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Abstract

We shall give necessary and sufficient conditions on the ring R and the group G for the group-ring RG
to be a prime P. I. ring with the unique factorisation property as defined in [5].
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1. Introduction

The theory of unique factorisation domains in commutative algebra has been extended
in several ways to non-commutative rings, and many genuinely non-commutative
examples have been found. One such generalisation is the idea of a U. F. R. (unique
factorisation ring) given in [5] for rings which are not assumed to be Noetherian. In
the non-Noetherian case the best results in [5] were obtained for rings which satisfy a
P. I. (polynomial identity). For instance if R is a P. I. ring and a U. F. R. then R is the
intersection of a simple Artinian ring and a Noetherian ring, the invertible ideals of
R are principal, and R satisfies the a. c. c. (ascending chain condition) for right ideals
cR where c is a regular element of R. Examples include the group-ring RG where
R is any prime P. I. ring which is a U. F. R. and G is any torsion-free Abelian group
with the a. c. c. for cyclic subgroups [4].

This raised the following question: Assuming that RG is a prime P. I. ring, is
it possible to give necessary and sufficient conditions on R and G for RG to be a
II. F. R.? The purpose of this paper is to give an affirmative answer to the question.
Not surprisingly, the appropriate condition on R is that it should be a prime P. I. ring
and a U. F. R. Because RG must satisfy the a. c. c. for certain right ideals, it is not
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hard to show that G must have the a. c. c. for cyclic subgroups. It turns out that the
appropriate extra condition on G is that G should be dihedral-free (see Section 2 for
the definition), and this is much harder to prove. The precise answer to the above
question is given in Theorem 2.1, but the following is an easily-stated special case:
Suppose that R is a prime P. I. ring and that G is a torsion-free Abelian-by-finite
group; then RG is a U. F. R. if and only if R is a U. F. R. and G satisfies the a. c. c.
for cyclic subgroups.

The main theorem will be stated in Section 2, together with the relevant definitions.
The proof is rather complicated, so it is spread over Sections 3 and 4. One of the main
techniques is to reduce to finitely-generated subgroups of G which have the same
properties as G, and the necessary group-theoretic results for this are given separately
in Section 5.

2. Preliminaries

In this section we shall give some definitions and set the scene for the main theorem.
For basic material on rings we refer to [3] or [6], and for group-rings [7]. All rings
considered here will be associative with identity element.

Let R be a prime ring. An element p of R is prime if pR = Rp and pR is a
non-zero prime ideal of R. As in [5] we say that R is a unique factorisation ring
(U. F. R. for short) if every non-zero prime ideal of R contains a prime element. We
shall use P. I. as an abbreviation for 'polynomial identity'. Some general results about
U. F. R.'s were proved in [5], but the theory was developed much further in Section
4 of that paper in the cases where the U. F. R. is left and right Noetherian or is a P. I.
ring.

Let G be a multiplicative group. The F. C. subgroup of G, which we shall denote by
A, is the set of elements of G which have only a finite number of distinct conjugates.
Clearly A contains all proper finite normal subgroups of G. A fact which we shall rely
on very heavily is that if G has no proper finite normal subgroups then A is torsion-free
Abelian [7, Theorem 4.2.10]. A subgroup H of G is orbital in G if H has only a finite
number of distinct conjugates by elements of G, or equivalently NG(H) has finite
index in G where NG(H) is the normaliser of H in G. The infinite dihedral group is
the group generated by a and b subject to the relations b2 = 1 and b~xab = a~l. As
in [2] we say that G is dihedral-free if G has no orbital infinite dihedral subgroups.

Let R be a ring and let G be a group. We shall use RG to denote the corresponding
group-ring. In this paper we shall only work with RG when it is a prime P. I. ring,
equivalently when R is a prime P. I. ring, G has no proper finite normal subgroups,
and G/A is finite where A is the F. C. subgroup of G.

We can now state the main theorem. The proof will be given in Sections 3 and
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4. The cases in which G is Abelian or polycyclic-by-finite are already known [4,
Theorem 4.2] and [1, Proposition 4.4]. The inspiration for much of this work is [2].

THEOREM 2.1. Suppose that RG is a prime P. I. ring. Then RG is a U. F. R. if and
only if R is a U. F. R. and G is dihedral-free with the ascending chain condition for
cyclic subgroups.

Unfortunately there is more than one definition of a U. F. R. in the literature. We
therefore need the following technical result so that we can use material from [1].

L E M M A 2.2. Let R be a prime P. I. ring, and suppose that R is aU.F.R.as defined

above. Then R is also a U. F. R. as defined in [I] (this will be explained in the proof).

PROOF. Let Q be the classical quotient ring of R and let S be a subset of Q. Set
Se = {q € Q : qS c R] and Sr = {q e Q : Sq c R}. In order to show that R is a
U. F. R. as denned in [1], we must show that certain ideals of R are principal and that
R satisfies a weak form of the a. c. c. for one-sided ideals; these two conditions will
be stated precisely and proved in the next two paragraphs.

Let P be a prime ideal of R such that (/>,),. = P or (Pr), = P; we must show that
P = pR = Rp for some p. This is immediate by Theorem 4.16 of [5].

Let X be a right ideal of R which is closed in the sense that X — {x e R : xH c. X
for some right ideal H of R such that (y" ' / / ) , = R for all y e R], where y"1 H =
{r e R : yr e H}. We must show that R has the a. c. c. for such right ideals
X. We shall follow the proof of Theorem 4.19 of [5] where a different definition
of 'closed' is being used. There are right Noetherian over-rings S and T of R such
that R = S C\T. Because 5 and T are right Noetherian, it is enough to show that
XS n XT = X. Let b e XS D XT and set H = {r e R : br e X}. Let y e R. We
shall show that (y"1 H), = R, and it will follow that b e X and that XS n XT = X.
Set K = {r e R : byr e X}. It was shown in the proof of Theorem 4.19 of [5]
that K, = R. We have byK c X, so that yK c H and K c y~xH. Hence
(y~{H), c K, = R, and clearly R c (y-lH),. Therefore (y"1//)/ = /?, as required.

3. Necessary conditions for RG to be a U. F. R.

THEOREM 3.1. Le/ R be a ring and let G be a group. Suppose that the group-ring
RG is a prime P. I. ring and a U. F.R. Then

(1) R is a prime P. I. ring and aU.F.R.
(2) G is Abelian-by-finite with no proper finite normal subgroups.
(3) G satisfies the a. c. c.for cyclic subgroups.
(4) G is dihedral-free.
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PROOF. We know by [4, proposition 4], that R is a U. F. R. Thus (1) and (2) follow
from the standard material of Section 2.

Let A be the F. C. subgroup of G. Then A is torsion-free Abelian and G/A is finite.
Hence if A satisfies the a. c. c. for cyclic subgroups then so also does G. Let x e A.
Then x is not a torsion element of G. Hence 1 — x is a regular element (that is, not
a zero-divisor) of RG. But it was shown in [5, Corollary 4.14] that RG satisfies the
a. c. c. for right ideals of the form cRG where c is a regular element of RG. Hence
RG satisfies the a. c. c. for right ideals of the form (1 — x)RG with* e A, from which
it follows that A has the a. c. c. for cyclic subgroups, This proves (3).

The remainder of this section is devoted to proving (4). This we do by a series of
reductions to get to the case in which R is a field and G is finitely-generated, at which
point we shall be able to use the material of [2].

Step (a). To reduce to the case where R is a finite-dimensional central simple
algebra. Let Q be the classical quotient ring of R and let F be the centre of Q.
Because R is a prime P. I. ring we know that Q is a finite-dimensional central simple
F -algebra. Also Q can be formed from R by inverting the non-zero central elements
of R. Thus we can regard QG as being the partial quotient ring of RG formed by
inverting certain central elements of RG. It is now routine to show that because RG
is a U. F. R. then so also is QG.

Step (b). We can now suppose that R is a finite-dimensional central simple F-
algebra and we will reduce to the case where R is the full n x n matrix ring Mn{F) for
some positive integer n. Let S be the opposite ring of R and set T = R <8>F S. Then
T = Mn(F) for some positive integer n. Because 5 is a matrix ring over a division
ring, the ideals of RG ®f 5 are of the form / ®F S where / is an ideal of RG (see for
instance Case 1 of the proof of [7, Theorem 7.3.9]). It follows easily from this that
RG ®F S is a U. F. R. But RG®FS = (R ®F S)G = TG. Therefore TG is a U. F. R.

Step (c). We can now suppose that R = Mn (F) for some field F and some positive
integer n, and we will reduce to the case where R = F. Thus Mn(F)G is a U. F. R.,
so that Mn(FG) is a U. F. R. At this point we have to be careful because it does not
follow in general that FG is a U. F. R.

We shall therefore abandon the U. F. R.-property and work instead with the follow-
ing weaker condition.

DEFINITION 3.2. Let R be a prime Goldie ring with quotient ring Q. We shall say
that R is an M-ring if it satisfies the following condition:
If / is a non-zero ideal of R and q e Q with ql c / or Iq c / then q e R.

REMARK 3.3. The terminology of 3.2 is not standard but it is convenient for our
purposes. If R is a commutative integral domain then R is an M-ring if and only if R
is completely integrally-closed.
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Returning to the proof of Step (c), we are supposing that Mn{FG) is a U. F. R.
Therefore Mn (FG) is an M-ring, by [5,Corollary 4.8]. It follows by routine arguments
that FG is also an M-ring.

Step (d). We can suppose that FG is an M-ring (as defined in 3.2) for some field
F, and we will show that FK is also an M-ring where K is a suitable subgroup of
G. To be precise, let K be a normal subgroup of G such that K has no proper finite
normal subgroups. Then FA" is a prime R I. ring. We shall use Q(W) to denote the
classical quotient ring of a ring W. Let T be a transversal for K in G. Then FG is a
free FAT-module (on both the right and the left) with T as a basis. It follows easily
that the regular elements of FK are also regular as elements of FG, so that we can
take Q(FK) to be a subring of Q(FG). Let x e FG n Q(FK). Then xc e FK
for some non-zero central element c of FK. Because FG is a free FAT-module we
have FGc HFK = FKc. But xc e FGc n FK. Hence xc e FATc so that x e FK.
Therefore FGDQ(FK) = FK. Now let / be a non-zero ideal of FK and let
q e Q(FK) with ql c. I. Because AT is a normal subgroup of G we know that IG
is a two-sided ideal of FG. But qIG c IG with g e Q(FG). Because FG is an
M-ring it follows that q e FG. Thus q € FGD Q(F K) so that ^ e F/f. Therefore
FK is an M-ring.

Step (e). We now make the further assumption that G is not dihedral-free and we
will obtain a contradiction. Thus G has an orbital infinite dihedral subgroup D. Let
A be the F. C. subgroup of G. Then A has a finite subset X such that if K is any
subgroup of G which contains X then K fl A is the F. C. subgroup of K (see 5.4).
Let Di,... , Dk be the finitely-many distinct conjugates of D in G. Each £), can be
generated by two elements a, and bt. Set y = {g~lxg : x e X, g e G}. Then Y
is a finite set because X is a finite subset of the F. C. subgroup of G. Let AT be the
subgroup of G generated by the set Y and all the elements a, and bh Then AT is a
finitely-generated normal subgroup of G. Let B be the F. C. subgroup of K. Then
B = K D A because X c K. Hence B is torsion-free because A is, so that K has no
proper finite normal subgroups.

Therefore FK is an M-ring, by Step (d). But K is finitely-generated, and K/B is
finite because it embeds in G/A. Thus B is a subgroup of finite index in a finitely-
generated group, and it is well known that this implies that B is finitely generated.
Because B is Abelian it follows that B is polycyclic and that K is polycyclic-by-finite.
Therefore FAT is left and right Noetherian. Because FAT is an M-ring it follows that
FAT is a maximal order. Hence K is dihedral-free, by [2, Theorem F]. But D c K
where D is orbital in G. Hence D is an orbital infinite dihedral subgroup of K, which
contradicts the fact that K is dihedral-free.
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4. Sufficient conditions for RG to be a U. F. R.

THEOREM 4.1. Let R be a ring and let G be a group. Suppose that the group-ring
RG is a prime P. I. ring; that R is a U. F. R.; and that G is dihedral-free and satisfies
the a. c. c.for cyclic subgroups. Then RG is aU.F.R.

The strategy is to use the known cases in which G is Abelian or polycyclic-by-finite.
We will break the proof into several stages, but we start with some terminology.

DEFINITIONS 4.2. Let S be a ring. An element x of S is normal if x S = Sx.
A subset / of a group-ring RG is G-invariant if / is closed under conjugation by
elements of G. Let / be a G-invariant ideal of a subring S of RG; then / is said to
be a G-prime ideal of S if, whenever U and V are G-invariant ideals of S such that
UV C /,thenf/ c / o r V c /.

For the remainder of this section we shall suppose that RG satisfies the hypotheses
of 4.1. Also we shall use A to denote the F. C. subgroup of G. In these circumstances
A is torsion-free Abelian with the a. c. c. for cyclic subgroups.

LEMMA 4.3. Let y be a non-zero normal element of RG. Suppose that y € RA
and that yRA is a G-prime ideal of RA. Let H be a finitely-generated dihedral-free
subgroup of G such that HA = G, the F.C. subgroup of H is H n A, and y e RH.
Then RH is a U. F. R. andyRH is a prime ideal of RH.

PROOF. We shall repeatedly use the fact that if K and L are subgroups of G with
K c L then RL is free as a left and right RK-module.

Set B = H fl A. Then B is the F. C. subgroup of H, and B is torsion-free Abelian.
Hence H has no proper finite normal subgroups. Also H/B is finite because G/A
is finite. But H is finitely-generated. Hence B is finitely-generated. Therefore B is
polycyclic so that H is polycyclic-by-finite. We are assuming that H is dihedral-free
and that R is a U. F. R. Therefore RH is a U. F. R., by [1, Proposition 4.4] (the
condition that plinths are centric is a consequence of the fact that A is torsion-free
Abelian of finite index in G).

Wehave v/?G = RGy. HenceyRH = RHDyRG = RHHRGy = RHy. Thus
y is a non-zero normal element of RH, and RH is a U. F. R. Also y e RH D RA =
R(H n A) = RB. We have yRB = RB n yRH = RB D RHy = RBy. Because
yRH and RB are //-invariant, so also is yRB.

We shall show that yRB is an //-prime ideal of RB. Let U and V be //-invariant
ideals of RB with UV Q yRB. Because A centralises RB it follows that U A and VA
are two-sided ideals of RA. But £/ and V are //-invariant with H A = G. Therefore
U A and VA are G-invariant. Because UAVA = UV A c j/?A where y/?A is a
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G-prime ideal of RA, it follows that UA c yRA or VA c yRA. Hence U c yflfl
or V c yRB.

Because /?// is a U. F. R., we know by [5, Lemma 3.4] that yRH = PxP2...Pk

for some height-1 prime ideals />, of RH. For each i set G. = RB n Ph By
[1, Lemma 4.2] we have QtRH = Pt. Clearly each Qt is //-invariant. Also
Q\ Qi • • • Qk = Q\ Qi • • • QkRH HRB = P1P2...PkDRB = yRH nRB = yRB,
where yRB is an //-prime ideal of RB. Hence for some i we have yRB = Q, so that
yRH = Q.RH = Pt. Therefore yRH is a prime ideal of RH.

LEMMA 4.4. Let y be a non-zero normal element of RG such that y 6 RA and
yRA is a G-prime ideal of RA. Then yRG is a prime ideal of RG.

PROOF. Suppose that yRG is not a prime ideal of RG. Then there are elements
u and v of RG such that uRGv C yRG, u g yRG, v $ yRG. Let H be any
finitely-generated subgroup of G such that u, v, y e RH. Without loss of generality
we can suppose that H contains a transversal for A in G so that HA = G. By 5.10
we can also suppose without loss of generality that H is dihedral-free and that H (~) A
is the F. C. subgroup of H. We know by 4.3 that yRH is a prime ideal of RH. But
uRHv C uRGv n RH c yRG (1 RH = yRH, where u & yRH and u ^ yRH.
This is a contradiction.

PROOF OF 4.1. By [4, Theorem 4.2] we know that RA is a U. F. R. Let x be a prime
element of /?A. Because G/A is finite, the ideal xRA has only finitely-many distinct
conjugates by elements of G, and each of them is a principal ideal of RA. Let / be
their intersection. Then / is G-invariant, and / = yRA for some non-zero normal
element y of RA by [5, Theorem 3.5]. Because / is G-invariant we have IG = GI.
Hence yRG = yRAG = IG = GI = RGy. Thus y is a non-zero normal element
of RG.

We shall show that yRA is a G-prime ideal of RA. Let U and V be G-invariant
ideals of RA such that UV c y/?A. Because y/?A c x/?A and x/?A is a prime ideal
of /M, it follows that U c x/?A or V c x/?A. Suppose that U c x/?A. Because £/
is G-invariant it follows that U c g-'x/Mg for all g e G. Therefore U C / = y/?A.
Similarly if V c X/M then V c y/M.

Therefore y/?G is a prime ideal of RG, by 4.4. Thus corresponding to each prime
element x of RA there is a prime element y of RG such that y 6 xRA. Let 5 be
the partial quotient ring of RA formed by inverting all such elements y. Then every
prime element of RA is a unit of 5. Let P be a non-zero prime ideal of RA. Because
RA is a U. F. R. we have x e P for some prime element x of RA. Hence PS = 5,
and it follows that S is a simple ring. But S is a P. I. ring because it is contained in the
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classical quotient ring of the prime P. I. ring RA. Therefore S is simple Artinian, by
Kaplansky's theorem.

Because 5 was formed from RA by inverting certain normal elements of RG, we
can take 5 to be a subring of the classical quotient ring Q of RG. For the rest of
this proof we shall use SG to denote the subring of Q generated by S and G, and
similarly for SA. Because G/A is finite we know that SG is finitely-generated as
an SA-module. But SA = S and S is Artinian. Therefore SG is Artinian. But
RG c SG c Q. Because SG is Artinian it follows that the regular elements of
RG are units of SG and hence that SG = Q. Let W be a non-zero prime ideal of
RG. Then QW = Q because W contains a regular element. Hence I € QW where
QW = SGW = SW. Hence there are prime elements yt, ... ,yn of RG such that
J1J2 • • • y« 6 W. Because W is a prime ideal of RG we have y, e W for some /.
Therefore RG is a U. F. R.

5. Group-theoretic results

We prove here the purely group-theoretic results which were used in Sections 3
and 4. We shall establish in 5.1 some notation and assumptions which will be used
subsequently without further explanation. Some of what follows can be proved more
generally, but it is convenient to work with the unified assumptions of 5.1.

CONTEXT 5.1. G is a multiplicative group; (x) denotes the cyclic subgroup gener-
ated by an element x\ D is an infinite dihedral subgroup of G and D is generated by
a and b with b2 = 1 and b~xab = a~l; N = NG(D) is the normaliser of D in G\
CG(X) = ig e G : gx = xg}; A is the F. C. subgroup of G; we assume that A is
torsion-free Abelian and that G/A is finite.

LEMMA 5.2. Let H be a group with a torsion-free Abelian normal subgroup B, and
let x € H. Then the group B/CB(X) is torsion-free.

PROOF. Set C = CB(x), and f(y) = y^x'^yx for all y e B. Then / is a
homomorphism from B to B, and Ker(/) = C. Therefore B/C is isomorphic to a
subgroup of B and so is torsion-free.

LEMMA 5.3. There are finitely-many subgroups C\,... ,Cn of A such that

(1) for each i we have C, ^ A and A/Ct is torsion-free, and
(2) for each x e G with x £ A we have CA(x) — C, for some i.

PROOF. Let g0, g\, •• • , gn be a transversal for A in G with g0 = 1. For each / from
1 to n set C, = CA(gt)- Then A/Ct is torsion-free, by 5.2. Suppose that C, = A for
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some /. Then A c CG(g,). But G/A is finite. Hence CG(gi) has finite index in G, so
that gi has only finitely-many conjugates in G. Thus g,• e A. This is a contradiction
because i ^ 0 and go, g\, ••• , gn form a transversal for A in G with g0 = 1.

Now let x e G with x £ A. We have x e g,A for some / ^ 0. Hence
CA(x) = CA(gi) = Cj.

PROPOSITION 5.4. There is a finite subset S of A such that if K is any subgroup of
G which contains S then K n A is the F. C. subgroup of K.

PROOF. Let C\,... , Cn be as in 5.3. By 5.2 and 5.3 we can fix, for each i, an element
Si of A such that the image of st in A/Ct has infinite order. Set S = {s\,... , sn).
Let K be any subgroup of G which contains 5, and let B be the F. C. subgroup of K.
Clearly K n A c B. Let x e # with * g A. By 5.3 we have C M = C, for some
z. For this value of i set C = C, and s = s,. We have s e S so that 5 e AT. Hence
s~jxsj e K for every integer y. Suppose that s~'xs' = s~kxsk for some integers j
and k. Then s;~* e C. But the image of s in A/C has infinite order. Therefore j = k.
It follows that x has infinitely-many distinct conjugates in K, that is, x £ B. Hence

LEMMA 5.5. Let D,a, b, N be as in 5.1 and let x e N. Then x~lax = a or a'1.

PROOF. Let (a) be the cyclic subgroup of D generated by a. Then the non-identity
elements of (a) have infinite order, and the elements of D which are not in (a) have
order 2. Hence any automorphism of D restricts to an automorphism of (a). Therefore
conjugation by x induces an automorphism of (a). It follows that x~lax is a generator
of (a), that is, x~lax — a or a"1.

LEMMA 5.6. Let x e N. Then x4aj € CG(b)for some integer j .

PROOF. By5.5wehavex" 'ax = a o r a " ' . In both cases it follows that x~2ax2 = a,
that is, ax2 = x2a. Because b is an element of D of order 2, so also is x~2bx2. Hence
x~2bx2 = ba' for some integer /. Thus x~4bx4 = x~2ba'x2 = x~2bx2a' = ba2'.
Therefore bx4a~j = x4baj = x^a^b, that is, xAa~i e CG(b).

LEMMA 5.7. Suppose that D is orbital in G. Then a e A.

PROOF. We are in effect assuming that N has finite index in G. Hence there are
finitely-many elements g\,... , gk of G such that every element of G belongs to Ngt

for some i. Let g e G. Then g = xgj for some x e N and some /. By 5.5 we
have x~xax — a or a~x. Therefore g~xag = g~xagt or g~xa~xgj so that there are only
finitely-many possibilities for g~lag.
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PROPOSITION 5.8. Let H be a torsion-free Abelian group which satisfies the a. c. c.
for cyclic subgroups, let U be a cyclic subgroup of H, and let V be the inverse image
in H of the torsion subgroup of H/U. Then V is cyclic.

PROOF. For each positive integer n set Vn = [x e V : x" e U). Then V =
LXli ^«- Clearly if r and 5 are positive integers such that r divides 5 then Vr c Vs.
We shall show that each Vn is cyclic. It will then follow easily from the a. c. c. for
cyclic subgroups that V is cyclic.

For the rest of this proof n denotes a fixed positive integer. Set W = {xn : x e Vn}.
Then W is a subgroup of the cyclic group U so that W is cyclic. We fix x e Vn such
that x" generates W. Let y e Vn. Then y" e W so that y" = (x")k for some integer
k. Thus (yx~k)n = 1. But H is torsion-free. Therefore y = xk, and it follows that x
generates Vn.

LEMMA 5.9. Suppose that G is dihedral-free and satisfies the a. c. c. for cyclic
subgroups. Then A/CA{b) is torsion-free of rank at least 2.

PROOF. Set C = CA(b). We know by 5.2 that A/C is torsion-free. Because G/A
is finite we have ak e A for some positive integer k. The subgroup of G generated by
ak and b is infinite dihedral, so that without loss of generality we may suppose that
a e A.

Set U = (a). For every non-zero integer n we have b~lanb = a~n ^ a", that is
a" i C. Thus U n C = 1. Hence UC/C = U so that UC/C is infinite cyclic. Thus
UC/C is an infinite cyclic subgroup of A/C. In order to show that A/C has rank at
least 2, it is enough to show that (A/C)/(UC/C) has an infinite cyclic subgroup, that
is that A/UC is not torsion.

With the aim of obtaining a contradiction, we suppose that A/UC is torsion. Let
V be the inverse image in A of the torsion subgroup of A/U. By 5.8 we have
V = (v) for some v. Conjugation by b gives automorphisms of both A and U
and hence also of V. Therefore b~lvb = v or v~K But a e (v) and ba ^ ab.
Hence bv ^ vb, so that b~xvb = v'1. In particular bV = Vb. Let H be the
subgroup of G generated by b and A. Then V is a normal subgroup of H. Set
C = {x e A : xV commutes with bV in H/V}. Then C is a subgroup of A and
V c C". Also C'l V = CA/v(bV). Because A/ V is torsion-free, we know by 5.2 that
(A/V)/(C'/V) is torsion-free. Hence A/C is torsion-free. Clearly C c C. Also
U c V c C". Thus [/C c C". We are assuming that A/UC is torsion, and we have
just shown that A/C is torsion-free. Therefore A/C = 1, that is A = C. Therefore
A/ V = Ĉ /vCfe V), from which it follows that H/ V is Abelian.

At this point we have shown that H/ V is Abelian, where H is the subgroup of G
generated by b and A. We showed above that b~lvb = v'1. Let E be the subgroup
of G generated by v and b. Then E is infinite dihedral. We have V c £ c H with
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H/V Abelian. Therefore £ is a normal subgroup of H, so that H c NC(E). But
A c / / and G/A is finite. Therefore NG(E) has finite index in G, which contradicts
the fact that G is dihedral-free.

THEOREM 5.10. Let Gbea dihedral-free group with the a. c. c.for cyclic subgroups,
and suppose that the F. C. subgroup A of G is torsion-free Abelian with G/A finite.
Then there is a finite subset X of A with the following property: If K is any subgroup
of G which contains X then K is dihedral-free and K D A is the F. C. subgroup of K.

PROOF. Let C\,... , Cn be as in 5.3. For each i we know that A/Ct is torsion-free
of positive rank. We define elements s, and ?, of A as follows: if A/C, has rank at
least 2 we choose s, and tt so that their images in A/C, are linearly independent; if
A/Cj has rank 1 set tt = 1 and choose s, so that its image in A/C, has infinite order.
Set X = {Si, t,• : 1 < / < «} .

Let K be a subgroup of G which contains X and set B — K n A. We have already
shown in the proof of 5.4 that B is the F. C. subgroup of K. We must show that K is
dihedral-free. Suppose that K has an infinite dihedral subgroup D generated by a and
b with b2 = 1 and b~lab = a~l. Because b has infinitely-many conjugates in D, we
haveft ^ A. HenceCA(b) = C, for some /, by 5.3. This value of / is fixed for the rest
of the proof. By 5.9 we know that the rank of A/Ct is at least 2. Hence the images of
Si and tj in A/Ct are linearly independent. Set 5 = st, t = ?,, C = C,• = CA{b), and
C = B n C = CB(b). We have s , ( e X with X <z K D A. Therefore s,t e B.

We wish to show that D is not orbital in K, and this is immediate by 5.7 if a £ B.
From now on we suppose that a e B. Because sC and tC are linearly independent
in A/C, it follows easily that sC and f C are linearly independent in B/C. Thus the
rank of B/C is at least 2. But aC has infinite order in B/C; this is because if k
is a non-zero integer then ak does not commute with b. Therefore we can fix z e B
such that aC and zC are linearly independent in B/C. Let y and & be integers such
that z-jDzj = z~kDzk. Then z>~k € NK(D). By 5.6 we have (Z^*)V e C*;(6)
for some integer r. Hence (z;~*)4ar e CB(b) — C . But zC and aC are linearly
independent in B/C. Therefore j — k. Thus for distinct values of j the conjugates
z~j Dz> are distinct, so that D is not orbital in K.
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