
Bull. Aust. Math. Soc. 106 (2022), 209–214
doi:10.1017/S000497272100126X

ON A k-ADDITIVE UNIQUENESS SET FOR
MULTIPLICATIVE FUNCTIONS

ELCHIN HASANALIZADE

(Received 10 November 2021; accepted 29 November 2021; first published online 8 February 2022)

Abstract

Let k ≥ 2 be an integer. We prove that the 2-automatic sequence of odious numbers O is a k-additive
uniqueness set for multiplicative functions: if a multiplicative function f satisfies a multivariate Cauchy’s
functional equation f (x1 + x2 + · · · + xk) = f (x1) + f (x2) + · · · + f (xk) for arbitrary x1, . . . , xk ∈ O, then f
is the identity function f (n) = n for all n ∈ N.
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1. Introduction

An arithmetic function f : N→ C is multiplicative if f (1) = 1 and f (mn) = f (m) f (n)
whenever m and n are relatively prime. Let M denote the set of complex-valued
multiplicative functions.

A set E ⊆ N is an additive uniqueness set of a set of arithmetic functions F if there
is exactly one element f ∈ F that satisfies

f (m + n) = f (m) + f (n) for all m, n ∈ E.

For example, N and {1} ∪ 2N are trivially additive uniqueness sets ofM.
This concept was introduced by Spiro [13] in 1992. She proved that the set of primes

is an additive uniqueness set of M0 = { f ∈ M | f (p0) � 0 for some prime p0} and
asked whether other interesting sets were additive uniqueness sets for multiplicative
functions. Spiro’s work has been extended in many directions.

Let k ≥ 2 be a fixed integer. If there is only one function f ∈ F which satisfies
f (x1 + x2 + · · · + xk) = f (x1) + f (x2) + · · · + f (xk) for arbitrary xi ∈ E, i ∈ {1, 2, . . . , k},
then E is called a k-additive uniqueness set of F .

In 2010, Fang [5] proved that the set of primes is a 3-additive uniqueness set ofM0.
In 2013, Dubickas and S̆arka [4] generalised Fang’s result to sums of arbitrary primes.
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In 1999, Chung and Phong [3] showed that the set of positive triangular
numbers Tn =

1
2 n(n + 1), n ∈ N, and the set of positive tetrahedral numbers

Ten =
1
6 n(n + 1)(n + 2), n ∈ N, were new additive uniqueness sets for M. Park [11]

extended their work to sums of k triangular numbers, k ≥ 3.
In 2018, Kim et al. [7] proved that the set of generalised pentagonal numbers

Pn =
1
2 n(3n − 1), n ∈ Z, is an additive uniqueness set for M. Recently, they showed

that the set of positive pentagonal numbers and the set of positive hexagonal numbers
Hn = n(2n − 1), n ∈ N, are new additive uniqueness sets for the collection of multi-
plicative functions [8]. They also conjectured that among the sets of s-gonal numbers,
only the sets of triangular, pentagonal and hexagonal numbers are additive uniqueness
sets forM.

Park [9] proved that the set of nonzero squares is a k-additive uniqueness set ofM
for every k ≥ 3, although it is not a 2-additive uniqueness set [2]. In 2020, he showed
that {p − 1 | p is a prime} is an additive uniqueness set forM [10].

Recently, the author [6] proved that the set of practical numbers is a k-additive
uniqueness set ofM for every k ≥ 2.

A set S ⊆ N is called an additive basis (respectively, an asymptotic additive basis)
of order j for N if there is a constant j such that every natural number (respectively,
every sufficiently large natural number) can be written as a sum of at most j members
of S. For example, the classical Lagrange theorem asserts that the set of squares is an
additive basis of order 4, and Gauss (1796) proved that the triangular numbers form an
additive basis of order 3. The famous binary Goldbach conjecture is equivalent to the
assertion that the set of primes is an asymptotic additive basis of order 3.

A set S ⊆ N is called k-automatic if there exists a deterministic finite automaton M
that recognises the language of base k representations of elements of S [1].

A number is odious if the number of ones in its base 2 representation is odd. The
set of odious numbers is 2-automatic. Let O be the set of odious numbers, that is,

O = {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, . . .}.

Using automata theory, Rajasekaran et al. [12] proved the following result.

THEOREM 1.1 (Rajasekaran et al., 2020). A natural number is the sum of exactly two
odious numbers if and only if it is not of the form 2 · 4i − 1 for i ≥ 0.

The next theorem, also from Rajasekaran et al. [12], shows that the set of odious
numbers is an asymptotic additive basis of order 3.

THEOREM 1.2 (Rajasekaran et al., 2020). Every natural number N > 15 is the sum of
three distinct odious numbers.

We prove the following theorem showing that the set of odious numbers is an
additive uniqueness set ofM.
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THEOREM 1.3. Fix k ≥ 2. The set O of odious numbers is a k-additive uniqueness set
ofM: if a multiplicative function f satisfies

f (x1 + x2 + · · · + xk) = f (x1) + f (x2) + · · · + f (xk)

for arbitrary x1, . . . , xk ∈ O, then f is the identity function.

It would be interesting to see whether a result similar to Theorem 1.3 holds for other
classes of automatic sets.

2. Proof of Theorem 1.3

The proof consists of four parts.

Case I: k = 2. It is easy to show by induction that f (2k) = 2k for all k ∈ N, because
f (2) = f (1 + 1) = 2 and f (2k+1) = f (2 · 2k) = 2 f (2k). Suppose that N is an integer
such that f (n) = n for all n ≤ N. We show that f (N + 1) = N + 1. If N + 1 � 2 · 4i − 1
for i ≥ 1, then by Theorem 1.1 there are two distinct odious numbers x, y such that
N + 1 = x + y and x, y ≤ N. Thus, f (N + 1) = f (x) + f (y) so that f (N + 1) = N + 1. If
N + 1 = 2 · 4i − 1 for some i ≥ 1, then

22i+1 = f (22i+1) = f (2 · 4i − 1 + 1) = f (N + 1) + 1,

since 2 · 4i − 1 = 22i+1 − 1 = 11 . . . 1︸�︷︷�︸
2i+1

2 ∈ O. Therefore, f (N + 1) = N + 1. Note that in

this case we do not use the multiplicativity of f.

Case II: k = 3. Clearly, f (3) = 3 and f (10) = f (2) f (5) = f (2)[2 f (2) + 1]. On the
other hand, f (10) = f (4 + 4 + 2) = 2 f (4) + f (2) and f (4) = f (2 + 1 + 1) = f (2) + 2.
Hence, f 2(2) − f (2) − 2 = 0 with two solutions f (2) = −1 and f (2) = 2. The first
solution yields f (4) = 1, which leads to the contradiction

f (6) = f (4 + 1 + 1) = f (4) + 2 = 3
= 3 f (2) = −3.

Therefore, we conclude that f (2) = 2. From this, it is easy to check that f (n) = n
for 1 ≤ n ≤ 15. Assume that f (n) = n for all n ≤ N. We have N ≥ 15. We show that
f (N + 1) = N + 1. By Theorem 1.2, there exist distinct odious numbers x, y and z such
that N + 1 = x + y + z where x, y, z < N. Hence, the assumption f (n) = n for all n ≤ N
yields f (N + 1) = f (x + y + z) = f (x) + f (y) + f (z) = x + y + z = N + 1.

Case III: k = 4. By Theorem 1.2 and straightforward calculations, every integer ≥ 4
can be written as a sum of four odious numbers.

Note that f (4) = 4, f (6) = f (2) f (3) = f (2 + 2 + 1 + 1) = 2 f (2) + 2 and f (12) =
4 f (3) = f (4 + 4 + 2 + 2) = 8 + 2 f (2). For convenience, let a = f (2), b = f (3).
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This gives the system of equations
⎧
⎪⎪⎨
⎪⎪⎩

ab = 2a + 2
2b = a + 4.

We obtain the two solutions f (2) = −2, f (3) = 1 and f (2) = 2, f (3) = 3. The first
solution yields f (5) = f (2 + 1 + 1 + 1) = 1, which leads to the contradiction

f (10) = f (4 + 4 + 1 + 1) = 10
= f (2) f (5) = −2.

Thus, we can conclude that f (2) = 2, f (3) = 3. So, f (n) = n for n ≤ 4, and f must be
the identity function by induction.

Case IV: k ≥ 5. In this case we follow closely Park’s argument in [11]. It is clear that
the sum of k odious numbers can represent k but cannot represent any number from 1
to k − 1. Since sums of four odious numbers represent all integers ≥ 4 as in Case III,
the sum

1 + · · · + 1︸������︷︷������︸
k−4 times

+x + y + z + w, (2.1)

where x, y, z, w ∈ O, can represent all integers ≥ k.
Let k ≥ 5. Note that

(k − 2) + 8 = (k − 2) · 1 + 4 + 4
= (k − 2) · 1 + 7 + 1,

(k − 3) + 18 = (k − 3) · 1 + 14 + 2 + 2
= (k − 3) · 1 + 7 + 7 + 4,

(k − 4) + 33 = (k − 4) · 1 + 28 + 2 + 2 + 1
= (k − 4) · 1 + 14 + 14 + 4 + 1.

Let a = f (2), b = f (4), c = f (7). The above equalities give rise to the system of
equations

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2b = c + 1
ac + 2a = 2c + b
bc + 2a = 2ac + b.

The solutions are

f (2) = 1
4 , f (4) = 1

2 , f (7) = 0
f (2) = f (4) = f (7) = 1

f (2) = 2, f (4) = 4, f (7) = 7.

Observe that f (k + 1) = k − 1 + f (2), f (k + 4) = k − 2 + f (4) + f (2) and f (k + 6) =
k − 4 + f (4) + 3 f (2).
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If gcd(4, k + 1) = 1, the equalities

f (4(k + 1)) = f (4 + · · · 4︸���︷︷���︸
k−3 times

+7 + 7 + 2) = f (4)(k − 3) + 2 f (7) + f (2)

= f (4) f (k + 1) = f (4)(k − 1 + f (2))

exclude the first set of solutions f (2) = 1
4 , f (4) = 1

2 , f (7) = 0.
If 4 � k + 1 but 2 | k + 1, then gcd(4, k + 4) = 1, and the equalities

f (4(k + 4)) = f (4 + · · · 4︸���︷︷���︸
k−3 times

+14 + 7 + 7) = f (4)(k − 3) + f (2) f (7) + 2 f (7)

= f (4) f (k + 4) = f (4)(k − 2 + f (4) + f (2))

exclude the first set of solutions.
Finally, if 4 | k + 1, then gcd(4, k + 6) = 1, and we consider

f (4(k + 6)) = f (4 + · · · 4︸���︷︷���︸
k−3 times

+28 + 7 + 1) = f (4)(k − 3) + f (4) f (7) + f (7) + 1

= f (4) f (k + 6) = f (4)(k − 4 + f (4) + 3 f (2)),

which excludes the first set of solutions.
Now consider the second solution set f (2) = f (4) = f (7) = 1. Arrange the odious

numbers into an increasing sequence, and let xn denote the nth term. Then, f (x1) =
f (x2) = f (x3) = f (x4) = 1. As seen in Case III, every xn with n ≥ 3 can be written as a
sum of four odious numbers. From the equality

(k − 5) + 1 + 2 + 2 + 2 + xe = (k − 5) + 7 + xa + xb + xc + xd (2.2)

we infer that f (xn) = 1 for all n ≥ 5 inductively. But for sufficiently large n, xn can
be represented as a sum of k odious numbers by (2.1), so f (xn) = k, which is a
contradiction.

Hence, we conclude that f (2) = 2, f (4) = 4 and f (7) = 7. Moreover, (2.2) yields
f (xn) = xn for every n ≥ 1.

If N is a sum of k odious numbers, then f (N) = N. Otherwise, choose an integer
M ≥ k such that gcd(M, N) = 1. Then, M and MN can be represented as sums of k
odious numbers by (2.1). By the multiplicativity of f,

M f (N) = f (M) f (N) = f (MN) = MN.

Therefore, f (N) = N, and this completes the proof.
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