THE GENUS FIELD AND GENUS NUMBER IN
ALGEBRAIC NUMBER FIELDS
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Dedicated Professor Kivosur NosHiro on his 60th birthday

Let % be an algebraic number field and K be its normal extension of finite
degree. Then the genus field K* of K over k is defined as the maximal unramified
extension of K which is obtained from K by composing an abelian extension
over k. We call the degree (K* : K) the genus number of K over k.

In the case where k- is the rational number field, the genus number is
studied by Hasse [2] for quadratic extensions, by Iyanaga and Tamagawa [3]
and by Leopoldt [6] for abelian extensions, and by Frshlich [1], [1'] for normal
extensions.

At the present time, there is no difficulty to treat the genus number in
general, for which, however, no convenient literature is available. - So, in this
rather expository paper, we shall give a general formula for the genus number,
which would have some meaning especially in the investigation of the class
number relation®.

1. For any finite or infinite prime b of £ we denote by %p the p-completion.
of k ; Uy the unit group of %p ; Jk the idele group of %, into which we embed
£* and ky in usual way"; and U= I;I Uy the unit idele group of .

A subgroup H of Ji is called admissible if H is a closed subgroup of finite
index in Ji and contains 2*. Then an admissible subgroup of J; and an abelian
extension over % of finite degree correspond to each other by the class field
theory.

For an Galois extension K/k we denote by Ny the norm from K to % and
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1) The author wishes to express his hearty thanks to Professor T. Kubota and H.
Yokoi for their valuable advice.

) For normal extensions K/k this definition is according to Fréhlich [1].

3) Cf. Frohlich [1], Iwasawa [4], Kuroda [5] and Yokoyama [7].

4 We mean by k% the multiplicative group of all non-zero elements of k.
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we will often omit the suffix when its meaning is obvious.

LEmMa 1. Let K be an extension over k of finite degree, H be an admissible
subgroup of Jx and K be the class field over K corresponding to H. Let further
Ko be the maximal abelian subfield of K over k. Then k*(NxuiH) is the admissible
subgroup of Ji corresponding to K.

Proof. Denote by H, resp. H, be the admissible subgroup of Jx resp. J
corresponding to KK, resp. Ko. Then the translation theorem of the class
field theory implies that A, is generated by K™ and by all a of Jx such that
Nirae Hy, Hence H,Dk*+N(K*H,) =Fk*+ NH,Dk*+NH, because KKo,C K
implies H,DH. On the other hand (Up : NUg) is finite and moreover equal
to 1 for almost all p. This implies that NN U is an open subgroup of Ji
and hence £*+NH is an admissible subgroup of Ji. Let K be the class field
over %k corresponding to £*-NH, and let H: be the admissible subgroup of Jx
corresponding to KKi. Then the translation theorem of the class field theory
implies that A, is generated by K* and by all a& Jx such that Nack™+ NA.
Hence H,> H, which implies KK,cK. Moreover we have K,CK,, because K

is abelian over £ Thus we have £*-NH> H, and the lemma is proved.

2. Let K be as before a normal extension over k of finite degree and K*
be the genus field of K over %k, which is defined as the maximal unramified
extension of K obtained by composing an abelian extension over 2. Now denote
by K¢ the maximal abelian subfied of K* over .. Then K™ is the composite
of K and K¥. Let Ax be the Hilbert class field of K, that is, the maximal
unramified abelian extension over K. Then obviousely K¢ is the maximal
abelian subfield of Ax over 2  Since K*Ux is the admissible subgroup of Jx

corresponding to Ax, lemma 1 implies the following

ProrosiTioN 1. Notations being as above, let further H* be the admissible

subgroup of Ji corresponding to Ky. Then we have
H*=Fk*II NUsy,
b .
where the product is taken over all finite or infinite primes p, and for each p, P
is any one of primes of K dividing ).

3. If especially K is abelian over %, then its genus field K™ is also abelian,

and we have K = K* Moreover H* is expressed by means of the admissible-
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subgroup H of /i corresponding to K as in the following proposition, although

this is not necessary for the theorem of this paper.

ProrosiTioN 2. Let K be an abelian extension of k and H be the corresponding
admissible subgroup of Je.  Let further H* be the admissible subgroup of Jr cor-
responding to the genus field of K over k. Then we have

H* =TI (HN Uy,
»

where the product is taken over all finite and infinite primes of k.

Proof. Let up< Uy, where Up is embeded in Ji, then since the global norm
residue symbol is the product of local ones, we have (up, K/k) = (uy, Kg/ky).
Hence HN Uy consists of all #y € U, such that (up, Kyg/ky) =1, and this implies
HOUp=NKpN Up=NUsg. Since NUx = I;)I NUsg, the proposition follows easily

from proposition 1.

4. Remark. In the case where % is the rational number field @ and K is
abelian over @, Leopoldt [6] showed that the congruent ideal character group
corresponding to the genus field K*/Q is generated by “Auflssung” of the
congruent ideal character group corresponding to K/Q. In this case we have
Jo=Q"U. Hence the idele character group corresponding to K*/Q is determined
as the character group of U/II(HN Uy) mod @, and this is generated by
characters of U/(HN Up)ngqpmod Q”, where p runs over all primes of &.
We can show easily that the congruent ideal character group corresponding

to this idele character group is exactly the above “‘Auflssung”.

5. Let again K be a normal extension of % of finite degree, and K™ be its
genus field. In order to estimate the genus number (K™ : K) we first prove

the following

LemMa 2. Let K be a normal extension of k of finite degree, p be a finite or
infinite prime of k, and B be a prime of K dividing p. Then the index (Up : NUgp)

is equal to the ramification index of the maximal abelian subfield of Ky over ky.

Proof. Let Ki be the maximal abelian subfield of Ky over k. Then we
have NKg= NKy by the local class field theory. Hence (Up: NUg) =
(Up : UpN NKg) = (Up : UpN NKjy) = (Up* NKlz : NKi). On the other hand
U;,-NK(B is the subgroup of kp corresponding to the inertia field of K;g over
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kp and NKy is that of to Kz over kp by means of the local class field theory.
Hence the last index is equal to the ramification index of K {B over - ky, which
is to be proved.

Notations being as above let further K be the maximal abelian _subﬁeld
of K* over k and H* be the admissible subgroup of Ji corresponding to K k,.
Denote by ¢ any unit of 2, and by » a unit of % which ié everywhere locally
norm, that is, for each prime P of K there exists an element ay of Kg such

that 7 = Nag. Then we have
TueoreM. The genus number of a normal extension K over k is equal to
th;Ie,',‘
(Kot k)er )

where hi is the class number of k, e} is the ramification index of_ the maximal
abelian subfield Ky over ky, Ko is the maximal abelian subfield of K over k, and »

runs over all finite and infinite primes of k.
Proof. Since KK{ = K* and KN K{ = K,, the genus number (K* : K) is
equal to (K : Ko). We have

(KF: K) = (K& 2 k) _ (et HYY _ (hi2"U)RU:HY _ h(B*U: HY)
o - R E TR k) T (Ketk) (Fat k) T Kk

Since H*=Fk"" IINU;; by proposition 1, we have moreover

(U: l;INU»B)

“U: HY = (H*U : HY) = (U : H*OU) = ’
(B*U : H*) = (H*U : H*) =(U 0 (H*nq:I}Nqu)

and by lemma 2

(U: HNUJ;) H(Up NUB)—Hep

Hence in order to prove the theorem it remains only to show (H*ﬁ‘U :
I'INUB)— (e : 4). Obviousely H*N U= k*. l'INU;;ﬂ U>WE*NU)- HNUsB Con-
versely let au <k l'INUgBﬂ Uack’,ue HNU;;, thenwehaveaeu vcu,
andacsk*NU. HenceH*ﬂU FN0)- I'INU;B and we see (H*N U: HNU;;)
= ("N V) - TINUy : IINUB) SN U RN )N I NUg) = BN
kN I;INU\B) =(c: 9. Thus the theorem is proved.
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