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ABSTRACT. The isothermal, non-sliding shallow-ice approximation, combined with mass conservation, is
a fundamental model for ice-sheet and glacier flow. It determines the ice extent, geometry and velocity
by the solution of a free-boundary problem. In this paper, the steady-state form of this problem is solved
directly, without time-stepping, thereby demonstrating a fully implicit scheme with no stability restric-
tions. The classical Mahaffy (1976) finite difference method is first reinterpreted as a ‘finite volume
element’ scheme that has both an everywhere-defined approximate thickness function and an approxi-
mation of the conservation equation in flux integral form. From this reinterpretation an improved
scheme is built by using better quadrature in the integral and upwinding on that part of the flux
which is proportional to the bed gradient. The discrete equations are then solved by a parallel
Newton scheme which respects the constraint that ice thickness is non-negative. The results show
good accuracy on both flat-bed and bedrock-step exact solutions. The method is then applied at high
resolution to model the steady-state geometry of the Greenland ice sheet, using only bedrock elevation
and present-day surface mass balance as input data.
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1. INTRODUCTION
The first successful numerical approach tomodeling ice-sheet
flow and geometry evolution in two horizontal dimensions
was the classical finite difference (FD) scheme introduced
by Mahaffy (1976). This scheme numerically solves the
shallow-ice approximation (SIA; Hutter, 1983) by computing
the ice flux at staggered-grid points using particular choices
when evaluating the ice thickness and surface slope. An ad-
vantage of the scheme is its relatively small stencil, which
reduces memory access in implicit or semi-implicit
implementations (Hindmarsh and Payne, 1996). It also
reduces interprocess communication when implemented in
parallel.

However, existing numerical models solve the time-de-
pendent SIA using explicit or semi-implicit time-stepping
(Hindmarsh and Payne, 1996; Huybrechts and others, 1996;
Bueler and others, 2005; Egholm and Nielsen, 2010; Jarosch
and others, 2013). Time-stepping restrictions are required in
that context to avoid classical instabilities at wavelengths
comparable with the grid spacing (Morton and Mayers,
2005). However, Bueler and others (2005) and Jarosch and
others (2013) point out that these schemes also involve ad
hoc treatment of the free margin of the ice sheet, for
example using projection to reset computed negative thick-
nesses back to zero. It would be desirable to escape both
time-stepping restrictions and model the margins in a math-
ematically principled manner. Both the goals are achievable
if one implicitly solves the SIA as a free-boundary problem.

Early work on the free-boundary problem in one horizon-
tal dimension (Hindmarsh and others, 1987) avoided ad hoc
margin treatment by tracking it as a moving grid point.
However, such margin-tracking does not easily extend to
two dimensions (2D) because the margin of a real ice sheet
is a curve of minimal smoothness and unknown-in-
advance topology. Calvo and others (2000, 2002) describe

the time-dependent free-boundary problem as a parabolic
complementarity problem, including the constraint that ice
thickness is never negative, but their work is limited to one
horizontal dimension and flat bed. They also solve each
time step numerically by a projected Gauss–Seidel scheme
(Ciarlet, 2002), which does not scale to large problem sizes.

Jouvet and Bueler (2012) pose and numerically solve the
steady-state free-boundary problem as a variational inequal-
ity (Kinderlehrer and Stampacchia, 1980) in two spatial
dimensions and with non-trivial bed topography. Because
this variational inequality is not equivalent to a minimization
problem, in the general (non-flat-bed) case, they solve it by
iterating well-posed but only approximate minimization pro-
blems that converge to the full equations in a fixed-point
limit. The success of this method is demonstrated in a 5 km
resolution steady-state calculation for Greenland using a pie-
cewise-linear triangulation finite element (FE) method (Elman
and others, 2005). In related work, Jouvet and Gräser (2013)
solve the SIA component of their time-stepping hybrid ice dy-
namics model (Winkelmann and others, 2011) through a se-
quence of minimization problems that use the thickness from
the previous time step. Each minimization problem is solved
by a constraint-adapted nonlinear multigrid Newton
iteration.

This paper follows Jouvet and Bueler (2012) by solving the
steady-state free-boundary problem, but it uses a Mahaffy-
like scheme on a structured rectangular mesh, and applies
the Newton iteration directly to the SIA equations. A continu-
ation scheme generates an iterate within the domain of con-
vergence of the Newton method, which then exhibits
quadratic convergence. We formulate the discrete problem
as a nonlinear complementarity problem (Benson and
Munson, 2006) and solve it in parallel using either of two
solvers from the open-source PETSc library (Balay and
others, 2015). Because we have successfully solved the
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whole free-boundary problem all at once, our improved
scheme is unconditionally stable as a fully implicit scheme,
at least when the bed is not too rough.

The first part of this paper has a historical side. We reinter-
pret the classical Mahaffy scheme as using a non-standard
quadrature choice in the conservation-of-mass flux integral.
In this reinterpretation the approximate ice thickness lives in
a continuous space of trial functions, unlike in the original
FD scheme. These trial functions are piecewise-bilinear on a
structured grid of rectangles, that is, they are Q1 FEs (Elman
and others, 2005). Our reinterpretation has both finite
volume (FV; LeVeque, 2002) and FE aspects. It is natural to
call the scheme a ‘finite volume element’ method (FVE; Cai,
1990; Ewing and others, 2002) because the weak form is
simply the flux integral itself. Adopting FVE thinking gives
the best of both (i.e. FE and FV) worlds from the point of
view of understanding the parts of the scheme.

This paper is organized as follows. Starting with a state-
ment of the steady, isothermal SIA model, the classical
Mahaffy scheme is recalled and then reinterpreted. Better
quadrature in the flux integral, and a bit of first-order upwind-
ing on the part of the flux that comes from the bedrock slope,
are then added. The resulting improved scheme, which has
the same stencil as the classical Mahaffy scheme, is called
‘M⋆’. The Newton solver for the discrete equations and con-
straints is then introduced. Initial numerical results in verifi-
cation cases are excellent for a flat-bed dome exact
solution and better than those from published higher-reso-
lution upwind schemes on a bedrock-step exact solution.
Then the method is applied to a real ice sheet by computing
the steady-state shape of the Greenland ice sheet in a
present-day modeled climate, at high resolution including
sub-kilometer grids. An Appendix addresses the analytical
calculation of the Jacobian in the M⋆ scheme.

2. CONTINUUM MODEL
The time-dependent evolution equation for the ice thickness
H is a statement of mass conservation:

∂H
∂t

þ∇ � q ¼ m: ð1Þ

Here q denotes the vertically integrated flux and m is the
surface mass balance, also called the accumulation/ablation
function. The SIA, the simplest relationship between H and q
in common use in glaciology, is a lubrication approximation
(Fowler, 1997) of the Stokes equations for ice in non-sliding
contact with the bed. We only consider the isothermal,
Glen’s flow law (Greve and Blatter, 2009) case. Let b be
the bed elevation and s=H+ b the ice surface elevation.
The flux q is given by

q ¼ �ΓHnþ2j∇sjn�1∇s: ð2Þ

Here Γ= 2A(ρg)n/(n+ 2) is a positive constant derived from
the power n≥ 1 and ice softness A in Glen’s flow law, and
from the ice density ρ and gravity g.

The flux q has several factored forms equivalent to Eqn (2).
For instance, because it is common to combine Eqns (1) and
(2) into a nonlinear diffusion equation (Huybrechts and
others, 1996), one may write

q ¼ �D∇s where D ¼ ΓHnþ2j∇sjn�1: ð3Þ

Diffusion interpretation Eqn (3) is fully appropriate in the flat-
bed case because Eqns (1) and (2) can be transformed to a
p-Laplacian diffusion equation (Calvo and others, 2002), but
in general a diffusion interpretation is obscured by the bed
gradient ∇b. If the bed is not flat then ∇s and ∇H are differ-
ent, so q is not strictly diffusive because it is not opposite to
the gradient of the conserved quantity, namely H. For the
same reason, non-flat beds are a barrier to proving well-
posedness of the SIA (Jouvet and Bueler, 2012).

As an alternative to the diffusion form, one can compute a
vertically averaged velocity V, and then treat the flux as
arising from the transport of H by V:

q ¼ VH where V ¼ �ΓHnþ1j∇sjn�1∇s: ð4Þ

In this case, Eqn (1) is apparently a hyperbolic conservation
equation, but this appearance is also deceiving because the
velocity depends in part on the gradient of the transported
quantity.

Furthermore, non-zero∇b generates numerical conserva-
tion errors at the ice margin. In addressing such errors,
Jarosch and others (2013) propose a third form for the flux,
namely

q ¼ ωHnþ2; where ω ¼ �Γj∇sjn�1∇s: ð5Þ

The vector field ω can be thought of as a ‘velocity’ which
transports Hn+2. In this thinking the combination of Eqns
(1) and (5) becomes a kind of nonlinear hyperbolic equation,
but again ω depends on the gradient of the transported quan-
tity H, so the combined equation is not truly hyperbolic.

We instead modify forms (3) and (5) to a split form

q ¼ �D∇HþWHnþ2; where W ¼ �Γj∇sjn�1∇b; ð6Þ

and where D is the same as in Eqn (3). The vector field W
transports Hn+2, and is proportional to ∇b. Only the magni-
tude of W is influenced by ∇H. Note that W ¼ 0 in the case
of flat beds, while ω is non-zero and q is actually diffusive in
that case.

The combination of Eqn (1) with any of the above flux forms
(2–6) defines a highly nonlinear diffusion–advection equation.
It is important to note that Eqns (2–6) all describe exactly the
same flux, even though the different appearances have often
influenced modelers’ choices of numerical scheme details.
Form (6) has the numerical advantage that we can apply a
non-oscillatory transport scheme toWHnþ2 while also preserv-
ing accuracy by applying a centered scheme to�D∇H. Also,
the often-dominant diffusion �D∇H is a strong motivation to
use implicit time-stepping, while implicit steps are not a
common approach for hyperbolic problems.

In this paper, we will primarily solve the steady-state form
of Eqn (1), namely

∇ � q ¼ m: ð7Þ
By the divergence theorem, applied to any subregion V of Ω,
we get the flux-integral form, equivalent to Eqn (7), namely

Z
∂V

q � n ds ¼
Z
V
m dx dy: ð8Þ

Here ∂V denotes the boundary of V, n is the outward
normal unit vector, and ds is the length element on the
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closed curve ∂V. Our numerical schemes will be based
on Eqn (8).

Equation (8) is solved as a boundary-value problem where
both H= 0 and q= 0 apply along the (free) boundary.
However, the location where those boundary conditions
apply is unknown (Jouvet and Bueler, 2012; Jarosch and
others, 2013). The ice-covered domain where Eqn (8)
applies cannot be treated as a small modification of a
known domain, though that approach can be taken in expli-
cit time-stepping schemes for Eqn (1) (Huybrechts and others,
1996; Bueler and others, 2005).

To be more precise about the free-boundary conditions,
the input data consist only of the bed elevation b(x, y) and
the (steady) surface mass balance m(x, y). These input data
must be defined on a larger, fixed computational domain
Ω than the ice-covered set. If the surface mass balance m
is sufficiently negative in the region near the boundary of
Ω on which Eqn (8) is solved, then H→ 0 at locations
inside Ω, namely at the ice margin (free boundary). But
also q ! 0 at the same locations because ice does not
flow past the margin. Because of the factor Hn+2 in Eqn
(3) for the diffusivityD, the problem has degenerate diffusiv-
ity, that is, D→ 0 at the free boundary. Solving Eqn (8), or
computing a time step of Eqn (1), as such a free-boundary
problem, without a boundary flux applied along any part
of the (fixed) boundary of Ω, is usually called a ‘whole’
ice-sheet model. We restrict our attention to such whole
ice-sheet models.

In this paper, we solve coupled Eqns (6) and (8), with D
computed as in Eqn (3). As noted above, we assume m is
sufficiently negative in the region near the boundary of Ω,
so that the ice-covered set is surrounded by ice-free areas.
Any contact with the ocean must be modeled as strongly
negative values of m, and there is no modeled floating ice.
The solution is the non-negative thickness function H(x, y),
defined everywhere in Ω and equal to zero where there is
no ice.

3. METHODS

3.1. Classical Mahaffy scheme
Consider the rectangular structured FD grid, with spacing Δx,
Δy, shown in Figure 1a. The Mahaffy (1976) scheme, which
is also ‘method 2’ in Hindmarsh and Payne (1996), calculates
a flux component at each of the staggered grid points based
on values at regular points (xj, yk). For the staggered grid we
introduce notation:

x±j ¼ xj ±
Δx
2
; y±k ¼ yk ±

Δy
2

: ð9Þ

At ðxþj ; ykÞ the scheme computes the x-component of the flux
by

qx
jþð1=2Þ;k ¼ �ΓðĤ jþð1=2Þ;kÞnþ2ðα▸Þn�1 s jþ1;k � s j;k

Δx
; ð10Þ

where sj,k=Hj,k+ bj,k,

Ĥ jþð1=2Þ;k ¼
Hj;k þHjþ1;k

2
; ð11Þ

and ‘α▸’ is an estimate of the slope j∇sj at ðxþj ; ykÞ given by

ðα▸Þ2 ¼ s jþ1;k � s j;k
Δx

� �2

þ s j;kþ1 þ s jþ1;kþ1 � s j;k�1 � s jþ1;k�1

4Δy

� �2

:

ð12Þ

At ðxj; yþk Þ the scheme computes

qy
j;kþð1=2Þ ¼ �ΓðĤ j;kþð1=2ÞÞnþ2ðα▸Þn�1 s j;kþ1 � s j;k

Δy
; ð13Þ

where Ĥj;kþð1=2Þ and α▸ are defined by swapping the roles of j
and k, and Δx and Δy, in Eqns (11) and (12). The slope ap-
proximation in Eqn (12) is perhaps the least-obvious aspect
of the Mahaffy scheme, but one may check that these FD for-
mulas are consistent (Morton andMayers, 2005) with Eqn (2).

The discretization of mass conservation, Eqn (7), uses
straightforward centered differences (Morton and Mayers,
2005):

qx
jþ1=2;k � qx

j�1=2;k

Δx
þ
qy
j;kþ1=2 � qy

j;k�1=2

Δy
¼ mj;k; ð14Þ

where mj,k=m(xj, yk). Equation (14) relates the nine
unknown values of H at the regular grid points in
Figure 1a, thus giving the ‘stencil’ of the scheme. It is required
to hold at all regular grid points, thus forming a (generally)
large, but finite, non-linear algebraic system.

3.2. FVE reinterpretation
The above description of the Mahaffy FD method is familiar to
numerical ice-sheet modelers, but we now re-derive the
scheme from an FVE perspective. Our reinterpretation uses
the same structured grid, but the regular grid points are now
nodes (degrees of freedom) for a continuous space of trial func-
tions. Any FEmethod supposes that an approximationHh of the
solution lies in some finite-dimensional space of functions that
are sufficiently well-behaved so that the approximate flux qh

is definedalmost everywhere. In an FVmethod, however, an in-
tegral equation like Eqn (8) is required to hold for a finite set of
control volumes V which tile Ω (LeVeque, 2002).

In Figure 1b, element □j;k is the rectangle with lower-left
corner at (xj, yk). When associated with bilinear functions
this rectangle is a Q1 FE (Elman and others, 2005). A basis
for bilinear functions on □j;k is the set

χ‘
x� xj
Δx

;
y � yk
Δy

� �
; ð15Þ

for ‘= 0, 1, 2, 3, where

χ0ðξ; ηÞ ¼ ð1� ξÞð1� ηÞ; χ1ðξ; ηÞ ¼ ξð1� ηÞ;
χ2ðξ; ηÞ ¼ ξη; χ3ðξ; ηÞ ¼ ð1� ξÞη:

With this order, χ‘= 1 on element corners traversed in
counterclockwise order (Fig. 1b).

Let Sh be the trial space of functions that are continuous on
the whole computational domain Ω and bilinear on each
element □j;k. Functions in Sh have a bounded gradient that is
defined almost everywhere, but the gradient is discontinuous
along the element edges (solid lines in Fig. 1b). We write ψj,k
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(x, y) for the unique function in Sh so that ψj,k(xr, ys)= δjrδks
(Fig. 2a); such functions form a basis of Sh.We seek an approxi-
mate solutionHh from Sh. Also let bh in Sh be the interpolant of
the bed elevation data b, and let sh=Hh+ bh. We denote by
qh the flux computed from formula (6) using Hh, bh and sh, so
that qh is well defined on the interior of each element.

Let Vj,k be the control volume with center at (xj, yk) shown
in Figure 1b. In the FVE method, we require Eqn (8) to hold
for q= qh and V equal to each Vj,k. Because we use a periodic
grid with Nx rectangles in the x-direction and Ny in the y-dir-
ection, there areN=NxNy nodes,N distinct control volumes
and N equations in the algebraic system.

Instead of control volumes, in a full FE interpretation we
would introduce test functions. We can also do this for our
scheme, as follows. LetS�h be the spaceof functions that are con-
stant on each control volume Vj,k. These functions are piece-
wise-constant and discontinuous along the control volume
edges. A basis of S�h is formed by those functions which are
one at a single node and zero at all other nodes; Figure 2b
shows such a function ωj,k. Requiring Eqn (8) to hold for each
control volume in our FVE method is equivalent to multiplying
Eqn (7) byωj,kand then integratingbyparts. Showing theequiva-
lencewould require generalized functions, however, as the de-
rivative of a step function is a Dirac delta function. Because we
adopt the FVE interpretation, we have no further need for test
functions, the space S�h or generalized functions.

Both this reinterpreted Mahaffy scheme, and our im-
proved scheme below, assume midpoint quadrature on the
right-hand integral in Eqn (8). Thus, we seek Hh in Sh

satisfying Z
∂V j;k

qh � n ds ¼ mj;k ΔxΔy ð16Þ

for all j, k.
However, it remains to do quadrature on the left in Eqn

(16). We decompose the integral over the four edges of ∂Vj,k:Z
∂V j;k

qh � n ds ¼
Z yþk

y�k

qxðxþj ; yÞ dy

þ
Z xþj

x�j

qyðx; yþk Þ dx

�
Z yþk

y�k

qxðx�j ; yÞ dy

�
Z xþj

x�j

qyðx; y�k Þ dx:

ð17Þ

The flux qh is a bounded function, but it is discontinuous across
element boundaries. In the first right-hand integral in Eqn (17),
the integrand has a jump discontinuity at the midpoint of the
interval of integration (i.e. at y= yk; note ∂sh=∂y ¼ shy is discon-
tinuous there), but formula (10) in theMahaffy FD scheme com-
putes the normal component of qh exactly at that midpoint.

The key to reinterpreting the Mahaffy scheme is that it
computes each integral in Eqn (17) by the midpoint method
using averages of the discontinuous surface gradient across
its jump discontinuities. The scheme does not use true

Fig. 2. (a) A continuous ‘hat’ basis function ψj,k in the trial space Sh. (b) A full FE interpretation of our scheme would use piecewise-constant
basis functions ωj,k from the test space S�h.

Fig. 1. (a) A structured FD grid with regular (dots) and staggered (triangles) points. (b) The same grid as an FVE grid with rectangular elements
□j;k (solid), nodes (dots), a dual rectangular control volume Vj,k (dashed) and Mahaffy’s flux-evaluation locations (circles). The corners of
element □j;k are locally indexed by ‘.
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quadrature because the integrand qh � n does not have a
value at the quadrature point. To turn this idea into formulas,
first observe that both the thickness Hh and the x-derivative
∂sh=∂x ¼ shx are continuous along the edge between elements
□j;k and □j;k�1. In fact, using element basis (15), the surface
gradient on □j;k has components

shx ðx; yÞ ¼
s jþ1;k � s j;k

Δx
1� y � yk

Δy

� �

þ s jþ1;kþ1 � s j;kþ1

Δx
y � yk
Δy

� �
;

shyðx; yÞ ¼
s j;kþ1 � s j;k

Δy
1� x� xj

Δx

� �

þ s jþ1;kþ1 � s jþ1;k

Δy
x� xj
Δx

� �
:

ð18Þ

On □j;k�1, shx and shy can be calculated by shifting the index k

to k− 1. Thus, the continuous function shx has value

shx ðxþj ; ykÞ ¼
s jþ1;k � s j;k

Δx
ð19Þ

at the midpoint in the first integral in Eqn (17). Similarly,
writing out Hh using element basis (15) gives

Hhðxþj ; ykÞ ¼
Hj;k þHjþ1;k

2
ð20Þ

at the midpoint, which is Eqn (11). The y-derivative shy ,
however, has different values above (on □j;k) and below
(on □j;k�1) the element boundary at y= yk. The limits are:

lim
y!yþk

shyðxþj ; yÞ ¼
s j;kþ1 � s j;k þ s jþ1;kþ1 � s jþ1;k

2Δy
;

lim
y!y�k

shyðxþj ; yÞ ¼
s j;k � s j;k�1 þ s jþ1;k � s jþ1;k�1

2Δy
:

ð21Þ

The average of these values is not a value of shy , but a recon-
struction:

bshyðxþj ; ykÞ ¼ s j;kþ1 þ s jþ1;kþ1 � s j;k�1 � s jþ1;k�1

4Δy
: ð22Þ

Formula (22) is exactly the estimate of ∂s/∂ywhich appears in
FD formula (12).

In our FVE reinterpretation, the Mahaffy FD scheme uses
Eqns (19), (20) and (22) in the midpoint rule for the first inte-
gral in Eqn (17):Z yþk

y�k

qxðxþj ; yÞ dy

≈ �ΔyΓðHhðxþj ; ykÞÞnþ2ðα▸Þn�1shx ðxþj ; ykÞ;
ð23Þ

where

ðα▸Þ2 ¼ shx ðxþj ; ykÞ2 þ bshyðxþj ; ykÞ2 ð24Þ

is the same as in Eqn (12). Thus, the FD scheme approximates
each integral on the right in Eqn (17) by a perfectly reason-
able quadrature ‘crime’ (cf. Strang, 1972) which averages
across a discontinuity to reconstruct a slope. Recognizing
the Mahaffy choice as quadrature-like, in this FVE context,
is beneficial because it allows us to improve the scheme.

3.3. Improved quadrature
If the goal is to accurately generate an algebraic equation
from Eqn (16) by quadrature along ∂Vj,k, then it is easy to
improve the quadrature. We also use flux decomposition
Eqn (6) with an upwind-type discretization on the bed gradi-
ent term WHnþ2 (Section 3.4). Together these improvements
define our new ‘M⋆’ scheme.

As already noted, the numerical approximation qh from
Eqn (6) is defined and smooth on the interior of each
element, but discontinuous across element boundaries. So
we break each interval of integration on the right-hand side
of Eqn (17) into two parts and use the midpoint rule, the
optimal one-point rule, on each half. For example, we
break the first integral at y= yk:Z yþk

y�k

qxðxþj ; yÞ dy

¼
Z yk

y�k

qxðxþj ; yÞ dy þ
Z yþk

yk
qxðxþj ; yÞ dy

¼ Δy
2

qxðxþj ; yk � Δy
4 Þ þ qxðxþj ; yk þ Δy

4 Þ
� �

:

ð25Þ

Recalling notation (9), values qxðxþj ; yk ± ðΔy=4ÞÞ are evalua-
tions of qh at points of continuity.

Similar formulas apply to the other three integrals on the
right-hand side of Eqn (17). Figure 3 shows all eight quadra-
ture points needed to compute the full integral over ∂Vj,k in
Eqn (16). At each point we evaluate the x- or y-component
of qh and multiply by a constant to get the appropriate inte-
gral. Thus, our approximation of Eqn (16) is

X7
s¼0

cs � qhðxsj ; yskÞ ¼ mj;kΔxΔy; ð26Þ

where

c0 ¼ c7 ¼ 0;
Δy
2

� �
;

c1 ¼ c2 ¼ Δx
2
; 0

� �
;

c3 ¼ c4 ¼ 0; �Δy
2

� �
;

c5 ¼ c6 ¼ �Δx
2
; 0

� �
;

ð27Þ

Fig. 3. For Eqn (26) we evaluate qhðx; yÞ at eight quadrature points
(numbered circles) along ∂Vj,k (dashed).
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and

x0j ¼ x7j ¼ xj þ Δx
2
; y1k ¼ y2k ¼ yk þ Δy

2
;

x1j ¼ x6j ¼ xj þ Δx
4
; y0k ¼ y3k ¼ yk þ Δy

4
;

x2j ¼ x5j ¼ xj � Δx
4
; y4k ¼ y7k ¼ yk � Δy

4
;

x3j ¼ x4j ¼ xj � Δx
2
; y5k ¼ y6k ¼ yk � Δy

2
:

ð28Þ

Implementing Eqn (26) therefore requires evaluating qh at
eight quadrature points, twice the number for the classical
method, but the stencils are the same because we use the
same nine nodal values of Hh.

One could propose further-improved quadrature, re-
placing the midpoint rule by higher-order methods like
two-point Gauss–Legendre. Also, our Q1 elements could be
replaced by higher-order (e.g. Q2) elements. Though such
methods have not been tested, in fact the largest numerical
SIA errors occur near the ice margin where the solution H
has unbounded gradient (Bueler and others, 2005). Thus,
higher-order quadrature and interpolation will not give
much advantage. We believe our improved method repre-
sents a measurable accuracy and Newton-iteration-conver-
gence improvement over the classical Mahaffy method
(Section 4) because it evaluates qh at points of continuity,
not because the order of quadrature or interpolation is
flawed in the classical scheme.

3.4. Improvement from upwinding
Jarosch and others (2013) show that the Mahaffy scheme can
suffer from significant mass-conservation errors at locations
of abrupt change in the bed elevation. In such cases where
the bed gradient dominates the flux, the mass-conservation
equation has more ‘hyperbolic’ character. Thus, Jarosch
and others use a high-resolution upwind scheme (LeVeque,
2002) based on flux form Eqn (5). They show reduced
mass-conservation errors in the sense of giving numerical
solutions that are closer in volume to an exact solution. On
the other hand, their scheme, which solves the time-depend-
ent Eqn (1) using explicit time-stepping, expands the stencil
because it needs values two grid spaces away.

By comparison, we propose using minimal first-order
upwinding based on form (6) of the flux, even though
upwinding is not required for either linear stability or non-
oscillation of our implicit scheme (Morton and Mayers,
2005). Numerical testing suggests upwinding is effective in
our case because it improves the conditioning of the
Jacobian matrix used in the Newton iteration (not shown).

In our improved scheme, the transport-type flux ~q ¼
WHnþ2 uses H evaluated at a location different from the
quadrature point, according to the direction of W evaluated
at the quadrature point. For instance, our upwind modifica-
tion at ðx0j ; y0kÞ – see Figure 3 – uses the sign of

Wx
� ¼ Wxðx0j ; y0kÞ; ð29Þ

where W ¼ ðWx; WyÞ. Note that the sign of Wx
� is opposite

that of the x-component of∇bh at ðx0j ; y0kÞ. We shift the evalu-
ation of H upwind by a fraction 0≤ λ≤ 1 of an element
width,

~qxðx0j ; y0kÞ

¼ Wx
�

Hðx0j � λΔx2 ; y
0
kÞ

nþ2
; Wx

� � 0;

Hðx0j þ λΔx2 ; y
0
kÞ

nþ2
; Wx

� < 0;

8<
:

ð30Þ

where λ= 0 is no upwinding and λ= 1 is the maximum
upwinding that does not expand the stencil. After experimen-
tation (Section 4) we have chosen λ= 1/4 (Fig. 4). This value
is seen to be large enough to improve the convergence of the
Newton iteration but also small enough to generate substan-
tial improvements in accuracy for the bedrock-step exact so-
lution. Upwinding at the other seven points along ∂Vj,k

(Fig. 3) uses similar formulas.
The ‘M⋆’ scheme combines both of the above improve-

ments. We will see in verification (Section 4) that it achieves
higher solution accuracy than either the apparently second-
order Mahaffy scheme or the higher-resolution explicit advec-
tion scheme of Jarosch and others (2013). (Note that the add-
itional non-smoothness of such high-resolution flux-limiting
methods suggests caution when using a Newton scheme,
which needs a differentiable residual function.) Convergence
of theNewton iteration is also improvedcomparedwith theclas-
sicalMahaffy scheme. Evidence fromboth verification and real-
istic (Section4) cases suggests that our formofupwinding ismost
important at locations of low regularity of the solution.

3.5. Solution of the equations
It remains to describe the numerical solution of the system of
highly nonlinear algebraic equations that is generated by the
formulas above. This is additionally non-trivial because an
inequality constraint applies to each unknown.

Each equation from the M� scheme is Eqn (26) with an
upwind modification like (30) at the quadrature points. The
resulting system of N=NxNy equations is

F j;kðHÞ ¼ 0: ð31Þ

This determines N unknowns, a vector H ¼ fHj;kg; note
Hh(x, y) and H are actually two representations of the same
discrete thickness approximation. System (31) is not ad-
equate by itself, however, because each unknown thickness
Hj,k must be non-negative, that is, H � 0.

Fig. 4. On element □j;k, when computing the flux at quadrature
points (circles), upwinding of the flux term ~q ¼ WHnþ2 evaluates
the thicknesses H at locations shown with ‘+’, one-quarter of the
way to the element boundary.
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These requirements can be combined into a variational
inequality (Kinderlehrer and Stampacchia, 1980; Jouvet
and Bueler, 2012). Equivalently, we can write them in non-
linear complementarity problem form (Benson and Munson,
2006):

H � 0; FðHÞ � 0; H � FðHÞ ¼ 0: ð32Þ

In fact, we will solve (32) by a ‘constrained’ Newton solver,
specifically either by the reduced-space (RS) or semi-smooth
(SS) methods (Benson and Munson, 2006) implemented in
PETSc (Balay and others, 2015). Our open-source C code con-
tains the residual and Jacobian evaluation subroutines. (To get
the code and examples, clone the repository at https://
github.com/bueler/sia-fve. Then see README.md in
directory petsc/.) However, the parallel grid management,
Newton solver, iterative linear solver and linear precondition-
ing methods are all inside the PETSc library, and they are
chosen at runtime. Both multigrid (Briggs and others, 2000)
and additive-Schwarz-type domain decomposition (Smith
and others, 1996) preconditioning are found to work (not
shown), but the latter is more robust and is used in all runs
in Section 4.

The Jacobian of system (31), that is, the N ×N matrix,

J ¼ ∂F j;k

∂Hp;q

� �
; ð33Þ

can be computed via hand-calculated derivatives. This
additional effort (Appendix) gives a speed-up only by a
factor of ∼1.5 over the alternative, namely FD computation
of Jacobian entries coming from additional residual (i.e. F)
evaluations. Such approximate Jacobians are efficiently
implemented in PETSc using ‘coloring’ of the nodes (Curtis
and others, 1974) so that, because of the nine-point stencil,
only a total of ten residual evaluations are needed to approxi-
mate J.

In the standard theory of Newton’s method, quadratic
convergence should occur if J is Lipschitz-continuous as a
function of the unknowns (Kelley, 2003). However, the flux
q here is generally not that smooth as a function of ∇H. In
particular, for 1< n< 3 the flux has a second derivative
which is not Lipschitz-continuous with respect to changes
in ∇H. Because Eqn (26) already involves differentiating q,
in the limit where the control volume shrinks to zero, the be-
havior of second derivatives of q determines the smoothness
of J and thus the convergence of the solver. Non-smoothness
is best seen in 1-D where Eqn (2) is

qðH;H0Þ ¼ �ΓHnþ2 H0 þ b0j jn�1ðH0 þ b0Þ: ð34Þ

when n >1,

∂2q
∂H02 ¼ �CHnþ2 H0 þ b0j jn�3ðH0 þ b0Þ ð35Þ

for C> 0. If n= 2, for example, this function undergoes a step
at H′=−b′, and thus is not Lipschitz. In fact, Eqn (35) is not
Lipschitz-continuous for 1 < n < 3.

Because we want methods that work for all exponents n≥
1, we regularize by replacing

j∇sj ! j∇sj2 þ δ2
� �1=2

; ð36Þ

with δ= 10−4, in computing q and its derivatives. This regular-
ization, which makes little difference when the surface slope is
of order 10−3 or larger, is similar to that used in regularizing the
viscosity in the Stokes equations (Greve and Blatter, 2009) and
other stress balance models (e.g. Bueler and Brown, 2009;
Brown and others, 2013).

A Newton solver requires an initial iterate, and we
generate it in two stages. First we apply a heuristic that
seems to work adequately for both ice sheet- and glacier-
scale problems, and is used by Jouvet and Gräser (2013) in
a time-stepping context. From the mass-balance data mj,k

(m a−1) we compute

Hð0Þ
j;k ¼ max 0;1000mj;k

� �
; ð37Þ

which builds the initial thickness simply by piling up 1000
years of accumulation.

In the second stage, we apply a simple ‘parameter con-
tinuation’ scheme, to aid in the convergence of the
Newton iteration on our degenerate, non-linear free-bound-
ary problem. We first apply the Newton method to an
easier free-boundary problem, one with constant diffusivity.
Then we adjust a continuation parameter ε until we solve
the full SIA free-boundary problem. Specifically, for 0≤
ε≤ 1 we define

nðεÞ ¼ ð1� εÞnþ εn0 and
DðεÞ ¼ ð1� εÞDþ εD0;

ð38Þ

where n is the original exponent, D is computed in Eqn (3),
n0= 1, and D0 is a typical scale of diffusivities for the
problem (e.g. D0= 0.01m2 s−1 for a glacier problem or
D0= 10m2 s−1 for an ice sheet). Note n(1)= n0 and
D(1)=D0, while n(0)= n and D(0)=D. We consecutively
solve free-boundary problems corresponding to 13 values
of ε:

εi ¼ ð0:1Þi=3; for i ¼ 0; . . . ; 11;
0; i ¼ 12:

�
ð39Þ

At the last stage ε12= 0, the problem is the unmodified SIA.
Note the parameter εi is reduced by an order of magnitude as
i increases by 3.

We start with ε0= 1, so we are solving (32) with values
n= n0 and D=D0 and initial iterate H(0) from (37). Once
this first stage converges, the ice margin has moved far
from the equilibrium line – which is the margin of initial
iterate (37) – into the ablation zone as expected. The solution
is then used as the initial iterate for problem (32) with the
second value ε1= (0.1)1/3≈ 0.46 in Eqn (38). Continuing in
this way we eventually solve the unregularized n(0)= n and
D(0)=D problem.

3.6. Time-stepping
The relationship between our steady-state computations and
fully implicit time-stepping methods for Eqn (1) deserves
examination. We will be able to exploit such time steps to
make the Newton solver for the steady-state problem more
robust for rough-bed cases.

The backward-Euler (Morton and Mayers, 2005) approxi-
mation of Eqn (1) is

H‘ �H‘�1

Δt
þ∇ � q‘ ¼ m; ð40Þ
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where H‘(x, y)≈H(t‘, x, y) is the unknown thickness, H‘−1 is
known from the previous time step, and q‘ is the flux com-
puted using H‘. Our methods extend easily from solving
Eqn (32) to solving Eqn (40), subject, as before, to the con-
straint H‘≥ 0.

Solving for steady state effectively requires taking infinite-
duration implicit time steps in Eqn (40). Using finite Δt is
easier than the steady-state problem, however, both because
the initial iterate can be taken to be the solution at the previous
time step, and because the continuation sequence can either be
avoided entirely or truncated to only include small ε values.
Even more important is the key fact that solving Eqn (40) gets
easier as Δt→ 0, because the Jacobian J has a dominanting di-
agonal contribution from the H‘/Δt term.

If a Newton iteration fails to converge in the steady-state
case, we might hope that it would still converge for Eqn
(40) using finite Δt, and this is what we see in practice. In
fact, switching from the steady-state problem to long (e.g.
0.1–100 years depending on resolution) backward-Euler
time steps is a ‘recovery strategy’ to cope with Newton
solver difficulties when dealing with highly irregular bed top-
ography data in the steady-state problem (Section 4).

4. RESULTS
We first apply our M� method in two examples where exact
solutions are known. We use the exact solutions to evaluate
the convergence of the discrete solution to the continuum so-
lution under grid refinement (verification), and we evaluate
the convergence of the continuation scheme and Newton it-
eration in these cases. After that we apply the method to high-
resolution Greenland ice-sheet bedrock topography. All
computations in this section use physical parameters from
European ice-sheet Modelling Initiative I (EISMINT I)
(Huybrechts and others, 1996) and are in two horizontal vari-
ables, though we show some results along flowlines for
clarity.

4.1. Verification cases
An angularly symmetric steady-state exact solution exists in
the flat-bed case (Bueler, 2003; van der Veen, 2013). This
‘dome’ exact solution, with parameters suitable for a
medium-sized ice sheet, is shown in Figure 5. The numerical

results from our M⋆ method are very close to the exact solu-
tion, with numerical error at the last positive-thickness grid
point barely visible.

However, because of unbounded gradient at the margin,
thickness errors decay slowly under grid refinement (Bueler
and others, 2005). Thus, we measure the maximum and
average thickness errors from both classical Mahaffy and
M⋆ methods in Figure 6. Both methods show expected
slow convergence of maximum error. The decay of the
average error for M⋆, to ∼1 m for the three finest grids, is
better than for classical Mahaffy. However, because of un-
bounded gradient at the margin, the measured M⋆ decay
rate of O(Δx1.47) is less good than the theoretical O(Δx2) con-
vergence rate expected from truncation-error analysis.

Improved convergence of the Newton iteration for the M⋆

scheme, which in this flat-bed case differs from the classical
scheme only by improved quadrature, is seen in all cases. As
indicated in Figure 6 by gray circles, Newton iteration for the
classical Mahaffy scheme fails to converge for all grids
except the coarsest. Though the M⋆ Newton iteration fails to
converge at the ε12= 0 stage on the two finest grids, these
cases fully converge if the problem is changed to a backward
Euler step (Eqn (40)) of duration 100.0 years (not shown).
Figure 7 shows clear evidence of quadratic, or at least super-
linear, convergence from the Newton solver, in runs where
the relative tolerance (i.e. residual 2-norm reduction factor) is
set to 10−10. That is, at each stage εi of the continuation
scheme, the computed residual shows the characteristic
curved drop of quadratic convergence on such semi-log axes
(Kelley, 2003).

To test performance on non-flat and non-smooth beds, we
use a glacier-scale bedrock-step exact solution by Jarosch
and others (2013). As shown in Figure 8, the exact thickness
is discontinuous at the cliff, as it goes to zero on the uphill
side and has a non-zero value on the downhill side. Note
that our computation uses two horizontal dimensions, but it
is constant in the y-direction (not shown).

Figure 8 shows results both fromM⋆ calculations and add-
itional calculations without upwinding (‘λ= 0’) and using the
maximum upwind that does not expand the stencil (‘λ= 1’)
(Eqn (30)). These results suggest why we have chosen λ= 1/
4 in M⋆. For λ= 0 there are large errors on the downhill

Fig. 5. Result from M⋆ method on a Δx= Δy= 25 km grid (dots)
compared with the dome exact solution. The detail of the margin
adds results from a 12.5 km grid (diamonds).

Fig. 6. Average and maximum error under grid refinement using the
dome exact solution, for the M⋆ (stars) and classical Mahaffy
(squares) methods. Gray circles indicate runs where the Newton
method diverged before the last ε12= 0 continuation stage.
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side of the cliff, while for λ= 1 the uphill thickness is too
large. Just a bit of upwinding captures the flux at the cliff,
so that both uphill and downhill thicknesses are good.

To compare with results of Jarosch and others (2013), we
applied the M⋆ method on grids with Δx= Δy= 1000, 500,
250, 125m. When we measure maximum thickness errors
(not shown), there is no evidence of convergence as the
grid is refined. However, maximum errors are not expected
to decay. (This is because merely interpolating a discontinu-
ous function like the exact solution with piecewise-linear
functions generates large errors in the maximum norm.) For
average thickness errors the evidence of convergence is un-
convincing (not shown). The standard theory of FE methods
also does not ensure convergence in average error,
because of the extremely low regularity of the exact solution
(Elman and others, 2005). In any case, error norms are not
reported by Jarosch and others (2013), so we cannot
compare with that source.

However, like Jarosch and others (2013) we can examine
relative volume error, a weak quality measure, in addition to
the visual evidence from Figure 8. Table 1 shows the value

100
Vnumerical � Vexact

Vexact
: ð41Þ

The second, third and fourth columns are from the same
three versions of the M⋆ method shown in Figure 8. Again
we see why λ= 1/4 is preferred to the upwinding alterna-
tives. The last two columns of Table 1 show the results
reported by Jarosch and others (2013) for their best
‘Superbee’-limited MUSCL scheme and for their implemen-
tation of the classical Mahaffy scheme (‘M2’). Thus, we see
that results from our implicit, first-order-upwinding M⋆

scheme are highly satisfactory in this case.

4.2. Greenland: bed topography and robustness
While we have demonstrated its effectiveness on verification
cases, the method’s success ultimately depends on robust
convergence when the data of the problem, especially the
bed topography b, are realistically rough. To test robustness
and high-resolution scalability we use two Greenland ice
sheet bed topography datasets of different smoothness. We
see that runs at high resolution (600–2000 m) converge
only imperfectly on the rougher data, but that implicit time
steps can be used to get arbitrarily close to steady state in
such cases.

The smoother and older BEDMAP1 bed data are on a 5 km
grid (Bamber and others, 2001); we call it ‘BM1’. Along with a
gridded model for present-day surface mass balance (Ettema
and others, 2009), which all of our experiments use, it is
included in the SeaRISE data (Bindschadler and others,
2013). The newer, finer-resolution, and rougher-bed data,
on a 150 m grid, are from Morlighem and others (2014).
This dataset, which we call ‘MCB’, is generated by mass-con-
servation methods using both recent surface velocity mea-
surements and a larger collection of ice-penetrating radar
flightlines than were used for BM1.

Considering the BM1 bed first, we solved the problem on
5000, 2500, 1667, 1250, 1000 and 625 m grids. In the
sub-5 km cases, we refined the data using bilinear interpol-
ation, and thus the bed became smoother under grid refine-
ment. Figure 9 shows that, though the Newton solver does
not converge at the final ε12= 0 level, the next-best level
ε11 is reached by the continuation scheme using the RS
solver (see below) on all of the finer (<2000 m) grids. (It is un-
likely that the slightly regularized SIA model at the ε11 con-
tinuation level has any deficiencies whatsoever, as a model
of real ice dynamics, relative to the unmodified ε12= 0 SIA
model.)

The runs using the MCB data were on 4500, 3000, 1500,
1200, 900 and 600 m grids. The bed elevations were aver-
aged versions of the original 150 m postings, namely onto
30 × 30 blocks for the 9 km grid down to 4 × 4 blocks for
the 600 m grid. Because this process reveals more and
more detail, the bed became rougher under grid refinement.
Except on the coarsest and most-averaged grid, the continu-
ation scheme fails to generate convergent Newton solutions
beyond the middle stages (ε4−ε6). Thus, it is clear that highly
resolved bed, which causes large and irregular values of D
and W to arise from formulas (3) and (6), respectively,
limits the success of our combined continuation scheme
and Newton iteration.

Though theoretical guidance on the choice of a solver for
complementarity problems is, to our knowledge, lacking in
this context, these Greenland datasets are realistic and chal-
lenging cases on which to compare the two available
methods for solving Eqn (32). From Figure 9 it is clear that
the convergence of the RS and SS methods (Benson and

Fig. 7. Residual norm vs iteration number for each continuation
stage. The SIA problem itself is the last ε12= 0 curve.

Fig. 8. Results from M⋆ method, and its upwinding variations with
different λ values in formula (30), compared with the bedrock-step
exact solution, on a Δx= 1000 m grid. The bedrock itself is shown
with a thick solid line.
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Munson, 2006) is comparable, with the RS method slightly
better in the high-resolution cases. However, the SS
method is also three times slower on average over all
runs in Figure 9.

Based on these initial experiments we implemented the
following strategy for computing the steady-state solution
using the MCB bed data averaged onto a 900 m grid and
the RS solver: generate five smoothed versions of the bed
data, with successively greater averaging before interpolating
to the same 900 m grid; the least-smoothed of these data is
the simple average of 6 × 6 blocks of the original 150 m
data. At the first stage, compute the steady state using the
most-smoothed version of the bed data, for which we
expect convergence to a ‘good’ level (e.g. εi < 10−3 such
as ε10−ε12). Extract the surface elevation from the result
and construct a new initial thickness from it using the next
less-smoothed version of the bed data. Though the steady-
state continuation/Newton scheme will not converge from
this new initial thickness, as convergence is quite insensitive
to initial iterate, as it is blocked by bed roughness, one can
expect a backward-Euler time step Eqn (40) to converge.
Thus, we now start time-stepping. These implicit time steps
are chosen sufficiently short so that the continuation
scheme fully converges (i.e. to the ε12= 0 level), and thus
we further approach steady state on the better bed. We
iterate this bed-resolving strategy through the stages until
using the least-smoothed bed, that is, the fully resolved bed
on the 900 m grid. We can then continue time-stepping so
as to approach steady state as closely as desired.

The result of this strategy is shown in Figure 10. The first
step was a nearly converged steady-state computation (ε11
level) on the most-smoothed bed. The five-step bed-resolving
process in the last paragraph was applied using very short
(∼10−3 years) backward Euler time steps. Then 50 model
years of additional backward Euler time steps were run,

Table 1. Relative volume difference percentages Eqn (41) on the bedrock-step exact solution. ‘M⋆’, ‘λ= 0’ and ‘λ= 1’ columns show the
same three upwinding variations as in Figure 8. ‘NC’ indicates a Newton-iteration convergence failure. ‘Superbee’ and ‘M2’ columns are
from Jarosch and others (2013)

Δx
m

M⋆ λ= 0 λ= 1 Superbee M2

1000 −1.205 49.067 9.217 −7.588 116.912
500 0.373 60.826 10.423 −5.075 132.095
250 1.220 NC 11.104 −3.401 139.384
125 1.621 NC 11.424 −2.579 142.997

Fig. 9. Smallest successful value of εi for which the Newton iteration
converges on the steady-state problem; lower is better. Different bed
data sources (BM1 or MCB) and complementarity-problem solvers (RS
or SS) are compared.

Fig. 10. Computed high-resolution ice sheet surface. The free
boundary (margin) is determined only by the surface mass
balance, bedrock topography and the steady-state, simplified-
dynamics SIA model. We use 900 m model resolution and the
MCB bed topography data.
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with 1 month time steps (0.1 years) for the last 20 years. The
result in Figure 10 has volume 3.48 × 106 km3; compare the
observed value, 2.95 × 106. The average absolute thickness
error of 139 m is dominated by large errors from mislocating
the ice margin in fjord-like coastal areas. Though the average
diffusivity over the whole ice sheet was small (D≈ 0.5m2

s−1), maximum values of D≈ 6 × 103 m2 s−1 occurred in
the interiors of highly resolved outlet glaciers.

5. DISCUSSION AND CONCLUSION
The problem solved in this paper is fundamentally different
from most prior ice-sheet modeling. The steady-state geom-
etry and extent of an ice sheet are computed directly as a
function of only two datasets, namely the bed topography
and surface mass balance. Though this function has not
been proved to be well defined, even in the elevation-inde-
pendent surface mass-balance cases here (compare Jouvet
and others, 2011), there is theoretical support for well-
posedness (Jouvet and Bueler, 2012) and nothing seen in
our calculations suggests otherwise.

We do not claim that the model here, an untuned isother-
mal SIA model using EISMINT I parameter values, is suffi-
ciently complete to represent all of the important physics of
the Greenland ice sheet. By contrast, thermomechanically
coupled shallow ‘hybrid’ models that include membrane
stresses in the stress balance are indeed capable of very-
high-quality match to the observations (Aschwanden and
others, 2016).

Our numerical methods are based on both new and old
ideas. The numerical discretization of the SIA equation
starts from a classical structured-grid FD scheme (Mahaffy,
1976), but we make two improvements to create the new
M⋆ scheme, both based on reinterpreting the classical
scheme as an FVE method:

(1) improved quadrature in the flux integral, and
(2) first-order upwinding for the part of the ice flux which is

proportional to the bed gradient.

Then, because the constraint of non-negative thickness
makes this a free-boundary problem, we put it in non-
linear complementarity problem form and apply a parallel
Newton solver designed for such problems.

In verification cases, the M⋆ method is both more accur-
ate than, and gives substantially better Newton iteration con-
vergence than, the classical scheme. We also show that the
method can succeed at large scale and high resolution on
real, highly irregular ice-sheet bed elevation data.
Compared with the steady-state Greenland calculation by
Jouvet and Bueler (2012), we have increased the number of
unknowns by more than an order of magnitude, and we
replaced a fixed-point iteration by a quadratically convergent
Newton method.

Convergence of the Newton iteration in the presence of
finely resolved, and thus very rough, bed is not guaranteed.
Highly variable values of diffusivity D, such as those that
arise in the computation that generated Figure 10 apparently
form part of the barrier to full convergence of the continu-
ation/Newton scheme for such steady-state computations.
The convergence of long time steps on rough beds is also
limited, but this was not studied quantitatively. A complete
and/or precise understanding of the failure of convergence

of the Newton iteration on rough beds is a topic for further
research.

Though we have not tested it, the M⋆ ideas can be
extended to unstructured dual Delaunay/Voronoi meshes
such as those used by Egholm and Nielsen, (2010) and
the MPAS Land Ice model (COSIM Team, 2013; Ringler
and others, 2013). These models use P1 FEs on a
Delaunay triangulation and flux-integral quadrature on the
Voronoi-cell edges. The improved quadrature idea (1)
above would split the cell edges where the element (i.e. tri-
angle) boundaries cross them, while the upwinding idea (2)
requires interpretation as a first-order reconstruction after
advection. Such a method would improve on that of
Egholm and Nielsen (2010), in particular, by exploiting an
underlying P1 element flux approximation, instead of
using a highly averaging and stencil-expanding least
squares method.

The most important extension of our work, however,
depends on noticing that it is actually rather flux-agnostic.
In particular, the steady-state mass-conservation Eqn (7) or
(8) also applies as stated with any Stokes (Greve and
Blatter, 2009), ‘higher-order’ (Pattyn and others, 2008) or
hybrid membrane-stress-resolving (Winkelmann and
others, 2011) model that computes the ice-sheet geometry.
In such models, the computation of the discrete flux qh from
the approximate ice-sheet thickness Hh is completely differ-
ent from the direct differentiation done here in the SIA, as it
involves solving a separate elliptic-type stress balance
model. For structured-grid models, however, the same
basic FVE method (Eqns (26–28)) sets up the discrete equa-
tions. Then the problem becomes a version of complemen-
tarity problem (32), as ice thickness is non-negative
regardless of the model for its stresses. Thereby one is
faced with a free-boundary problem for the steady-state
ice-sheet geometry. An adapted Newton solver is the
natural choice to solve such problems; the residual evalu-
ation in such cases always includes some kind of computa-
tion of qh from Hh, however complicated. While the
roughness of the bed is also a difficulty in solving such
‘higher-order’ stress-balance problems (Brown and others,
2013), the spatial integration used in all membrane-stress
or full-stress resolving models should actually smooth the
residual function seen by the Newton solver. To our knowl-
edge, however, direct solution of steady-state Eqn (7) has
not been attempted for other than SIA fluxes. Clearly,
these are topics for further research.
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APPENDIX
ANALYTICAL JACOBIAN
To sketch the calculation of the analytical Jacobian for the
M⋆ method, we first recall that each Eqn (31) comes from
Eqn (26),

F j;k ¼
X7
s¼0

cs � qhðxsj ; yskÞ �mj;kΔxΔy: ðA1Þ

As the stencil of the M⋆ scheme is the nine-node box shown
in Figure 1b, each row of the Jacobian has nine non-zero
entries corresponding to locations p, q where Fj,k depends
on Hp,q. We compute

∂F j;k

∂Hp;q
¼

X7
s¼0

cs �
∂qhðxsj ; yskÞ
∂Hp;q

; ðA2Þ
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noting that ∂qhðxsj ; yskÞ=∂Hp;q is non-zero only ifHp,q is one of
the four nodal values on the element □u;v containing the
quadrature point ðxsj ; yskÞ. Using index ‘= 0, 1, 2, 3 for the
corners of rectangle □u;v, we need to write code to compute

Qs
‘ ¼

∂qhðxsj ; yskÞ
∂H‘

ðA3Þ

when ðxsj ; yskÞ is in □u;v.
Derivatives are easiest to compute, in a Q1 FE method,

using local coordinates ξ= (x− xu)/Δx and η= (y− yv)/Δy on
□u;v, so that 0≤ ξ, η≤ 1. Bilinear interpolation defines a
function Hu,v=Hu,v(ξ, η) on □u;v from interpolation of the
four nodal values H‘, and bed elevation function bu,v is
similarly defined. Differentiation with respect to ξ and η
gives vector-valued functions ð∇HÞu;v and ð∇bÞu;v.
Differentiation with respect to H‘ gives the scalar function
∂Hu,v/∂H‘ and vector-valued function ∂ð∇HÞu;v=∂H‘. We
write code for each of these (ξ, η)-dependent functions on
□u;v. Then we write code to compute functions Du,v and
∂Du,v/∂H‘ from Eqn (3), and then Wu;v and ∂Wu;v=∂H‘ from
Eqn (6), in local coordinates ξ, η on □u;v.

Denote local coordinates of the quadrature point ðxsj ; yskÞ on
element □u;v by ξs ¼ ðxsj � xuÞ=Δx and ηs ¼ ðysk � yvÞ=Δy.
Note that for each quadrature point, as in Figure 4, upwinding
determines an additional evaluation point, whose local coor-
dinates are denoted ðξsup; ηsupÞ. In these terms, from Eqn (6), for
the evaluation of the residual, Eqn (A1), and for the evaluation
of the Jacobian entries, Eqn (A2), we write code to compute

qhðxsj ; yskÞ ¼ �Du;vðξs; ηsÞð∇HÞu;vðξs; ηsÞ
þWu;vðξs; ηsÞHu;vðξsup; ηsupÞnþ2;

ðA4Þ

Qs
‘ ¼� ∂Du;v

∂H‘
ðξs; ηsÞð∇HÞu;vðξs; ηsÞ

�Du;vðξs; ηsÞ
∂ð∇HÞu;v

∂H‘
ðξs; ηsÞ

þ ∂Wu;v

∂H‘
ðξs; ηsÞHu;vðξsup; ηsupÞnþ2

þ ðnþ 2ÞWu;vðξs; ηsÞHu;vðξsup; ηsupÞnþ1

� ∂ð∇HÞu;v
∂H‘

ðξsup; ηsupÞ:

ðA5Þ
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