-manifolds and formulate Poincaré
duality in the equivariant context.

Let X be atopological space with an action of G = Z /2. We denote the fixed
point set of X by X¢. In[Gr1] the groups H* (X ; G, F) are defined for a G-sheaf
F on X, which is a sheaf with a G-action compatible with the G-action on X.
Writing G = {1, ¢}, thisjust means that we are given an isomorphism of sheaves
¢: F — o*F satisfying o* () o ¢ = id. Now define

HP(X;G,—) = RPT(X,-)¢

the pth right derived functor of the G-invariant global sections functor. We have
natural mappings

el HP(X;G,F) — HP(X,F)°,
which are the edge morphisms of the Hochschild—Serre spectral sequence
F2,(X; G, F) = HY(G, (X, 7)) = HP*(X; G, )

For us, the most important G-sheaves will be the constant sheaf Z /2 and the
constant sheaves constructed from the G-modules Z (k) for £ € Z. Here we define
Z(k), to be the group of integers, equipped with an action of G definedby o - z =
(—1)*z. We will use the notation A (k) to denote either Z /2 or Z(k), and we will
sometimes use A instead of A(k) if k iseven.

Thereisacup-product

HP(X; G, A(k)) ® HI(X; G, A(l)) — H (X; G, Ak + 1))

and apull-back f* for any continuous equivariant mapping f: X — Y, which both
have the usual properties.

If X is apoint, H?(pt; G,M) = HP(G, M), which is cohomology of the
group G with coefficients in M. Recall that as a graded ring, H*(G,Z/2) is
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isomorphic to the polynomial ring Z/2[n], where 7 is the nontrivial element in
H'(G,7/2).By abuseof notation, wewill also usethe notation n for the nontrivial
element in H(G,7(1)) ~ 7/2 and ? for the nontrivial element in H%(G,7Z) ~
7 /2. This notation is justified by the fact that » € H(G,7%(1)) mapston €
H'(G,7/2) under the reduction modulo 2 mapping and 72 € H?(G,7Z) maps to
n? € H?(G,7./2).

The constant mapping X — pt induces a mapping H*(G,Z/2) —
H*(X;G,7/2) andwehaveanatural injection H?(X Y, 7,/2) — HP(X%,G,7./2),
S0 cup-product gives us for any G-space X a mapping

H*(X%,7./2)@H"(G,7./2) - H* (XY G,7/2),
whichiswell-known to be an isomorphism. Taking the inverse of thisisomorphism
and sending 7 to the unit element in H*(X“, Z/2) we obtain a surjective homo-
morphism of rings H*(X%;G,7/2) — H*(X%,7/2) and we define for A = 7
or Z/2and any k € Z the homomorphism of rings

B: H*(X;G, A(k)) = H*(X%,7./2)
to be the composite mapping

H*(X; @G, A(k)) = H*(XY%; G, A(k))

=5 HY(XY,G,2/2) — HY(X“,2/2),

where i* isinduced by theinclusioni: X < X. Notethat 3 coincides with the
mapping 5’ in [Kr3]. It is clear from the definition that

B(f*w) = f*B(w).
We use the notation
g HY(X; G, A(k)) — HP(XY;7/2),
for the mapping induced by 3.
In Section 5, we will need one technical lemma which can easily be proven

using the Hochschild—Serre spectral sequence.

LEMMA 2.1. Let X bea G-spacewith X # (. Theniif 65\(19) iS not surjective on
H?(X, A(K))“, thereisaclassw € H'(X; G, A(k—1)) suchthate} ;, q(w) # O,
but 5(w) = 0.
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The homology theory we are going to use is the natural dual to equivariant
cohomology. For an extensive treatment of its properties, see [vH]. Here we will
give a short account without proofs.

In the rest of this section we assume X to be alocally compact space of finite
cohomological dimension with an action of G = 7Z /2, and A(k) will be as above.
We define the equivariant Borel-Moore homology of X with coefficientsin A(k)

by
H,(X;G, A(k)) = R"PHomq(RT.(X, 7Z), A(k))

for p € 7, where Hom¢ stands for homomorphismsin the category of G-modules
and T, standsfor global sectionswith compact support; thisisthe natural equivari-
ant generalization of the usual Borel-Moore homology in the context of sheaf
theory (see, for example, [lv, Ch.IX]).

If X is homeomorphic to an n-dimensional locally finite simplicial complex
with a (simplicial) action of G, then we can determine H,(X; G, A(k)) from a
double complex analogous to the double complex (1-12) in [N1], which isused for
the calculation of equivariant cohomology. Consider the oriented chain complex
Cot — Cp2q — -+ — Cg° with closed supports (i.e., the elements of C;° are p-
chainsthat can beinfinite). The chain complex with coefficientsin A(k) is defined
by

CR(A(k)) = C° ® A(k),

andwegiveit thediagonal G-action. Then H,(X; G, A(k)) isnaturally isomorphic
tothe (—p)th homology group of thetotal complex associated to the double complex

] |
% (A(k)) =% C2°1(A(k)) 2% ¢ 1(A(k)) =2 -

! T !

C(A(R)) =2 C(A(R)) 2 C(A(R) =% -,

where the lower |eft-hand corner has bidegree (—n, 0). Note that by construction
H,(pt;G,A(k)) = H7P(G, A(k)), so Poincaré duality holds trivialy when X
is a point (and the proof of Poincaré duality in higher dimensions, as stated in
Proposition 3.1, is no more difficult than in the nonequivariant case). In particular,
H,(X;G, A(k)) need not be zero for p < 0.

The groups H,(X; G, A(k)) are covariantly functorial in X with respect to
equivariant proper mappings and the homomorphisms Z (k) — 7 /2 induce homo-
morphisms H,(X; G, Z(k)) — H,(X,; G,7Z/2) that fit into along exact sequence
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- = Hy(X; G, 2(k)) =53 H,(X; G, Z(k))
— Hy(X;G,Z/2) - H, 1(X;G,Z(k)) = ---. 4)
Asin the case of cohomology, there are natural homomorphisms
e B H,(X; G, A(K)) — Hy(X, A(k))Y,
which are the edge morphisms of a Hochschild-Serre spectral sequence

B (X; G, A(k)) = HP(G, Hy(X, A(k))) = Hp+q(X; G, A(K)).

If no confusion is likely, we use e instead of eﬁ‘(k); otherwise we will often write

ef = ey, e = ey ®* and e, = ¢,/% and we have similar conventions for

the edge morphisms ¢’ () in cohomology.
There is a cap-product between homology and cohomology

H,(X,;G,A(k)) @ H(X; G, A(l)) - Hp_o(X; G, A(k = 1)),
YRw =y Nuw,
and of course we have
TN (wUW)=(yNw)nu', ©)
e(yNw) =e(y) Ne(w), (6)
and for any proper equivariant mapping f: X — Y
(fev) Nw = fuly N frw). (7)

Recall that 7 is the nontrivial element in HY(G, A(1)). Cap-product with 7
considered as an element of H(X; G, A(1)) definesamap

st 8 Hy(X; G, A(k)) — Hy-1(X; G, A(k + 1)),
¥y ynn.
It can be shown, that the e{,‘(k) and s{,‘(k) fit into along exact sequence

A=D1 A(k)

2 Hy(X; G, A(k)) 2 Hy(X, A)

A(k=1)

— Hy(X; G, A(k = 1) “— Hp-1(X:G,A(R) — - (8)
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For sﬁ(’“) we adopt the same notational conventions as for eﬁ(’“) .

The natural mapping H,(X%, A) — H,(X%; G, A) and the cap-product give
us a homomorphism

H. (X% 7/2)@H*(G,7./2) - H.(XY G,7/2),

which is an isomorphism. Taking the inverse of this isomorphism and sending the
nontrivial element € H(G, Z/2) tothe unit elementin H*(X ¢, 7 /2) we obtain
a surjective homomorphism

H. (XY G,7/2) - H.(X9,7/2).

Furthermore, the mappingi.: H, (X% G,%/2) — H,(X; G, 7Z/2)induced by the
inclusion i : X% — X is an isomorphism for any n < 0, so we can define a
homomorphism

p: H (X;G,A(k)) = H,(X%,7/2)
by taking the composite mapping

H.(X;G,A(k) ™3 H,(X;G,7/2) 2 H.o(X;G,7Z/2)

@0 H.(X9:G,2/2) — H.(X9,2/2),

where N is any integer greater than the (cohomological) dimension of X. We use
the notation p,, for the restriction of p to H,(X; G, A(k)), we write p, , for the
composition of p,, with the projection H, (X%, 7/2) — H,(X“,7/2),and similar
definitions hold for py, even and py, odd-

It is clear from the above that

pos=p, )
and that the mapping
pn: Hy(X;G,7/2) = H(X%,7/2)

induced by p is surjective if n < 0. Note that, together with the Hochschild-Serre
spectral sequence B (X; G, Z/2), this proves equation (1). Equations (2) and (3)
can be derived from the Hochschild-Serre spectral sequence with coefficientsin Z
and the following proposition.

PROPOSITION 2.2. Let X be a locally compact space of finite cohomological
dimension with an action of G = Z /2. Then

Pn.even: Hn(X; G, Z(k)) = Heen(X%,2/2)
isan isomorphismif n < 0and n + k iseven, and
Pn,odd - Hn(X; G,Z(k)) — Hodd(XG,Z/Z)

isan isomorphismif n < 0andn + k isodd.
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Observe that it is not claimed that p,(H,(X;G,Z(k))) C H, (X%, 7/2) is
contained in Heyen(X 9,7 /2) (resp. Hoga(X 9,7 /2)). In fact this is often not the
case: forany v € H,(X; G,Z(k)) thereisap = n + k mod 2 such that

p(y) = Pn,p(’Y) + 6(Pn,p(7)) + Pn,p—Z('Y) + 6(Pn,p—2(7)) Ty (10)

where § is the Bockstein homomorphism H,,1(X%,7Z/2) — H,(X%,Z/2) asso-
ciated to the short exact sequence

0-%Z/2—72/4—7Z]/2—0

(compare [Kr3, Thm. 0.1]).

We will aso use the symbol § for the connecting homomorphism
H,1(X;G,Z2/2) - H,(X;G,Z(k)) of the long exact sequence (4), and we
have

Preen(0(7)) = Pnyreven(y) + 0(pPns1,0dd(7y)) if n 4k is even, (12)

Prodd(5(7)) = prttodd(y) + 0(Pnireen(y)) if n+E is odd. (12)

It is clear from the definition and the projection formula (7) that

p(y) N B(w) = p(y Nw), (13)
and for any proper mapping f: X — Y of G-spaces
p(fey) = fep (7). (14)

There are canonical isomorphisms Hy(pt; G, A) ~ A and Hy(pt, A) = A, so
the homomorphismsinduced by the constant mapping ¢: X — pt giveusfor every
compact G-space X the degree maps

deg,: Ho(X;G,A) — A
and
deg: Ho(X,A) — A,
which satisfy the equality
eodeg, =degoe. (15)

Extending the degree map on Ho(X“,7/2) by 0 to the whole of H, (X% 7/2),
we have by equation (14) that

degi(v) = deg(p(vy)) mod2, (16)
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forany v € Ho(X; G, A).
Finaly, define

H,(XY A)° = ker{deg: H,(X%, A) - A},
and Heen(X9,7/2)° = Hoyen(X9,2/2) N H. (XY, 7/2)°. We will record three
technical lemmas for usein Section 5. They can be proven by a careful inspection
of either the Hochschild—Serre spectral sequence E, ,(X; G, A(k)) or the long
exact sequence (8) with the appropriate coefficients.
LEMMA 2.3. Let X be a compact connected G-space with X = (). Then

p2: Ho(X;G,2/2) — H (X%, 7/2)°

issurjective if and only if the composite mapping

Hi(X;G,7)2) -5 Hy(X,2/2)% 22 H2(G, Hy(X,2/2))
is zero.
LEMMA 2.4. Let X be a compact connected G-space. Then
p2.even: Ho(X; G, Z) — Heyen(X,2/2)°

issurjective if and only if the composite mapping

Hi(X;G,Z(1)) —~ Hi(X,Z(1)° 2 H2(G, Hy(X, Z(1))
is zero.

LEMMA 2.5. Let X bealocally compact connected G-spacewith X = (3. Then
the mapping

p2.odd: H2(X;G,7Z(1)) = Hoa(XC,7/2)
issurjective if and only if the composite mapping

e+
Hy(X;G,2) —~ Hi(X,2)¢ 2 HX(G, Hi(X, 7))

is zero.

https://doi.org/10.1023/A:1000223408405 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000223408405

226 FREDERIC MANGOLTE AND JOOST VAN HAMEL

3. Thefundamental class of a G-manifold

Let again A beZ/2or Z. Let X be an A-oriented topological manifold of finite
dimension d with an action of G = {1, 0}. We will define the fundamental class
of X in equivariant homology with coefficientsin A(k) for k& even or odd.

It is well-known, that Hy(X,A) = A, and the A-orientation determines a
generator pux of Hy(X,A). Observe that we do not need to require X to be
compact, since we use Borel-Moore homology. If G acts via an A-orientation
preserving involution, then ux € Hy(X,A)Y, otherwise ux € Hy(X, A(1))%.
By the Hochschild—Serre spectral sequence (2) we havefor k& € Z anisomorphism
Hy(X;G,A(k)) ~ Hyq(X,A(k))“, given by the edge morphisms ef(k), So we
have the fundamental class

px € Ha(X; G, A(k)),
where & must have the right parity.

PROPOSITION 3.1 (Poincaré duality). Let X be a G-manifold with fundamental
classux € Hy(X; G, A(k)). Then the mapping

HY(X;G,A(l)) = Hy_i(X;G, Ak - 1)),
W pux Nw,
is an isomor phism.

Assuming that the action of G is locally smooth (i.e., each fixed point has a
neighbourhood that is equivariantly homeomorphic to R¢ with an orthogona G-
action), the fixed point set of X is again a topological manifold, but it need not
be A-orientable and it need not be equi-dimensional. However, if V' is aconnected
component of X and V' has dimension dg, then it has a fundamental class iy €
Hy,(V,7,/2), and we have that the restriction of pg.q,(1x) € Hay(X%,Z/2)t0 V
equalsuy (see[vH]). If X isaclosed sub-G-manifold of a G-manifold Y, then the
embeddingj: X — Y isproper, soit inducesamapping in equivariant homol ogy.
We definetheclassin Hy(Y'; G, A(k)) represented by X to be j.px.

Now let X bean agebraic variety defined over R. Wewant to definethe classin
Hyy(X; G,Z(d)) represented by a subvariety of dimension d. Asin [Fu], we will
distinguish two kinds of subvarieties, the geometrically irreducible subvarieties,
which arevarietiesover R themselves, and the geometrically reducible subvarieties,
which are irreducible over R, but which split into two components when tensored
with C. Then the complex conjugation exchanges these two components.

Any complex algebraic variety V' of dimension d has a fundamental class
py € Hoy(V(C),7), and the complex conjugation on C? preserves orientation if
d iseven, and reversesorientation if d isodd. Thisimpliesthat if j: 7 — X isthe
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inclusion of a subvariety of dimension d defined over R, then p 7. is a generator
of Hy(Z(C),7(d))“ if Z¢ isirreducible, and Hy(Z(C),7(d))“ is generated by
Wz, + pz, it Zc is the union of two distinct complex varieties Z; and Z, of
dimension d. Hence we define the fundamental class i, € Hy4(Z(C); G,Z(d))
of Z to be the inverse image of uz. (resp. of uz, + uz,) under e%d). The class
[Z] € Hpq(X(C); G, Z(d)) represented by Z isof coursedefinedto be j..uuz. If we
use the notation [Z(R)] € Hy(X (R),Z/2) for the homology class represented by
Z(R), asdefined in [BH], then indeed

p24,4(17]) = [Z(R)]. (17)
If Z, 7' are subvarieties of X defined over R which are rationally equivalent
over R (see [Fu] for adefinition), then [Z] = [Z'], so we get for every d < dim X
awell-defined cycle map
CHy(X) — Hq(X(C),G,Z(d))

from the Chow group in dimension d to equivariant homology. The image will be
denoted by Hg'dg(X(C); G,7(d)), and we see by equation (17), that

p2aa(HA(X (C); G, 2(d))) = HIY(X (R), Z/2). (18)

For X nonsingular projective of dimension n, this map coincides with the
composition of the mapping

CHy(X) — H* ™) (X(C); G, Z(n — d))

as defined in [Kr2] and the Poincaré duality isomorphism. As a consequence we
can use the following description of the image of the cycle map in codimension 1,
where we use the notation H3,(X (C); G,7 (1)) for the image of C H,,_1(X) in
cohomol ogy.

PROPOSITION 3.2. Let X be a nonsingular projective algebraic variety over R.
Let O; be the sheaf of germs of holomorphic functions on X(C). Then
Hazl,g(X(C); G,Z(1)) isthe kernel of the composite mapping
2
H*(X(C); G,Z(1)) — H*(X(C),Z) — H*(X(C), Op).
Proof. Thisfollowsimmediately from Proposition 1.3.1in [Kr2], which states
that Hég(X(C); G,7(1)) istheimage of the connecting morphism

HY(X(C);G,05) — H3(X(C); G, 7(1))
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in the long exact sequence induced by the exponential sequence of GG-sheaves

0—-7(1)— O, — O —0. O

4. Algebraiccycles

Thefollowing facts about real Enriques surfaces can be found in [Ni2] or [DKh1].
Let Y be area Enriques surface. Let X — Y be the double covering of Y by
acomplex K3-surface X. Since X (C) issimply connected, X (C) isthe universal
covering space of Y (C) and H1(Y (C),Z) = Z /2. The complex conjugation o on
Y (C) can be lifted to the covering X (C) by [Si, Th.Ag.5], and this can obviously
be done in two different ways. Hence we can give X the structure of a variety
over R in two different ways, which we will denote by X; and X,. The two
halvesY; and Y> of Y (R) mentioned in the introduction consist of the components
covered by X;(R) and X»(R), respectively. All connected components of X;(R)
and X>(R) are orientable, as is the case for the real part of any real K3-surface.
If a connected component of a half Y; is orientable, then it is covered by two
components of X;(R), which are interchanged by the covering transformation of
X . A nonorientable component of Y; is covered by just one component of X;(R);
thisis the orientation covering.

Since for an Enriques surface H?(Y (C),0,) = 0 (see [BPV, V.23]), we
see by Proposition 3.2 and Poincaré duality that HS"Q(Y((C); G,7(1)) =
H,(Y(C);G,Z(1)),s0 Hf'g(Y(IR{), Z./2) istheimage of the mapping

ap = p21: Hy(Y(C);G,Z(1)) — H1(Y (R),Z/2).

In order to determine the image of «, we will define o, for any n € Z by
an = ppat Hy(Y(C); G, Z(n — 1)) = Hi(Y(R), Z/2).

Observe, that o, = v, 10 s/ .

LEMMA 4.1. For a real Enriques surface Y the codimension of Im as in
H1(Y (R),Z/2) does not exceed 1.

Proof. We may assume that Y'(R) # (). Using the fact that a1 is an isomor-
phism by Proposition 2.2, and both s; and s; are surjective by the long exact
seguence (8), we seethat o1 issurjective. Sinceap = o o 55, it sufficesto remark
that if the cokernel of s; : H»(Y (C); G,Z(1)) — H1(Y (C); G,7Z) is nonzero, it
isisomorphicto H1(Y (C),Z) = 7 /2.

PROPOSITION 4.2. LetY beareal Enriquessurface. Aclassy € H1(Y (R),Z/2)
is contained in the image of a» if and only if

deg(y N wi(Y (R))) = 0,
wherew (Y (R)) € HY(Y (R), Z/2) isthe first Siefel-Whitney class of Y (R).
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Proof. Again we may assume that Y (R) # (. Denote by © the subspace of
H1(Y (R), Z /2) whose elements -y verify deg(y N w1(Y (R))) = 0.

If Y(R) isorientable, w1 (Y (R)) = 0and 2 = H1(Y (R), Z/2). Furthermore,
we have a surjective morphism

Hy(X1(R),2/2) © Hi(X2(R), Z/2) — Hi(Y (R),Z/2),

where the X1 and X, are the two real K3-surfaces covering Y (see the beginning
of this section). This morphism fitsin a commutative diagram

H3(X1(C); G, Z(1)) & Ha(X2(C); G,Z(1)) — H2(Y (C); G, Z(1))

a2
X140, X2
a, 69(12

H1(X1(R),Z/2) & H1(X2(R),Z/2)

Hy1(Y(R),Z/2).

Herethe o\ © H,(X1(C);G,Z(n — 1)) — Hi(X1(R),Z/2) are defined in the
same way as a,,. As H1(X(C),Z) = 0 for area K3-surface X, it follows from
Lemma 2.5, that o, * and a2 are surjective, which implies the surjectivity of ax.
In other words, Imay = Q.

Now assume that Y (RR) is nonorientable. Then w1 (Y (R)) # O, and by non-
degeneracy of the cap-product pairing codimQ = 1. First we will prove that
Imay C €.

Let K = —cwy(Y(C)) € H3(Y(C); G,7(1)), where cwi (Y (C)) is the first
mixed characteristic class of the tangent bundle of Y (C) as defined in [Kr2, 3.2].
Thene(K) € H?(Y (C), Z) isthefirst Chern classof the canonical linebundleof Y,
S0 2¢(K) = 0 (see[BPV, V.32]). Thismeansthat for any v € H,(Y (C); G,7Z(1))
we have degg(y N K) = deg(e(y) N e(K)) = 0, so deg(p(v) N B(K)) = O by
Equations (16) and (13).

The projection po2(y) of p(y) € H.(Y(R),Z/2) to Ho(Y (R),Z/2) is zero
by equation (10) and the projection >°(K) of B(K) € H*(Y(R),Z/2) to
HO(Y (R),Z/2) is zero by [Kr3, Th. 0.1]. Thisimplies

deg(p(7) N B(K)) = deg(p21(v) N B>H(K)),

but 5%1(K) = w1(Y(R)) by [Kr2, Th. 3.2.1], and p21(7y) = az(y) by definition,
so deg(az(y) Nw1(Y(R))) = 0. Inother words, Ima, C Q. Lemma4.1 now gives
usthat Ima, = Q. O

COROLLARY 4.3. Wth the above notation, a, is surjectiveif and only if Y'(R) is
orientable.

Theorem 1.1 in the introduction is an immediate consequence of
Proposition 4.2. We can even give an explicit description of Hf'g(Y(]R), 7]2).
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THEOREM 4.4. Let Y be a real Enriques surface. A classy € Hi(Y (R),Z/2)
can be represented by an algebraic cycle if and only if deg(y N w1(Y (R))) = 0.

5. Galoismaximality

The aim of this section is to describe which Enriques surfaces are Z-GM-varieties
and/or GM-varietiesin terms of the orientability of thereal part and the distribution
of the componentsover the halves. Seetheintroduction for the definition of Galois-
maximality and Section 4 for the definition of ‘halves'.

The proof of Theorem 1.2 will consist of a collection of technical results and
explicit constructions of equivariant homology classes. For completeness we also
prove the parts of Theorem 1.2 concerning coefficients in Z /2, although these
results are not new (see the Introduction).

LEMMA 5.1. Let Y be an algebraic variety over R. Then

(i) Yisz-GMifandonlyif e issurjectiveon H,(Y (C), 7)% and e, issurjective
onto H,(Y (C), z(1))¢ for all p.
(i) Y isGM if and only e,, is surjective onto H, (Y (C), 7 /2)¢ for all p.

Proof. This follows from the fact that Y is GM (resp. Z-GM) if and only if
the Hochschild-Serre spectral sequence E; (Y (C); G, A) istrivia for A = 7/2
(resp. ), and this can be checked by |OOkI ng at the edge morphisms, since we
have for every k& > 0 and every G-module M natural surjections H*(G, M) —
H¥2(G, M), and H’“(G,M) — H*1(G, M (1)), which are isomorphisms for
k> 0.

LEMMA 5.2. Let Y beareal Enriques surfacewith Y (R) # (). Then

(i) forany p € {0,2,3, 4},6;;_/_ is surjective onto H, (Y (C), Z(k)),
(i) for any p € {0, 3,4}, e, issurjective onto H,(Y (C),7/2)¢.

Proof. Thiscan be seenfrom the Hochschild—Serre spectral sequences(cf. [Krl,
Sect. 5)).

COROLLARY 5.3. Let Y be a real Enriques surface with Y/(R) # (. Then Y

is Z-GM if and only if e+/ is surjective onto H; (Y (C), Z(k))¢ for k = 0, 1.
Moreover, Y isGM if and only if e; and e, are surjective onto H;(Y (C), % /2)%,

resp. Hy(Y (C),Z/2)%.

LEMMA 5.4. Let Y be a real Enriques surface with Y(R) # (. If e, is not
surjective onto Ho (Y (C),Z/2)“, then ey is not surjective onto H1(Y (C),7/2)%.
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Proof. By Poincaré duality we see that if e, is not surjective onto
H,(Y (C),7/2)%, then e? is not surjective onto H?(Y (C),7Z/2)“. Let us assume
that 2 isnot surjective. Then by Lemma?2.1thereexistsanw € HY(Y (C); G, 7 /2)
such that e'(w) # 0, but B(w) = 0.

Now suppose e; is surjective onto H; (Y (C),7/2)%, then there exists ay €
H,(Y(C); G,7/2) such that

deg(e1(7) Net(w)) # 0.
This meansthat degi(y Nw) # O, but this contradicts

degs (v Nw) = deg(p(y) N B(w)) = deg(p(y) N0) = 0.
Hence e is not surjective.
PROPOSITION 5.5. Let Y beareal Enriques surfacewith Y (R) # (3. Then

() Y isz-GMif and only if ef and e; are nonzero.
(ii) Y isGM if and only if e; is nonzero.
(iii) If eq is zero then ef and e; are zero. In particular, if Y isZ-GM, then Y is
also GM.

Proof. If Y isan Enriques surface,
Hl(Y((C)a Z) = Hl(Y((C)a Z/Z) = Z/Za
5] ef/* and e; are surjectiveif and only if they are nonzero. By Lemmab.4, e; is

surjectiveif ey # 0, so we obtain the first two assertions from Corollary 5.3. The
|ast assertion follows from the commutative diagram

Hy(Y(C);G,7/2) —2+ Hy(Y(C),7/2). 0

LEMMA 5.6. Let Y be a real Enriques surface with Y (R) # (. Thenef = O if
and only if Y (R) isorientable.
Proof. We know from Corollary 4.3, that « is surjective if and only if Y (R)

Unz

is orientable. Since H;(Y (C),%Z) = 7/2, the mapping H1(Y (C),z)¢ —"~
H?(G, H,(Y (C), 7)) isanisomorphism, so Lemma 2.5 gives usthat o is surjec-
tiveif and only if eJ = 0.
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LEMMA 5.7. If the two halves Y; and Y, of a real Enriques surface Y are non-
empty, thene; # 0.

Proof. Let X bethe K3-covering of Y¢, let 7 be the deck transformation of this
covering and denote by o4 and o, the two different involutions of X (C) lifting the
involution o of Y (C). Let X;(R) bethe set of fixed points under o; and let p; bea
pointin X;(R) fori =1,2.

Let [ be an arc in X (C) connecting p; and p, without containing any other
point of X1(R) or X»(R). Then the union L of the four arcsi, o1(1), o2(1), 7(1) is
homeomorphicto acircle, and we havethat (L) = L. Thisimpliesthat theimage
A of LinY (C) isagain homeomorphic to acircle; we choose an orientation on .

Now G actson A viaan orientation reversing involution, so A representsa class
[A] in H1(Y (C); G,7Z(1)). Since X (C) — Y (C) isthe universal covering, and the
inverseimage of A is precisely L, hence homeomorphic to a circle, the class of A
isnonzeroin H1(Y (C),Z), soe; ([A]) # 0.

LEMMA 5.8. If exactly one of the halves Y1, Y> of a real Enriques surface Y is
empty, thene; = O if and only if Y'(R) is orientable.

Proof. If e; = 0,wehavee] = Oby Proposition 5.5andthen Y (R) isorientable
by 5.6. Conversely, if Y(R) is orientable and X»(R) = (), then X1(R) — Y (R)
is the trivial double covering, so it induces a surjection H,(X1(R),7%/2)° —
H.(Y(R),7Z/2)° where H,(—,7/2)° denotes the kernel of the degree map as
defined in Section 2. Since H1(X(C),z/2) = 0, the mapping p: Hz(X1(C);
G,7/2) — H.(X1(R),7/2)° is surjective by Lemma 2.3. Now the functoriality
of p with respect to proper equivariant mappings (Equation (14)) implies

p2i Ha(Y (C); G,2./2) — H.(Y (R),2/2)
is surjective, and Lemma 2.3 then givesthat e; is zero.

LEMMA 5.9. If exactly one of the halves Y1, Y> of a real Enriques surface Y is
empty, thene; # Oifandonlyif Y (R) hascomponentsof odd Euler characteristic.
Proof. AssumeY>, = (). By Lemma 2.4, it sufficesto show that

p2,een: Ha(Y(C); G, %) — Heen(Y (R), Z/Z)O

is surjective if and only if Y(R) has no components of odd Euler characteristic.
Although Y (R) need not be orientable, we can apply the K3-covering as in the
previouslemmaand provethat theimage of p, oen CONtainsabasisfor the subgroup
Ho(Y (R),Z/2) N Heyen(Y (R),Z/2)°, SO p2.even is surjectiveif and only if

p2,2" Hz(Y((C); G, Z) — Hz(Y(]R), Z/Z)

is surjective. We will use that H>(Y (R),Z/2) is generated by the fundamental
classes of the connected components of Y (R).
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Pick a component V' of Y (R). If V is orientable, it gives a class in
H,(Y (C); G, 7Z), which maps to the fundamental class of V' in Hy(Y (R),Z/2).
Now assume V' is nonorientable. Let [V] be the fundamental class of V' in
Hy(Y(R),Z/2), let [V]q bethe classrepresented by V in H»(Y (C); G, Z/2), and
let v = 6([V]@) be the Bockstein image in H1(Y (C); G,Z(1)). Then p1o(y) =
p2.2([V]e) = [V] by equation (11), so [V] isintheimage of H>(Y (C); G, Z) under
p22 if andonly if e] () = 0.

From the construction of y we seethat ey (y) = i.0([V]), wherei: V — Y (C)
istheinclusion and 6([V]) € H1(V,Z) is the Bockstein image of [V']. Therefore
e; () can berepresented by acircle A embeddedin V. Since X (C) — Y (C) isthe
universal covering, e; (7y) iszeroif andonly if theinverseimage L of A in X (C) has
two connected components. Let TV be the component of X;(R) covering V. Then
W isthe orientation coveringof V and L C W. If V hasodd Euler characteristic,
then it is the connected sum of areal projective plane and an orientable compact
surface. We see by elementary geometry that I is connected. If V' has even Euler
characteristic, it is the connected sum of a Klein bottle and an orientable compact
surface, and we see that L has two connected components.

Proof of Theorem 1.2. By Proposition 5.5, the first part of the theorem follows
from Lemma5.6 and Lemma5.7, and the second part of the theorem follows from
Lemma5.8 and Lemma5.9.

6. TheBrauer group
Let Y be anonsingular projective algebraic variety defined over R. Let

Br'(Y) = H5(Y,Gm)

be the cohomological Brauer group of Y, and let Tor(n, Br'(Y')) be the n-torsion
of Br'(Y'). We have a canonical isomorphism

Tor(n, Br'(Y))
~ Coker{ H3,(Y (0); G,2(1)) ™= H?(Y (C); G,Z/n(1))}, (19)
as can be deduced from the Kummer sequence

1 > [y r Gy — Gy -1,

and the well-known identifications
HE(Y, pn) ~ H¥(Y(C); G, Z/n(1))
and

HYY,G,,) ~ Pic(Y).
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It can be checked, that the mapping

B20: H?(Y (C);G,7./2) — H°(Y (R),Z/2)
induces a well-defined homomorphism

Tor(2,Br'(Y)) — H(Y (R), Z/2). (20)

If dmY < 2, in particular if Y is areal Enriques surface, we may identify
Br'(Y") with the classical Brauer group Br(Y") (see[Gr2, I, Th. 2.1]). Two of the
main problems considered in [NS] and [Ni1] are the calculation of dimy, Tor(2,
Br(Y)) and the question whether the mapping (20) is surjective for every red
Enriquessurface Y . Both problemswere solved for certain classes of real Enriques
surfaces. The second problem has been completely solved in [Kr3], where it is
shown that the mapping (20) is surjective for any nonsingular projective surfaceY’
defined over R (see Remark 3.3 in loc. cit.). The results in Section 5 will help us
to solve the first problem for every Enriques surface Y by determining the whole
group Br(Y).

LEMMA 6.1. Let Y be a nonsingular projective algebraic variety defined over R
such that

Hiy((Y(0); G, Z(1)) = HX(Y (0); G, Z(1)).
Then
Tor(Br'(Y)) ~ Tor(H3(Y (C); G, Z(1))).

Proof. By the hypothesis and the isomorphism (19) there is for every integer
n > 0 ashort exact sequence

H%(Y(0);G,Z(1)) ® Z/n — H*(Y(C); G,Z/n(1)) — Tor(n, Br' (Y)),

hence we deduce from the long exact sequence in equivariant cohomol ogy associ-
ated to the short exact sequence

0-7(1) 2 z(1) = Z/n(1) = 0,
that we have for every n > 0 anatural isomorphism
Tor(n, Br'(Y)) ~ Tor(n, H3(Y (C); G, Z(1))).

Proof of Theorem 1.3. By [Gr2, 1.2 and Il, Thm. 2.1] we have Br(Y) =
Tor(Br(Y)) = Tor(Br'(Y)). On the other hand, Tor(H3(Y(C);G,Z(1))) =
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H3(Y (C); G,Z(1)) since H3(Y (C), Z) = 7./ 2. Hence, by Lemma6.1 and Poincaré
duality

Br(Y) ~ H1(Y(C); G,Z(1)).
Now consider the long exact sequence (8) for A(k) = Z

+ —

- 2 Hy(Y(0),2) - Hi(Y(0); G, (1)) 2+ Ho(Y(C); G,Z) — ---

It follows from Proposition 2.2 and the long exact sequence (8) for A(k) = Z(1)
that p: H.(Y(C);G,Z) — H.(Y (R),Z/2) induces an isomorphism

ims; — Heen(Y (R),2/2)°.

We obtain an exact sequence

+

. 2/2 Hy(Y(C);G,Z(1)) = Haen(Y (R),Z/2)° - 0.  (21)

If Y/(R) # (isnonorientable, thene] # 0by Lemmas.6,s0 H1(Y (C); G, 7 (1)) ~
(7/2)%~1, which provesthe first part of the theorem.

Now assume Y (R) # () is orientable. Then ef = 0 by Lemma 5.6, so we get
from (21) an exact sequence

0—Z/2— Hi(Y(C);G,Z(1) = (/2)* 1 = 0.
Hence H1(Y (C); G, Z(1)) ~ (Z/2)% or (Z/2)%72& (Z/4).

In order to decide between these two possibilities, consider the following com-
mutative diagram with exact rows

H>(Y(C);G,7Z/2) 2. H1(Y(C); G,7(1)) x2, H1(Y (C); G,7(2))

e
2 € €

Hy(Y(C),2/2) —°

2 of of

Ho(Y (0); G,2,/2) 2 H(Y(C); G,7) — 2~ Hy(Y(C); G, 7).
We have that H1(Y (C); G,Z(1)) is pure 2-torsion if and only if 6~ is surjective.

We claim that 6~ is surjective if and only if e; = 0. Together with Lemmas 5.9
and 5.7 thiswould prove the second part of the theorem.
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Let us prove the claim. Since ef =0,wehavedoe; =0.1f e # 0, aneasy
diagram chase shows that 6~ is not surjective. On the other hand the following
diagram can be shown to be commutative.

+
\

Ha(Y(C): G, 2/2) ’ HL(Y(C): G, Z(1))

H>(Y(C);G,7Z)

mod2

In other words, Ims3 C Imé~. Now kere; = Imsj, soif e; = 0, then §~ is
surjective.

Finally, we will consider the short exact sequence (21) for the case Y (R) = ().
Then G acts freely on Y (C), so we have for all & that H,(Y (C);G,Z/2) =
H,(Y(C)/G,Z/2). By the remarks made in the introduction of Section 4, this
meansthat H1(Y (C); G,Z/2) = 7 /2 x 7 /2, and we can see from the long exact
sequence (8) for A(k) = Z/2that e; = 0. Thisimpliesthat ef” = 0 (see Proposi-
tion 5.5.iii), hence H1(Y (C); G, Z(1)) = Z /2.
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