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ABSTRACT 
The design of Product-Service Systems (PSS) is challenging due to the inherent complexities and the 
associated uncertainties. This challenge aggravates when the PSS being considered has a longer lifespan, 
is expected to encounter a dynamic context, and integrates many novel technologies. From systems 
engineering literature, one of the measures for mitigating the risks associated with the uncertainties is 
incorporating means in the system to change internally as a response to change externally. Such systems 
are referred to as value-robust systems, and their development largely relies on Tradespace exploration 
and synthesis. Tradespace exploration and synthesis can be challenging and a time-consuming task due 
to dimensionality. In this light, this paper aims to present an approach that enables the population of the 
Tradespace and then, supports the synthesis of such a Tradespace using a clustering algorithm for 
support changeability quantification in PSS. The proposed method is also implemented on a 
demonstrative case from the construction machinery industry. 
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1 INTRODUCTION 

It is widely acknowledged that the increased competition and volatile market have pushed the 

manufacturing industries to a servitized business model. Academic literature describes this transition 

towards servitization from offering pure products as offering Product-Service Systems (PSS) (Pirola et 

al., 2020). Product-Service Systems (PSS) design inherently deals with high complexity due to its 

multidimensionality (Mourtzis et al., 2018). This challenge aggravates when the PSS being considered 

has a longer lifespan, is expected to encounter a dynamic context, and integrates many novel 

technologies. Literature in systems engineering (SE) and PSS agree that the development of complex 

solutions deal with many uncertainties during the design stage (Erkoyuncu et al., 2011; McManus and 

Hastings, 2005). A strategy to mitigate the risks associated with such complexity is system 

architecting, where one of the goals is generalizing a solution to be valuable under external changes in 

the form of requirements or contexts (Crawley et al., 2016; Mekdeci et al., 2012). The system is 

inherently value-robust if the value is largely unaffected by such external changes. Else, this goal is 

achieved by incorporating means and mechanisms in the design to change either the form or function 

under value-deteriorating events during its lifecycle. A system property that can alter its state as a 

response to value-deteriorating events is generically referred to as "changeability" (Ross et al., 2008).  

The theme of changeability and its quantification is one of the core aspects of PSS development 

(Bertoni and Bertoni, 2019). This argument is partly strengthened by the fact that a PSS is typically 

subjected to several external changes (such as requirements, users, environment, legislation, etc.) and 

partly by the fact that the incentive of intentionally developing a value-robust PSS is higher as the 

provider in leasing-oriented business models retains the ownership. One of the methods to deal with 

changeability quantification is "Filtered Outdegree" (Ross et al., 2008), which is a measure of how 

changeable a system is based on the number of acceptable paths the system can utilize to incur a state 

change. This method is considered viable for developing value-robust PSS, where change capability is 

attributed to the entire domain of PSS elements such as products, services, and infrastructure 

(Machchhar and Bertoni, 2022). Filtered Outdegree relies on Tradespace exploration and synthesis, 

that is, a systematic calculation of the value metrics in the form of benefit/utility versus costs for 

changing externalities (Rhodes and Ross, 2010). Tradespace exploration and synthesis can be 

challenging and time-consuming (Specking et al., 2019). The open-ended problem of assessing and 

understanding multiple system-context interactions in changing requirements and contexts, along with 

extracting the desired knowledge from much simulation data poses a significant challenge to the 

decision-makers. For example, many context variations would generate a multitude of Tradespaces 

that would need additional support for knowledge extraction. State-of-the-art machine learning 

techniques mainly support decision-making rather than changeability quantification (Das and Pratihar, 

2019), while dedicated information visualization (Midway, 2020), such as graphs, networks, 

heatmaps, etc., do not confer the desired level of support for changeability quantification. The main 

reason is that systems as complex as PSS, undergoing many requirements and contextual changes in 

their operational phase, need a more concrete approach to understand their value under all external 

changes. 

Overall, a value-robust PSS entails a better market success probability rendering changeability 

quantification a practical design decision-making aspect, especially in the early design phase because 

much of the resources are committed during that phase. Understanding the overall value of a PSS and 

its variance with external changes in a Tradespace of several possible designs from a range of design 

variables is challenging, mainly due to dimensionality. Clustering algorithms have been shown to 

enhance Tradespace synthesis in multiple ways, for instance, Pareto space reduction by creating a 

family head for the given solution (Zio and Bazzo, 2011), design space reduction for an effective 

metamodeling routine (Qiu et al., 2016), or establishing crucial input-output relationships from a 

multiobjective problem (Das and Pratihar, 2019). Thus, clustering can complement Tradespace 

synthesis, but it has not been thoroughly investigated for assisting changeability quantification. In this 

light, this paper aims to: 

• Present an approach that enables the population of the Tradespace in the early design stages of a 

PSS and then supports its synthesis using a clustering algorithm based on user inputs. 

• Demonstrate applicability of the approach on a case study in the construction machinery industry. 

The paper is structured as follows: Section 2 presents the research method, section 3 briefly overviews 

the related literature, section 4 details the proposed approach supporting changeability quantification, 
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section 5 demonstrates the proposed method on a construction machinery industry vehicle, and finally, 

section 6 concludes the paper with highlighting the prospects. 

2 RESEARCH METHOD 

The work presented in this paper is an outcome of Participatory Action Research (PAR) (Avison et al., 

1999). Multiple data collection strategies were applied in collaboration with the industrial partners in the 

construction equipment manufacturing sector to understand the needs of electrified future mining sites. 

Both real-time and retrospective methods were utilized (Blessing and Chakrabarti, 2009). Regarding 

real-time, data were mainly gathered by visiting a mining site to comprehend the functioning of different 

aspects of a mining scenario. Notes were taken while the site was showcased, and the challenges were 

discussed. Regarding retrospective methods, the existing literature in the domain of PSS and SE was 

reviewed in narrative style due to the vastness of these streams, finding synergies between both 

disciplines, especially concerning changeability and its quantification. Snowballing has been particularly 

helpful during the literature review due to the breadth of these fields. Besides literature, simulation data 

has been one of the cores of the results presented in this paper. Also, data were collected via semi-

structured interviews with company partners along with referring to internal documents and documents 

available on the web pages. These data were supplemented by regular bi-weekly virtual meetings where 

the issues were exemplified further. These meetings also served as a basis for demonstrating preliminary 

results of the prescribed "support" (Blessing and Chakrabarti, 2009) to verify the results from a logic and 

consistency point of view and gain valuable feedback. This process was repeated iteratively, allowing the 

researchers to close the look-think-act learning circles prevalent in PAR. From a design research 

methodology perspective (Blessing and Chakrabarti, 2009), this research is partially descriptive and 

partially prescriptive in nature based on the need and expectation findings. 

3 CHANGEABILITY QUANTIFICATION IN PRODUCT-SERVICE SYSTEMS 

The notion of value is considered the core of decision-making concerning the development of PSS 

(Rondini et al., 2020). Literature is PSS and SE may have a different taxonomy for defining value, but 

the central idea is the same. Value is seen as a ratio of benefits and costs in PSS literature (Rondini et al., 

2020), while a ratio of utility and cost in SE literature (Ross et al., 2008), and this definition of value is 

preserved in this work. As mentioned previously, the development of a PSS inherits many complexities 

that need to be addressed during the design phase. These complexities are distinguished as internal 

complexity and external complexity based on the system boundary definition (Heydari and Herder, 

2020). Internal complexity is associated with the artifact being developed, while external complexity is 

associated with various contexts in different scenarios. Both these complexities must be balanced so that 

the solution is not under-prepared to respond to external value-deteriorating events and not over-

prepared, leading to unnecessary costs (Heydari and Herder, 2020). To address the complexity aspects of 

design, McManus and Hastings (2005) presented one of the first frameworks for understanding the 

uncertainties associated with the complexities and the strategies to mitigate them. These strategies are 

typically system properties that provide means for sustaining value over the lifetime, and changeability is 

one such property that can be applied to both, form and function. As mentioned before, a method for 

changeability quantification is Filtered Outdegree, assessed by counting the number of possible transition 

path the system can adopt to reach a new state in a Tradespace. Tradespace can be multidimensional for 

gaining better insights about time and change, achieved by Epoch-Era Analysis. Here, Epoch is a 

specific period where the requirements and context are fixed. A set of such epochs are referred to as an 

Era that can be utilized for decision-making about future uncertainties. 

Dwyer and Efatmaneshnik (2020) argue that Filtered Outdegree is still one of the primary methods for 

changeability quantification and mainly relies on Tradespace exploration and synthesis, further 

proposing an enhancement by the "Dijkstra" algorithm in the quantification by finding the shortest 

distance between nodes in the Tradespace. Several methods are also proposed in the literature for a better 

exploration and synthesis of the Tradespace that involves some form of machine learning. On the 

exploration side, surrogate modeling is a common technique supporting dimensionality reduction, 

projection-based modeling, sensitivity analyses, and optimization (Yondo et al., 2018). On the synthesis 

side, methods are more oriented towards analysis of the Tradespace either in the form of Pareto or 

complete Tradespace to gain comprehensible insights about the design variables, dominantly using 

clustering algorithms. For instance, Zio and Bazzo (2011) proposed a clustering procedure on full 
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Tradespace to reduce the design options. Das and Pratihar (2019) used a neuro-fuzzy system to establish 

the relationship between the design variables and objectives after getting an initial set of Pareto front. 

Clustering is a technique of categorizing numerical data into multiple mutually exclusive clusters or 

groups. Various techniques can be employed for clustering; the most used methods are K-means, 

hierarchical method, and neural networks. Each method has pros and cons based on data characteristics 

like skewness, the number of clusters, sample size, error in data, etc. K-means is a centroid-based 

method, and it is observed to have an optimal performance compared to other methods for variations in 

the number of clusters concerning convergence and complexity (Kumar and Reddy, 2017). However, all 

these techniques are mainly geared toward design decision support rather than changeability 

quantification. In this work, K-means clustering has been utilized with the purpose of categorizing the 

simulation data into K mutually exclusive clusters. Such a categorization is achieved by an iterative 

process that minimizes the sum of distances from each data point to its centroid point until no further 

sums are possible to obtain the set of clusters.  

4 A METHOD FOR SUPPORTING CHANGEABILITY QUANTIFICATION 

SE literature often refers to the "development control" (Kossiakoff and Sweet, 2003) of the engineering 

team as a means for establishing a boundary between the system and the context. Development control 

implies that all the aspects that the engineering team cannot control but still influence the operation of 

the system are referred to as context. Aligning with this perspective, an internal change is a change 

within the system in response to external changes such as context. With such a distinction, an operational 

scenario is a reference frame of the system and the changing contexts. In the design stages, the changing 

contexts are selected based on the likelihood of occurrence and not as a forecast. Also, the state of any 

system is a function of design variables. In optimization runs, a disciplinary analysis computes the 

responses of the system, which are the states of the system (Martins and Ning, 2021). A design variable 

can either define a system's form (configuration) or function (control input). The control policy is a series 

of such control inputs (Bertsekas, 2019). The state of a system in each context is, thus, a function of 

system configuration and control policy. During optimization studies, depending on the problem 

formulation and the method of aggregation of system responses as a time history, a control input may not 

be explicitly necessary at each time step. However, it is argued that a simultaneous evaluation of 

different configurations and control policies is necessary for a better understanding of system-context 

interactions. In this light, the Tradespace shall comprise design points that may have the same 

configuration but vary atleast in the control policy. Also, design variables can be referred to as 

configuration variables and control variables for an explicit distinction in this work. 

The proposed method for supporting changeability quantification has been illustrated in modules A 

and B (refer to Figure 1 and Figure 2), where the blue boxes represent the steps, and the grey boxes 

represent user inputs. Besides facilitating a thorough comprehension of the proposed method, the 

reason for such a split is that module A is optional and can be skipped if the Tradespace has been 

generated previously. In all other cases, generating such a Tradespace is an engineering problem, and 

design optimization (DO) is one of the prominent methods that enables finding viable solutions under 

a variety of necessary conditions (Martins and Ning, 2021). In this work, the problem is 

multiobjective, contains discrete variables, is believed to be multimodal, and has function 

discontinuities. Thus, an evolutionary algorithm is utilized to solve a multiobjective problem.  To 

simulate different control policies, dynamic programming (DP) (Bertsekas, 2019) is a proven 

technique that enables benchmarking different policies based on value or cost function. Simulation of 

control policies is necessary as some contextual changes can be responded to by a change of control 

policy rather than a change of configuration under the pretext that configuration changes are more 

expensive than control policy changes. However, a combination of DO and DP for generating 

Tradespace can incur high computational costs. A local optimizer would need multiple iterations with 

several starting points, while a global optimizer (such as evolutionary algorithms) naturally inherits a 

longer convergence time (Martins and Ning, 2021). Thus, design space exploration using Design-of-

Experiments (DoE) (Yondo et al., 2018) has been suggested and utilized in this work instead of DO. 

Besides, finding the global optimum is seldom the goal in early design when many uncertainties exist. 

However, the proposed DoE routine can be replaced by a full DO run, but in such a case, it is advised 

to store the iteration history data for a more robust quantification. The step numbers indicated in 

yellow circles in Figure 1 and Figure 2 have been detailed as follows: 
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Figure 1: Module A of the proposed method, geared towards Tradespace exploration. 

 

Figure 2: Module B of the proposed method, geared towards Tradespace synthesis. 

• Step 1: The first step is contextualizing the problem based on the needs and requirements. For 

instance, if utility theory is used for deriving the value of a solution, agreeing upon what 

constitutes higher utility along with stakeholders' subjectivities is a part of this step. 

• Step 2: In this step, the design space is defined. One of the crucial aspects of this step is to assign 

bounds to configuration, control, and state variables for generating a confined Tradespace, where 

the state is a function of the design variables (configuration + control variables). Also, a set of 

contexts are defined to represent an Era (Rhodes and Ross, 2010) and supplied in this step, 

resulting in m iterations for m operational contexts. 

• Step 3: Based on the input of required design points n, an automated DoE sub-routine exploits the 

Latin hypercube sampling (LHS) method to generate sample points across the design space ready 

for simulation. Each context supplied in this step represents an Epoch (Rhodes and Ross, 2010). 

• Step 4: Here, the PSS is modeled and then simulated via DP to generate utility vs. cost trade-offs 

based on input configuration and control constraints. A simulation is performed for the mth 

context and nth design point. The cost function can have various formulations, such as 

deterministic, stochastic, min-max, etc., based on the application (Bertsekas, 2019). Constraint 

violations are treated by a penalty-based approach. 

• Step 5: Each simulation result is stored in a database. This database eventually comprises m 

Tradespaces for m contexts, and each Tradespace comprises n designs for n design points. 

• Step 6: Each Tradespace is fed to the clustering sub-routine that is iterated for m Tradespaces. 

The Pareto Front is first recognized by finding the non-dominated solutions. Since the 

Tradespace was generated via DoE, the Pareto may not be (truly) non-dominated. An 

approximate model of the Pareto Front is built using regression analysis to assess its nature, and 

an offset of this model enables the user to select a band of designs in the Tradespace. Figure 2 

exemplifies how such a model would look for a two-objective DO problem (utility and cost). 

Such a band enables a more robust changeability quantification support by involving more design 

points and, at the same time, reduces the design space to a comprehensible limit. For instance, a 

dominant design point may be a better choice of design cumulatively under an Era than a non-

dominant design for a given Epoch. Thus, offset value is a user input based on many factors, such 
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as the confidence on Pareto, the resolution of quantification needed, the desired level of reduction 

in the design space, etc. 

• Step 7: The band of design points generated by Pareto offset is fed to a clustering algorithm to 

cluster designs based on the desired number of clusters k as user input. Here, 1 < k < m for all 

iterations as k = 1 represents the Tradespace itself, and k = m represents each design point in the 

Tradespace. The input of k value is a strategic decision based on factors such as business 

portfolio, platform-based offerings, etc. 

• Step 8: A suitable cluster is selected to support changeability quantification once the clusters are 

formed. The user input of desired objective threshold (utility or cost in this case) serves as a basis 

for the selection of a cluster. Centroid positions for each cluster are extracted, and based on this 

input, the centroid that minimizes the distance to the indicated objective value is selected. 

• Step 9: Once all the iterations are performed, clusters from each iteration are combined to 

represent a set of unique design points by eliminating repetitive points. Following, all the unique 

design points can be re-routed to step 4, which is the modeling and simulation of the PSS for 

each context to generate a matrix of m x n x objectives dimensions. Based on Value-driven 

design (VDD) literature (Collopy and Hollingsworth, 2011), the objective values can be 

converted into a single scalar value for each design point quantitatively or qualitatively. Such a 

conversion enables direct comparison of different design points, and the matrix is squeezed to m 

x n dimensions. This matrix now represents a set of designs that fulfill the desired input objective 

with the best possible trade-offs with respect to other objectives as the design points were 

extracted close to the Pareto Front. Such a matrix can be used in two aspects: 

– Step 9a: From the matrix, a bar graph can be plotted to indicate which design variables are 

essential for achieving the desired value. The design variables shall be normalized, as seen in 

Figure 2, to visualize all variables at once. This bar graph serves as a basis for changeability 

quantification by raising awareness about the sensitivities of all design variables for achieving 

the desired objective with the best possible trade-offs in an Era. Also, a design variable can be 

assigned a fixed metric, and the change in expected value can be analyzed.  

– Step 9b: A VDD-based weighted sum of value across an Era highlights the "best" design point to 

the design team. However, value-robustness implies minimizing negative value variance and 

maximizing positive value variance compared to a benchmark, i.e., minimizing and maximizing 

value depreciation and appreciation due to external changes, respectively. Thus, as seen in Figure 

2, three graphs are plotted, value and variance to support changeability quantification. 

5 DEMONSTRATIVE CASE 

The proposed method was tested on a battery electric hauler, an automotive vehicle designed to transfer 

mined material from one place to another. As the mining industry propels towards autonomy and 

electrification, a lot of uncertainty exists concerning the value of such haulers over time. On the one 

hand, established approaches to system architecting are being challenged by novel technology, but on the 

other hand, autonomy confers the opportunity to optimize to the next level as human-oriented 

uncertainties are reduced. Besides, with the increasing servitization of these industries, these industries 

lease a pool of machines for specific periods to achieve functional requirements. As soon as the 

requirement is changed, the pool of machines is changed to best suit the purpose. A persistent question 

exists whether these machines could have been modified on-site to fulfill the new requirements. A 

mining site has an extensively long operational life, and in use- or result-oriented business models, a 

hauler can be commissioned to several operational sites, where it undergoes many contextual changes. 

This work considers five such operational scenarios as a demonstrative case. These operational scenarios 

were modeled in a Discrete-event Simulation environment to extract relevant contextual variables within 

an operational scenario. For instance, there is an extensive list of contextual changes in a mining 

operational scenario, such as vehicle path properties, ambient temperature, locations of infrastructure 

such as crushers, charging stations, etc., infrastructure capabilities, maintenance competence, pre-

existing machines such as excavators, wheel loaders, etc., stockpile properties, and so on. For this study, 

only vehicle path change is considered. With two possible path alternatives for each operational scenario, 

the so-called Era comprises ten context changes. Path properties have a notable effect on hauler 

performance. Aspects such as topography, speed limits, halt, etc. influence energy consumption, and the 

design challenge is understanding which hauler configuration sustains value under such external 
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changes, i.e., the one that is value-robust. Figure 3 exemplifies different types of path elevation profiles, 

normalized such that the lowest elevation is zero despite being below sea level. Referring to Figure 3, 

types 1 and 2 are predominantly hilly, but one key difference is that type 1 is of regenerative kind 

(material is extracted at an elevation), whereas type 2 is of degenerative kind (material is transferred to 

an elevation). Type 3 is predominantly flat, while type 4 is a mix of type 1 and 2. 

 

Figure 3: Path elevation profile for a fraction in different operational scenarios 

To design a value-robust hauler, a combination of design variables catering to configuration and 

control policies was chosen. Those include the payload capacity, motor types, gearbox types, and 

battery capacity from a configuration perspective and a sequence of accelerating/braking torque and 

gear selection from a control perspective. A fit-to-purpose vehicle dynamics model was developed to 

simulate a two-axle vehicle in forward and backward motion with reasonable accuracy. Essentially, 

the vehicle must overcome inertial, gradient, rolling, and aero resistance during its operation, and 

based on these resistances, the force supplied by the motor results in acceleration or deceleration of the 

vehicle. In this work, a "quasistatic" (Guzzella and Sciarretta, 2007) approach was utilized, where the 

path is discretized into small instances, and the vehicle state and path properties are assumed to be 

constant in a particular instance. This discretization enables solving the problem numerically via DP 

but demands a finer resolution for better accuracy. 

To simulate the hauler's operation, deterministic DP (Bertsekas, 2019) was implemented to find the 

optimal velocity for the hauler under the given context. In DP, as the vehicle transitions to the next 

state, a cost function can be used to minimize the instantaneous step cost and, in this case, a balance 

was struck between energy consumption and time required for completing a specified distance. Such a 

balance is necessary as only energy minimization would mean that the vehicle never accelerates, and 

only time minimization would mean that the vehicle never decelerates. Hence, a time penalty factor 

was introduced as a control variable that decides the balance between energy and time. The sequence 

of accelerating/braking torque and gear selection is, thus, a function of the time penalty factor. Finally, 

numerous constraints can be applicable at a configuration level to ensure a proper fit of sub-systems 

and at a control level to ensure proper vehicle performance on its path, as listed in (Ghandriz et al., 

2020). Relevant constraints were elicited and applied for this simulation. Two objectives were defined, 

utility and cost. The utility function was decided to be the time required to complete the transportation 

of a fixed amount of ore, while the cost function comprises the fixed cost of the asset along with the 

operational costs that are simplified based on inputs from company partners. Exemplary Tradespace 

for the hauler in three reference contexts has been shown in Figure 4 by utilizing Module A. 

 

Figure 4: Exemplary Tradespace for three reference contexts as per Module A. 

Consider a case when the business requirement is to achieve a function (i.e., transport a certain amount 

of material) within a specific time. Thus, the user inputs the objective time threshold as explained in 

the steps for Module B along with Pareto offset and clustering values. If the user chooses just one 
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"best" design for achieving that function, it might perform superiorly in the given context but might 

underperform as soon as the context changes (see the yellow point in Figure 4). If the user chooses one 

"best" design in each context and then combines them to represent a platform of many designs as a 

changeable solution, then the design variable bounds can be extensively large, incurring unnecessary 

investment costs. The input of Pareto offset value and clustering value confine the Tradespace, yet 

allow for the inclusion of more design points, eventually reducing the risk of eliminating a dominated 

design point that could deliver a better value overall in an Era. Figure 5 illustrates part of the steps in 

Module B for a single context. Essentially, the Tradespaces are fed to Module B in iterations, where 

Pareto Front from each Tradespace is extracted, and the design space is reduced by offsetting it. Then, 

the band of design points is clustered (five in this case) based on the user input. Finally, a suitable 

cluster is selected based on the centroid value that is the closest to the time threshold input. 

 

Figure 5: Illustration of Pareto offset, clustering, and selection as explained in Module B 

By combining all the clusters and eliminating all the repetitive design points, a set of unique design 

points is achieved that fulfills the desired time threshold. By re-routing these through step 4 in Figure 

1, the value for each design for all given contexts can be calculated. Figure 6 shows exemplary results 

of executing Module B. Two bar graphs, A & B, have been plotted (left), showing which design 

variable values are crucial for different objective thresholds (simulating the impact of change in 

requirements). Intuitively, as the user input for the time threshold increases, it can be inferred that the 

payload capacity must increase from both the bars plots. 

 

Figure 6: Exemplary design bounds (left) and cumulative value and its variance (right) 

Three graphs are plotted as shown in Figure 6 (right); one of them resembles the value of a design 

point as a normalized qualitative sum in an Era, while the other two are normalized positive and 

negative value variances. To support changeability quantification, one of the design variables can be 

fixed to a single value, and the effect on value can be visualized. Typically, any constraint on the 

design variable variability will reduce the value. From a design point of view, a design that delivers 

superior value in one context but significantly struggles to deliver value in another is not a great 

choice due to the associated risks (Erkoyuncu et al., 2011). A value-robust design point would be the 

one that has min. negative value variance, max. positive value variance, while maintaining a relatively 

higher value. The graph of value arranged in descending order enables a direct comparison of value 

variances that can be an avenue for decision-making concerning changeability. For instance, design 

point 6 has a lesser negative variance, higher positive variance, and maintains a relatively higher 

value, despite not being the "best" design point. Such designs can be good discussion points for further 

development. These graphs update based on the changed design variable values and objective 

thresholds, eventually supporting decisions concerning changeability. 
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6 CONCLUDING REMARKS 

This paper proposes a method for supporting changeability quantification in PSS in two modules. The 

first module enables the population of the Tradespace by exploiting the LHS method, and the other 

module synthesizes the Tradespace by exploiting a clustering algorithm. The proposed method can be 

positioned as addressing the perceptual complexity in design decision-making (Rhodes and Ross, 2010). 

Also, the method was practically implemented on a battery electric hauler with two objectives: utility 

and costs. For an effective change quantification, the design variables need to be characterized in terms 

of the cost of investment and change (Ross et al., 2008; Rehn et al., 2019). At this juncture, the proposed 

method raises awareness of which design variables are sensitive to value sustainment. It further guides 

design decisions on changeability by allowing the engineering team to eliminate design variations and 

visualizing the impact of value and its variance. Also, concerning value variance, the risks must be 

within acceptable limits (Erkoyuncu et al., 2011). However, weighing the risks in terms of impact and 

likelihood has not been treated in the proposed method. Characterizing the design variables and 

characterizing the risks shall be seen as the next step for enhancing the proposed method. 

The proposed method is best suited for discrete variables, and thus it is recommended that continuous 

design variables be discretized. One of the key advantages of doing so is a reduction in the number of 

possible designs, especially the redundant ones that show marginal benefit over the adjacent ones. 

Besides, since the proposed method is best suited for early design decision-making, such a minuscule 

resolution is seldom a requirement. On contextual changes, however, the proposed method was 

demonstrated for a context change in only one dimension, i.e., the path properties. There can be 

enormous contextual changes that a system deals with along the lifecycle (Mekdeci et al., 2012; 

Rhodes and Ross, 2010). Simultaneous simulation of configuration and control variables can lead to 

high computational complexity due to DP. However, it is argued that such simultaneous simulation is 

necessary for understanding which configuration changes can be readily addressed by merely a control 

change that is often cost-effective. Certainly, value space or policy space approximation by techniques 

such as approximate-DP/reinforcement learning (Bertsekas, 2019) can be a valuable enhancement to 

the proposed method. On computational complexity, the LHS method was exploited to populate the 

Tradespace, and thus, despite referring to the "best" design as Pareto, those designs may not (truly) 

represent a Pareto Front. Populating the Tradespace with LHS can be tricky initially, as choosing the 

number of design points for the given application is left to the user. Techniques such as sequential 

sampling (Yondo et al., 2018) can certainly assist in circumventing this issue. 
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