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In their transition from a laminar state to turbulence, some unstable flows pass through
a set of well-defined stages involving different and distinct processes. This is so, in
particular, for Kelvin–Helmholtz instability, although details of its transition still retain
many mysterious aspects. Billows develop in the primary stage of this stratified shear
flow instability, separated by thin braids in which the shear is relatively high. Fluid is
statically unstable within the billows and consequently potentially prone to convective
instability. Numerical studies by Mashayek & Peltier (J. Fluid Mech., this issue, vol
708, 2012a,b, pp. 5–44 and 45–70) have discovered several new types of secondary
instability in the braids and billow cores that may hasten the eventual transition to
turbulence. The instabilities are illustrated by the authors in colour figures, remarkable
for their beauty and (recalling William Blake’s ‘The Tyger’) ‘fearful symmetry’. But
are they helpful in establishing the subsequent turbulence in the natural environment?
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1. Introduction

Kelvin–Helmholtz instability (KHI) is arguably the most elegant of the many types
of instability found in fluids, and is widespread in its natural occurrence. Its name
links two great scientists, Herman Helmholtz (sometimes Herman von Helmholtz) and
Lord Kelvin (Sir William Thomson). They were friends. In summer, 1871, Helmholtz
joined Kelvin on his schooner-yacht, the Lalla Rookh, to sail off Western Scotland.
When Kelvin went ashore alone in Inveraray, he warned Helmholtz: ‘Now, mind,
Helmholtz, you’re not to work at waves while I’m away’ (Cahan 2012). Helmholtz
had published a paper in 1868 which notes that undulations of increasing amplitude
will grow on a sheet vortex and Kelvin, thinking of the generation of waves by
wind, showed in 1871 that, even when a horizontal vortex sheet separates fluids of
different density, the less dense above, sufficiently short waves will grow exponentially.
Although both men consider only the instability of vortex sheets, the instability of
flows (usually horizontal) with gradual changes in velocity and stable stratification is
generically referred to as KHI.

G. I. Taylor took up the theoretical study of the instability in an essay for which
he was awarded the 1915 Adams Prize of the University of Cambridge, work that

† Email address for correspondence: oss413@sos.bangor.ac.uk

J. Fluid Mech. (2012), vol. 708, pp. 1–4. c© Cambridge University Press 2012 1
doi:10.1017/jfm.2012.383

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

38
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:oss413@sos.bangor.ac.uk
https://doi.org/10.1017/jfm.2012.383


remained unpublished, ‘hoping to be able to undertake experiments designed to verify,
or otherwise, the results’ until 1931 when he was persuaded to publish alongside
a similar study by S. Goldstein. (The equation governing the flow’s instability was
subsequently called the ‘Taylor–Goldstein equation’ by Drazin in 1958.) Although
Taylor tried ways to produce the instability in the laboratory, it appears that he
overlooked the method of producing a stratified shear flow in a tilting tube used
by Osborne Reynolds, a method subsequently adopted, first in an MSc study by
Mittendorf (1961) and later by the present author (Thorpe 1971). (Dr Enzo Macagno
kindly provided a copy of Mittendorf’s thesis in 1967, and told me that G. I. Taylor
had seen the tilting tube when he visited Iowa State University and had discussed the
effect of it being tilted. He was presumably concerned about possible Rayleigh–Taylor
instability – not observed – during the period of vertical acceleration.) A major
advance was the proof by Howard and Miles in 1961 that, under a specific range
of conditions (e.g. flows being horizontal, steady, inviscid and non-diffusive) stratified
shear flows are stable to small disturbances if the gradient Richardson number is
greater than 1/4 everywhere.

The earliest numerical study of KHI was by Hazel (1972). He calculated growth
rates and the initial form of the instability, but it was not until Patnaik, Sherman &
Corcos (1976) that two-dimensional (2D) finite-amplitude disturbances and billows,
separated by braids, the first or primary stage of the transition from laminar to
turbulent flow, were represented numerically. Although described in reports of earlier
laboratory experiments, Corcos & Sherman (1976) appear to be the first to analyse
(in 2D) a ‘secondary shear instability’ on the tilted narrow braids between billows.
A further important 2D secondary stage of instability is the amalgamation of pairs
of billows, ‘pairing’ (or ‘amalgamation instability’). By 1985 the first 3D secondary
instability was recognized. Modelled by Klaassen & Peltier (1985), it is a ‘secondary
convective instability’ (SCI) resulting from static instability within the overturning
billows. The locations of these and the new instabilities now known to occur in the
KHI transition from laminar to turbulent flow are shown in figure 1.

2. Overview

There is a growing interest in KHI, most notably because it is one of the processes
involved in the breaking of internal waves which contribute to turbulent diapycnal
mixing. Many aspects of the instability are not yet understood, notably exactly how
the transition from a laminar flow to turbulence takes place, and it is here that the
numerical studies of Mashayek & Peltier (2012b) (henceforth MP) make a substantial
contribution. They examine billows growing in a flow with tanh z profiles of velocity
and density (z being the vertical coordinate) in a range of initial Richardson, Reynolds
and Prandtl (Ri, Re and Pr , respectively) numbers. MP discover four new types of
three-dimensional secondary instabilities. Two appearing in or near the braids between
billows are termed the ‘stagnation point instability’ and the ‘secondary vorticity band
instability’. The others occur within the billow cores. ‘Localized core vortex instability’
occurs near the ends of the braids. The other, termed the ‘secondary core deformation
instability’, is oscillatory and tends to inflate the vortex cores of billows. MP compare
the growth rates, buoyancy fluxes, energies and dissipation rates of the secondary
instabilities as functions of time within Ri, Re and Pr space; the growth rates of
secondary instabilities generally increase as Re increases but decrease with increase
in Ri. They conclude that SCI is likely to be a key instability in the transition to
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Localized core vortex
instability (LCVI)

Secondary core deformation
instability (SCDI)

Secondary convective
instability (SCI)

Stagnation point instability
(SPI) 

Secondary shear instability
(SSI)

Secondary vorticity bands
instability (SVBI)

Subharmonic vortex pairing Knots Tubes

FIGURE 1. Stage 2 in the KHI transition from a parallel laminar flow to turbulence. Parts (a–f )
are described by MP; (a), (b), (d) and (f ) represent the new instabilities they have discovered.
Dashed lines indicate two billows with a braid between them, tilted from lower left to upper
right, and full lines show secondary instabilities. The diagram is based on MP’s lexicons of
secondary instabilities, and on Thorpe (1987, figure 7) in which knot and tube instabilities (parts
h and i) are described. (I am grateful to my wife and Kate Davis for help with this figure.)

turbulence at high Re (O(104)) when 1 < Pr < 8. The new instabilities have not yet
been reported in the laboratory and identification will be challenging.

3. Future

There still remain questions about just how the secondary instabilities lead to
and affect turbulence. Do they impress on the (young) turbulent flow organized, if
anisotropic, structures important in dissipation and mixing? Part of the justification
of MP for examining the details of the secondary instabilities preceding turbulence
is that their mixing is highly efficient and extends over a considerable period of the
life-cycle of KHI. This justification appears sound, even though the time for which the
structure of the initial billows and secondary instabilities are apparent is significantly
less than the period in which small-scale structures occur and turbulence persists,
before turbulence collapses back to a laminar flow state. MP also speculate that their
study may help explain variations found in mixing efficiency in geophysical flows.
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MP conjecture that the interaction of two or more instability processes will mark
a rapid transition to turbulence. They also ask: ‘Does secondary instability suppress
the tendency of billows to pair’? Pairing is commonly found in the laboratory, but
is observed rarely, if ever, in the atmosphere or ocean. The answer seems to be:
‘yes’. Mashayek & Peltier (2011) find that when Re & 2000, pairing is suppressed by
the rapid growth of 3D secondary instabilities, as shown in the figure by the title
(Re = 6000, Ri = 0.12). Numerical studies of the instability of long-crested billows,
perhaps leading to the ‘knots’ observed in the laboratory (Thorpe 2002), where billows
pair along their length (figure 1h), would provide useful measures of billow coherence
and structure, and possibly estimates of extreme mixing. The conditions in which
the numerical studies have been made and in which the Taylor–Goldstein equation is
valid are, however, not those found in the generally high-Re conditions of the natural
environment. There flow is unsteady and usually turbulent, if weakly so; the effective
viscosity and diffusivity are non-zero and vary in z. Nevertheless, there are plentiful
observations to show that billows do occur in the natural environment, indicating
that structures can develop in turbulent flows very much as in the laminar flows
described above. Some progress (Liu, Thorpe & Smyth 2012) is being made on how
pre-existing turbulence may affect the onset of instability. KHI leads to beautiful and
still mysterious flow patterns. Its effects are yet to be fully revealed.
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