THE DEGREE OF HOLOMORPHIC APPROXIMATION ON A TOTALLY REAL SET

SAID ASSERDA

(Received 29 May 2008)

Abstract

Let E be a totally real set on a Stein open set Ω on a complete noncompact Kähler manifold (M, g) with nonnegative holomorphic bisectional curvature such that (Ω, g) has bounded geometry at E. Then every function f in a C^{p} class with compact support on Ω and $\bar{\partial}$-flat on E up to order $p-1, p \geq 2$ (respectively, in a Gevrey class of order $s>1$, with compact support on Ω and $\bar{\partial}$-flat on E up to infinite order) can be approximated on compacts subsets of E by holomorphic functions f_{k} on Ω with degree of approximation equal $k^{-p / 2}$ (respectively, $\exp \left(-c(s) k^{1 / 2(s-1)}\right)$).

2000 Mathematics subject classification: primary 32E30; secondary 41A25.
Keywords and phrases: totally real set, degree of approximation, $\bar{\partial}$ operator.

1. Introduction

Let Ω be a Stein open set on a complete noncompact Kähler manifold (M, g) with nonnegative holomorphic bisectional curvature. Let $\phi \in C^{2}(\Omega)$ be a nonnegative strictly plurisubharmonic function on Ω such that $i \partial \bar{\partial} \phi \geq \delta g$ where $\delta>0$. Then

$$
E=\{z \in \Omega \mid \phi(z)=0\}
$$

is a totally real set. Let $k \geq 1$ be a integer and P_{k} the orthogonal projection of

$$
L^{2}\left(\Omega, e^{-k \phi} d V_{g}\right)
$$

to

$$
A^{2}\left(\Omega, e^{-k \phi} d V_{g}\right)
$$

the latter space being the Bergman space, that is the subspace of $L^{2}\left(\Omega, e^{-k \phi} d V_{g}\right)$ consisting of holomorphic functions in $L^{2}\left(\Omega, e^{-k \phi} d V_{g}\right)$ which is nontrivial since ϕ is strictly plurisubharmonic. If $D>0$ is large enough, set

$$
\Omega_{k}=\left\{z \in \Omega \left\lvert\, d(z, M \backslash \Omega) \geq \frac{D}{\sqrt{k}}\right.\right\}
$$

where d is the geodesic distance associated to g.

[^0]Definition 1.1. The manifold (Ω, g) has bounded geometry at E in the sense of Chang-Yau [3] if there is a positive real number R such that, for every point $a \in E$, there is an open neighborhood U_{a} of a in Ω and a biholomorphic mapping $\Psi_{a}: U_{a} \rightarrow B_{e}(0, R)$ of U_{a} onto $B_{e}(0, R)$, the ball of radius R centered at $0 \in \mathbb{C}^{n}$, such that if g_{e} is the Euclidean metric in \mathbb{C}^{n}, then:
(i) $\quad \Psi_{a}(a)=0$;
(ii) $A \Psi_{a}^{*} g_{e} \leq g \leq B \Psi_{*} g_{e}$ on U_{a} where the constants A and B are independent of a.

In other words, there exist a covering of E by coordinate Euclidean balls of a fixed radius in which the corresponding Euclidean metrics are uniformly comparable to the metric g. We refer to the number R and the (nonunique) choice of constants in (ii) as the constants associated with the bounded geometry of (Ω, g) at E.

We suppose that (Ω, g) has bounded geometry at E. Our main results are as follows.
THEOREM 1.2. Let $f \in C^{p \geq 2}(\Omega)$ with compact support and $\bar{\partial}$-flat at E up to order $p-1$. Then for every compact K of E there exist $C>0$ and $k_{0} \in \mathbb{N}$ such that for $k \geq k_{0}$

$$
\sup _{K \cap \Omega_{k}}\left|f-P_{k}(f)\right| \leq C k^{-p / 2}
$$

If $M=\mathbb{C}^{n}$ and $i \partial \bar{\partial} \phi \geq \delta i \partial \bar{\partial}\|z\|^{2}$, Theorem 1.2 was established by Berndtsson [1] without $\bar{\partial}$-flatness of $f \in C_{0}^{1}(\Omega)$ where the maximum is taken over $E \cap \Omega_{k}$. However, the constant C depends on the maximum of the second derivative of ϕ on $E \cap \Omega_{k}$.

THEOREM 1.3. Let $f \in G^{s}(\Omega)$, the Gevrey class of order $s>1$, with compact support and $\bar{\partial}$-flat at E up to infinite order. Then for every compact $K \subset E$ there exist $C>0$ and $k_{0} \in \mathbb{N}$ such that for $k \geq k_{0}$

$$
\sup _{K \cap \Omega_{k}}\left|f-P_{k}(f)\right| \leq C \exp \left(-c(s) k^{1 / 2(s-1)}\right)
$$

If $\Omega=M$ and ϕ has Logarithmic growth at infinity, then $P_{k}(f) \in \mathcal{O}_{k}(M)$. The latter space is the complex linear space of all holomorphic functions on M of polynomial growth of degree at most k. By [2, Theorem 1.2, p. 2] we have $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{k}(M) \leq \operatorname{dim}_{\mathbb{C}} \mathcal{P}_{k}\left(\mathbb{C}^{n}\right)$ and if the equality holds for some positive integer k then M is holomorphically isometric to the complex Euclidean space \mathbb{C}^{n} with the standard flat metric.

2. Proofs of Theorems 1.2 and 1.3

As in [1], the proofs are based on Hörmander's L^{2} estimates with weights for the $\bar{\partial}$ operator [5].

THEOREM 2.1. Let X be a weakly 1 -complete manifold equipped with a Kähler metric h possibly noncomplete. Let Ψ be a C^{2} function on X such that
$\operatorname{Ric}(h)+i \partial \bar{\partial} \Psi \geq \lambda \omega_{h}$, where λ is a positive continuous function on X. Then if $v \in L_{(0,1)}^{2}\left(X, e^{-\Psi} d V_{h}\right)$ is $\bar{\partial}$-closed there exists a solution u of $\bar{\partial} u=v$ such that

$$
\int_{X}|u|^{2} e^{-\Psi} d V_{h} \leq \int_{X}|\bar{\partial} v|_{h}^{2} e^{-(\Psi+\log \lambda)} d V_{h}
$$

provided that the right-hand side is finite.
Theorem 2.1 implies an Agmon-type estimate for the minimal solution of $\bar{\partial} u=f$.
Proposition 2.2. Let Ω be a Stein open set on a complete noncompact Kähler manifold (M, g) with nonnegative holomorphic bisectional curvature. Let ϕ be a C^{2} strictly plurisubharmonic function on Ω such that $i \partial \bar{\partial} \phi \geq \delta g$ where $\delta>0$. If $u \in L^{2}\left(\Omega, e^{-k \phi} d V_{g}\right)$ is the minimal solution of $\bar{\partial} u=v$, then for all $a \in M$

$$
\int_{\Omega}|u|^{2} e^{-(k \phi+\sqrt{k} d(\cdot, a))} d V_{g} \leq \frac{C_{\delta}}{k} \int_{\Omega}|v|_{g}^{2} e^{-(k \phi+\sqrt{k} d(\cdot, a))} d V_{g}
$$

Proof. For the proof, we need the following lemma [2, Lemma 4.1, p. 17].
LEMMA 2.3. Let (M, g) be a complete noncompact Kähler manifold of complex dimension n with nonnegative holomorphic bisectional curvature. Then there exists a positive constant $C(n)$ depending only on the dimension n such that for every $a \in M$ and $k \geq 1$, there is a smooth function d_{k} on M satisfying:
(1) $C(n)^{-1}(1+\sqrt{k} d(z, w)) \leq d_{k}(z) \leq C(n)(1+\sqrt{k} d(z, w)), z \in M$;
(2) $\left|\bar{\partial} d_{k}\right|_{g} \leq C(n) \sqrt{k}$, on M;
(3) $\left|\partial \bar{\partial} d_{k}\right|_{g} \leq C(n) k$, on M.

First, suppose that Ω is bounded on M. Let $u \in L^{2}\left(\Omega, e^{-k \phi} d V_{g}\right)$ be the minimal solution of $\bar{\partial} u=v$. Put

$$
u_{k}=u e^{-d_{k}}
$$

where d_{k} as in Lemma 2.3. Since u is orthogonal to all holomorphic functions on $L^{2}\left(\Omega, e^{-k \phi} d V_{g}\right)$ and Ω is bounded, then u_{k} is orthogonal to all holomorphic functions on $L^{2}\left(\Omega, e^{-k \phi+d_{k}}\right)$. By Theorem $2.1 u_{k}$ is the minimal solution for some $\bar{\partial}$-equation. Since

$$
k i \partial \bar{\partial} \phi-i \partial \bar{\partial} d_{k} \geq k(\delta-C(n)) g \geq C_{\delta} g
$$

if δ is large enough, since a positive multiple of ϕ does not change the set E. So it follows from Theorem 1.2 that

$$
\begin{equation*}
\int_{\Omega}\left|u_{k}\right|^{2} e^{-k \phi+d_{k}} d V_{g} \leq \frac{1}{C_{\delta} k} \int_{\Omega}\left|\bar{\partial} u_{k}\right|_{g} e^{-k \phi+d_{k}} d V_{g} \tag{*}
\end{equation*}
$$

Since

$$
\bar{\partial} u_{k}=\left(v-u_{k} \bar{\partial} d_{k}\right) e^{-d_{k}}
$$

and $\left|\bar{\partial} d_{k}\right|_{g} \leq C(n) \sqrt{k}$, taking C_{δ} large enough, we can absorb the contribution to $(*)$ coming from the second term $u_{k} \bar{\partial} d_{k}$ in the left-hand side of $(*)$. By Lemma 2.3(1) d_{k} is comparable to $\sqrt{k} d(z, a)$, then Proposition 2.2 follows if Ω is bounded.

If Ω is unbounded, then $\Omega=\bigcup \Omega_{j}$ where $\left(\Omega_{j}\right)$ is an exhaustion of Ω by bounded Stein domains on M. We apply the above consideration on each Ω_{j} and passing to a weak limit, we obtain the conclusion of Proposition 2.2 (see [4, p. 982] for $\Omega \subset \mathbb{C}^{n}$).

Since (Ω, g) has bounded geometry at E there is a positive real number R such that, for every point $a \in E$, there is an open neighborhood U_{a} of a in Ω and a biholomorphic mapping $\Psi_{a}: U_{a} \rightarrow B_{e}(0, R)$ of U_{a} onto $B_{e}(0, R)$, the ball of radius R centered at $0 \in \mathbb{C}^{n}$, such that if g_{e} is the Euclidean metric in \mathbb{C}^{n}, then:
(i) $\quad \Psi_{a}(a)=0$;
(ii) $A \Psi_{a}^{*} g_{e} \leq g \leq B \Psi_{*} g_{e}$ on U_{a} where the constants A and B are independent of a, hence

$$
A\left\|\Psi_{a}(z)\right\| \leq d(z, a) \leq B\left\|\Psi_{a}(z)\right\| \quad \forall z \in U_{a}
$$

If $k \geq \max \left(A^{-2}, B^{-2}\right)$, then

$$
\Psi_{a}^{-1}\left(B_{e}\left(0, \frac{R}{2 B \sqrt{k}}\right)\right) \subset B\left(a, \frac{R}{2 \sqrt{k}}\right) \subset \Psi_{a}^{-1}\left(B_{e}\left(0, \frac{R}{2 A \sqrt{k}}\right)\right) \subset \subset U_{a} .
$$

2.1. Proof of Theorem 1.2

Proof. Let $f \in C_{0}^{p}(\Omega)$ and $\bar{\partial}$-flat at E up to order $p-1$. The function $f_{a}=f \circ$ $\Psi_{a}^{-1}: B_{e}(0, R / 2 A \sqrt{k}) \rightarrow \mathbb{C}$ is C^{p} on a neighborhood of $B_{e}(0, R / 2 A \sqrt{k})$ and $\bar{\partial}$-flat at a up to order $p-1$. By Taylor's formula, if $w \in B_{e}(0, R / 2 A \sqrt{k})$

$$
\left|\frac{\bar{\partial} f_{a}}{\partial \bar{w}_{j}}(w)\right| \leq C(p)\|f\|_{C_{0}^{p}(\Omega)}\|w\|^{p-1}
$$

whence by (ii),

$$
|\bar{\partial} f(z)|_{g} \leq C(p, f) d(z, a)^{p-1} \quad \forall z \in B\left(a, \frac{R}{2 \sqrt{k}}\right)
$$

Hence,

$$
|\bar{\partial} f(z)|_{g} \leq C(f, A, B, R) k^{(1-p) / 2} \quad \forall z \in V:=\bigcup_{a \in E} B\left(a, \frac{R}{2 \sqrt{k}}\right) .
$$

By Proposition 2.2 the minimal solution u_{k} of $\bar{\partial} u=\bar{\partial} f$ verifies

$$
\int_{\Omega}\left|u_{k}\right|^{2} e^{-k \phi-\sqrt{k} d(\cdot, a)} d V_{\omega} \leq \frac{C}{k} \int_{\Omega}|\bar{\partial} f|_{\omega}^{2} e^{-k \phi-\sqrt{k} d(\cdot, a)} d V_{\omega}
$$

Let K be a compact subset of E. If $a \in K \cap \Omega_{k}$, then $B(a, R / 2 A \sqrt{k}) \subset \Omega_{k}$ if $D>R / 2 A$. Also $B(a, R / 2 A \sqrt{k}) \subset K_{k}=\{z \in \Omega \mid d(z, K) \leq R / 2 A \sqrt{k}\} \subset \subset \Omega$ if $k \geq k_{0}(K)$. Since $\phi(a)=D \phi(a)=0$, by Taylor's formula, if $z \in B(a, R / 2 A \sqrt{k})$,

$$
\phi(z) \leq C \sup _{z \in K_{k_{0}}}\left|D^{2} \phi\right| d^{2}(z, a) \leq C(K) d^{2}(z, a) .
$$

Hence,

$$
\begin{equation*}
\int_{B(a, R / 2 \sqrt{k})}\left|u_{k}\right|^{2} d V_{g} \leq \frac{C}{k} \int_{\Omega}|\bar{\partial} f|_{g}^{2} e^{-k \phi-\sqrt{k} d(\cdot, a)} d V_{g} \tag{**}
\end{equation*}
$$

Since $\bar{\partial}\left(u_{k} \circ \Psi_{a}^{-1}\right)=\bar{\partial} f_{a}$ on $B_{e}(0, R / 2 B \sqrt{k})$, we have the following well-known a priori estimate

$$
\left|u_{k}(a)\right|^{2} \leq C\left(k^{n} \int_{B_{e}(0, R / 2 B \sqrt{k})}\left|\left(\Psi_{a}^{-1}\right)^{*} u_{k}\right|^{2} d V_{e}+\frac{1}{k} \sup _{B_{e}(0, R / 2 B \sqrt{k})}\left|\bar{\partial} f_{a}\right|^{2}\right)
$$

for some constant $C>0$ (see Wermer [7, Lemma 16.7, 16.8] or Hörmander and Wermer [6, Lemma 4.4]). By (ii) we deduce

$$
\left|u_{k}(a)\right|^{2} \leq C\left(k^{n} \int_{B(a, R / 2 \sqrt{k})}\left|u_{k}\right|^{2} d V_{g}+\frac{1}{k} \sup _{B(a, R / 2 \sqrt{k})}|\bar{\partial} f|^{2}\right)
$$

Thus,

$$
\left|u_{k}(a)\right|^{2} \leq C\left(k^{n} \int_{B(a, R / 2 \sqrt{k})}\left|u_{k}\right|^{2} d V_{g}+\frac{C}{k^{p}}\right)
$$

Thanks to $(* *)$ we deduce

$$
\begin{aligned}
\left|u_{k}(a)\right|^{2} \leq & k^{n} \frac{C}{k}\left(\sup _{\operatorname{supp} t(f) \cap V}|\bar{\partial} f|^{2} e^{-k \phi}+\sup _{\operatorname{supp}(f) \backslash V} e^{-k \phi}\right) \int_{\operatorname{supp}(f)} e^{-\sqrt{k} d(\cdot, a)} d V_{g} \\
& +\frac{C}{k^{p}} .
\end{aligned}
$$

Since $\operatorname{Ric}(g) \geq 0$, by the coarea formula and Bishop's comparison theorem

$$
\int_{M} e^{-\sqrt{k} d(z, a)} d V_{g} \leq C k^{-n}
$$

Also since $(\operatorname{supp}(f) \backslash V) \cap E=\emptyset$, we have $e^{-k \phi} \leq e^{-C k}$ on $\operatorname{supp}(f) \backslash V$. Finally,

$$
\sup _{K \cap \Omega_{k}}\left|u_{k}(a)\right|^{2}=\sup _{K \cap \Omega_{k}}\left|f-P_{k}(f)\right|^{2} \leq \frac{C}{k^{p}}+C e^{-c k} \leq \frac{C}{k^{p}} .
$$

This finishes the proof of Theorem 1.2.

2.2. Proof of Theorem 1.3

Proof. Now let $f \in G^{s}(\Omega)$ with compact support and $\bar{\partial}$-flat at E up to infinite order. If $p \in \mathbb{N}$ and $w \in B_{e}(0, R / 2 A \sqrt{k})$ by Taylor's formula

$$
\left.\left|\frac{\partial f_{a}}{\partial \bar{w}_{j}}(w)\right| \leq \sum_{|\alpha|=p} \alpha!^{-1} \sup _{w \in B_{e}(0, R / 2 A \sqrt{k})} \right\rvert\, D^{\alpha} \frac{\partial f_{a}}{\partial \bar{w}_{j}}(w)\|w\|^{p} .
$$

Since $C_{1}^{p} p!\leq \alpha$! if $p=|\alpha|$ and $\sum_{|\beta|=p} 1 \leq(p+1)^{p} \leq C_{2} 2^{p}$ where C_{1}, C_{2} are constants, then

$$
\left|\frac{\partial f_{a}}{\partial \bar{w}_{j}}(w)\right| \leq c\|f\|_{s} C^{p+1}(p!)^{-1}((p+1)!)^{s}\|w\|^{p}
$$

where $\|f\|_{s}$ is the G^{s}-norm of f. Since $(p+1)!\leq p!2^{p}$ and $s>1$ we have $\inf _{p \in \mathbb{N}}\left(2^{s} C\|w\|\right)^{p}(p!)^{s-1} \leq A \exp \left(-B\|w\|^{1 /(1-s)}\right)$ where $A, B>0$ are constants. Hence,

$$
|\bar{\partial} f(z)|_{g} \leq C \exp \left(-B d(z, a)^{1 /(1-s)}\right) \quad \forall z \in B\left(a, \frac{R}{2 \sqrt{k}}\right) .
$$

Thus,

$$
|\bar{\partial} f(z)|_{g} \leq C \exp \left(-B k^{1 / 2(1-s)}\right) \quad \forall z \in V=\bigcup_{a \in E} B\left(a, \frac{R}{2 \sqrt{k}}\right)
$$

Following the same lines as Section 2.1, we deduce that

$$
\sup _{K \cap \Omega_{k}}\left|f-P_{k}(f)\right| \leq C \exp \left(-c(s) k^{1 / 2(1-s)}\right) .
$$

References

[1] B. Berndtsson, 'A remark on approximation on totally real sets', arxiv:math/0608058v.1, 2006 and arxiv:math/06080582v.2, 2008.
[2] B.-L. Chen, X.-Y. Fu, L. Yin and X.-P. Zhu, 'Sharp dimension estimates of holomorphic functions and rigidity', Trans. Amer. Math. Soc. 385(4) (2006), 1435-1454.
[3] S. Y. Cheng and S. T. Yau, 'On the existence of a complete Kähler metric on noncompact complex manifolds and regularity of Fefferman's equations', Comm. Pure Appl. Math. 33 (1980), 507-544.
[4] H. Delin, 'Pontwise estimates for the weighted Bergmann projection kernel in \mathbb{C}^{n}, using a weighted L^{2} estimates for the $\bar{\partial}$-equation', Ann. Inst. Fourier 48(4) (1998), 967-997.
[5] J. P. Demailly, 'Estimations L^{2} pour l'operateur d-bar d'un fibré vectoriel holomorphe semi-positif au dessus d'une variété Kählerienne complète', Ann. Sci. Ecole Norm. Sup 4e Sér. 15 (1982), 457-511.
[6] L. Hörmander and J. Wermer, 'Uniform approximation on compacts set in \mathbb{C}^{n} ', Math. Scand. 23 (1968), 5-21.
[7] J. Wermer, Banach Algebras and Several Complex Variables, 2nd edn (Springer, Berlin, 1976).

SAID ASSERDA, Université Ibn Tofail, Faculté des Sciences, Departement des Mathématiques, BP 242, Kénitra, Morocco
e-mail: said.asserda@laposte.net

[^0]: (C) 2009 Australian Mathematical Society 0004-9727/2009 \$16.00

