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Seiberg-Witten Invariants of Lens Spaces
Liviu I. Nicolaescu

Abstract. We show that the Seiberg-Witten invariants of a lens space determine and are determined by
its Casson-Walker invariant and its Reidemeister-Turaev torsion.

Introduction

The Seiberg-Witten theory of rational homology spheres is particularly difficult since
the usual count of monopoles leads to a metric dependent integer. Chen [2], Lim
[10] and Marcolli-Wang [12] have shown that this count, suitably altered by a certain
combination of eta invariants, leads to a topological invariant. For integral homology
spheres, there is an unique spinc structure and this altered count was shown to coin-
cide with the Casson invariant; see [3, 11], and [20] in the special case of Brieskorn
spheres. For a rational homology sphere N there are #H1(N,Z) such invariants which
are rational numbers. They define a function

sw = swN : Spinc(N)→ Q, σ �→ sw(σ).

We will call swN the Seiberg-Witten invariant of N . This invariant can be further
formalized as follows.

Recall that H1(N,Z) ∼= H2(N,Z) acts freely and transitively on the space Spinc(N)
of spinc structures on N

Spinc(N)×H1(N,Z) � (σ, h) �→ σ · h ∈ Spinc(N)

Thus each σ0 ∈ Spinc(N) defines an element SWσ0 ∈ Q[H] (= the rational group
algebra of the multiplicative group H = H1(N,Z)) defined by

SWσ0 =
∑
h∈H

swN(σ0 · h)h.

Clearly

SWσ0·g = SWσ0 ·g
−1, ∀g ∈ H.

Thus, the collection SW := {SWσ ;σ ∈ Spinc(N)} ⊂ Q[H] coincides with an orbit
of the right action of H on Q[H] so that the Seiberg-Witten invariant can be viewed
as an element in Q[H]/H.
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Seiberg-Witten Invariants of Lens Spaces 781

This Seiberg-Witten invariant is unchanged by natural involution

Spinc(N)→ Spinc(N), σ �→ σ̄.

The conditions sw(σ) = sw(σ̄) and ¯σ · h = σ̄ · h−1 imply

SWσ̄ = SWσ

where :̄ Q[H]→ Q[H] is the involution determined by H � h �→ h−1 ∈ H.
In [20] we have explicitly computed the invariant SW for Brieskorn homology

spheres with at most 4 singular fibers and we have identified it with the Casson in-
variant.

In the present paper we use the results and techniques of [19] to produce a sim-
ple algorithm computing the SW. As in [19], these formulæ involve the Dedekind-
Rademacher sums so, each concrete computation, although completely elementary,
can be quite involved.

Denote by SW p,q the Seiberg-Witten invariant of L(p, q). It is an element of
Q[Zp]/Zp and we will regard it as a polynomial in one variable t satisfying t p = 1.
The ring Q[Zp] is equipped with an augmentation map

aug : Q[Zp]→ Q,

p−1∑
k=0

aktk �→

p−1∑
k=0

ak.

We prove in Section 3.2, Theorem 3.1 that

aug(SW p,q) = CW
(

L(p, q)
)
.(0.1)

where CW denotes the Casson-Walker invariant (see [31]) of a rational homology
sphere normalized as in [9].

As explained in [1], the results of Meng-Taubes [14] imply that an analogous result
is true for 3-manifolds with positive Betti numbers provided that the augmentation
map is defined in a regularized sense. In this case we have an equality of the form∑

σ

swN (σ) = CWL(N)

where CWL stands for the Casson-Walker-Lescop invariant of N and the sum on the
left-hand-side should be understood in the ζ-regularized sense when b1(N) = 1.

Following [15] we introduce the polynomial Σ =
∑p−1

k=0 tk. It can be used to
define a projection

Proj : Q[Zp]→ Λp := ker aug, R �→ R−
aug(R)

p
Σ.

Set

Tp,q = Proj(SW p,q) = SW p,q−
CW

(
L(p, q)

)
p

Σ.
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We can regard Tp,q as an element of Λp/Zp. If A, B are two “polynomials” in Λp then
A ∼ B will signify A = tnB for some n ∈ Z.

The Reidemeister torsion of L(p, q), which we denote by τp,q, is also an element of
Λp (see [15, 22]). More precisely, using the convention of [29] we have (see [15, 22,
29])

τp,q ∼ (1− t)−1(1− tq)−1

i.e.

τp,q(1− t)(1− tq) ∼ 1̂ := 1−
1

p
Σ.

As explained in [15, 22] the “polynomial” 1̂ represents 1 in Λp. We prove the follow-
ing.

For any positive integers p, q such that gcd(p, q) = gcd(p, q− 1) = 1 we have

Tp,q(1− t)(1− tq) ∼ 1̂(0.2)

The method we present works in the general case, when gcd(p, q−1) ≥ 1, but the
additional arithmetical difficulties are not particularly enlightening so we have not
included them.

The paper consists of three parts. The first part is a review of basic, known facts
about Seifert manifolds. The second part explains how to use the results in[19] to
compute the various eta invariants needed to compute the Seiberg-Witten invariants.
The third part is devoted to the proof of (0.1) and (0.2).

Acknowledgements I learned about the Seiberg-Witten invariants of rational ho-
mology spheres from Weimin Chen. I want to thank him for the useful conversations
over the years. As always, Nikolai Saveliev has generously shared his knowledge with
me. In particular, the conversations with him provided the stimulus to think about
the Casson-Walker invariant. I am indebted to Frank Connolly for the many helpful
mathematical discussions. Finally, I want to thank Yuhan Lim for sending me his
preprints [10, 11].

1 Seifert manifolds

1.1 Classification results

The literature on Seifert manifolds can be quite inconsistent as far as the meaning of
Seifert invariant is concerned. This subsection is an informal comparative survey of
the most frequently used descriptions of a Seifert manifold. In particular, we care-
fully keep track of the various sign conventions and carefully describe various natural
metrics (Thurston geometries). This is particularly crucial in the case of lens spaces
which admit infinitely many Seifert structures and thus infinitely many Thurston ge-
ometries. However only two (!!!) of them are Sasakian, which is exactly the geometric
context needed to invoke the results in [17, 19].
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A. The Equivariant Description In this paper, a Seifert manifold (or fibration) is a
compact, oriented, smooth 3-manifold N without boundary, equipped with an in-
finitesimally free S1 action. A fiber S1 · x is called regular if the stabilizer Stx of x is
trivial. Otherwise, the fiber is called singular. In this case Stx is a cyclic group Zα
and the order of this stabilizer is called the multiplicity of the fiber. It is customary to
identify Stx with the cyclic subgroup

Cα =
{

exp
( 2kπi

α

)
; k = 0, 1, . . . , α− 1

}
⊂ S1.

For brevity set ρα := exp( 2πi
α

). The base of the Seifert fibration is the space of orbits
Σ := N/S1. Topologically, it is a compact oriented surface but smoothly, it is a
2-dimensional orbifold. The orbifold singularities are all cone-like and correspond
bijectively to the singular fibers. Equip N with an S1-invariant Riemann metric h.
Suppose F ⊂ N is a singular fiber of multiplicity α containing the point x. The
bundle TN|F splits orthogonally as

TN|F = TF ⊕ (TF)⊥.

Both TF and (TF)⊥ are S1-equivariant bundles over F. The stabilizer Cα of x acts
effectively on (TxF)⊥. Denote this action by

τ : Cα → Aut
(

(TxF)⊥
)
.

If we identify (TxF)⊥ as an oriented vector space with C then τ is completely de-
scribed by an integer 0 < q < α, gcd(q, α) = 1 by the formula

τ (ρα)z = ρq
αz.

We will denote this action by τα,q or, when no confusion is possible, by τq. Following
[23], we call the pair (α, q) the orbit invariant of the singular fiber F. Now denote by
β the integer uniquely determined by the requirements

0 < β < 1, βq ≡ 1 (mod α).

The pair (α, β) is called the (oriented, normalized,) Seifert invariant of the singular
fiber F.

Using the principal Cα-bundle Pα = (S1 → S1), z �→ zα, and the representation
τq we can form the associated S1-equivariant line bundle

Eα,q := Pα ×τq C→ S1.

The S1-action on Eα,q is induced from the obvious action on S1 × C

eiθ · (z1, z2) = (eiθz1, z2), |z1| = 1, z2 ∈ C
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which commutes with the action of Cα

ρα(z1, z) = (ραz1, ρ
−q
α z2).

To describe this S1-action on Eα,q more explicitly note first that Eα,q is diffeomorphic
to S1 × C. Such a diffeomorphism can be obtained using the Cα-invariant map

T : S1 × C→ S1 × C, (z1, z2)
T
�→ (ζ1, ζ2) = (zα1 , z

q
1z2).

Then we can regard (ζ1, ζ2) as global coordinates on Eα,q and we can describe the
S1-action by

eiθ(ζ1, ζ2) = Teiθ · (z1, z2) = (eiαθζ1, e
iqθz2).

We have the following result (see [23]).

The Slice Theorem There exists an S1-invariant open neighborhood U of F in N, an
S1-invariant open neighborhood V of the zero section of Eα,q and an S1-equivariant
diffeomorphism φ : V → U which maps the zero section to F and 1 ∈ S1 to a given fixed
point x ∈ F.

Denote Dr denotes the disk of radius r in the fiber of Eα,q over 1 ∈ S1, i.e.,

Dr = {(1, ζ2) ∈ Eα,q; |ζ2| ≤ r}.

The surface φ(Dr) will be called a slice of the S1-action. For simplicity, we will con-
tinue to denote it by Dr. Its boundary, equipped with the induced orientation, will
be denoted by�σ. It can be explicitly described by the parametrization

(ζ1, ζ2) = (1, reit ), t ∈ [0, 2π].

Denote by ∆(r) = ∆α,β the bundle of disks of radius r determined by Eα,q and set
S(r) = Sα,β := ∂∆α,β . ∆(r) is usually known as the fibered torus corresponding
to the Seifert invariants (α, β). Endow S(r) with the induced orientation. S(r) is
equipped with a free S1-action. Denote by �f an orbit in S(r) equipped with the in-
duced orientation. It can be parametrized explicitly by

(ζ1, ζ2) = (eiαt , eiqt ), t ∈ [0, 2π].

�f meets�σ geometrically α-times. In fact, when we use the outer-normal-first orien-
tation convention for manifolds with boundary, we also have�σ · �f = α, algebraically
as well.

A section of the S1-action on S(r) is a closed, oriented curve�s such that�s · �f = 1
both algebraically and geometrically. There exists a canonical section satisfying the
homological condition

�σ = α�s + β�f .(1.1)
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Clearly the above condition uniquely determines the homology class of�s in Sr .
We can now use these notions to describe the structure of Seifert fibrations. Sup-

pose the Seifert fibration has m ≥ 1 singular fibers Fx1 , . . . , Fxm with normalized
Seifert invariants

(α1, β1), . . . , (αm, βm).

Delete small, pairwise disjoint, S1-invariant neighborhoods U1, . . . ,Um of the singu-
lar fibers, determined by the Slice Theorem. We get a 3-manifold with boundary

N ′ = N \
( m⋃

i=1

Ui

)
(1.2)

equipped with a free S1-action. This is a principal S1-bundle S1 ↪→ N ′ → Σ ′ :=
N ′/S1. The restriction of this bundle to ∂Σ ′ has canonical sections, determined by
(1.1). In other words, it is trivialized along the boundary. Such a bundle is completely
determined topologically by an integer b, the relative degree (or Euler number). Here
we have to warn the reader that our b differs by a sign from the conventions in [8, 16].
Denote by � the rational number

� = b−
∑ βi

αi
.

It is called the rational Euler number or degree of the Seifert fibration. The normalized
Seifert invariant of N is defined as the collection

(
g, b, {(α1, β1), . . . , (αm, βm)}

)
(1.3)

where g denotes the genus of Σ ′. Two Seifert fibrations are equivalent iff they have
identical normalized Seifert invariants.

B. Surgery Description To obtain a Seifert fibration with Seifert invariant (1.3) start
with a S1-bundle over an oriented Riemann surface Σ ′ of genus g with m small dis-
joint disks removed. We assume this is trivialized over ∂Σ ′ and has relative degree
b. N ′ has several boundary components, ∂iN ′, i = 1, . . . ,m, all diffeomorphic to a
torus and oriented using the orientation conventions in the introduction. The Seifert
manifold with the above Seifert invariants can be obtain by attaching, a solid torus
D2 × S1 to each ∂iN ′ using the orientation reversing homeomorphism

Γαi ,βi : ∂(D2 × S1)→ ∂iN
′

homologically described by the matrix with integral entries and det = −1

Γαi ,βi :=

[
−αi qi

βi xi

]
.(1.4)
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In the above description we assumed that H1(S1×D2; Z) is equipped with the natural
basis {∗ × ∂D2, S1 × ∗} while H1(∂iN ′,Z) is equipped with the basis {�s, �f } given by
the trivialization of N ′ along the boundary ofΣ ′ and respectively a fiber. This gluing
map implements the homological equation (1.1).

Often it is useful to work with un-normalized Seifert invariants. These are collec-
tions

S =
(

g, b,m; (α1, β1), . . . , (αm, βm)
)

such that gcd(βi , αi) = 1, αi �= 0. Two collections S and S ′ are called equivalent if
g = g ′, the collection of αi-s not equal to 1 coincides (including multiplicities) with
the collection of α ′j-s not equal to 1 and

b−
∑

i

βi

αi
= b ′ −

∑
i

β ′j

α ′j
.

We can carry out the above surgeries using the prescriptions given by these new in-
variants. We refer the reader to [8, 23] for a proof of the fact that equivalent un-
normalized Seifert invariants lead to S1-diffeomorphic Seifert manifolds.

C. Orbifold Description, [5] Start with a V -surfaceΣwith m singular points x1, . . . ,
xm with isotropies Cα1 , . . . ,Cαm . Pick a complex line V -bundle L→ Σ such that the
isotropies in the fibers over the singular points are given by the representations

ταi ,ωi : Cαi → U (1), ταi ,ωi (ραi ) = ρ
ωi
αi
.

Above, ωi are integers satisfying the conditions

0 < ωi < αi, gcd(αi , ωi) = 1.(1.5)

Then the unit circle bundle N = S(L) determined by L is a Seifert manifold. In [19]
we defined the Seifert invariants as the collection

(
g, �,m; (α1, ω1), . . . , (αm, ωm)

)
where � is the rational degree of L. We will refer to these as the Seifert V -invariants.
The normalized Seifert invariants (as defined in this paper) of N are

βi := αi − ωi(1.6)

and

b = � +
∑

i

βi

αi
.(1.7)
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We want to clarify one point. Denote by |L| the desingularization of L (described in
[19]). Then

deg |L| = deg L−
∑

i

ωi

αi
= � +

∑
i

βi

αi
−m = b−m.(1.8)

The description of Seifert fibrations via line V -bundles has its computational ad-
vantages. It allows a very convenient description of the cohomology group H2(N,Z).
We include it here for later use.

Consider a Seifert fibration N over a 2-orbifold Σ defined as the unit circle bun-
dle determined by a line V -bundle L0 → Σ. Suppose the singularities of Σ have
isotropies α1, . . . , αm while the isotropies of L0 over the singular points are described
by ρωi

αi
as explained above. Denote by Pict (Σ) the space (Abelian group more pre-

cisely) of isomorphism classes of line V -bundles over Σ. Define a group morphism

τ : Pict (Σ)→ Q ⊕ Zα1 ⊕ · · · ⊕ Zαm

by

τ (L) = (deg L, γ1 mod α1, . . . , γm mod αm)

where deg L is the rational degree of L and γi describe the isotropies of L over the
singular points of Σ. Next, define

δ : Q ⊕ Zα1 ⊕ · · · ⊕ Zαm → Q/Z

by

δ(c, γ1, . . . , γm) =
(

c −
∑

i

γi

αi

)
mod Z.

In [5] it is shown that the sequence below is exact

0→ Pict (Σ)
τ
→ Q ⊕ Zα1 ⊕ · · · ⊕ Zαm

δ
→ Q/Z→ 0.(1.9)

Moreover, there exists an isomorphism of groups

H2
(

S(L0),Z
)
∼= Z2g ⊕ Pict (Σ)/Z[L0],(1.10)

where g is the genus ofΣ and Z[L0] denotes the cyclic subgroup of Pict (Σ) generated
by L0. The subgroup Pict (Σ)/Z[L0] of H2

(
S(L0),Z

)
consists of the Chern classes of

the line bundles on S(L0) obtained by pullback from line V -bundles on Σ.
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1.2 Geometric Seifert Structures on Lens Spaces

We now want to apply the general considerations in the previous subsection to lens
spaces.

If p, q are two coprime integers, p > 1 we define the lens space L(p, q) as the
quotient of

S3 := {(z1, z2) ∈ C2; |z1|
2 + |z2|

2 = 1}

via the action of C p given by

ρp(z1, z2) = (ρpz1, ρ
q
pz2).(1.11)

Alternatively, we can describe L(p, q) as a result of gluing two solid tori D × S1

along their boundaries using the gluing map Γq,p (see [8]). This shows that we can
regard a lens space as a Seifert manifold with (un-normalized) Seifert invariant

(
g =

0, b = 0, (q, p)
)

. In fact, as explained in [8, 28], any lens space admits infinitely
many Seifert structures. They all have something in common. Their bases have zero
genus and they have at most two singular fibers. Moreover, any Seifert fibration over
S2 with at most two singular fibers must be a Seifert fibration of a lens space. The
Seifert invariants of all these Seifert fibrations are described in Section 4 of [8].

We will be interested only in those Seifert structure on a lens space such that the
base is a good orbifold in the sense described in [28]. This can happen if and only if
they have an (un-normalized) Seifert invariant

(
g = 0, b = 0, (α1, β1), (α2, β2)

)
satisfying α1 = α2. These Seifert structures were determined in [24] for any lens
space L(p, q). There are only two of them

S±(p, q) =
(

0, 0, (α±, β
±
1 ), (α±, β

±
2 )
)

(1.12)

which can be explicitly computed as follows:

• α± = p/ gcd(p, q± 1)
• β±1 + β±2 = ∓ gcd(p, q± 1)
• β±2 ·

q±1
gcd(p,q±1) ≡ −1 mod α±.

We will refer to the above Seifert structures on L(p, q) as the geometric Seifert struc-
tures. There is a more conceptual description of these structures. To present it, recall
first the Hopf actions of S1 on S3 given by

h± : (z1, z2)
eiθ

�→ (e±iθz1, e
iθz2).

The action (1.11) of C p commutes with these action of S1 and thus the Hopf actions
descend to two infinitesimally free S1-actions on the lens space L(p, q). These define
precisely the two geometric Seifert structures.
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1.3 Sasakian Structures on Lens Spaces

All Seifert fibrations admit natural geometries, i.e. locally homogeneous Riemann
metrics and their universal covers belong to a list of 6 homogeneous spaces (see [28]).
In the case of lens spaces this geometry is induced from a round metric on their
universal cover, S3. We want to describe those Seifert structures which interact in
a certain way with this metric. In the terminology of [17], we need a (K, λ) ⇐⇒
Sasakian structure. In this case this is equivalent to asking that the Seifert structures
are the quotient of the Hopf actions on S1 modulo the action (1.11) of C p. In other
words, we must restrict to geometric Seifert structures.

Consider a lens space N = L(p, q) equipped with a geometric Seifert structure
with (un-normalized) invariant(

g = 0, b = 0, (α, β1), (α, β2)
)
.

The base Σ = N/S1 is a 2-orbifold with at most two conical points of identical
isotropies Cα. Denote by g(R) the metric on N induced by the round metric on the
3-sphere of radius R. The radius R will be described below. The group S1 acts by
isometries of g(R) so that ζ , the infinitesimal generator of this action, is a Killing
vector field. ζ is nowhere vanishing and produces an orthogonal decomposition

TN = span (ζ)⊕ span (ζ)⊥.

The action of S1 is compatible with this splitting and thus, the metric on span (ζ)⊥

induces an orbifold metric h on Σ. Now fix R = R0 such that

vol h(Σ) = π.(1.13)

The radius R0 can be explicitly determined as follows. Observe first that the volume
of N is equal to

length regular fiber × vol h(Σ) = 2π2R0/p

Since the regular fibers have length (1/p) ×
(

length of a great circle on S3(R0)
)
=

2πR0/p. Hence

vol (N) = 2π2R2
0/p.

On the other hand

vol (N) = vol
(

S3(R0)
)
/p = 2π2R3

0/p

from which we deduce R0 = 1.
The regular fibers of N are geodesics and have the same length 2π/p so that ζ has

length 1/p. Denote by ϕ ∈ Ω1(N) the g(R0)-dual of ζ . The metric g(R0) can be
described as

g(R0) = ϕ2 ⊕ h.
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For 0 < r < 1 define the anisotropic rescaling

gr = (pr)2ϕ2 ⊕ h.

With respect to this metric the regular fibers have length 2πr. Denote by∇r the Levi-
Civita connection of the metric g1. Following [18] we define for each t ∈ (0, 1] an
isometry

Lt : (TN, grt )→ (TN, gr), ζ �→ tζ, X �→ X if X ⊥ ζ.

Now set

∇̃r,t := Lt∇
rt L−1

t .

The connection ∇̃r,t is compatible with gr but it is not symmetric. In [18] we have
shown that the limit limt→0 ∇̃r,t exists and defines a connection compatible with the
metric gr. We will call this limit the adiabatic Levi-Civita connection of the metric gr

and we will denote it by ∇̃r .
Observe that a lens space admits two geometric Seifert structures. Arguing as

above we obtain two families of Riemann metrics gr and hρ. Both have positive scalar
curvature (for r, ρ � 1), and there exist values r0, ρ0 > 0 (which need not be equal)
such that the metrics gr0 is homothetic to the metric hρ0 .

2 Seiberg-Witten Invariants of Rational Homology Spheres

2.1 Definition

Suppose N is rational homology sphere equipped with a Riemann metric g. Pick a di-
vergence free 1-form ν, thought of as a perturbation parameter for the 3-dimensional
Seiberg-Witten equations SW(g, ν, σ) on (N, g, σ), where σ is a spinc structure on N .
Denote by Sσ the bundle of complex spinors associated to σ and set detσ = det Sσ .
The pair (g, ν) is said to be good iff the following hold:

• The irreducible solutions of SW(g, ν, σ) are nondegenerate for all σ.
• If θ = (ψ = 0,Aσ) is the reducible solution of SW(g, ν, σ) then ker DAσ = 0

where DAσ denotes the Dirac operator on Sσ coupled with the connection Aσ on
detσ.

For any irreducible solution α of SW(g, ν, σ) denote by i(α, θ) the virtual dimen-
sion of the space of tunnelings (= connecting gradient flow lines) from α to θ.

Fix a spinc structure σ on N and a good pair (g, ν). The set of gauge equiva-
lence classes of monopoles is finite and it consists of a unique nondegenerate re-
ducible monopole θ = (0,Aσ) and finitely many, nondegenerate irreducible ones
{Ck; i = 1, . . . , n}. Set

nk = nk(g) = i(Ck, θ),
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and

F(σ) = Fg(σ) = 4η(DAσ ) + ηsign (g),

where ηsign (g) denotes the eta invariant of the odd-signature operator on N deter-
mined by the metric g.

The Seiberg-Witten invariant of (N, σ) is the rational number

sw(σ) = swN (σ) =
1

8
Fg(σ)−

∑
k

(−1)nk(g).(2.1)

In [2, 10] it was proved that sw(σ) is independent of the choice of the good pair (g, η)
and

sw(σ) ∈
1

8h1
Z,

where h1 = #H1(N,Z). Observe that sw(σ) = sw(σ̄) where σ �→ σ̄ is the natural
involution on Spinc(N). Set

sw(N) :=
∑
σ

sw(σ).(2.2)

2.2 Computations of Eta Invariants

Consider a lens space N = L(p, q) and fix a geometric Seifert fibration structure on
it. The discussion in Section 1.4 shows that the Seifert invariants of this structure has
the form

(
g = 0, b = 0, (α, β1), (α, β2)

)
, α > 0.

More explicitly, this is one of the Seifert structures S±(p, q) described in (1.12).
If we regard N as the unit circle bundle determined by a line V -bundle over Σ =

S2(α, α) = N/S1 then we deduce that

� := deg L0 = −
β1 + β2

α
(2.3)

and the isotropies of L0 over the singular points are given by

ωi = (−βi) mod αi, i = 1, 2.(2.4)

Above and in the sequel, for any x, n ∈ Z we denote by x mod n the smallest non-
negative integer≡ x mod n. We want to warn the reader that when α = 1 the above
Seifert structure has no singular fibers and N is a genuine smooth S1-bundle over S2

of degree �.
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The canonical line bundle KΣ of Σ has rational degree

κ := −
2

α
(2.5)

so that the rational Euler characteristic is

χ = −κ =
2

α
.(2.6)

Denote by ηsign (r) the eta invariant of the odd signature operator of N equipped
with the deformed metric gr (described in Section 1.3). ηsign (r) was computed in
[24]. To describe it explicitly we need to introduce the Dedekind-Rademacher sums
defined for the first time by Hans Rademacher in [25]. More precisely, for every pair
of coprime integers α, β, α > 1 and any x, y ∈ R set

s(β, α; x, y) :=
α∑

r=1

((
x + β

r + y

α

))(( r + y

α

))

where for any r ∈ R we set

((r)) =

{
0 r ∈ Z

{q} − 1
2 r ∈ R \ Z

({r} := r − [r]).

The sums s(β, α) := s(β, α; 0, 0) are the Dedekind sums studied in great detail in
[7, 26].

ηsign (r) = −sign (�) +
2�

3
(χr2 − �2r4) +

�

3
− 4s(ω1, α)− 4s(ω2, α).(2.7)

The canonical spinc structure on the orbifold Σ (with determinant line bundle
K−1
Σ ) determines by pullback a spinc structure on N which we denote by σ0. This

allows us to bijectively identify the collection of spinc structures on L with the space of
isomorphism classes of complex line bundles. Since H2(N,Z) = Zp is pure torsion,
the discussion at the end of Section 1.1 shows that all the line bundles on N are
pullbacks of line V -bundles. Thus

Spinc(N) ∼= Pict (Σ)/Z[L0](2.8)

where Spinc(N) denotes the space of spinc structures on N . If L is a line bundle on N
then the spinc structure σ0 ⊗ L which corresponds to L has determinant line bundle

det(σ0 ⊗ L) = L⊗2 ⊗ detσ0 = L⊗2 ⊗ π∗K−1
Σ

where π : N → Σ is the natural projection. The associated bundle of complex spinors
is

SL = L⊕ L⊗ π∗K−1
Σ .
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In [19] it was shown that, up to gauge equivalence, there is a unique flat connection
on detσL which we denote by AL. The Levi-Civita connection of gr and AL canoni-
cally determine a connection on SL compatible with the Clifford multiplication. De-
note by DL the associated Dirac operator, by ηdir (L, r) its eta invariant, and

Fr(L) := 4ηdir (L, r) + ηsign (r).

The results of [19] show that for r sufficiently small, the unperturbed Seiberg-Witten
equations corresponding to the spinc structure L have only one solution which is
reducible. It is also nondegenerate since the scalar curvature of gr is positive. Thus,
gr is a good metric for r � 1 and since there is no Floer homology we deduce that

sw(σ0 ⊗ L) = Fr(L).

We now show how one can use the results of [19, 18] to provide explicit descriptions
of Fr(L). We have to distinguish two cases.

A α = 1 so that N is a degree � line bundle over S2 or, as a lens space, N =
L(�,−1) = L

(
|�|, |�| − sign (�)

)
. The signature eta invariant is

ηsign (r) = −sign (�) +
2�

3
(χr2 − �2r4) +

�

3
(2.9)

In this case there is a unique spin structure on Σ = S2 which corresponds to the
unique holomorphic square root K1/2 of KΣ. This determines by pullback a spin
structure on N and denote by σspin the spinc structure associated to it. Then

σspin = σ0 ⊗ π
∗K1/2
Σ .

For each integer 0 ≤ k < |�| we denote by Lk the line bundle of degree k over Σ and
by σk the spinc-structure

σspin ⊗ π
∗Lk = σ0 ⊗ π

∗(K1/2 ⊗ Lk).

Also let Dk denote the Dirac operator on Sσk determined by the unique flat connec-
tion on detσk and denote by ηdir (k, r) its eta invariant. Then

Spinc(N) = {σk; 0 ≤ k < |�|}.

In [19] we computed the eta invariants, not for the operator Dk, but for the adia-
batic Dirac operators Dk. These are constructed using the connection on Sσk induced
by the adiabatic Levi-Civita connection TN and the flat connection detσk. The eta
invariant of Dk can be determined using variational formulæ corresponding to the
affine deformation (1 − t)Dk + tDk. The difference ηdir (k, r) − η(Dk) can be ex-
pressed as the sum of a continuous (transgression) term and a discontinuity contri-
bution (spectral flow). The transgression term is expressed in the second transgres-
sion formula of [18] while the analysis in Section 4 of [17] shows that the spectral
flow contribution is zero if r � 1. We obtain the following results:
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• k = 0 (use Theorem 2.4 of [18])

ηdir (k, r) =
�

6
−
�

6
(χr2 − �2r4).

• 0 < k < |�| (use the equality (2.22) and the second transgression formula of [18])

ηdir (k, r) =
�

6
+

k2

�
− sign (�)k−

�

6
(χr2 − �2r4).

Using (2.9) we deduce

Fr(k) =
4

�
k2 − 4sign (�)k + �− sign (�).

We see that Fr(k) is independent of r!!!

B α > 1 The computations are similar in spirit to the ones in Case A but obviously
they are more complex due to the presence of singular fibers.

Let L → N be a line bundle over N = S(L0) and set σ = σ0 ⊗ L ∈ Spinc(N). To
compute ηdir (σ, r) := ηdir (L, r) we need to determine the canonical representative of
L. This is the unique line V -bundle L̂ = L̂σ → Σ satisfying the conditions

π∗L̂ ∼= L(2.10)

κ− 2 deg L̂

2�
∈ [0, 1).(2.11)

Denote by ρ = ρ(σ) ∈ [0, 1) the rational number sitting in the left-hand-side of
(2.11) and by 0 ≤ γi = γi(σ) < α, i = 1, 2 the isotropy of the fibers of L̂σ over the
singular points. Finally set

d(σ) =
κ

2
− �ρ(σ) = deg L̂σ.

In Proposition 1.10 of [19] we computed the eta invariant for the adiabatic Dirac
operator DL = Dσ defined by using the adiabatic connection on Sσ and the flat
connection on detσ. To recover the eta invariant of Dσ := DL we use a deformation
argument as in Case A and we deduce the following results:

• If ρ(σ) = 0 then

ηdir (σ, r) =
�

6
− 2

2∑
i=1

s
(
ωi , α; γi(σ)/α, 0

)
(2.12)

−
2∑

i=1

((
qiγi(σ)

α

))
−
�

6
(χr2 − �2r4),

where 0 ≤ qi < α denotes the inverse of ωi mod α.
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• If ρ(σ) > 0 then

ηdir (σ, r) =
(

1−
1

α

)
(1− 2ρ)− �ρ(1− ρ) + 2ρ +

�

6

− 2
2∑

i=1

s

(
ωi , α;

γi(σ) + ωiρ

α
,−ρ

)
(2.13)

−
2∑

i=1

{
qiγi(σ) + ρ

α

}
−
�

6
(χr2 − �2r4),

where {x} denotes the fractional part of the real number x.

The above formulæ may seem hopelessly useless. Fortunately, the Dedekind-
Rademacher sums satisfy a reciprocity law (see [25]) which makes them computa-
tionally very friendly. The reciprocity law, coupled with the identities

s(β, α; x, y) = s(β −mα, α; x + my, y), ∀m ∈ Z(2.14)

reduces the computation of any Dedekind-Rademacher sum to the special case
s(β, 1; x, y) which is

s(β, 1; x, y) =
(

(βy + x)
)
· ((y))(2.15)

The complexity of the computation is comparable with the complexity of Euclid’s
algorithm which is very fast.

Using (2.7), (2.12) and (2.13) we conclude that when ρ(σ) = 0 we have

Fr(σ) = �− sign (�)− 8
2∑

i=1

s
(
ωi , α; γi(σ)/α, 0

)

− 4
2∑

i=1

((
qiγi(σ)

α

))
− 4

2∑
i=1

s(ωi , α)(2.16)

and when ρ(σ) > 0 we have

Fr(σ) = �− sign (�) + 4
(

1−
1

α

)
(1− 2ρ)− 4�ρ(1− ρ) + 8ρ

− 8
2∑

i=1

s

(
ωi, α;

γi(σ) + ωiρ

α
,−ρ

)
(2.17)

− 4
2∑

i=1

{
qiγi(σ) + ρ

α

}
− 4

2∑
i=1

s(ωi , α).

Note again the r has disappeared!!!
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To put the formulæ to work we need to have a complete list of the canonical rep-
resentatives of the line bundles on N . Given the isomorphism (1.9) this reduces to an
elementary number theoretic problem.

According to (1.9) any line V -bundle on Σ can be uniquely represented as a col-
lection ( i

α
, j mod α, (i − j) mod α

)
, i, j ∈ Z.

Set n = (β1 + β2) so that � = −n/α. A collection as above is the canonical represen-
tative of a line bundle as above if

κ− 2i/α

−2n/α
=

i + 1

n
∈ [0, 1).

Thus, when sign (n) = −1 we deduce that the complete list of canonical representa-
tives is

Rn =
{( i

α
, j mod α, (i − j) mod α

)
; i = −1,−2, . . . ,−|n|, 0 ≤ j < α

}
(2.18)

while when sign (n) = 1 the complete set of canonical representatives is

Rn =
{( i

α
, j mod α, (i − j) mod α

)
; i = −1, 0, . . . , |n| − 2, 0 ≤ j < α

}
.

(2.19)

The invariant ρ of a canonical representative ν = (i/α, j, i − j) ∈ R is

ρ(ν) =
i + 1

n
.(2.20)

Notice that we have a bijection

In,α := {−1, 0, . . . , |n| − 2} × Zα ∼ Rn

given by the correspondence

(k, j mod α) ∼ ν �→

(
sign (n)k− c

α
, j,−sign (n)k− c − j

)
,

where c := 1 − sign (n). The functions ρ, γ1, γ2 : R → Q can now be regarded as
functions on In,α. More precisely

ρ(k, jmod α) =
k + 1

|n|
(2.21)

and

γ1(k, j mod α) = j, γ2(k, j mod α) = sign (n)k− c − j.(2.22)

Finally we can now regard Fr as a function

Fr = Fr(k, j) : In,α → Q

given by (2.16), (2.17), (2.21) and (2.22).

https://doi.org/10.4153/CJM-2001-032-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-032-7


Seiberg-Witten Invariants of Lens Spaces 797

3 Seiberg-Witten⇒ Casson-Walker + Reidemeister Torsion

In this section we describe a relationship between the Seiberg-Witten invariants of a
lens space and other “classic” invariants.

If N is the lens space L(p, q) then, as explained in Section 2.2, a geometric Seifert
structure on N determines a spinc-structure σ0 on N . We will work with the geomet-
ric Seifert structure determined by α = p/ gcd(p, q− 1) and we set

SW p,q =

p−1∑
j=0

sw(σ0 · t)t j ,

where t is a generator of the cyclic group Zp. Observe that

sw
(

L(p, q)
)
= aug(SW p,q).

The Casson-Walker invariant of N is defined in [9, 31]. It is a rational number
CW(N) uniquely determined by certain Dehn surgery properties. We will work with
C. Lescop’s normalization used in [9]. It is related to K. Walker’s normalization used
in [31] by the equality ([9, Property T5.0, p. 76]

CW(N)Lescop =
h1

2
CW(N)Walker .

The Casson-Walker invariant of the lens space can be expressed in terms of the
Dedekind sums. More precisely we have the equality (see [31])

CW
(

L(p, q)
)
= −

p

2
s(q, p).(3.1)

We can now state the first result of this section.

Theorem 3.1

sw
(

L(p, q)
)
= CW

(
L(p, q)

)
.

3.1 Seiberg-Witten⇒ Casson-Walker

Our proof of Theorem 3.1 is arithmetic in nature and relies on the computations in
Section 2.2.

We will work with the same metric as in Section 2.2. Since it has positive scalar
curvature we deduce there are no irreducible monopoles, the unique reducible is also
nondegenerate and thus

sw
(

L(p, q), σ
)
=

1

8
Fp,q(σ), ∀σ ∈ Spinc

(
L(p, q)

)
.

https://doi.org/10.4153/CJM-2001-032-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-032-7


798 Liviu I. Nicolaescu

To proceed further we need to organize the computational facts established in Sec-
tion 2.2 in a form suitable to our current purposes.

Set n = gcd(p, q− 1), α = p/n

β2 ·
q− 1

n
≡ −1 mod α, β1 = n− β2,

ωi = −βi , qiωi ≡ 1 mod α ∀i = 1, 2.

The rational Euler number of L(p, q) equipped with the above geometric Seifert
structure is

� = −
n

α
= −

n2

p
.

For each positive integer m set

Im := {0, 1, . . . ,m− 1} and I∗m = {1, . . . ,m− 1}.

The set Spinc
(

L(p, q)
)

can be identified with In × Iα and we have several functions
of interest

ρ : In × Iα → Q, ρ(k, j) =
k

n
,

γ1, γ2 : In × Iα → Z, γ1(k, j) = j, γ2(k, j) = k− 1− j.

The function Fp,q(σ) can be regarded as a function F : In × Iα → Q . It is explicitly
described by

F(k, j) = � + 1− 4�ρ(1− ρ) + 8ρ

− 4
2∑

i=1

s(ωi , α)− 8
2∑

i=1

s
(
ωi , α,

γi + ωiρ

α
,−ρ

)

+ 4

{
−
∑2

i=1

(
( qiγi

α
)
)

if ρ = 0(
1− 1

α

)
(1− 2ρ)−

∑2
i=1

{ qiγi +ρ
α

}
if ρ �= 0

.(3.2)

We have to prove

∑
k∈In

∑
j∈Iα

F(k, j) = −4ps(q, p).(3.3)

The proof of (3.3) relies on two identities. The first one was proved by M. Ouyang,
[24, p. 652]. More precisely, we have

2∑
i=1

s(ωi , α) = s(q, p)−
1

6p
−

n2

12p
+

1

4
.(3.4)
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The second one is central in the theory of Dedekind sums and has the form

∑
µ∈Im

(( µ + w

m

))
= ((w)), ∀m ∈ Z+, w ∈ R.(3.5)

For a proof we refer to [7].
Summing (3.4) over (k, j) ∈ In × Iα and using the equality p = nα we deduce

4
∑
k∈In

∑
j∈Iα

s(ωi , α) = 4ps(q, p)−
2

3
−

n2

3
+ p.(3.6)

We now proceed to sum over (k, j) ∈ In× Iα all the terms entering into the definition
of F(k, j). ∑

k∈In

∑
j∈Iα

(� + 1) = −n2 + p.(3.7)

8
∑
k∈In

∑
j∈Iα

ρ = 8
∑
j∈Iα

∑
k∈In

k

n
=

8α

n

n(n− 1

2
= 4(p − α).(3.8)

4�
∑
k∈In

∑
j∈Iα

ρ(1− ρ) = −
4n

α

∑
j∈Iα

∑
k∈In

k(n− k)

n2
= −

4

n

∑
k∈In

k(n− k)

(
∑

k∈In
k2 = n3

3 −
n2

2 + n
6 )

= −
4

n

( n3

2
−

n2

2
−

n3

3
+

n2

2
−

n

6

)
= −

2

3
n2 +

2

3
.(3.9)

Next, ∑
k∈In

∑
j∈Iα

s
(
ωi , α,

γi + ωiρ

α
,−ρ

)

=
∑
k∈In

∑
j∈Iα

∑
µ∈Iα

(( µ− ρ
α

))(( (ωi(µ− ρ) + γi + ωiρ

α

))

=
∑
µ∈Iα

(( µ− ρ
α

))∑
k∈In

∑
j∈Iα

((
γi(k, j) + ωiµ

α

))

=
∑
µ∈Iα

(( µ− ρ
α

))∑
k∈In

∑
r∈Iα

(( r + ωiµ

α

))
.

According to (3.5), the last sum (over r) is equal to
(

(ωiµ)
)
= 0. Hence

∑
k∈In

∑
j∈Iα

s(ωi , α,
γi + ωiρ

α
,−ρ) = 0.(3.10)
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Using (3.5) again we deduce

∑
k∈I∗n

∑
j∈Iα

((
qiγi(k, j)

α

))
=
∑
k∈I∗n

∑
r∈Iα

(( r

α

))
(3.5)
== 0.(3.11)

Observe that since 1− 2ρ(k) = −
(

1− 2ρ(n− k)
)

we have

(
1−

1

α

) ∑
k∈I∗n

∑
j∈Iα

(1− 2ρ) = 0.(3.12)

Finally, we have

∑
k∈I∗n

∑
j∈Iα

{
qiγi(k, j) + ρ(k)

α

}

=
∑
k∈In

∑
j∈Iα

{
qiγi(k, j) + ρ(k)

α

}
−
∑
j∈Iα

{
qiγi(0, j)

α

}

=
∑
k∈In

∑
j∈Iα

{
nqiγi(k, j) + k

p

}
−
∑
j∈Iα

{
qiγi(0, j)

α

}
.

Now observe that as k covers In and j covers Iα the quantity
(

nqiγi(k, j) + k mod p
)

covers Ip while qiγi(0, j) covers Iα. Hence

∑
k∈In

∑
j∈Iα

{
nqiγi(k, j) + k

p

}
=
∑
r∈Ip

{
r

p
} =

p − 1

2

and

∑
j∈Iα

{
qiγi(0, j)

α

}
=
∑
r∈Iα

{ r

α

}
=
α− 1

2
.

We conclude that

4
∑
k∈I∗n

∑
j∈Iα

2∑
i=1

{
qiγi(k, j) + ρ(k)

α

}
= 4(p − α).(3.13)

The identity (3.3) now follows from (3.6)–(3.13). Theorem 3.1 is proved.

Remark 3.2 As explained in [1], for any 3-manifold N we can define an invariant

sw(N) =
∑
σ

swN (σ)
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where the summation is carried over all spinc structures of N . If b1(N) > 1 then the
above sum is finite. If b1(N) = 1 then the above sum is infinite but admits a finite
ζ-function regularization. When b1(N) > 0 the results of [14] imply that sw(N) is
equal to the Casson-Walker-Lescop invariant of N .

Recently, Marcolli and Wang [13] have proved that sw(N) = CW(N) for any
rational homology sphere. Theorem 3.1 is used as an initial step in their inductive
proof.

3.2 Seiberg-Witten⇒ Reidemeister Torsion

Consider the Reidemeister torsion τp,q of the lens space L(p, q) described in the in-
troduction. The goal of this section is to prove the following result.

Proposition 3.3 If gcd(p, q− 1) = 1 then

Tp,q(1− t)(1− tq) ∼ 1̂(3.14)

i.e., Tp,q ∼ τp,q.

Proof For a while we will not rely on the assumption gcd(p, q − 1) = 1. We will
continue to use the notations in the previous subsection so that n = gcd(p, q− 1).

As explained in Section 2.2, each (k, j) ∈ In × Iα ∼= In,α defines a line bundle on
Lk, j on L(p, q) and thus, via the first Chern class an element

e(k, j) = c1(Lk, j ) ∈ H2
(

L(p, q),Z
)
∼= Zp.

Moreover, the correspondence

e : In × Iα → Zp, (k, j) �→ e(k, j)

is a bijection.

Lemma 3.4 There exists an isomorphism of abelian groups H2
(

L(p, q),Z
)
→ Zp

such that

e(k, j) = q(k− 1)− (q− 1) j mod p.

Proof of the lemma H2
(

L(p, q),Z
)

is torsion so according to the results in Sec-
tion 1.1 it can be described in terms of the chosen geometric Seifert structure as
follows.

Consider map Q ⊕ Zα ⊕ Zα → Q/Z

(d, γ1, γ2) �→ d−
γ1 + γ2

α

https://doi.org/10.4153/CJM-2001-032-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-032-7


802 Liviu I. Nicolaescu

and the element

L0 = (−n, ω1, ω2) ∈ ker δ.

Recall that L0 describes a line V -bundle over a genus 0 orbifold whose associated
circle bundle coincides with the lens space equipped with the chosen Seifert structure.
Then

H2
(

L(p, q),Z
)
∼= ker δ/Z[L0].

Now observe that ker δ/Z[L0] has the presentation

0→ Z2 A
→ Z2 → ker δ/Z[L0]→ 0

where

A =

[
−n 0
ω1 α

]
.

We let the reader verify that

[
1 0
0 p

]
=

[
−1 1
q 1− q

]
· A ·

[
y −α
−x −ω2

]
(3.15)

where

y = −(q− 1)/n and x = −
ω2 y + 1

α
.

This shows that indeed

ker δ/Z[L0] ∼= Zp.

To each pair (k, j) ∈ In × Iα it corresponds the line bundle Lk, j with Seifert data
(k − 1, j, k − 1 − j) ∈ ker δ. Its first Chern class is the image of the vector �v =
(k− 1, j) ∈ Z2 in the quotient Z2/AZ2. Using the equality (3.15) we deduce that this
image is (y2 mod p) where

[
y1

y2

]
=

[
−1 1
q 1− q

]
·

[
k− 1

j

]
.

This establishes the assertion in the lemma.

Denote by c : Zp → In× Iα the inverse of the map e described in the above lemma.

Lemma 3.5 We have the following equalities.
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(i) If n = 1 then α = p and

c(m) = (0,−ω2m + ω1 mod p).

(ii) If n ≥ 1 then

c(−1) = c(p − 1) = (0, α− 1)

and

c(−m) = c(p −m) =
(

r, (−m− sω1) mod α
)
, ∀m ∈ Ip

where r ∈ In and s ∈ Z are such that ns = (m− 1) + r so that

r = −(m− 1) mod n and s =
⌈ m− 1

n

⌉

where �x� is the smallest integer≥ x.

Proof We prove only part (i). The second part is left to the reader.
Observe that when n = 1 we have In × Iα = {0} × Iα. Thus we can write c(m) =

(0, j), where

m = −q− (q− 1) j mod p.

Since ω2 = (q− 1)−1 mod p we have the following mod p equalities

ω2m = −qω2 − j = −(q− 1 + 1)ω2 − j = −ω2 − 1− j.

The equality in (i) now follows form ω1 + ω2 = −n = −1.

In the remaining part of this section we assume

n = gcd(p, q− 1) = 1.

We can now write

SW p,q =
1

8

∑
m∈Ip

F
(

c(m)
)

tm.

Since Σ · (1− t) = 0 in Q[Zp] the equality (3.14) is equivalent to

SW p,q(1− t)(1− tq) ∼ 1̂.

We will prove a slightly stronger statement, namely

SW p,q(1− t)(1− tq) = 1̂.(3.16)
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Let us introduce the polynomial

f (t) =
∑
j∈Ip

(( j

p

))
t j ∈ Q[Zp].

A simple computation shows that f (t−1) = − f (t), and for all m coprime with p we
have (see [22] for an interpretation using harmonic analysis)

( 1

2
− f (tm)

)
(1− tm) = 1̂ in Q[Zp](3.17)

We want to express SW p,q as a linear combination of polynomials of the form ta f (ta),
ta f (ta) f (tb) andΣ. Observe first that since n = 1, in the equality (3.2) of Section 3.1
we always have ρ = 0. Thus for all (k, j) ∈ In × Iα we have

F(k, j) = � + 1− 4
2∑

i=1

s(ωi , α)

− 8
2∑

i=1

s
(
ωi , α, γi(k, j)/α, 0

)
− 4

2∑
i=1

((
qiγi(k, j)

α

))
.

Observe two things:

• Since n = 1 we always have k = 0 ∈ I1 = {0} so that we can write γ1( j) instead
of γi(k, j).
• The first term in the definition of F(k, j) is independent of (k, j). Thus its contri-

bution to SW p,q will be of the form const.Σ which is cancelled upon multiplica-
tion by (1 − t). Thus when computing SW p,q(1 − t)(1 − tq) we can neglect this
first term.

For i = 1, 2 define

Ai = −8
∑
m∈Ip

s

(
ωi , α,

γi

(
c(m)

)
α

, 0

)
tm, Bi =

∑
m∈Ip

((
qiγi

(
c(m)

)
α

))
tm

where according to Section 3.2 we have

γ1( j) = j, γ2( j) = −1− j

so that according to Lemma 3.5 we have

γ1

(
c(m)

)
= −ω2m + ω1, γ2

(
c(m)

)
= ω2m− ω1 − 1 = ω2(m + 1).

Observe that since q2ω2 = 1 mod p and ω2(q− 1) = 1 mod p we have

q2 = (q− 1) mod p.
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Lemma 3.6

B1 = −t−q f (t−q),(3.18)

B2 = −t−1 f (t−1),(3.19)

A1 = −t−q f (t−q) f (tq−1),(3.20)

A2 = t−1 f (t−1) f (tq−1).(3.21)

Proof For any (m, p) = 1 we will denote by 1/m the inverse of m mod p.

B1 = −
∑
m∈Im

((
q1(ω2m− ω1)

P

))
tm

(µ := q1ω2 − q1ω1 = q1ω2m− 1, m = ω1
ω2

(µ + 1))

= −tω1/ω2
∑
µ∈Ip

(( µ
p

))
tω1µ/ω2 = −tω1/ω2 f (tω1/ω2 ).

Now observe that 1/ω2 = q2 = q− 1 and ω1 = −1 − ω2 so that ω1/ω2 = −q. This
proves (3.18).

B2 =
∑
m∈Im

((
q2ω2(m + 1)

p

))
tm =

∑
µ∈Ip

(( µ
p

))
tµ−1

= t−1 f (t) = −t−1 f (t−1).

This proves (3.19).

A1 =
∑
m∈Ip

∑
µ∈Ip

(( µ
p

))(( ω1µ− ω2m + ω1

p

))
tm

=
∑
µ∈Ip

(( µ
p

)) ∑
m∈Ip

(( ω1µ− ω2m + ω1

p

))
tm

(r = ω1µ− ω2m + ω1, m = −r/ω2 + ω1(µ + 1)/ω2)

= tω1/ω2
∑
µ∈Ip

(( µ
p

))
tω1µ/ω2

∑
r∈Ip

(( r

p

))
t−r/ω2

= tω1/ω2 f (tω
1/ω2 ) f (t−1/ω2 )

= t−q f (t−q) f (t−(q−1)) = −t−q f (t−q) f (tq−1).
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This proves (3.20). Finally, we have

A2 =
∑
m∈Ip

∑
µ∈Ip

(( µ
p

))(( ω2µ + ω2m + ω2

p

))
tm

=
∑
µ∈Ip

(( µ
p

)) ∑
m∈Ip

(( ω2µ + ω2m + ω2

p

))
tma

(r = ω2(m + µ + 1), m = r/ω2 − µ− 1)

= t−1
∑
µ∈Ip

(( µ
p

))
t−µ

∑
r∈Ip

(( r

p

))
tr/ω2 = t−1 f (t−1) f (tq−1)

This proves (3.21).

We can now finish the proof of Proposition 3.3. Using Lemma 3.6 we deduce

8 SW p,q(1− t)(1− tq)

= (−8A1 − 8A2 − 4B1 − B2 + const.Σ)(1− t)(1− tq)

= −4(2A1 + 2A2 + B1 + B2)(1− t)(1− tq)

= −4
{
−t−q f (t−q)

(
1 + 2 f (tq−1)

)
− t−1 f (t−1)

(
1− 2 f (tq−1)

)}
× (1− t)(1− tq)

= −8
{
−t−q f (t−q)

( 1

2
− f (t−(q−1))

)
− t−1 f (t−1)

( 1

2
− f (tq−1)

)}
× (1− t)(1− tq)

(3.17)
== 8

{
t−q f (t−q) ·

1̂

1− t1−q
+ t−1 f (t−1) ·

1̂

1− tq−1

}
(1− t)(1− tq)

= 8
{

t−1 f (t−q) ·
1̂

tq−1 − 1
+ t−1 f (t−1) ·

1̂

1− tq−1

}
(1− t)(1− tq)

= 8t−1 1̂

1− tq−1

(
f (t−1)− f (t−q)

)
(1− t)(1− tq)

= 8t−1 1̂

1− tq−1

(
f (tq)− f (t)

)
(1− t)(1− tq)

(3.17)
== 8t−1 1̂

1− tq−1

( 1̂

1− t
−

1̂

1− tq

)
(1− t)(1− tq)

= 8t−1 1̂

1− tq−1
{(1− tq)− (1− t)}

= 8t−1 1̂

1− tq−1
(t − tq) = 8 · 1̂.
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The proof of Proposition 3.3 is now complete.

Remark 3.7

(a) The restriction gcd(p, q − 1) = 1 in Proposition 3.3 can be dropped but we will
not present the details as they are not particularly revealing.

(b) The results of this paper were posted on the Internet as math.DG/9901071 in
early 1999. Since then we have succeeded to extend the results in this paper to
arbitrary rational homology spheres; see [21]. The paper [21] does not render the
results in the present paper obsolete. On the contrary, Theorem 3.1 and Proposi-
tion 3.3 are needed as stepping stones in our inductive proof.

References
[1] M. Blau and G. Thompson, On the relationship between the Rozanski-Witten and the 3-dimensional

Seiberg-Witten invariants. hep-th/0006244
[2] W. Chen, Casson invariant and Seiberg-Witten gauge theory. Turkish J. Math. 21(1997), 61–81.
[3] , Dehn surgery formula for Seiberg-Witten invariants of homology 3-spheres. dg-ga/9708006
[4] R. Fintushel and R. Stern, Instanton homology of Seifert fibered homology three spheres. Proc.

London Math. Soc. 61(1990), 109–137.
[5] M. Furuta and B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann

surfaces with marked points. Adv. in Math. 96(1992), 38–102.
[6] F. Hirzebruch, W. D. Neumann and S. S. Koh, Differentiable Manifolds and Quadratic Forms. Lect.

Notes in Pure and Appl. Math. 4, Marcel Dekker, 1971.
[7] F. Hirzebruch and D. Zagier, The Atiyah-Singer Index Theorem and Elementary Number Theory.

Math. Lect. Series 3, Publish or Perish Inc., Boston, 1974.
[8] M. Jankins and W. D. Neumann, Lectures on Seifert Manifolds. Brandeis Lecture Notes, 1983.
[9] C. Lescop, Global Surgery Formula for the Casson-Walker Invariant. Annals of Math. Studies 140,

Princeton University Press, 1996.
[10] Y. Lim, Seiberg-Witten invariants for 3-manifolds in the case b1 = 0 or 1. Pacific J. Math. 195(2000),

179–204.
[11] , The equivalence of Seiberg-Witten and Casson invariants for homology 3-spheres. Math. Res.

Letters 6(1999), 631–644.
[12] M. Marcolli and B. L. Wang, Equivariant Seiberg-Witten-Floer homology. dg-ga/9606003
[13] , Exact triangles in monopole homology and the Casson-Walker invariant. math.DG/0101127
[14] G. Meng and C. H. Taubes, SW = Milnor torsion. Math. Res. Letters 3(1996), 661–674.
[15] J. Milnor, Whitehead torsion. Bull. Amer. Math. Soc. 72(1966), 358–426.
[16] W. D. Neumann and F. Raymond, Seifert manifolds, plumbing, µ-invariant and orientation reversing

maps. In: Lecture Notes in Math. 644, 161–195.
[17] L. I. Nicolaescu, Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds. Comm. Anal.

Geom. 6(1998), 301–362.
[18] , Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual

dimensions of finite energy Seiberg-Witten moduli spaces. Israel. J. Math. 114(1999), 61–123.
[19] , Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations.

Comm. Anal. Geom. 8(2000), 1027–1096.
[20] , Lattice points inside rational simplices and the Casson invariant of Brieskorn spheres. Geom.

Dedicata, to appear.
[21] , Seiberg-Witten invariants of rational homology spheres. math.GJ/0103020
[22] , Reidemeister Torsion. notes available at: http://www.nd.edu/̃ lnicolae/
[23] P. Orlik, Seifert Manifolds. Lect. Motes in Math. 291, Springer-Verlag, 1972.
[24] M. Ouyang, Geometric invariants for Seifert fibered 3-manifolds. Trans. Amer. Math. Soc.

346(1994), 641–659.
[25] H. Rademacher, Some remarks on certain generalized Dedekind sums. Acta Arith. 9(1964), 97–105.
[26] H. Rademacher and E. Grosswald, Dedekind Sums. The Carus Math. Monographs, MAA, 1972.
[27] R. von Randow, Zür Topologie von dreidimensionalen Baummanigfatigkeiten. Bonner Math.

Schriften 14(1962).
[28] P. Scott, The geometries of 3-manifolds. Bull. London. Math. Soc. 15(1983), 401–487.

https://doi.org/10.4153/CJM-2001-032-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-032-7


808 Liviu I. Nicolaescu

[29] V. G. Turaev, Euler structures, nonsingular vector fields and torsions of Reidemeister type. Izv. Akad.
Nauk. USSR 53(1989); English Transl. Math. USSR-Izv. 34(1990), 627–662.

[30] , Torsion invariants of spinc structures on 3-manifolds. Math. Res. Letters 4(1997), 679–695.
[31] K. Walker, An Extension of Casson’s Invariant. Annals of Math. Studies 126, Princeton University

Press, 1992.

Department of Mathematics
University of Notre Dame
Notre Dame, Indiana 46556
USA
e-mail: nicolaescu.1@nd.edu
website: http://www.nd.edu/˜lnicolae/

https://doi.org/10.4153/CJM-2001-032-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-032-7

