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Abstract

Let E be a totally real set on a Stein open set � on a complete noncompact Kähler manifold (M, g)
with nonnegative holomorphic bisectional curvature such that (�, g) has bounded geometry at E . Then
every function f in a C p class with compact support on � and ∂-flat on E up to order p − 1, p ≥ 2
(respectively, in a Gevrey class of order s > 1, with compact support on � and ∂-flat on E up to infinite
order) can be approximated on compacts subsets of E by holomorphic functions fk on � with degree of
approximation equal k−p/2 (respectively, exp(−c(s)k1/2(s−1))).
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1. Introduction

Let � be a Stein open set on a complete noncompact Kähler manifold (M, g) with
nonnegative holomorphic bisectional curvature. Let φ ∈ C2(�) be a nonnegative
strictly plurisubharmonic function on � such that i∂∂φ ≥ δg where δ > 0. Then

E = {z ∈� | φ(z)= 0}

is a totally real set. Let k ≥ 1 be a integer and Pk the orthogonal projection of

L2(�, e−kφ dVg)

to
A2(�, e−kφ dVg),

the latter space being the Bergman space, that is the subspace of L2(�, e−kφ dVg)

consisting of holomorphic functions in L2(�, e−kφ dVg) which is nontrivial since φ
is strictly plurisubharmonic. If D > 0 is large enough, set

�k =

{
z ∈�

∣∣∣∣ d(z, M \�)≥
D
√

k

}
where d is the geodesic distance associated to g.
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DEFINITION 1.1. The manifold (�, g) has bounded geometry at E in the sense
of Chang–Yau [3] if there is a positive real number R such that, for every point
a ∈ E , there is an open neighborhood Ua of a in � and a biholomorphic mapping
9a :Ua→ Be(0, R) of Ua onto Be(0, R), the ball of radius R centered at 0 ∈Cn ,
such that if ge is the Euclidean metric in Cn , then:

(i) 9a(a)= 0;
(ii) A9∗a ge ≤ g ≤ B9∗ge on Ua where the constants A and B are independent of a.

In other words, there exist a covering of E by coordinate Euclidean balls of a fixed
radius in which the corresponding Euclidean metrics are uniformly comparable to the
metric g. We refer to the number R and the (nonunique) choice of constants in (ii) as
the constants associated with the bounded geometry of (�, g) at E .

We suppose that (�, g) has bounded geometry at E . Our main results are
as follows.

THEOREM 1.2. Let f ∈ C p≥2(�) with compact support and ∂-flat at E up to order
p − 1. Then for every compact K of E there exist C > 0 and k0 ∈N such that for
k ≥ k0

sup
K∩�k

| f − Pk( f )| ≤ Ck−p/2.

If M =Cn and i∂∂φ ≥ δi∂∂‖z‖2, Theorem 1.2 was established by Berndtsson [1]
without ∂-flatness of f ∈ C1

0(�) where the maximum is taken over E ∩�k . However,
the constant C depends on the maximum of the second derivative of φ on E ∩�k .

THEOREM 1.3. Let f ∈ Gs(�), the Gevrey class of order s > 1, with compact
support and ∂-flat at E up to infinite order. Then for every compact K ⊂ E there
exist C > 0 and k0 ∈N such that for k ≥ k0

sup
K∩�k

| f − Pk( f )| ≤ C exp(−c(s)k1/2(s−1)).

If �= M and φ has Logarithmic growth at infinity, then Pk( f ) ∈Ok(M). The
latter space is the complex linear space of all holomorphic functions on M of
polynomial growth of degree at most k. By [2, Theorem 1.2, p. 2] we have
dimC Ok(M)≤ dimC Pk(Cn) and if the equality holds for some positive integer k then
M is holomorphically isometric to the complex Euclidean space Cn with the standard
flat metric.

2. Proofs of Theorems 1.2 and 1.3

As in [1], the proofs are based on Hörmander’s L2 estimates with weights for the ∂
operator [5].

THEOREM 2.1. Let X be a weakly 1-complete manifold equipped with a Kähler
metric h possibly noncomplete. Let 9 be a C2 function on X such that
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Ric(h)+ i∂∂9 ≥ λωh , where λ is a positive continuous function on X. Then if
v ∈ L2

(0,1)(X, e−9 dVh) is ∂-closed there exists a solution u of ∂u = v such that∫
X
|u|2e−9 dVh ≤

∫
X
|∂v|2he−(9+log λ) dVh

provided that the right-hand side is finite.

Theorem 2.1 implies an Agmon-type estimate for the minimal solution of ∂u = f .

PROPOSITION 2.2. Let � be a Stein open set on a complete noncompact Kähler
manifold (M, g) with nonnegative holomorphic bisectional curvature. Let φ be
a C2 strictly plurisubharmonic function on � such that i∂∂φ ≥ δg where δ > 0. If
u ∈ L2(�, e−kφ dVg) is the minimal solution of ∂u = v, then for all a ∈ M∫

�

|u|2e−(kφ+
√

kd(·,a)) dVg ≤
Cδ
k

∫
�

|v|2ge−(kφ+
√

kd(·,a)) dVg.

PROOF. For the proof, we need the following lemma [2, Lemma 4.1, p. 17]. 2

LEMMA 2.3. Let (M, g) be a complete noncompact Kähler manifold of complex
dimension n with nonnegative holomorphic bisectional curvature. Then there exists
a positive constant C(n) depending only on the dimension n such that for every a ∈ M
and k ≥ 1, there is a smooth function dk on M satisfying:

(1) C(n)−1(1+
√

kd(z, w))≤ dk(z)≤ C(n)(1+
√

kd(z, w)), z ∈ M;
(2) |∂dk |g ≤ C(n)

√
k, on M;

(3) |∂∂dk |g ≤ C(n)k, on M.

First, suppose that � is bounded on M . Let u ∈ L2(�, e−kφ dVg) be the minimal
solution of ∂u = v. Put

uk = ue−dk

where dk as in Lemma 2.3. Since u is orthogonal to all holomorphic functions
on L2(�, e−kφ dVg) and � is bounded, then uk is orthogonal to all holomorphic
functions on L2(�, e−kφ+dk ). By Theorem 2.1 uk is the minimal solution for some
∂-equation. Since

ki∂∂φ − i∂∂dk ≥ k(δ − C(n))g ≥ Cδg

if δ is large enough, since a positive multiple of φ does not change the set E . So it
follows from Theorem 1.2 that∫

�

|uk |
2e−kφ+dk dVg ≤

1
Cδk

∫
�

|∂uk |ge−kφ+dk dVg. (∗)

Since
∂uk = (v − uk∂dk)e

−dk

https://doi.org/10.1017/S0004972708001226 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001226


174 S. Asserda [4]

and |∂dk |g ≤ C(n)
√

k, taking Cδ large enough, we can absorb the contribution to (∗)
coming from the second term uk∂dk in the left-hand side of (∗). By Lemma 2.3(1) dk
is comparable to

√
kd(z, a), then Proposition 2.2 follows if � is bounded.

If � is unbounded, then �=
⋃
� j where (� j ) is an exhaustion of � by bounded

Stein domains on M . We apply the above consideration on each � j and passing to a
weak limit, we obtain the conclusion of Proposition 2.2 (see [4, p. 982] for�⊂Cn). 2

Since (�, g) has bounded geometry at E there is a positive real number R such that,
for every point a ∈ E , there is an open neighborhood Ua of a in� and a biholomorphic
mapping 9a :Ua→ Be(0, R) of Ua onto Be(0, R), the ball of radius R centered at
0 ∈Cn , such that if ge is the Euclidean metric in Cn , then:

(i) 9a(a)= 0;
(ii) A9∗a ge ≤ g ≤ B9∗ge on Ua where the constants A and B are independent of a,

hence

A‖9a(z)‖ ≤ d(z, a)≤ B‖9a(z)‖ ∀z ∈Ua .

If k ≥max(A−2, B−2), then

9−1
a

(
Be

(
0,

R

2B
√

k

))
⊂ B

(
a,

R

2
√

k

)
⊂9−1

a

(
Be

(
0,

R

2A
√

k

))
⊂⊂Ua .

2.1. Proof of Theorem 1.2

PROOF. Let f ∈ C p
0 (�) and ∂-flat at E up to order p − 1. The function fa = f ◦

9−1
a : Be(0, R/2A

√
k)→C is C p on a neighborhood of Be(0, R/2A

√
k) and ∂-flat

at a up to order p − 1. By Taylor’s formula, if w ∈ Be(0, R/2A
√

k)∣∣∣∣ ∂ fa

∂w j
(w)

∣∣∣∣≤ C(p)‖ f ‖C p
0 (�)
‖w‖p−1

whence by (ii),

|∂ f (z)|g ≤ C(p, f )d(z, a)p−1
∀z ∈ B

(
a,

R

2
√

k

)
.

Hence,

|∂ f (z)|g ≤ C( f, A, B, R)k(1−p)/2
∀z ∈ V :=

⋃
a∈E

B

(
a,

R

2
√

k

)
.

By Proposition 2.2 the minimal solution uk of ∂u = ∂ f verifies∫
�

|uk |
2e−kφ−

√
kd(·,a) dVω ≤

C

k

∫
�

|∂ f |2ωe−kφ−
√

kd(·,a) dVω.
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Let K be a compact subset of E . If a ∈ K ∩�k , then B(a, R/2A
√

k)⊂�k
if D > R/2A. Also B(a, R/2A

√
k)⊂ Kk = {z ∈� | d(z, K )≤ R/2A

√
k} ⊂⊂� if

k ≥ k0(K ). Since φ(a)= Dφ(a)= 0, by Taylor’s formula, if z ∈ B(a, R/2A
√

k),

φ(z)≤ C sup
z∈Kk0

|D2φ|d2(z, a)≤ C(K )d2(z, a).

Hence, ∫
B(a,R/2

√
k)
|uk |

2 dVg ≤
C

k

∫
�

|∂ f |2ge−kφ−
√

kd(·,a) dVg. (∗∗)

Since ∂(uk ◦9
−1
a )= ∂ fa on Be(0, R/2B

√
k), we have the following well-known

a priori estimate

|uk(a)|
2
≤ C

(
kn
∫

Be(0,R/2B
√

k)
|(9−1

a )∗uk |
2 dVe +

1
k

sup
Be(0,R/2B

√
k)

|∂ fa|
2
)

for some constant C > 0 (see Wermer [7, Lemma 16.7, 16.8] or Hörmander and
Wermer [6, Lemma 4.4]). By (ii) we deduce

|uk(a)|
2
≤ C

(
kn
∫

B(a,R/2
√

k)
|uk |

2 dVg +
1
k

sup
B(a,R/2

√
k)

|∂ f |2
)
.

Thus,

|uk(a)|
2
≤ C

(
kn
∫

B(a,R/2
√

k)
|uk |

2 dVg +
C

k p

)
.

Thanks to (∗∗) we deduce

|uk(a)|
2
≤ kn C

k

(
sup

suppt ( f )∩V
|∂ f |2e−kφ

+ sup
supp( f )\V

e−kφ
) ∫

supp( f )
e−
√

kd(·,a) dVg

+
C

k p .

Since Ric(g)≥ 0, by the coarea formula and Bishop’s comparison theorem∫
M

e−
√

kd(z,a) dVg ≤ Ck−n.

Also since (supp( f ) \ V ) ∩ E = ∅, we have e−kφ
≤ e−Ck on supp( f ) \ V . Finally,

sup
K∩�k

|uk(a)|
2
= sup

K∩�k

| f − Pk( f )|2 ≤
C

k p + Ce−ck
≤

C

k p .

This finishes the proof of Theorem 1.2. 2
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2.2. Proof of Theorem 1.3

PROOF. Now let f ∈ Gs(�) with compact support and ∂-flat at E up to infinite order.
If p ∈N and w ∈ Be(0, R/2A

√
k) by Taylor’s formula∣∣∣∣ ∂ fa

∂w j
(w)

∣∣∣∣≤ ∑
|α|=p

α!−1 sup
w∈Be(0,R/2A

√
k)

∣∣∣∣ Dα ∂ fa

∂w j
(w)‖w‖p.

Since C p
1 p! ≤ α! if p = |α| and

∑
|β|=p 1≤ (p + 1)p

≤ C22p where C1, C2 are
constants, then ∣∣∣∣ ∂ fa

∂w j
(w)

∣∣∣∣≤ c‖ f ‖sC p+1(p!)−1((p + 1)!)s‖w‖p

where ‖ f ‖s is the Gs-norm of f . Since (p + 1)! ≤ p!2p and s > 1 we have
infp∈N(2sC‖w‖)p(p!)s−1

≤ A exp(−B‖w‖1/(1−s)) where A, B > 0 are constants.
Hence,

|∂ f (z)|g ≤ C exp(−Bd(z, a)1/(1−s)) ∀z ∈ B

(
a,

R

2
√

k

)
.

Thus,

|∂ f (z)|g ≤ C exp(−Bk1/2(1−s)) ∀z ∈ V =
⋃
a∈E

B

(
a,

R

2
√

k

)
.

Following the same lines as Section 2.1, we deduce that

sup
K∩�k

| f − Pk( f )| ≤ C exp(−c(s)k1/2(1−s)). 2
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[6] L. Hörmander and J. Wermer, ‘Uniform approximation on compacts set in Cn’, Math. Scand. 23
(1968), 5–21.

[7] J. Wermer, Banach Algebras and Several Complex Variables, 2nd edn (Springer, Berlin, 1976).
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