THE DEGREE OF HOLOMORPHIC APPROXIMATION ON A TOTALLY REAL SET

SAID ASSERDA

(Received 29 May 2008)

Abstract

Let *E* be a totally real set on a Stein open set Ω on a complete noncompact Kähler manifold (M, g) with nonnegative holomorphic bisectional curvature such that (Ω, g) has bounded geometry at *E*. Then every function *f* in a C^p class with compact support on Ω and $\overline{\partial}$ -flat on *E* up to order p - 1, $p \ge 2$ (respectively, in a Gevrey class of order s > 1, with compact support on Ω and $\overline{\partial}$ -flat on *E* up to infinite order) can be approximated on compacts subsets of *E* by holomorphic functions f_k on Ω with degree of approximation equal $k^{-p/2}$ (respectively, $\exp(-c(s)k^{1/2(s-1)})$).

2000 *Mathematics subject classification*: primary 32E30; secondary 41A25. *Keywords and phrases*: totally real set, degree of approximation, $\overline{\partial}$ operator.

1. Introduction

Let Ω be a Stein open set on a complete noncompact Kähler manifold (M, g) with nonnegative holomorphic bisectional curvature. Let $\phi \in C^2(\Omega)$ be a nonnegative strictly plurisubharmonic function on Ω such that $i\partial \overline{\partial}\phi \geq \delta g$ where $\delta > 0$. Then

$$E = \{ z \in \Omega \mid \phi(z) = 0 \}$$

is a totally real set. Let $k \ge 1$ be a integer and P_k the orthogonal projection of

$$L^2(\Omega, e^{-k\phi} dV_g)$$

to

$$A^2(\Omega, e^{-k\phi} dV_g),$$

the latter space being the Bergman space, that is the subspace of $L^2(\Omega, e^{-k\phi} dV_g)$ consisting of holomorphic functions in $L^2(\Omega, e^{-k\phi} dV_g)$ which is nontrivial since ϕ is strictly plurisubharmonic. If D > 0 is large enough, set

$$\Omega_k = \left\{ z \in \Omega \; \middle| \; d(z, M \setminus \Omega) \ge \frac{D}{\sqrt{k}} \right\}$$

where d is the geodesic distance associated to g.

^{© 2009} Australian Mathematical Society 0004-9727/2009 \$16.00

DEFINITION 1.1. The manifold (Ω, g) has bounded geometry at E in the sense of Chang–Yau [3] if there is a positive real number R such that, for every point $a \in E$, there is an open neighborhood U_a of a in Ω and a biholomorphic mapping $\Psi_a: U_a \to B_e(0, R)$ of U_a onto $B_e(0, R)$, the ball of radius R centered at $0 \in \mathbb{C}^n$, such that if g_e is the Euclidean metric in \mathbb{C}^n , then:

(i)
$$\Psi_a(a) = 0;$$

(ii) $A\Psi_a^* g_e \le g \le B\Psi_* g_e$ on U_a where the constants A and B are independent of a.

In other words, there exist a covering of E by coordinate Euclidean balls of a fixed radius in which the corresponding Euclidean metrics are uniformly comparable to the metric g. We refer to the number R and the (nonunique) choice of constants in (ii) as the constants associated with the bounded geometry of (Ω, g) at E.

We suppose that (Ω, g) has bounded geometry at *E*. Our main results are as follows.

THEOREM 1.2. Let $f \in C^{p\geq 2}(\Omega)$ with compact support and $\overline{\partial}$ -flat at E up to order p-1. Then for every compact K of E there exist C > 0 and $k_0 \in \mathbb{N}$ such that for $k \geq k_0$

$$\sup_{K\cap\Omega_k}|f-P_k(f)|\leq Ck^{-p/2}.$$

If $M = \mathbb{C}^n$ and $i\partial \overline{\partial} \phi \ge \delta i \partial \overline{\partial} ||z||^2$, Theorem 1.2 was established by Berndtsson [1] without $\overline{\partial}$ -flatness of $f \in C_0^1(\Omega)$ where the maximum is taken over $E \cap \Omega_k$. However, the constant *C* depends on the maximum of the second derivative of ϕ on $E \cap \Omega_k$.

THEOREM 1.3. Let $f \in G^s(\Omega)$, the Gevrey class of order s > 1, with compact support and $\overline{\partial}$ -flat at E up to infinite order. Then for every compact $K \subset E$ there exist C > 0 and $k_0 \in \mathbb{N}$ such that for $k \ge k_0$

$$\sup_{K \cap \Omega_k} |f - P_k(f)| \le C \exp(-c(s)k^{1/2(s-1)}).$$

If $\Omega = M$ and ϕ has Logarithmic growth at infinity, then $P_k(f) \in \mathcal{O}_k(M)$. The latter space is the complex linear space of all holomorphic functions on M of polynomial growth of degree at most k. By [2, Theorem 1.2, p. 2] we have $\dim_{\mathbb{C}} \mathcal{O}_k(M) \leq \dim_{\mathbb{C}} \mathcal{P}_k(\mathbb{C}^n)$ and if the equality holds for some positive integer k then M is holomorphically isometric to the complex Euclidean space \mathbb{C}^n with the standard flat metric.

2. Proofs of Theorems 1.2 and 1.3

As in [1], the proofs are based on Hörmander's L^2 estimates with weights for the $\overline{\partial}$ operator [5].

THEOREM 2.1. Let X be a weakly 1-complete manifold equipped with a Kähler metric h possibly noncomplete. Let Ψ be a C^2 function on X such that

 $\operatorname{Ric}(h) + i\partial\overline{\partial}\Psi \ge \lambda\omega_h$, where λ is a positive continuous function on X. Then if $v \in L^2_{(0,1)}(X, e^{-\Psi} dV_h)$ is $\overline{\partial}$ -closed there exists a solution u of $\overline{\partial}u = v$ such that

$$\int_X |u|^2 e^{-\Psi} \, dV_h \le \int_X |\overline{\partial}v|_h^2 e^{-(\Psi + \log \lambda)} \, dV_h$$

provided that the right-hand side is finite.

Theorem 2.1 implies an Agmon-type estimate for the minimal solution of $\overline{\partial} u = f$.

PROPOSITION 2.2. Let Ω be a Stein open set on a complete noncompact Kähler manifold (M, g) with nonnegative holomorphic bisectional curvature. Let ϕ be a C^2 strictly plurisubharmonic function on Ω such that $i\partial \overline{\partial}\phi \geq \delta g$ where $\delta > 0$. If $u \in L^2(\Omega, e^{-k\phi} dV_g)$ is the minimal solution of $\overline{\partial}u = v$, then for all $a \in M$

$$\int_{\Omega} |u|^2 e^{-(k\phi + \sqrt{k}d(\cdot, a))} \, dV_g \leq \frac{C_{\delta}}{k} \int_{\Omega} |v|_g^2 e^{-(k\phi + \sqrt{k}d(\cdot, a))} \, dV_g.$$

PROOF. For the proof, we need the following lemma [2, Lemma 4.1, p. 17].

LEMMA 2.3. Let (M, g) be a complete noncompact Kähler manifold of complex dimension n with nonnegative holomorphic bisectional curvature. Then there exists a positive constant C(n) depending only on the dimension n such that for every $a \in M$ and $k \ge 1$, there is a smooth function d_k on M satisfying:

(1) $C(n)^{-1}(1 + \sqrt{k}d(z, w)) \le d_k(z) \le C(n)(1 + \sqrt{k}d(z, w)), z \in M;$

(2) $|\overline{\partial}d_k|_g \leq C(n)\sqrt{k}$, on *M*;

(3) $|\partial \overline{\partial} d_k|_g \leq C(n)k$, on M.

First, suppose that Ω is bounded on M. Let $u \in L^2(\Omega, e^{-k\phi} dV_g)$ be the minimal solution of $\overline{\partial}u = v$. Put

$$u_k = ue^{-d_k}$$

where d_k as in Lemma 2.3. Since u is orthogonal to all holomorphic functions on $L^2(\Omega, e^{-k\phi} dV_g)$ and Ω is bounded, then u_k is orthogonal to all holomorphic functions on $L^2(\Omega, e^{-k\phi+d_k})$. By Theorem 2.1 u_k is the minimal solution for some $\overline{\partial}$ -equation. Since

$$ki\partial \partial \phi - i\partial \partial d_k \ge k(\delta - C(n))g \ge C_{\delta}g$$

if δ is large enough, since a positive multiple of ϕ does not change the set *E*. So it follows from Theorem 1.2 that

$$\int_{\Omega} |u_k|^2 e^{-k\phi + d_k} \, dV_g \le \frac{1}{C_{\delta}k} \int_{\Omega} |\overline{\partial}u_k|_g e^{-k\phi + d_k} \, dV_g. \tag{*}$$

Since

$$\overline{\partial} u_k = (v - u_k \overline{\partial} d_k) e^{-d_k}$$

and $|\overline{\partial}d_k|_g \leq C(n)\sqrt{k}$, taking C_{δ} large enough, we can absorb the contribution to (*) coming from the second term $u_k\overline{\partial}d_k$ in the left-hand side of (*). By Lemma 2.3(1) d_k is comparable to $\sqrt{k}d(z, a)$, then Proposition 2.2 follows if Ω is bounded.

If Ω is unbounded, then $\Omega = \bigcup \Omega_j$ where (Ω_j) is an exhaustion of Ω by bounded Stein domains on M. We apply the above consideration on each Ω_j and passing to a weak limit, we obtain the conclusion of Proposition 2.2 (see [4, p. 982] for $\Omega \subset \mathbb{C}^n$). \Box

Since (Ω, g) has bounded geometry at *E* there is a positive real number *R* such that, for every point $a \in E$, there is an open neighborhood U_a of a in Ω and a biholomorphic mapping $\Psi_a : U_a \to B_e(0, R)$ of U_a onto $B_e(0, R)$, the ball of radius *R* centered at $0 \in \mathbb{C}^n$, such that if g_e is the Euclidean metric in \mathbb{C}^n , then:

- (i) $\Psi_a(a) = 0;$
- (ii) $A\Psi_a^* g_e \le g \le B\Psi_* g_e$ on U_a where the constants A and B are independent of a, hence

$$A\|\Psi_a(z)\| \le d(z,a) \le B\|\Psi_a(z)\| \quad \forall z \in U_a.$$

If $k \ge \max(A^{-2}, B^{-2})$, then

$$\Psi_a^{-1}\left(B_e\left(0,\frac{R}{2B\sqrt{k}}\right)\right) \subset B\left(a,\frac{R}{2\sqrt{k}}\right) \subset \Psi_a^{-1}\left(B_e\left(0,\frac{R}{2A\sqrt{k}}\right)\right) \subset \subset U_a.$$

2.1. Proof of Theorem 1.2

PROOF. Let $f \in C_0^p(\Omega)$ and $\overline{\partial}$ -flat at E up to order p-1. The function $f_a = f \circ \Psi_a^{-1} : B_e(0, R/2A\sqrt{k}) \to \mathbb{C}$ is C^p on a neighborhood of $B_e(0, R/2A\sqrt{k})$ and $\overline{\partial}$ -flat at a up to order p-1. By Taylor's formula, if $w \in B_e(0, R/2A\sqrt{k})$

$$\left|\frac{\overline{\partial}f_a}{\partial\overline{w}_j}(w)\right| \le C(p) \|f\|_{C_0^p(\Omega)} \|w\|^{p-1}$$

whence by (ii),

$$|\overline{\partial} f(z)|_g \le C(p, f)d(z, a)^{p-1} \quad \forall z \in B\left(a, \frac{R}{2\sqrt{k}}\right).$$

Hence,

$$\overline{\partial} f(z)|_g \le C(f, A, B, R)k^{(1-p)/2} \quad \forall z \in V := \bigcup_{a \in E} B\left(a, \frac{R}{2\sqrt{k}}\right).$$

By Proposition 2.2 the minimal solution u_k of $\overline{\partial} u = \overline{\partial} f$ verifies

$$\int_{\Omega} |u_k|^2 e^{-k\phi - \sqrt{k}d(\cdot,a)} \, dV_{\omega} \le \frac{C}{k} \int_{\Omega} |\overline{\partial}f|_{\omega}^2 e^{-k\phi - \sqrt{k}d(\cdot,a)} \, dV_{\omega}.$$

Let *K* be a compact subset of *E*. If $a \in K \cap \Omega_k$, then $B(a, R/2A\sqrt{k}) \subset \Omega_k$ if D > R/2A. Also $B(a, R/2A\sqrt{k}) \subset K_k = \{z \in \Omega \mid d(z, K) \le R/2A\sqrt{k}\} \subset \subset \Omega$ if $k \ge k_0(K)$. Since $\phi(a) = D\phi(a) = 0$, by Taylor's formula, if $z \in B(a, R/2A\sqrt{k})$,

$$\phi(z) \le C \sup_{z \in K_{k_0}} |D^2 \phi| d^2(z, a) \le C(K) d^2(z, a).$$

Hence,

$$\int_{B(a,R/2\sqrt{k})} |u_k|^2 \, dV_g \le \frac{C}{k} \int_{\Omega} |\overline{\partial}f|_g^2 e^{-k\phi - \sqrt{k}d(\cdot,a)} \, dV_g. \tag{**}$$

Since $\overline{\partial}(u_k \circ \Psi_a^{-1}) = \overline{\partial} f_a$ on $B_e(0, R/2B\sqrt{k})$, we have the following well-known *a priori* estimate

$$|u_k(a)|^2 \le C \left(k^n \int_{B_e(0, R/2B\sqrt{k})} |(\Psi_a^{-1})^* u_k|^2 \, dV_e + \frac{1}{k} \sup_{B_e(0, R/2B\sqrt{k})} |\overline{\partial} f_a|^2 \right)$$

for some constant C > 0 (see Wermer [7, Lemma 16.7, 16.8] or Hörmander and Wermer [6, Lemma 4.4]). By (ii) we deduce

$$|u_k(a)|^2 \le C\left(k^n \int_{B(a,R/2\sqrt{k})} |u_k|^2 dV_g + \frac{1}{k} \sup_{B(a,R/2\sqrt{k})} |\overline{\partial}f|^2\right).$$

Thus,

$$|u_k(a)|^2 \le C \left(k^n \int_{B(a, R/2\sqrt{k})} |u_k|^2 dV_g + \frac{C}{k^p} \right).$$

Thanks to (******) we deduce

$$\begin{aligned} |u_k(a)|^2 &\leq k^n \frac{C}{k} \left(\sup_{\text{supp}t(f) \cap V} |\overline{\partial}f|^2 e^{-k\phi} + \sup_{\text{supp}(f) \setminus V} e^{-k\phi} \right) \int_{\text{supp}(f)} e^{-\sqrt{k}d(\cdot,a)} \, dV_g \\ &+ \frac{C}{k^p}. \end{aligned}$$

Since $\operatorname{Ric}(g) \ge 0$, by the coarea formula and Bishop's comparison theorem

$$\int_M e^{-\sqrt{k}d(z,a)} \, dV_g \le Ck^{-n}.$$

Also since $(\operatorname{supp}(f) \setminus V) \cap E = \emptyset$, we have $e^{-k\phi} \leq e^{-Ck}$ on $\operatorname{supp}(f) \setminus V$. Finally,

$$\sup_{K\cap\Omega_k}|u_k(a)|^2 = \sup_{K\cap\Omega_k}|f - P_k(f)|^2 \le \frac{C}{k^p} + Ce^{-ck} \le \frac{C}{k^p}$$

This finishes the proof of Theorem 1.2.

S. Asserda

2.2. Proof of Theorem 1.3

PROOF. Now let $f \in G^s(\Omega)$ with compact support and $\overline{\partial}$ -flat at E up to infinite order. If $p \in \mathbb{N}$ and $w \in B_e(0, R/2A\sqrt{k})$ by Taylor's formula

$$\left|\frac{\partial f_a}{\partial \overline{w}_j}(w)\right| \leq \sum_{|\alpha|=p} \alpha!^{-1} \sup_{w \in B_e(0, R/2A\sqrt{k})} \left| D^{\alpha} \frac{\partial f_a}{\partial \overline{w}_j}(w) \|w\|^p \right|$$

Since $C_1^p p! \le \alpha!$ if $p = |\alpha|$ and $\sum_{|\beta|=p} 1 \le (p+1)^p \le C_2 2^p$ where C_1, C_2 are constants, then

$$\left|\frac{\partial f_a}{\partial \overline{w}_j}(w)\right| \le c \|f\|_s C^{p+1} (p!)^{-1} ((p+1)!)^s \|w\|^p$$

where $||f||_s$ is the G^s -norm of f. Since $(p+1)! \le p!2^p$ and s > 1 we have $\inf_{p \in \mathbb{N}} (2^s C ||w||)^p (p!)^{s-1} \le A \exp(-B ||w||^{1/(1-s)})$ where A, B > 0 are constants. Hence,

$$|\overline{\partial} f(z)|_g \le C \exp(-Bd(z,a)^{1/(1-s)}) \quad \forall z \in B\left(a, \frac{R}{2\sqrt{k}}\right).$$

Thus,

$$|\overline{\partial} f(z)|_g \le C \exp(-Bk^{1/2(1-s)}) \quad \forall z \in V = \bigcup_{a \in E} B\left(a, \frac{R}{2\sqrt{k}}\right).$$

Following the same lines as Section 2.1, we deduce that

$$\sup_{K \cap \Omega_k} |f - P_k(f)| \le C \exp(-c(s)k^{1/2(1-s)}).$$

References

- B. Berndtsson, 'A remark on approximation on totally real sets', arxiv:math/0608058v.1, 2006 and arxiv:math/06080582v.2, 2008.
- [2] B.-L. Chen, X.-Y. Fu, L. Yin and X.-P. Zhu, 'Sharp dimension estimates of holomorphic functions and rigidity', *Trans. Amer. Math. Soc.* 385(4) (2006), 1435–1454.
- [3] S. Y. Cheng and S. T. Yau, 'On the existence of a complete Kähler metric on noncompact complex manifolds and regularity of Fefferman's equations', *Comm. Pure Appl. Math.* 33 (1980), 507–544.
- [4] H. Delin, 'Pontwise estimates for the weighted Bergmann projection kernel in \mathbb{C}^n , using a weighted L^2 estimates for the $\overline{\partial}$ -equation', *Ann. Inst. Fourier* **48**(4) (1998), 967–997.
- [5] J. P. Demailly, 'Estimations L^2 pour l'operateur d-bar d'un fibré vectoriel holomorphe semi-positif au dessus d'une variété Kählerienne complète', *Ann. Sci. Ecole Norm. Sup 4e Sér.* **15** (1982), 457–511.
- [6] L. Hörmander and J. Wermer, 'Uniform approximation on compacts set in \mathbb{C}^n ', *Math. Scand.* 23 (1968), 5–21.
- [7] J. Wermer, Banach Algebras and Several Complex Variables, 2nd edn (Springer, Berlin, 1976).

SAID ASSERDA, Université Ibn Tofail, Faculté des Sciences, Departement des Mathématiques, BP 242, Kénitra, Morocco e-mail: said.asserda@laposte.net

176