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Abstract. For a real Enriques surfaceY we prove that every homology class inH1(Y (R); Z=2) can be
represented by a real algebraic curve if and only if all connected components of Y (R) are orientable.
Furthermore, we give a characterization of real Enriques surfaces which are Galois-Maximal and/or
Z-Galois-Maximal and we determine the Brauer group of any real Enriques surface Y .
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1. Introduction

LetY be a complex algebraic surface. Let us denote byY (C ) the set of closed points
of Y endowed with the Euclidean topology and let Halg

2 (Y (C );Z) be the subgroup
of the homology group H2(Y (C );Z) generated by the fundamental classes of
algebraic curves on Y . If Y is an Enriques surface, we have

H
alg
2 (Y (C );Z) = H2(Y (C );Z):

One of the goals of the present paper is to prove a similar property for real Enriques
surfaces with orientable real part. See Theorem 1.1 below.

By an algebraic variety Y over R we mean a geometrically integral, separated
scheme of finite type over the real numbers. The Galois group G = f1; �g of C =R
acts on Y (C ), the set of complex points of Y , via an antiholomorphic involution and
the real part Y (R) is precisely the set of fixed points under this action. An algebraic
variety Y over R will be called a real Enriques surface, a real K3-surface, etc., if
the complexification YC = Y 
 C is a complex Enriques surface, resp. a complex
K3-surface, etc. Consider the following two classification problems:
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� classification of topological types of algebraic varieties Y over R (the mani-
folds Y (C ) up to equivariant diffeomorphism),

� classification of topological types of the real parts Y (R).

For real Enriques surfaces the two classifications have been investigated recently
by Nikulin in [Ni2]. The topological classification of the real parts was completed by
Degtyarev and Kharlamov, who give in [DKh1] a description of all 87 topological
types. Let us mention here that the real part of a real Enriques surface Y need not
be connected and that a connected component V of Y (R) is either a nonorientable
surface of genus 6 11 or it is homeomorphic to a sphere or to a torus.

The problem of classifying Y (C ) up to equivariant diffeomorphism still lacks a
satisfactory solution. In the attempts to solve this problem, equivariant (co)homology
plays an important role (see [Ni2], [NS], [DKh2]). It establishes for any algebraic
variety Y over R a link between the action of G on the (co)homology of Y (C ) and
the topology of Y (R). For example, if Y is of dimension d, the famous inequalities

dimH�(Y (R);Z=2) 6
2nX
r=0

dimH1(G;Hr(Y (C );Z=2)); (1)

dimHeven(Y (R);Z=2) 6
2nX
r=0

dimH2(G;Hr(Y (C );Z)); (2)

dimHodd(Y (R);Z=2) 6
2nX
r=0

dimH1(G;Hr(Y (C );Z)); (3)

(cf. [Kr1] or [Si]) can be proven using equivariant homology.
We will say that Y is Galois-Maximal or a GM-variety if the first inequality

turns into equality, and Y will be called Z-Galois-Maximal, or a Z-GM-variety if
inequalities (2) and (3) are equalities. When the homology of Y (C ) is torsion free,
the two notions coincide (see [Kr1, Prop. 3.6]).

A nonsingular projective surface Y over R with Y (R) 6= ; is both GM and
Z-GM if it is simply connected (see [Kr1, Sect. 5.3]). If H1(Y (C );Z) 6= 0, as in
the case of an Enriques surface, the situation can be much more complicated. The
necessary and sufficient conditions for a real Enriques surfaceY to be a GM-variety
were found in [DKh2]; in the present paper we will give necessary and sufficient
conditions for Y to be Z-GM. See Theorem 1.2.

As far as we know, this is the first paper on real Enriques surfaces in which
equivariant (co)homology with integral coefficients is studied instead of coefficients
inZ=2.We expect that the extra information that can be obtained this way (compare
for example equations (1)–(3)) will be useful in the topological classification of
real Enriques surfaces.

In Section 6 we demonstrate the usefulness of integral coefficients by computing
the Brauer group Br(Y ) of any real Enriques surface Y . This completes the partial
results on the 2-torsion of Br(Y ) obtained in [NS] and [Ni1]. See Theorem 1.3.
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1.1. MAIN RESULTS

Let Y be an algebraic variety over R. Denote by H
alg
n (Y (R);Z=2) the subgroup

of the homology group Hn(Y (R);Z=2) generated by the fundamental classes of
n-dimensional Zariski-closed subsets of Y (R), see [BH] or [BCR]. We will say that
these classes can be represented by algebraic cycles. The problem of determining
these groups is still open for most classes of surfaces.

For a real rational surface X we always have Halg
2 (X(C );Z) = H2(X(C );Z)

and Halg
1 (X(R);Z=2) = H1(X(R);Z=2), see [Si]. For real K3-surfaces, the situa-

tion is not so rigid. In most connected components of the moduli space of real K3-
surfaces the points corresponding to a surface X with dimH

alg
1 (X(R);Z=2) > k

form a countable union of real analytic subspaces of codimension k for any k 6
dimH1(X0(R);Z=2), where X0 is any K3-surface corresponding to a point from
that component. In some components this is only true fork < dimH1(X0(R);Z=2);
these components do not contain any point corresponding to a surface X with
H

alg
1 (X(R);Z=2) = H1(X(R);Z=2), see [Ma2]. For real Abelian surfaces the

situation is similar, see [Hu] or [Ma1, Ch.V].

THEOREM 1.1. Let Y be a real Enriques surface with Y (R) 6= ;. If all connected
components of the real part Y (R) are orientable, then

H
alg
1 (Y (R);Z=2) = H1(Y (R);Z=2):

Otherwise,

dimH
alg
1 (Y (R);Z=2) = dimH1(Y (R);Z=2)� 1:

See Theorem 4.4 for more details.
In order to state further results we should mention that the set of connected

components of the real part of a real Enriques surfaceY has a natural decomposition
into two parts Y (R) = Y1 t Y2. Following [DKh1] we will refer to these two parts
as the two halves of the real Enriques surface. In [Ni1] it is shown that Y is GM
if both halves of Y (R) are nonempty. It follows from [DKh2, Lem. 6.3.4] that if
precisely one of the halves of Y (R) is empty, then Y is GM if and only if Y (R) is
nonorientable. This result plays an important role in the proof of many of the main
results of that paper (see Sect. 7 in loc. cit.).

In the present paper we will see in the course of proving Theorem 1.1 that a real
Enriques surface with orientable real part is not a Z-GM-variety. In Section 5 we
also tackle the nonorientable case and combining our results with the results for
coefficients in Z=2 that were already known we obtain the following theorem.

THEOREM 1.2. Let Y be a real Enriques surface with nonempty real part.

(i) Suppose the two halves Y1 and Y2 are nonempty. Then Y is GM. Moreover, Y
is Z-GM if and only if Y (R) is nonorientable.
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(ii) Suppose one of the halves Y1 or Y2 is empty. Then Y is GM if and only if Y (R)
is nonorientable. Moreover, Y is Z-GM if and only if Y (R) has at least one
component of odd Euler characteristic.

There are examples of all cases described in the above theorem (see [DKh1,
Figure 1]).

In Section 6 we study the Brauer group Br(Y ) of a real Enriques surface
Y using the fact that Br(Y ) is isomorphic to the cohomological Brauer group
Br0(Y ) = H2

�et(Y; Gm), since Y is a nonsingular surface. In [NS] Nikulin and
Sujatha gave various equalities and inequalities relating the dimension of the 2-
torsion of Br(Y ) to other topological invariants of a real Enriques surface Y . It was
shown in [Ni1] that

dimZ=2 Tor(2;Br(Y )) > 2s� 1;

where s is the number of connected components of Y (R), and that equality holds
if Y is GM. Using the results in Section 5 on equivariant homology with integral
coefficients we can compute the whole group Br(Y ).

THEOREM 1.3. LetY be a real Enriques surface. Let s be the number of connected
components of Y (R). If Y (R) 6= ; is nonorientable then

Br(Y ) ' (Z=2)2s�1:

If Y (R) 6= ; is orientable then

Br(Y ) '

(
(Z=2)2s�2� Z=4 if both halves are nonempty;

(Z=2)2s if one half is empty.

If Y (R) = ; then

Br(Y ) ' Z=2:

We were informed by the referee that Theorems 1.2 and 1.3 and a result similar
to Theorem 1.1 have independently been obtained by V.A. Krasnov. His paper will
be published in Izv. Ross. Akad. Nauk Ser. Math. 60 (1996), No. 5.

2. Equivariant homology and cohomology

Since the group G = Gal(C =R) acts in a natural way on the complex points of an
algebraic variety Y defined overR, the best homology and cohomology theories for
studying the topology of Y (R) are the ones that take this group action into account.
In [NS] étale cohomologyH�

�et(Y;Z=2) is used, and in [Ni1] the observation is made
that this is essentially the same as equivariant cohomology H�(Y (C );G;Z=2).
In [DKh2] Degtyarev and Kharlamov do not use equivariant cohomology as
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such, but instead a ‘stabilized’ form of the Hochschild-Serre spectral sequence
E2
p;q(X;G;Z=2) = Hp(G;Hq(X;Z=2)). This construction, due to I. Kalinin, is

based on the fact that if G = Z=2 then Hp+2(G;M) = Hp(G;M) for any group
M and any p > 0, and ifM is aZ=2-module then evenHp+1(G;M) = Hp(G;M)
for any p > 0, so it is possible to squeeze the Hochschild–Serre spectral sequence
into 1, or at most 2 diagonals. They also use the analogue of this Kalinin spectral
sequence in homology. In the present paper we stick to the original equivariant
cohomology supplemented with a straightforward dual construction which we call
equivariant Borel–Moore homology.

First we will recall some properties of equivariant cohomology for a space with
an action ofG = Z=2. Then we will give the definition of equivariant Borel–Moore
homology and list the properties that we are going to need. In Section 3 we give
a short treatment of the fundamental class of G-manifolds and formulate Poincaré
duality in the equivariant context.

Let X be a topological space with an action of G = Z=2. We denote the fixed
point set of X by XG. In [Gr1] the groups H�(X;G;F) are defined for a G-sheaf
F on X , which is a sheaf with a G-action compatible with the G-action on X .
Writing G = f1; �g, this just means that we are given an isomorphism of sheaves
& : F ! ��F satisfying ��(&) � & = id. Now define

Hp(X;G;�) = Rp�(X;�)G

the pth right derived functor of the G-invariant global sections functor. We have
natural mappings

e
p
F

: Hp(X;G;F)! Hp(X;F)G;

which are the edge morphisms of the Hochschild–Serre spectral sequence

E2
p;q(X;G;F) = Hp(G;Hq(X;F)) ) Hp+q(X;G;F)

For us, the most important G-sheaves will be the constant sheaf Z=2 and the
constant sheaves constructed from the G-modules Z(k) for k 2 Z. Here we define
Z(k), to be the group of integers, equipped with an action of G defined by � � z =
(�1)kz. We will use the notation A(k) to denote either Z=2 or Z(k), and we will
sometimes use A instead of A(k) if k is even.

There is a cup-product

Hp(X;G;A(k)) 
Hq(X;G;A(l)) ! Hp+q(X;G;A(k + l))

and a pull-back f� for any continuous equivariant mapping f : X ! Y , which both
have the usual properties.

If X is a point, Hp(pt;G;M) = Hp(G;M); which is cohomology of the
group G with coefficients in M . Recall that as a graded ring, H�(G;Z=2) is
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isomorphic to the polynomial ring Z=2[�], where � is the nontrivial element in
H1(G;Z=2). By abuse of notation, we will also use the notation � for the nontrivial
element in H1(G;Z(1)) ' Z=2 and �2 for the nontrivial element in H2(G;Z) '
Z=2. This notation is justified by the fact that � 2 H1(G;Z(1)) maps to � 2

H1(G;Z=2) under the reduction modulo 2 mapping and �2 2 H2(G;Z) maps to
�2 2 H2(G;Z=2).

The constant mapping X ! pt induces a mapping H�(G;Z=2) !

H�(X;G;Z=2) and we have a natural injectionHp(XG;Z=2) ,! Hp(XG;G;Z=2),
so cup-product gives us for any G-space X a mapping

H�(XG;Z=2)
H�(G;Z=2)! H�(XG;G;Z=2);

which is well-known to be an isomorphism. Taking the inverse of this isomorphism
and sending � to the unit element in H�(XG;Z=2) we obtain a surjective homo-
morphism of rings H�(XG;G;Z=2)! H�(XG;Z=2) and we define for A = Z

or Z=2 and any k 2 Z the homomorphism of rings

� : H�(X;G;A(k)) ! H�(XG;Z=2)

to be the composite mapping

H�(X;G;A(k)) i�
- H�(XG;G;A(k))

mod 2
- H�(XG;G;Z=2) - H�(XG;Z=2);

where i� is induced by the inclusion i : XG ,! X . Note that � coincides with the
mapping �0 in [Kr3]. It is clear from the definition that

�(f�!) = f��(!):

We use the notation

�n;p : Hn(X;G;A(k)) ! Hp(XG;Z=2);

for the mapping induced by �.
In Section 5, we will need one technical lemma which can easily be proven

using the Hochschild–Serre spectral sequence.

LEMMA 2.1. Let X be a G-space with XG 6= ;. Then if e2
A(k) is not surjective on

H2(X;A(k))G , there is a class! 2 H1(X;G;A(k�1)) such that e1
A(k�1)(!) 6= 0,

but �(!) = 0.

comp4075.tex; 5/12/1997; 11:40; v.7; p.6

https://doi.org/10.1023/A:1000223408405 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000223408405


REAL ENRIQUES SURFACES 221

The homology theory we are going to use is the natural dual to equivariant
cohomology. For an extensive treatment of its properties, see [vH]. Here we will
give a short account without proofs.

In the rest of this section we assume X to be a locally compact space of finite
cohomological dimension with an action of G = Z=2, and A(k) will be as above.
We define the equivariant Borel–Moore homology of X with coefficients in A(k)
by

Hp(X;G;A(k)) = R�pHomG(R�c(X;Z); A(k))

for p 2 Z;where HomG stands for homomorphisms in the category of G-modules
and �c stands for global sections with compact support; this is the natural equivari-
ant generalization of the usual Borel–Moore homology in the context of sheaf
theory (see, for example, [Iv, Ch.IX]).

If X is homeomorphic to an n-dimensional locally finite simplicial complex
with a (simplicial) action of G, then we can determine Hp(X;G;A(k)) from a
double complex analogous to the double complex (1-12) in [N1], which is used for
the calculation of equivariant cohomology. Consider the oriented chain complex
C1n ! C1n�1 ! � � � ! C10 with closed supports (i.e., the elements of C1p are p-
chains that can be infinite). The chain complex with coefficients in A(k) is defined
by

C
1

p (A(k)) = C
1

p 
A(k);

and we give it the diagonalG-action. ThenHp(X;G;A(k)) is naturally isomorphic
to the (�p)th homology group of the total complex associated to the double complex

� � � � � � � � �

C
1

n�1(A(k))

6

1��
- C

1

n�1(A(k))

6

1+�
- C

1

n�1(A(k))

6

1��
- � � �

C
1

n (A(k))

6

1��
- C

1

n (A(k))

6

1+�
- C

1

n (A(k))

6

1��
- � � � ;

where the lower left-hand corner has bidegree (�n; 0). Note that by construction
Hp(pt;G;A(k)) = H�p(G;A(k)), so Poincaré duality holds trivially when X

is a point (and the proof of Poincaré duality in higher dimensions, as stated in
Proposition 3.1, is no more difficult than in the nonequivariant case). In particular,
Hp(X;G;A(k)) need not be zero for p < 0.

The groups Hp(X;G;A(k)) are covariantly functorial in X with respect to
equivariant proper mappings and the homomorphisms Z(k)! Z=2 induce homo-
morphisms Hp(X;G;Z(k))! Hp(X;G;Z=2) that fit into a long exact sequence
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� � � ! Hp(X;G;Z(k)) �2
�! Hp(X;G;Z(k))

! Hp(X;G;Z=2)! Hp�1(X;G;Z(k))! � � � : (4)

As in the case of cohomology, there are natural homomorphisms

eA(k)p : Hp(X;G;A(k)) ! Hp(X;A(k))
G;

which are the edge morphisms of a Hochschild–Serre spectral sequence

E2
p;q(X;G;A(k)) = H�p(G;Hq(X;A(k))) ) Hp+q(X;G;A(k)):

If no confusion is likely, we use e instead of eA(k)p ; otherwise we will often write

e+p = e
Z(2k)
p ; e�p = e

Z(2k+1)
p , and ep = e

Z=2
p , and we have similar conventions for

the edge morphisms epA(k) in cohomology.
There is a cap-product between homology and cohomology

Hp(X;G;A(k)) 
Hq(X;G;A(l)) ! Hp�q(X;G;A(k � l));


 
 ! 7! 
 \ !;

and of course we have


 \ (! [ !0) = (
 \ !) \ !0; (5)

e(
 \ !) = e(
) \ e(!); (6)

and for any proper equivariant mapping f : X ! Y

(f�
) \ ! = f�(
 \ f
�!): (7)

Recall that � is the nontrivial element in H1(G;A(1)). Cap-product with �

considered as an element of H1(X;G;A(1)) defines a map

sA(k)p : Hp(X;G;A(k)) ! Hp�1(X;G;A(k + 1));


 7! 
 \ �:

It can be shown, that the eA(k)p and sA(k)p fit into a long exact sequence

� � �
s
A(k�1)
p+1
- Hp(X;G;A(k))

e
A(k)
p
- Hp(X;A)

- Hp(X;G;A(k � 1))
s
A(k�1)
p
- Hp�1(X;G;A(k)) - � � � : (8)
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For sA(k)p we adopt the same notational conventions as for eA(k)p .
The natural mapping Hp(X

G; A) ! Hp(X
G;G;A) and the cap-product give

us a homomorphism

H�(X
G;Z=2)
H�(G;Z=2)! H�(X

G;G;Z=2);

which is an isomorphism. Taking the inverse of this isomorphism and sending the
nontrivial element � 2 H1(G;Z=2) to the unit element in H�(XG;Z=2)we obtain
a surjective homomorphism

H�(X
G;G;Z=2)! H�(X

G;Z=2):

Furthermore, the mapping i�: Hn(X
G;G;Z=2)! Hn(X;G;Z=2) induced by the

inclusion i : XG ! X is an isomorphism for any n < 0, so we can define a
homomorphism

� : H�(X;G;A(k)) ! H�(X
G;Z=2)

by taking the composite mapping

H�(X;G;A(k)) mod 2
- H�(X;G;Z=2) \�N

- H<0(X;G;Z=2)

(i�)�1
- H�(X

G;G;Z=2) - H�(X
G;Z=2);

where N is any integer greater than the (cohomological) dimension of X . We use
the notation �n for the restriction of � to Hn(X;G;A(k)), we write �n;p for the
composition of �n with the projectionH�(X

G;Z=2)! Hp(X
G;Z=2), and similar

definitions hold for �n;even and �n;odd.
It is clear from the above that

� � s = �; (9)

and that the mapping

�n : Hn(X;G;Z=2)! H�(X
G;Z=2)

induced by � is surjective if n < 0. Note that, together with the Hochschild–Serre
spectral sequenceEr

p;q(X;G;Z=2), this proves equation (1). Equations (2) and (3)
can be derived from the Hochschild–Serre spectral sequence with coefficients in Z

and the following proposition.

PROPOSITION 2.2. Let X be a locally compact space of finite cohomological
dimension with an action of G = Z=2. Then

�n;even : Hn(X;G;Z(k))! Heven(X
G;Z=2)

is an isomorphism if n < 0 and n+ k is even, and

�n;odd : Hn(X;G;Z(k))! Hodd(X
G;Z=2)

is an isomorphism if n < 0 and n+ k is odd.
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Observe that it is not claimed that �n(Hn(X;G;Z(k))) � H�(X
G;Z=2) is

contained in Heven(X
G;Z=2) (resp. Hodd(X

G;Z=2)). In fact this is often not the
case: for any 
 2 Hn(X;G;Z(k)) there is a p � n+ k mod 2 such that

�(
) = �n;p(
) + �(�n;p(
)) + �n;p�2(
) + �(�n;p�2(
)) + � � � ; (10)

where � is the Bockstein homomorphism Hp+1(X
G;Z=2)! Hp(X

G;Z=2) asso-
ciated to the short exact sequence

0 ! Z=2! Z=4! Z=2! 0

(compare [Kr3, Thm. 0.1]).
We will also use the symbol � for the connecting homomorphism

Hn+1(X;G;Z=2) ! Hn(X;G;Z(k)) of the long exact sequence (4), and we
have

�n;even(�(
)) = �n+1;even(
) + �(�n+1;odd(
)) if n+ k is even; (11)

�n;odd(�(
)) = �n+1;odd(
) + �(�n+1;even(
)) if n+ k is odd: (12)

It is clear from the definition and the projection formula (7) that

�(
) \ �(!) = �(
 \ !); (13)

and for any proper mapping f : X ! Y of G-spaces

�(f�
) = f��(
): (14)

There are canonical isomorphisms H0(pt;G;A) ' A and H0(pt; A) = A, so
the homomorphisms induced by the constant mapping': X ! pt give us for every
compact G-space X the degree maps

degG: H0(X;G;A)! A

and

deg: H0(X;A)! A;

which satisfy the equality

e � degG = deg � e: (15)

Extending the degree map on H0(X
G;Z=2) by 0 to the whole of H�(X

G;Z=2),
we have by equation (14) that

degG(
) � deg(�(
)) mod 2; (16)
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for any 
 2 H0(X;G;A).
Finally, define

H�(X
G; A)0 = kerfdeg: H�(X

G; A)! Ag;

and Heven(X
G;Z=2)0 = Heven(X

G;Z=2)\H�(X
G;Z=2)0. We will record three

technical lemmas for use in Section 5. They can be proven by a careful inspection
of either the Hochschild–Serre spectral sequence Ep;q(X;G;A(k)) or the long
exact sequence (8) with the appropriate coefficients.

LEMMA 2.3. Let X be a compact connected G-space with XG 6= ;. Then

�2: H2(X;G;Z=2)! H�(X
G;Z=2)0

is surjective if and only if the composite mapping

H1(X;G;Z=2)
e1
�! H1(X;Z=2)G [�2

- H2(G;H1(X;Z=2))

is zero.

LEMMA 2.4. Let X be a compact connected G-space. Then

�2;even: H2(X;G;Z)! Heven(X
G;Z=2)0

is surjective if and only if the composite mapping

H1(X;G;Z(1))
e
�

1
- H1(X;Z(1))

G [�2
- H2(G;H1(X;Z(1))

is zero.

LEMMA 2.5. Let X be a locally compact connected G-space with XG 6= ;. Then
the mapping

�2;odd : H2(X;G;Z(1))! Hodd(X
G;Z=2)

is surjective if and only if the composite mapping

H1(X;G;Z)
e
+
1
- H1(X;Z)

G \�2
- H2(G;H1(X;Z))

is zero.
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3. The fundamental class of a G-manifold

Let again A be Z=2 or Z. Let X be an A-oriented topological manifold of finite
dimension d with an action of G = f1; �g. We will define the fundamental class
of X in equivariant homology with coefficients in A(k) for k even or odd.

It is well-known, that Hd(X;A) = A, and the A-orientation determines a
generator �X of Hd(X;A). Observe that we do not need to require X to be
compact, since we use Borel–Moore homology. If G acts via an A-orientation
preserving involution, then �X 2 Hd(X;A)

G, otherwise �X 2 Hd(X;A(1))G .
By the Hochschild–Serre spectral sequence (2) we have for k 2 Z an isomorphism
Hd(X;G;A(k)) ' Hd(X;A(k))

G , given by the edge morphisms eA(k)d , so we
have the fundamental class

�X 2 Hd(X;G;A(k));

where k must have the right parity.

PROPOSITION 3.1 (Poincaré duality). Let X be a G-manifold with fundamental
class �X 2 Hd(X;G;A(k)). Then the mapping

Hi(X;G;A(l)) ! Hd�i(X;G;A(k � l));

! 7! �X \ !;

is an isomorphism.

Assuming that the action of G is locally smooth (i.e., each fixed point has a
neighbourhood that is equivariantly homeomorphic to R

d with an orthogonal G-
action), the fixed point set of XG is again a topological manifold, but it need not
be A-orientable and it need not be equi-dimensional. However, if V is a connected
component of XG and V has dimension d0, then it has a fundamental class �V 2

Hd0(V;Z=2), and we have that the restriction of �d;d0(�X) 2 Hd0(X
G;Z=2) to V

equals �V (see [vH]). If X is a closed sub-G-manifold of a G-manifold Y , then the
embedding j : X ! Y is proper, so it induces a mapping in equivariant homology.
We define the class in Hd(Y ;G;A(k)) represented by X to be j��X .

Now letX be an algebraic variety defined overR. We want to define the class in
H2d(X;G;Z(d)) represented by a subvariety of dimension d. As in [Fu], we will
distinguish two kinds of subvarieties, the geometrically irreducible subvarieties,
which are varieties overR themselves, and the geometrically reducible subvarieties,
which are irreducible over R, but which split into two components when tensored
with C . Then the complex conjugation exchanges these two components.

Any complex algebraic variety V of dimension d has a fundamental class
�V 2 H2d(V (C );Z), and the complex conjugation on C

d preserves orientation if
d is even, and reverses orientation if d is odd. This implies that if j : Z ,! X is the
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inclusion of a subvariety of dimension d defined over R, then �ZC is a generator
of Hd(Z(C );Z(d))

G if ZC is irreducible, and Hd(Z(C );Z(d))
G is generated by

�Z1 + �Z2 if ZC is the union of two distinct complex varieties Z1 and Z2 of
dimension d. Hence we define the fundamental class �Z 2 H2d(Z(C );G;Z(d))

of Z to be the inverse image of �ZC (resp. of �Z1 + �Z2) under eZ(d)2d . The class
[Z] 2 H2d(X(C );G;Z(d)) represented by Z is of course defined to be j��Z . If we
use the notation [Z(R)] 2 Hd(X(R);Z=2) for the homology class represented by
Z(R), as defined in [BH], then indeed

�2d;d([Z]) = [Z(R)]: (17)

If Z;Z 0 are subvarieties of X defined over R which are rationally equivalent
over R (see [Fu] for a definition), then [Z] = [Z 0], so we get for every d 6 dimX

a well-defined cycle map

CHd(X)! H2d(X(C );G;Z(d))

from the Chow group in dimension d to equivariant homology. The image will be
denoted by Halg

2d (X(C );G;Z(d)), and we see by equation (17), that

�2d;d(H
alg
2d (X(C );G;Z(d))) = H

alg
d (X(R);Z=2): (18)

For X nonsingular projective of dimension n, this map coincides with the
composition of the mapping

CHd(X)! H2(n�d)(X(C );G;Z(n� d))

as defined in [Kr2] and the Poincaré duality isomorphism. As a consequence we
can use the following description of the image of the cycle map in codimension 1,
where we use the notation H2

alg(X(C );G;Z(1)) for the image of CHn�1(X) in
cohomology.

PROPOSITION 3.2. Let X be a nonsingular projective algebraic variety over R.
Let Oh be the sheaf of germs of holomorphic functions on X(C ). Then
H2

alg(X(C );G;Z(1)) is the kernel of the composite mapping

H2(X(C );G;Z(1))
e2
�
- H2(X(C );Z)! H2(X(C );Oh):

Proof. This follows immediately from Proposition 1.3.1 in [Kr2], which states
that H2

alg(X(C );G;Z(1)) is the image of the connecting morphism

H1(X(C );G;O�h)! H2(X(C );G;Z(1))

comp4075.tex; 5/12/1997; 11:40; v.7; p.13

https://doi.org/10.1023/A:1000223408405 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000223408405
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in the long exact sequence induced by the exponential sequence of G-sheaves

0 ! Z(1)! Oh ! O
�

h ! 0: 2

4. Algebraic cycles

The following facts about real Enriques surfaces can be found in [Ni2] or [DKh1].
Let Y be a real Enriques surface. Let X ! YC be the double covering of YC by
a complex K3-surface X . Since X(C ) is simply connected, X(C ) is the universal
covering space of Y (C ) and H1(Y (C );Z) = Z=2. The complex conjugation � on
Y (C ) can be lifted to the covering X(C ) by [Si, Th.A8.5], and this can obviously
be done in two different ways. Hence we can give X the structure of a variety
over R in two different ways, which we will denote by X1 and X2. The two
halves Y1 and Y2 of Y (R) mentioned in the introduction consist of the components
covered by X1(R) and X2(R), respectively. All connected components of X1(R)
and X2(R) are orientable, as is the case for the real part of any real K3-surface.
If a connected component of a half Yi is orientable, then it is covered by two
components of Xi(R), which are interchanged by the covering transformation of
X . A nonorientable component of Yi is covered by just one component of Xi(R);
this is the orientation covering.

Since for an Enriques surface H2(Y (C );Oh) = 0 (see [BPV, V.23]), we
see by Proposition 3.2 and Poincaré duality that H

alg
2 (Y (C );G;Z(1)) =

H2(Y (C );G;Z(1)), so Halg
1 (Y (R);Z=2) is the image of the mapping

�2 = �2;1 : H2(Y (C );G;Z(1))! H1(Y (R);Z=2):

In order to determine the image of �2 we will define �n for any n 2 Z by

�n = �n;1 : Hn(Y (C );G;Z(n� 1))! H1(Y (R);Z=2):

Observe, that �n = �n�1 � s
+=�
n .

LEMMA 4.1. For a real Enriques surface Y the codimension of Im �2 in
H1(Y (R);Z=2) does not exceed 1.

Proof. We may assume that Y (R) 6= ;. Using the fact that ��1 is an isomor-
phism by Proposition 2.2, and both s�0 and s+1 are surjective by the long exact
sequence (8), we see that �1 is surjective. Since �2 = �1 � s

�

2 , it suffices to remark
that if the cokernel of s�2 : H2(Y (C );G;Z(1)) ! H1(Y (C );G;Z) is nonzero, it
is isomorphic to H1(Y (C );Z) = Z=2.

PROPOSITION 4.2. LetY be a real Enriques surface. A class 
 2 H1(Y (R);Z=2)
is contained in the image of �2 if and only if

deg(
 \ w1(Y (R))) = 0;

where w1(Y (R)) 2 H1(Y (R);Z=2) is the first Stiefel–Whitney class of Y (R).
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Proof. Again we may assume that Y (R) 6= ;. Denote by 
 the subspace of
H1(Y (R);Z=2) whose elements 
 verify deg(
 \ w1(Y (R))) = 0.

If Y (R) is orientable, w1(Y (R)) = 0 and 
 = H1(Y (R);Z=2). Furthermore,
we have a surjective morphism

H1(X1(R);Z=2)�H1(X2(R);Z=2)! H1(Y (R);Z=2);

where the X1 and X2 are the two real K3-surfaces covering Y (see the beginning
of this section). This morphism fits in a commutative diagram

H2(X1(C );G;Z(1))�H2(X2(C );G;Z(1)) - H2(Y (C );G;Z(1))

H1(X1(R);Z=2)�H1(X2(R);Z=2)

�
X1
2 ��

X2
2

?

- H1(Y (R);Z=2):
?

�2

Here the �Xi
n : Hn(X1(C );G;Z(n � 1)) ! H1(X1(R);Z=2) are defined in the

same way as �n. As H1(X(C );Z) = 0 for a real K3-surface X , it follows from
Lemma 2.5, that �X1

2 and �X2
2 are surjective, which implies the surjectivity of �2.

In other words, Im�2 = 
.
Now assume that Y (R) is nonorientable. Then w1(Y (R)) 6= 0, and by non-

degeneracy of the cap-product pairing codim
 = 1. First we will prove that
Im�2 � 
.

Let K = �cw1(Y (C )) 2 H2(Y (C );G;Z(1)), where cw1(Y (C )) is the first
mixed characteristic class of the tangent bundle of Y (C ) as defined in [Kr2, 3.2].
Then e(K) 2 H2(Y (C );Z) is the first Chern class of the canonical line bundle of Y ,
so 2e(K) = 0 (see [BPV, V.32]). This means that for any 
 2 H2(Y (C );G;Z(1))
we have degG(
 \ K) = deg(e(
) \ e(K)) = 0, so deg(�(
) \ �(K)) = 0 by
Equations (16) and (13).

The projection �2;2(
) of �(
) 2 H�(Y (R);Z=2) to H2(Y (R);Z=2) is zero
by equation (10) and the projection �2;0(K) of �(K) 2 H�(Y (R);Z=2) to
H0(Y (R);Z=2) is zero by [Kr3, Th. 0.1]. This implies

deg(�(
) \ �(K)) = deg(�2;1(
) \ �
2;1(K));

but �2;1(K) = w1(Y (R)) by [Kr2, Th. 3.2.1], and �2;1(
) = �2(
) by definition,
so deg(�2(
)\w1(Y (R))) = 0. In other words, Im�2 � 
. Lemma 4.1 now gives
us that Im�2 = 
. 2

COROLLARY 4.3. With the above notation, �2 is surjective if and only if Y (R) is
orientable.

Theorem 1.1 in the introduction is an immediate consequence of
Proposition 4.2. We can even give an explicit description of Halg

1 (Y (R);Z=2).
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THEOREM 4.4. Let Y be a real Enriques surface. A class 
 2 H1(Y (R);Z=2)
can be represented by an algebraic cycle if and only if deg(
 \ w1(Y (R))) = 0.

5. Galois-maximality

The aim of this section is to describe which Enriques surfaces are Z-GM-varieties
and/or GM-varieties in terms of the orientability of the real part and the distribution
of the components over the halves. See the introduction for the definition of Galois-
maximality and Section 4 for the definition of ‘halves’.

The proof of Theorem 1.2 will consist of a collection of technical results and
explicit constructions of equivariant homology classes. For completeness we also
prove the parts of Theorem 1.2 concerning coefficients in Z=2, although these
results are not new (see the Introduction).

LEMMA 5.1. Let Y be an algebraic variety over R. Then

(i) Y isZ-GM if and only if e+p is surjective onHp(Y (C );Z)
G and e�p is surjective

onto Hp(Y (C );Z(1))G for all p.
(ii) Y is GM if and only ep is surjective onto Hp(Y (C );Z=2)G for all p.

Proof. This follows from the fact that Y is GM (resp. Z-GM) if and only if
the Hochschild–Serre spectral sequence Er

p;q(Y (C );G;A) is trivial for A = Z=2
(resp. Z), and this can be checked by looking at the edge morphisms, since we
have for every k > 0 and every G-module M natural surjections Hk(G;M) !
Hk+2(G;M), and Hk(G;M) ! Hk+1(G;M(1)), which are isomorphisms for
k > 0.

LEMMA 5.2. Let Y be a real Enriques surface with Y (R) 6= ;. Then

(i) for any p 2 f0; 2; 3; 4g; e+=�p is surjective onto Hp(Y (C );Z(k))G,
(ii) for any p 2 f0; 3; 4g; ep is surjective onto Hp(Y (C );Z=2)G.

Proof. This can be seen from the Hochschild–Serre spectral sequences (cf. [Krl,
Sect. 5]).

COROLLARY 5.3. Let Y be a real Enriques surface with Y (R) 6= ;. Then Y

is Z-GM if and only if e+=�1 is surjective onto H1(Y (C );Z(k))
G for k = 0; 1.

Moreover, Y is GM if and only if e1 and e2 are surjective onto H1(Y (C );Z=2)G,
resp. H2(Y (C );Z=2)G.

LEMMA 5.4. Let Y be a real Enriques surface with Y (R) 6= ;. If e2 is not
surjective onto H2(Y (C );Z=2)G, then e1 is not surjective onto H1(Y (C );Z=2)G.
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Proof. By Poincaré duality we see that if e2 is not surjective onto
H2(Y (C );Z=2)G, then e2 is not surjective onto H2(Y (C );Z=2)G. Let us assume
that e2 is not surjective. Then by Lemma 2.1 there exists an ! 2 H1(Y (C );G;Z=2)
such that e1(!) 6= 0, but �(!) = 0.

Now suppose e1 is surjective onto H1(Y (C );Z=2)G, then there exists a 
 2

H1(Y (C );G;Z=2) such that

deg(e1(
) \ e
1(!)) 6= 0:

This means that degG(
 \ !) 6= 0, but this contradicts

degG(
 \ !) = deg(�(
) \ �(!)) = deg(�(
) \ 0) = 0:

Hence e1 is not surjective.

PROPOSITION 5.5. Let Y be a real Enriques surface with Y (R) 6= ;. Then

(i) Y is Z-GM if and only if e+1 and e�1 are nonzero.
(ii) Y is GM if and only if e1 is nonzero.
(iii) If e1 is zero then e+1 and e�1 are zero. In particular, if Y is Z-GM, then Y is

also GM.

Proof. If Y is an Enriques surface,

H1(Y (C );Z) = H1(Y (C );Z=2) = Z=2;

so e+=�1 and e1 are surjective if and only if they are nonzero. By Lemma 5.4, e2 is
surjective if e1 6= 0, so we obtain the first two assertions from Corollary 5.3. The
last assertion follows from the commutative diagram

H1(Y (C );G;Z(k))
e
+=�

1
- H1(Y (C );Z(k))

H1(Y (C );G;Z=2)
?

e1
- H1(Y (C );Z=2):

?

2

LEMMA 5.6. Let Y be a real Enriques surface with Y (R) 6= ;. Then e+1 = 0 if
and only if Y (R) is orientable.

Proof. We know from Corollary 4.3, that �2 is surjective if and only if Y (R)

is orientable. Since H1(Y (C );Z) = Z=2, the mapping H1(Y (C );Z)
G [�2

-

H2(G;H1(Y (C );Z)) is an isomorphism, so Lemma 2.5 gives us that �2 is surjec-
tive if and only if e+1 = 0.
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LEMMA 5.7. If the two halves Y1 and Y2 of a real Enriques surface Y are non-
empty, then e�1 6= 0.

Proof. Let X be the K3-covering of YC , let � be the deck transformation of this
covering and denote by �1 and �2 the two different involutions of X(C ) lifting the
involution � of Y (C ). Let Xi(R) be the set of fixed points under �i and let pi be a
point in Xi(R) for i = 1; 2.

Let l be an arc in X(C ) connecting p1 and p2 without containing any other
point of X1(R) or X2(R). Then the union L of the four arcs l; �1(l); �2(l); �(l) is
homeomorphic to a circle, and we have that �(L) = L. This implies that the image
� of L in Y (C ) is again homeomorphic to a circle; we choose an orientation on �.

Now G acts on � via an orientation reversing involution, so � represents a class
[�] in H1(Y (C );G;Z(1)). Since X(C ) ! Y (C ) is the universal covering, and the
inverse image of � is precisely L, hence homeomorphic to a circle, the class of �
is nonzero in H1(Y (C );Z), so e�1 ([�]) 6= 0.

LEMMA 5.8. If exactly one of the halves Y1; Y2 of a real Enriques surface Y is
empty, then e1 = 0 if and only if Y (R) is orientable.

Proof. If e1 = 0, we have e+1 = 0 by Proposition 5.5 and thenY (R) is orientable
by 5.6. Conversely, if Y (R) is orientable and X2(R) = ;, then X1(R) ! Y (R)
is the trivial double covering, so it induces a surjection H�(X1(R);Z=2)0 !

H�(Y (R);Z=2)0, where H�(�;Z=2)0 denotes the kernel of the degree map as
defined in Section 2. Since H1(X(C );Z=2) = 0, the mapping �: H2(X1(C );
G;Z=2)! H�(X1(R);Z=2)0 is surjective by Lemma 2.3. Now the functoriality
of � with respect to proper equivariant mappings (Equation (14)) implies

�2 : H2(Y (C );G;Z=2)! H�(Y (R);Z=2)

is surjective, and Lemma 2.3 then gives that e1 is zero.

LEMMA 5.9. If exactly one of the halves Y1; Y2 of a real Enriques surface Y is
empty, then e�1 6= 0 if and only if Y (R) has components of odd Euler characteristic.

Proof. Assume Y2 = ;. By Lemma 2.4, it suffices to show that

�2;even : H2(Y (C );G;Z)! Heven(Y (R);Z=2)0

is surjective if and only if Y (R) has no components of odd Euler characteristic.
Although Y (R) need not be orientable, we can apply the K3-covering as in the
previous lemma and prove that the image of �2;even contains a basis for the subgroup
H0(Y (R);Z=2) \Heven(Y (R);Z=2)0, so �2;even is surjective if and only if

�2;2 : H2(Y (C );G;Z)! H2(Y (R);Z=2)

is surjective. We will use that H2(Y (R);Z=2) is generated by the fundamental
classes of the connected components of Y (R).
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Pick a component V of Y (R). If V is orientable, it gives a class in
H2(Y (C );G;Z), which maps to the fundamental class of V in H2(Y (R);Z=2).
Now assume V is nonorientable. Let [V ] be the fundamental class of V in
H2(Y (R);Z=2), let [V ]G be the class represented by V in H2(Y (C );G;Z=2), and
let 
 = �([V ]G) be the Bockstein image in H1(Y (C );G;Z(1)). Then �1;2(
) =
�2;2([V ]G) = [V ] by equation (11), so [V ] is in the image ofH2(Y (C );G;Z) under
�2;2 if and only if e�1 (
) = 0.

From the construction of 
 we see that e�1 (
) = i��([V ]), where i : V ! Y (C )
is the inclusion and �([V ]) 2 H1(V;Z) is the Bockstein image of [V ]. Therefore
e�1 (
) can be represented by a circle � embedded in V . SinceX(C ) ! Y (C ) is the
universal covering, e�1 (
) is zero if and only if the inverse imageL of� inX(C ) has
two connected components. Let W be the component of X1(R) covering V . Then
W is the orientation covering of V and L �W . If V has odd Euler characteristic,
then it is the connected sum of a real projective plane and an orientable compact
surface. We see by elementary geometry that L is connected. If V has even Euler
characteristic, it is the connected sum of a Klein bottle and an orientable compact
surface, and we see that L has two connected components.

Proof of Theorem 1.2. By Proposition 5.5, the first part of the theorem follows
from Lemma 5.6 and Lemma 5.7, and the second part of the theorem follows from
Lemma 5.8 and Lemma 5.9.

6. The Brauer group

Let Y be a nonsingular projective algebraic variety defined over R. Let

Br0(Y ) = H2
�et(Y; Gm)

be the cohomological Brauer group of Y , and let Tor(n;Br0(Y )) be the n-torsion
of Br0(Y ). We have a canonical isomorphism

Tor(n;Br0(Y ))

' CokerfH2
alg(Y (C );G;Z(1))

modn
- H2(Y (C );G;Z=n(1))g; (19)

as can be deduced from the Kummer sequence

1 - �n - Gm
�n
- Gm

- 1;

and the well-known identifications

Hk
�et(Y; �n) ' Hk(Y (C );G;Z=n(1))

and

H1(Y; Gm ) ' Pic(Y ):
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It can be checked, that the mapping

�2;0: H2(Y (C );G;Z=2)! H0(Y (R);Z=2)

induces a well-defined homomorphism

Tor(2;Br0(Y ))! H0(Y (R);Z=2): (20)

If dimY 6 2, in particular if Y is a real Enriques surface, we may identify
Br0(Y ) with the classical Brauer group Br(Y ) (see [Gr2, II, Th. 2.1]). Two of the
main problems considered in [NS] and [Ni1] are the calculation of dimZ=2 Tor(2,
Br(Y )) and the question whether the mapping (20) is surjective for every real
Enriques surface Y . Both problems were solved for certain classes of real Enriques
surfaces. The second problem has been completely solved in [Kr3], where it is
shown that the mapping (20) is surjective for any nonsingular projective surfaceY
defined over R (see Remark 3.3 in loc. cit.). The results in Section 5 will help us
to solve the first problem for every Enriques surface Y by determining the whole
group Br(Y ).

LEMMA 6.1. Let Y be a nonsingular projective algebraic variety defined over R
such that

H2
alg((Y (C );G;Z(1)) = H2(Y (C );G;Z(1)):

Then

Tor(Br0(Y )) ' Tor(H3(Y (C );G;Z(1))):

Proof. By the hypothesis and the isomorphism (19) there is for every integer
n > 0 a short exact sequence

H2(Y (C );G;Z(1))
 Z=n! H2(Y (C );G;Z=n(1))! Tor(n;Br0(Y ));

hence we deduce from the long exact sequence in equivariant cohomology associ-
ated to the short exact sequence

0 ! Z(1) �n! Z(1)! Z=n(1)! 0;

that we have for every n > 0 a natural isomorphism

Tor(n;Br0(Y )) ' Tor(n;H3(Y (C );G;Z(1))):

Proof of Theorem 1.3. By [Gr2, 1.2 and II, Thm. 2.1] we have Br(Y ) =
Tor(Br(Y )) = Tor(Br0(Y )). On the other hand, Tor(H3(Y (C );G;Z(1))) =
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H3(Y (C );G;Z(1)) sinceH3(Y (C );Z) = Z=2. Hence, by Lemma 6.1 and Poincaré
duality

Br(Y ) ' H1(Y (C );G;Z(1)):

Now consider the long exact sequence (8) for A(k) = Z

� � �
e
+
1
- H1(Y (C );Z)! H1(Y (C );G;Z(1))

s
�

1
- H0(Y (C );G;Z)! � � �

It follows from Proposition 2.2 and the long exact sequence (8) for A(k) = Z(1)
that � : H�(Y (C );G;Z)! H�(Y (R);Z=2) induces an isomorphism

im s�1
�

�! Heven(Y (R);Z=2)0:

We obtain an exact sequence

� � �
e
+
1
- Z=2! H1(Y (C );G;Z(1))! Heven(Y (R);Z=2)0

! 0: (21)

IfY (R) 6= ; is nonorientable, then e+1 6= 0 by Lemma 5.6, soH1(Y (C );G;Z(1)) '
(Z=2)2s�1, which proves the first part of the theorem.

Now assume Y (R) 6= ; is orientable. Then e+1 = 0 by Lemma 5.6, so we get
from (21) an exact sequence

0 ! Z=2! H1(Y (C );G;Z(1))! (Z=2)2s�1
! 0:

Hence H1(Y (C );G;Z(1)) ' (Z=2)2s or (Z=2)2s�2� (Z=4).
In order to decide between these two possibilities, consider the following com-

mutative diagram with exact rows

H2(Y (C );G;Z=2) ��
- H1(Y (C );G;Z(1)) �2

- H1(Y (C );G;Z(1))

H2(Y (C );Z=2)

e2

?

�
- H1(Y (C );Z)

e�1

?

�2
- H1(Y (C );Z)

e�1

?

H2(Y (C );G;Z=2)

e2

6

�+
- H1(Y (C );G;Z)

e+1

6

�2
- H1(Y (C );G;Z):

e+1

6

We have that H1(Y (C );G;Z(1)) is pure 2-torsion if and only if �� is surjective.
We claim that �� is surjective if and only if e�1 = 0. Together with Lemmas 5.9
and 5.7 this would prove the second part of the theorem.
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Let us prove the claim. Since e+1 = 0, we have � � e2 = 0. If e�1 6= 0, an easy
diagram chase shows that �� is not surjective. On the other hand the following
diagram can be shown to be commutative.

?

P
P
P
P
P
P
P
PPq

-

H2(Y (C );G;Z)

H2(Y (C );G;Z=2) H1(Y (C );G;Z(1))
��

s+2

mod2

In other words, Im s+2 � Im ��. Now ker e�1 = Im s+2 , so if e�1 = 0, then �� is
surjective.

Finally, we will consider the short exact sequence (21) for the case Y (R) = ;.
Then G acts freely on Y (C ), so we have for all k that Hk(Y (C );G;Z=2) =
Hk(Y (C )=G;Z=2). By the remarks made in the introduction of Section 4, this
means that H1(Y (C );G;Z=2) = Z=2� Z=2, and we can see from the long exact
sequence (8) for A(k) = Z=2 that e1 = 0. This implies that e+1 = 0 (see Proposi-
tion 5.5.iii), hence H1(Y (C );G;Z(1)) = Z=2.
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formation groups. Preprint (1996).

comp4075.tex; 5/12/1997; 11:40; v.7; p.23

https://doi.org/10.1023/A:1000223408405 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000223408405

