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Abstract. In this talk, I describe methods for direct distance estimation to Planetary Nebulae
(PNe). I review the foremost of these methods, the Expansion Parallax Distance, and present
some recent results from this technique. In addition, I will discuss the major contributions
to the systematic and random distance errors resulting from the method (including ionization
front motions and deviations from spherical target morphologies), and show preliminary evidence
quantifying these effects.
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1. Introduction
Distances to galactic planetary nebulae are poorly-defined, even by the already loose

standards of astronomical distance estimation. The most common statistical method for
PNe distance estimation is the Shklovsky method (Shklovsky 1956). This technique in-
fers a distance based on the assumption of a constant ionized mass. However, since the
progenitors to PNe range in mass from 0.8–8 M�, the Shklovsky distance is inherently
uncertain by more than a factor of 2, rendering it almost useless for individual objects.
Despite this limitation, the Shklovsky distance has been a very useful estimator for inves-
tigating the general properties of PNe. The wide range of derived statistical distances is
illustrated in Table 1 from Terzian & Teymourian (2005), which shows various statistical
distances for a sample of well-observed PNe. As seen in the Table, it is common to see
distance variations from method to method in excess of 2, even for nearby objects.

Recent efforts to determine precise distances to PNe are approaching fruition. Despite
the increase in computational and observational cost over the Shklovsky approach, these
techniques have the potential of reducing the distance uncertainties by an order of mag-
nitude. Here, I review the two most common precision distance techniques for PNe: the
trigonometric parallax and the expansion parallax distances.

2. Trigonometric Parallax
The simplest geometrical method, and one of the first techniques learned by astronomy

students, is the trigonometric parallax. However, PNe are not conducive to trigonometric
parallax distance estimation. Canonical PNe distances are > 1 kpc, and the parallax at
this range is very small (< 1 mas), and out of range for most astrometric systems.

However, using a dedicated astrometric telescope, lots of observing time, and careful
attention to data reduction procedures (especially differential refraction), scientists at the
US Naval Observatory in Flagstaff, Arizona have achieved remarkable success measuring
groundbased parallaxes. Currently, they have presented more than a dozen parallaxes to
the central stars of PNe and with median parallax errors < 0.5 mas. To date, twelve PNe
with fractional parallax errors less than 20% (Harris et al. 2006; Harris, this conference)
have been measured. With additional observing in the next few years for these and some
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Figure 1. The magnification method as applied to NGC 3918. Shown are the residuals images
resulting from the epoch 2 image minus a version of the epoch 1 image magnified by M . As can
be seen, the residuals are minimized for M = 1.0035.
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Figure 2. A schematic of the gradient technique for angular expansion measurement.

other relatively nearby PNe, it will be possible to obtain distances to two dozen PNe
with precisions better than 20% for comparison to other distance methods/estimators
(Harris, 2006, private communication).

In the case of space-based parallaxes, the systematic error limit of the Hipparcos satel-
lite is ≈1 mas. The systematic floor conspires with the magnitude limit of Hipparcos to
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Figure 3. The data from NGC 7354 in the light of [O iii]. The top figure shows the optical
morphology with the slit positions denoted by thin lines labeled A-F. The position-velocity
distributions resulting from the longslit spectra are shown at the bottom of the figure.

make candidates rare. To make matters worse, the small sample of PNe central stars (19)
bright enough to be detectable and with parallaxes at least as large as this error floor
gives problematic distances (Pottasch & Acker 1998). A program currently underway
with HST is measuring trigonometric parallaxes for four objects in common with the
groundbased work, seeking to reach the highest accuracy currently possible. (Benedict
et al. 2003 give a preliminary result.)

A major step forward in PNe parallax determination will arrive with the GAIA as-
trometric mapping satellite. Currently scheduled to launch in 2011, the GAIA mission
is designed to be complete to V= 20, and to have an astrometric accuracy of 20–25 µas
at V = 15. For comparison, there will be ≈ 50–70 measureable PNe parallaxes down to
V= 16. Despite the astonishing astrometric precision of GAIA, a long-baseline optical
interferometer known as the SIM mission (due to launch in 2015) is designed to be yet
more precise. The quoted wide-angle astrometric precision of 4 µas results in a 10σ par-
allax for a PN at distances of 25 kpc. SIM is expected to have a faintness limit of V = 20.
Unfortunately, the ability of SIM to generate huge numbers of PNe parallaxes is limited
by being a pointed mission. Nevertheless, SIM will certainly impact the state of PNe
trigonometric parallaxes.
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Figure 4. The modified-PES model of NGC 7354 in the light of [O iii] that best matches the
data shown in Figure 3 (in a least squares sense).

3. Expansion Parallax
The expansion parallax method is a technique that has been developed by many au-

thors over the past decade (Masson 1986, 1989a, 1989b; Hajian, Terzian, & Bignell 1993,
1995; Hajian & Terzian 1996; Palen et al. 2002; and several others. See also Ruiz et al.,
this conference). The expansion parallax method was initially applied to images of the
centimeter-wave free-free continuum obtained at the VLA. The high dynamic range and
fidelity of the images combined with excellent angular resolution resulted in a set of PNe
distances with errors as small as 25%. However, the success of the expansion method was
limited by the small (<10) sample size of available targets.

The advent of high quality data from the Hubble Space Telescope reinvigorated ex-
pansion parallax research in PNe. Images of PNe from the WFPC2, in particular, have
sufficient dynamic range and fidelity, and the systematic astrometric errors (especially
the distortion) are well-enough understood, that high precision angular expansions can
be measured from PNe with time baselines of a few years. To date, precision expansion
parallax distances to a <10 PNe have been published (see Mellema [2004] for a recent
summary). I will also be showing some preliminary results from an ongoing investigation
(Hajian et al. 2006)below.
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Figure 5. A comparison of Shklovsky distances (from the compilation of Cahn, Kaler, &
Stanghellini (1992) and the corresponding expansion parallax distances as computed by us
(Hajian et al. 2006). The line through the origin with a slope of 1 is shown for reference. The
18 PNe with optical expansion parallax distances from HST are shown as filled squares, while
the 7 radio expansion parallax distances from the VLA are shown as open circles.

The basic recipe for the expansion parallax method is (1) Obtain the angular expansion
rate. θ̇, of the PNe by analyzing two epochs of image data, and (2) Obtain the Doppler ex-
pansion velocity, vexp, of the PN with a spectrometer. The expansion parallax distance is:

D =
(

vexp

1 km/s

) (
1 mas/yr

θ̇

)
(3.1)

Two different techniques have been employed in order to measure the angular expansion
rate of the PNe. They are known as the magnification and gradient methods. In the case
of the magnification method, θ̇ is inferred by solving for the magnification factor, M ,
which is treated as a free parameter, based on two images separated by a time baseline
of several years. For instance, M = 1 implies that the PNe has not expanded between
the two epochs, and that the angular expansion is not detectable. The goal is to find
the value of M which minimizes the residual difference between the second epoch image
and an image consisting of the first epoch image magnified by M relative to the nebular
center (see Figure 1). The angular expansion of the nebula is therefore:

θ̇ =
(M − 1)θ

T
(3.2)

The advantage of the magnification method is that it is relatively fast. After the two
images are aligned, the determination of a single parameter is not very painful. However,
the magnification method fails if the PN, or a significant portion of the PN, is expanding
non-homologously (e.g. when the nebula is interacting with the surrounding medium).

The other technique for determining θ̇ is the gradient method. This method is best
envisioned for the case of a uniformly expanding ring. Subtracting the second epoch from
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the first epoch results in an image of the PN consisting of a negative ring bounding a
positive ring. In Figure 2, I show an example of the nebular brightness, F , along a line
passing through the central star of the PNe in one of the epoch images. The amplitude
of the difference signature is ∆F. It is a simple matter to see that the angular expansion
between epochs, ∆θ is given by:

∆θ =
∆F

∇F
(3.3)

The gradient method is far more time-intensive than the magnification method. Con-
sider the flux profiles along an individual rays passing through the nebular center. Each
time the ray crosses bright, sharp nebulosity, a value of θ̇ can be estimated. This tech-
nique was fully explored in the case of the [O iii] data from NGC 6543 (Reed et al.
1999), where the PN was subjected to 38 rays containing an average of 3 intersections
with nebulosity each (see their Figure 2). However, the advantage of the gradient method
is the direct result of the additional manpower required: the scalar field of radial PNe
expansions is more accurately measured by the gradient method, and not limited to PNe
exhibiting regular homologous evolution with time.

3.1. Sources of Error
There are several effects which can contribute significant systematic errors to the expan-
sion parallax method. Some of these effects are inherent to any first-order treatment of
nebular angular expansion. For example, these include the assumption that the nebular
gas moves at constant velocity between epochs, that the nebular gas expands radially,
etc. Although there are several theoretical arguments for such flows, a movie showing the
temporal evolution of a nebular clump along an accelerated and/or non-radial trajectory
has not yet been obtained.

A systematic error resulting from astrophysical considerations has been discussed in
detail by several authors (e.g., Mellema 2004; Schoenberner, Jacob, & Steffen 2005).
At issue is whether the measured velocities correspond to the actual motion of the gas
being imaged. If shocks are present, then the jump condition can be used to solve for
a correction factor (>1) which multiplies the observed Doppler velocity. As a result,
PNe observed in the light of shocked lines must have their expansion parallax distances
increased by a potentially significant factor. Space does not permit a thorough discussion
of this worthwhile subject, although I will return to this subject at the end of this paper.

The description of the expansion parallax method above is fine for spherical, uniformly
expanding PNe, but geometric modifications are required for a general PN. Even if the
problem is restricted to prolate ellipsoidal geometries, the correction factor can be an
order of magnitude larger than the random errors of the expansion parallax method. The
following section describes recent progress in modeling and understanding the spatio-
kinematic structure of a sample of PNe.

3.2. Recent Results
Along with several of my collaborators, I initiated a program of expansion parallax mea-
surement of a sample of PNe with the HST, supplemented by groundbased longslit spec-
troscopy at the 4m telescopes at CTIO and KPNO. The spectroscopic slit was positioned
at a variety of locations across the face of the nebula. The target list consists primarily
of bright, nearby PNe with simple, elliptical morphologies, and sharp features.

In order to determine the nebular geometry and the structure of the velocity field,
we adopted the Prolate Ellipsoidal Shell (PES, hereafter) model. Detailed explanations
of the PES model are in the literature (Aaquist & Kwok 1996; Zhang & Kwok 1998).
In summary, the PES model predicts the synthetic image of a gas distribution ionized
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Figure 6. A comparison of the distances based on [N ii] data and on [O iii] data.

by a central source. The model contains ionization physics, and the gas is simply a
parametrized distribution (i.e. there is no hydrodynamics in the model). The above ref-
erences document the success of the PES model in reproducing the geometries of a wide
range of PNe. We felt that the model could be improved by including spectra (i.e. radial
velocities), which we did by adding one parameter to the 12 in existence. The use of im-
ages and spectra to uniquely constrain nebular spatio-kinematic geometries is a powerful
tool. The image data tends to constrain material perpendicular to the line-of-sight, while
the spectral information tends to constrain nebulosity parallel to the line-of-sight. As an
extreme example, a spherical nebula and a cigar-shaped nebula viewed along the major
axis present very similar images, but the spectra will show substantial differences. An
example of our application of the modified PES model is shown in Figures 3 and 4 for
the [O iii] data from and model for NGC 7354.

We derived angular expansion rates for the target PNe using the magnification method
while focusing on the region near the equatorial rim (minor axis). This way, the equatorial
expansion velocity, which is one of the parameters resulting from the modified-PES fits,
can be divided by the equatorial angular expansion rate to result in a PN distance
corrected for geometric effects (particularly the inclination of the major axis relative
to the line-of-sight). The resulting expansion parallax distances are plotted in Figure 5
relative to the statistical distances from the compilation of Cahn, Kaler & Stanghellini
(1992). Although there is evident scatter about the line of unity slope, no clear trend
is seen, even when the radio expansion parallax targets from the VLA are included. We
conclude that the expansion distances seem consistent with these statistical distances.

Of special interest is the subsample of eight PNe with distances (independently) based
on [O iii] and [N ii] observations. These data are plotted in Figure 6. The sample size
is small, and so our conclusions are only suggestive, but if there is a trend in Figure 6,
it is that the [N ii] distances are slightly larger than the [O iii] distances. This suggests
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that shock activity is not significant in the sampled PNe; shocks would result in an
observed [N ii] velocity smaller than the true gas velocity, and so application of the
required correction factors will cause the [N ii] distances to further depart from the [O iii]
distances. A larger sample is necessary to increase the confidence of this conclusion.

4. Conclusions
Though the expansion parallax distances are expensive in terms of data and time, and

yield individual distance estimates to PNe (i.e. one at a time), the total number of ex-
pansion parallax distances is growing and will soon exceed 30. Before long, a statistically
significant sample will be achieved. There are still some sources of systematic error that
may be present, the most notable being the potential effect of shock fronts altering the
apparent kinematics of the nebular gas. The presence or absence of this phenomenon
awaits a multi-ion expansion parallax study of individual PNe targets. Only by measur-
ing the θ̇ and vexp for a series of ionic species spanning a range of shock sensitivity can
the effect of shocks on expansion parallax distances finally be ascertained.

There will be a revolution in trigonometric parallaxes from future space astrometry
missions. The simplicity of the trigonometric parallax makes the parallax distance a very
attractive estimator, and the SIM and GAIA spacecrafts will be poised to increase the
available sample of PNe parallax targets. In the meantime (10–15 years at least!), the
precision PNe distance work being done will continue to expand the list of available
targets while generating parallax calibrators for the upcoming space missions.
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