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MULTIPLICATION INVARIANT SUBSPACES
OF HARDY SPACES

T.L. LANCE AND M. I. STESSIN

ABSTRACT.  This paper studies closed subspaces L of the Hardy spaces HP which
areg-invariant (i.e., g-L C L) wheregisinner, g # 1.1f p = 2, the Wold decomposition
theorem implies that thereis acountable “ g-basis’ f1,fo, ... of Linthe sensethat L isa
direct sum of spacesf; - H2[g] where H?[g] = {f o g | f € H2}. The basis elementsf;
satisfy the additional property that Jr [f; [2gf =0,k = 1,2,... . Wecall such functions
g-2-inner. It also follows that any f € H2 can be factored f = ht 2 - (F2 o g) where
ht 2 is g-2-inner and F is outer, generalizing the classical Riesz factorization. Using LP
estimatesfor the canonical decomposition of H2, wefind afactorizationf = bt p'(FpoQ)
forf € HP. If p > 1 and g is afinite Blaschke product we obtain, for any g-invariant
L C HP, afinite g-basis of g-p-inner functions.

1. Introduction. Let X beaHilbert spaceand V: X — X be an isometry. The well-
known Wold decomposition theorem states that

(1) X =Xo é VX

where X; = X & VX is awandering subspace and Xo = 2o V"X ([6], [4, p. 3]). If
X = H2 and V is the operator of multiplication by an inner function g the decomposition
(1) implies that any function f € H? can be written as

@ 1(2) = io s (9@)

wheref, € H2, and s, s, . .. form an orthonormal basis of H2 & gH? (in this case Xo =
{0}). Inthe casewhen g is afinite Blaschke product, H? © gH? isfinite dimensional with
dimension equal to the order of g.

Any closed subspaceM C H? which is invariant under multiplication by g could be
considered as X. Then (1) implies that any f € M can be written in the way similar to

2):

@) (@ = 3 t(2h(6)

wheret; form an orthonormal basisof M & gM. It is easily seen that functionst;(2) (and
s(2)) satisfy

(4 J k@Pg@dm@ =0
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MULTIPLICATION INVARIANT SUBSPACESOF HARDY SPACES 101

where T stands for the unit circle and dm(2) is the normalized L ebesgue measureon T.
We call afunction that satisfies (4) g-2-inner. Thus, any g-invariant subspace of H? has
ag-basis consisting of g-2-inner functions.

It is natural to ask which of these results could be extended to the case p # 2. Of
course, if we are interested in a generating system such that its linear combinations are
dense in the subspace, then the existence of such a system is easily obtainable from
Hilbert spaceresults. But in this paper we shall deal with the following question.

Let M C HP be ag-invariant subspace. By analogy with (4) we call afunction ¢(2)

g-p-inner if

®) [le@Pd@dmz =0, k=12,....

Weinvestigate whether M hasag-basis consisting of g-p-inner functions. Our main result
is

THEOREM. If gisafinite Blaschkeproduct of order nandp > 1thenany g-invariant
subspace M has a g-basis consisting of g-p-inner functions. That is, any ¢ € M can be
written as

k
0@ =Y hip(@i(92)
i=1
wherethe functions h; , are g-p-inner, i = 1,...,kk <nand ¢; € HP.

The proof of this theorem is based on g-p-factorization of HP functions which gener-
alizes the classical canonical factorization (if g(z2) = zthey are the same) and on some
estimates which give additional information about the decomposition (2).

The paper is organized as follows. In Section 2 we consider properties of g-2-inner
functions and obtain g-2-factorization. Section 3 is devoted to LP estimates, which are
used in Section 4 to prove the basis theorem. R. Douglas noted that the estimates of
Section 3 should lead to another proof of the result of V. Mascioni [8] about operators
similar to a contraction. We sketch these ideasin Section 5.

ACKNOWLEDGEMENT. Wewouldliketothank J. A. Cima, R. G. Douglasand B. Ko-
renblum for useful discussions. We would also like to thank the referee for very helpful
comments about the early version of the paper.

2. g-2-factorization. Let g be an inner function, g # 1. We denote by H?[g] the
subspace of H? given by

H2[g] = {h(®) = v o g2 : ¥ € H*}

and P[g] the (non-closed) subspace of all polynomialsin g. Note that if g(0) = 0, then
v o glln, = [|¢|ln,- Therefore, if g(0) = 0 then H?[g] is closed in H?. Since H2[g] =
Hﬁf_‘%&] we conclude that H?[g] is closed in H? for any inner function g.

For any subset A C H2 we denote by [Al the minimal closed g-invariant subspace of
H2 which containsA. If L isag-invariant subspaceof H? then we defineL © gL = (gL);

to be the orthogonal complement in L of gL (note that gL is closed).
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Let B be aBlaschke product with zeros ag, as, . . ., whose multiplicities are ko, ki, . . .
respectively. Denote by M the following subspace of H2.

mos{Eo (12002 )

We arrange the generators of M in the following order

1 z Zot
Yo = (1_502)’@].: (1_5022!"'1¢k0—1: (1_502)%1
(6) (pkozi_ (pko.'.]_:;_ (IDkO.,.k,l:Zkli:l
1—327 1—a22" " 1 1— a2k
1
90k0+k1: 1_522,....

There is an orthonormal basis of M, sg,sy,..., such that s, ..., Sy form an orthonor-
mal basis of span{¢o,...,pm} (such a basis might be obtained by the Gram-Schmidt
process).

Theneachof s,...,Sn, ... isafinite linear combination of the generators (6).

ProPOSITION 1. The functions sp, S1, . . . forman orthonormal B-basis of H2, that is
any function f € H? is uniquely represented as an orthogonal sum

@)= 2s(z)fi (B@)
wheref; € H2,i = 1,... and if
i = i) s(2f(B@) and h() = f% s(2h (BQ),
then

@ (f e = (e = > [ f(RE dm(2).
i=0

-0

PrROOF. Thebasisproperty is straightforward since any functionwhichisorthogonal
to M isin BH2. This implies that any function orthogonal to span{s(2B'(2) : j,| =
0,..., }isdivisible by all powers of B and, therefore, vanishesidentically.

To prove (7) it sufficesto proveit in the casef = B, h = sB' butin thiscaseit is
obvious. ]

COROLLARY 1. Let g be any inner function. Then thereis a g-basisof H?, s, ... .,
consisting of rational functions holomorphicin the closed disk and such that sg¢ L 5¢f
ifi #j,fori,j,k1=0,1,....

PrOOF. By Frostman's Theorem [5, p. 79] thereis e € A such that

g—e

B= —
1—eg
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is a Blaschke product. Since H?[B] = H?[g], the result follows from Proposition 1. =

DEFINITION. A function ¢ € HP(p > 0) is called g-p-inner if |¢|[, = 1 and
Fle@P9@ dm@) =0, k=1,2,....

REMARK. We usethe terminology similar to the classical one because, first, in case
0(2) = z, z-p-inner functions are classical inner functions and, second, we shall see soon
that a g-p-inner function satisfies some properties similar to aclassical one.

REMARK. It follows directly from the definition that if ¢ (2) isinner and (2) is g-p-
inner, then y = ¢ isg-p-inner.

COROLLARY 2. Letf(2) = i s%(@f(9(2) € H> Thenf is g-2-inner if and only if
k=0

® > i@, = 1
where the equality (8) for boundary values of {f;} holds almost everywhereon T.
PrOOF. We haveby (7)
0= /T f(21°9(2" dm(?) = (f@) - 9", F@))w
=S (@ 2@ = 3 [ [6@PZ dm2)
i=0 i=0"

= [ 16@)2)Z dm@).
(S 1r@P)2 a2
This equality holds for k = =41, +2,.... The Uniqueness Theorem implies that
2% 6@, = constant. Since||f[2 = 1, (8) holds ae. .

REMARK. If g is afinite Blaschke product of order n then all the basis functions
0,51, %, - - -, Sn—1 are analytic in the closed disk A, and Corollary 2 impliesthat any g-2-
inner functionisin H*. Inthe general case, thisisnot true. For example, leta, = l—n3—1/2.

Then {an}7° , satisfiesthe Blaschke condition. Put

o) =B = 1 7"

Then it is easy to verify that

=1 52 = (ﬁ 2~ % )”1_|am”|2, m> 0.

1 l—a&z/ 1—amaz
By Corollary 2,
© 1 > 1 \—1/2
f(2 = A;W%(Z), where A = (nZ::l W>

isg-2-inner. It is easily seen that f(2) is unboundedasz — 1.

https://doi.org/10.4153/CJM-1997-005-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-005-9

104 T.L.LANCE AND M. |. STESSIN

PROPOSITION 2. Everyfunctionf € H? isuniquely (up to unimodular factor) repre-
sented as a product

© f(2) = (2 - F2(9(2)
where b , is g-2-inner and F»(2) € H? is outer.

ReEmMARK. If g(2) = zthenthefactorization (9) coincideswith the classical canonical
factorization.

ReEMARK. In the proof that follows we use Proposition 8 from Section IV which
considersnorm properties of productsinvolving g-p-inner functions for arbitrary p. This
result, which does not depend on any intervening work, is placed there for convenience.

PROOF OF PROPOSITION 2. Letf € H2 Denote by M? the g-invariant subspace
generated by f:
M7 =f-Pldl.

(Recall that P [g] standsfor the set of polynomialsin g). Since
dim(M? © gM?) = 1,
M? © gM? is generated by a g-2-inner function h. We have M? = h - P[g]. By Proposi-
tion8,h-P[g] = h-P[g] = h- H?[g]. In particular,
f=h-(s@)
for some ¢ € H2. If ¢(2) = »(2) - F(2), where »(2) isinner and F is outer, we write
he2(2) = h(2) - 2(9(2)-

To provethe uniqueness|et ussupposethat there aretwo g-2-factorizationsof f € H?,
f = hy (F10Q) = hy (F20Q), whereh; isg-2-inner, F; isouter, i = 1, 2. If P, isasequence
of polynomials such that Fan?d then by Proposition 8

lhy —f - Pa(@)ll2 = |a(1 — F1(@) Pn(@))|, = 11 = F1Pall2— 0

asn — oo. Thisshowsthat the sequence{hy(F20g)(Pnog) }2, convergesto hy in H?. By
the same Proposition 8, {F,P,} convergesin H? to some function ¢ and hg(Z)(p(Q(Z)) =
h1(2). Write ¢(2) = >332, ck2*. Since both hy and h, are g-2-inner we have

0= [ Im@P 9@ dma) = [ @ |¢(9)[ 92" am(2)
= (2 cnfin) [ Ino@dmi@) = [ @ 2
Thisimpliesthat |¢(2)| = 1 amost everywhereon T, that is ¢ is inner. Since both F;

and F, are outer, the z-invariant subspaces of H? generated by h; and h; are the same as
the z-invariant subspace of H? generated by f. Thisyields ¢ isaunimodular constant. m
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3. LP-estimates.

PROPOSITION 3. Let g be an inner functionand f € H®, f(2) = Z s@f(9),

wheres arerational functions holomorphicin A satisfying Corollary 1 and 1<p<oo.
Then there are constants C, , such that

(10) [fllp < Cicpllflp-

PROOF. Let us denote by Py the orthogonal projection Py H2 — 3pan{gt,k =
0,1,2,...}. Thisprojection coincideswith the restriction to H? of the conditional expec-
tation operator associated with the o-algebra determined by g. Therefore, ([3, p. 184])

(11) [IFllp = 1[Pgf[lo

holds for al p > 1. This implies that Py may be extended to HP as a linear operator
HP — HP with norm 1. We use the same notation, Pg, for this extension. Obviously Py
maps HP into the closure in HP of span{g*, k > 0}. It is easily seen that

(12) fk 0 g = Py(Tgf)

where Tg, standsfor the Toeplitz operator with symbol s.. Write

m n )\I Zl' 1
S =
2; {(1-32)"

It is easy to verify that

Tsf(2 = Z Z -
13) * al)

- gl @e—ay

Since|z—a|,| = 1,...,mareseparated from zero when |z| = 1, (13) impliesthat there
are constants Cy, such that

{2t - z 0@z a))

ITsfllp < Cipllfllp-

Now, (10) follows from (11). ]
Letf € H®, f(2) = 220 sc(@)fk (g(z)). Denote by Q'é the operator

(14) () = fi.

The following results are immediate corollaries of the previous proposition.
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COROLLARY 3. The operator Qg may be extended to HP as a bounded linear oper-
ator Qf: HP — HP.

COROLLARY 4. If gisa finite Blaschke product of order nthenfor all 1 < p < oo
and f € HP we have the unique representation

(15) t2) = kzo (@ (0)

wheref, € HP.

ProOPOSITION 4. Let g be a finite Blaschke product of order n, f € H* and f(2) =
ht 2(2) - F2(9(2)) bethe g-2-factorization (9). Then Fz € H>.

PrROOF. Letg= fj%z~--%,wherea1,...,an € A. Write

V11— laof? z—a 1-l|af

 l-a3z ' l-az l1-a;z

z—a  z—a1 yl-[adl?

1—%2' ' l-a1z 1—az
(Thisisthe orthonormal basis associated to (6) in this case). Let

s<:

n—1 . n—1
h 2(2) = kZosk(z) -h(9(@) andf(z) = lgsk(z)fk(g(z))-

Then A
fi(9(2) = he(9(?) - F2(9(2))
and, by (8),
n—1
Fa(w)[? = kZO [fi(w)[?
for amost all w € T. Now the result follows from Proposition 3. ]

Thefollowing result establishesthe estimate similar to (10) for an arbitrary g-basisin
the case when g is afinite Blaschke product.

PROPOSITIONS.  Let gbeafinite Blaschkeproduct of order n, andlet ¢4, ..., pk(k <
n) be g-2-inner functions such that

(16) eig" Lg™ ij=1,...,k i#j, m(=012....
Then thereare constants Dy p(1 < p < 00), { = 1,2,...,k suchthat for any f € H*>,
k
f(2d = _leai(Z)fi (92)
1=

we have the estimate

(17) [fillo < Dipllflle, T=1,....k
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PrROOF. Write L
vi(2 = Zosn(Z)%(g(Z))-

By Corollary 2 we have
S 2
(18) PUENUIERS

The orthogonality condition (16) yields

(19) @ = [ 258 Gy e gt i
A proof similar to the one of Corollary 2 and (16) show that (19) yields
n—-1 P
(20) 2 PnPh), 20 i ]
Denote by A(w) the following n x k matrix
Pow) - hw)

Phaw) e BK (W)
Then (18), (20) imply
(22) A" (W)AW) = |

ae. onT (where A*(w) = A(w)" is the adjoined matrix). If we denote by Aj,..;, (W) the
k x k minor of A(w) whichisformed by rowsjy,...,jk of A(w), then (21) and the Binet-
Cauchy formula[7, p. 35] imply

22) max |det(A,.;, )| = —— = | k(n— k!
(15ik) Lok - \/(E) n! )
Denote by B;,, ;, the following subset of the circle T.
k! (n— k)!
Bi,-j, = <we T |det(A,.(W)| > w o }

Then (22) implies that

(23) m(T) = m<<jH'k) Bh...jk).
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where m standsfor the normalized L ebesgue measureon T. But (22) and (23) imply the
existence of at least one measurable step-function N , which mapsthe unit circle T into
the set of k-tuples (j1,...jx), 0<j, <n—1,0=1,....K je #jmif L #m,

N:w— (jaw), ..., jkW)),

such that
Tk (N — k)
(24) | det(Ay (W) > \J < (nn! =
aeonT.
Let 3 )
f@=> sn(@fm(0) = > il (92)-
Then 9 ot
f(2) = Zosn(z)fm(g(z)) =2 1sﬂ(z)¢im(g(z))fi (92)
n—1 k .
- Zosm(Z) ;1 2m(9@)f (92).
Thisyields
k
S ehwiWw) =faWw), m=0,...,n—1, weT.
i=1
In particular,

ko . A
a%(w)fi W) = fm(w),  m=ji(W),...,jkW).

By Cramer’srule,

@jll(w) w) - i‘\lll(W) w) - (lbjkl(w) (W)
det| : :
fi(w) = Prw®) - FawWw) - P,
det(AN W) W)

= Aa (W), o (W) + A2 (W)fj, ) (W) + - -+ MW oy (W)

i\/‘;—ﬁ% Now (17) follows from (10). n

By (18), ||<‘pj!||OO < 1, so we conclude by (24) that A\j(w) € L>®°(T) and [|Aj(W)]|e0 <

4. TheCasep > 1. Inthissection we extend previousresults to the casep # 2.

PrROPOSITION6. Letp > 0. AnyHP-function f isuniquely (up to a unimodular factor)
written as a product

(25) f(@ = v p(AFp(9(2)
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whereh  is g-p-inner and F, is an outer HP-function.

PROCOF. Letf(2) = ¢(2) - F(2) be the classical factorization of f, where ¢ isinner
and F is outer. Then FP/2 € H2 and by (9)

FP/2(2) = h(2) - Fz(g(Z))

where his g-2-inner and F is outer. Then his zero free in the unit disk and, therefore,
h2/P is g-p-inner.
Now we define by , and Fp by

he (@) = (@) - h(2¥",
2/p
Fo(0@) = (F2(0@)) "
To prove uniqueness of factorization (25) let us suppose that
hto(@ - Fp(0@) =@ = ¢ - F(9 = 1,2 - F5(9(2)
are two factorizations. Since both F} and F3 are outer we have
ho(@ = ¢@ L2
W@ = ¢@ - b, (2)

and both b}, hZ | are g-p-inner and zero-freein A. Then

f,p?
(o) (F3(0@))"” = F@P2 = ()" (F2(0@))"”

are two factorization of the H2-function F?/P. By Proposition 2 they are the same up to
unimodular factors. ]

COROLLARY 5. Let g be afinite Blaschke product, f € H> and

f(2) = b s(@QFp(92)
the g-p-factorization of f. Then F, € H*.

Proor. Write the canonical factorization f = h - F where hisinner, F is outer. As
we saw in the Proof of Proposition 6.

Fo = (F?"

where R
F@P'? = h@ - F2(92)

is the g-2-factorization of FP/2. Since FP/2 € H> we conclude by Proposition 4 that F»
is bounded. -
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Like classical inner functions, g-p-inner functions have some extremal properties. Let
f be an HP -function which annihilates gHP (we use the usual notation % + & =1). For

asubspaceM C HP we define the number SL(M) (k > Oisaninteger) by

26)  SyM) = sup{ I = | [ WA @) (9@)" dm@)| : h e M, [Inflp < 1}.

We say that M hasf-rank kif S{(M) # 0, but Sf,(M) = Ofor al 0 < m< k.

If M hasf-rank k, thenwe call the extremal function of the problem (26) an f-extremal
function of M. If p > 1 and M is closed, the existence and uniqueness (up to unimodular
factor) of the extremal element of the problem (26) follows from the following standard
argument. Given amaximizing sequenceh, € M wefind asubsequenceh,,, that isweak-
* convergent (the unit ball of HP is weak-x compact). Let ¢ be the weak-* limit. Then
b €M, (1) = liMm_oo (i(hn,) and ||| < 1. Thisimpliesthat | ¢ ()| = Sf(M). The
uniqueness follows from the strict convexity of the HP-sphere.

Obviously, any f-extremal function has norm 1.

Note that if M has f-rank k, then for any h € M, EL(hgm) = Ofor al m > 1. Indeed,
if m <k, then ¢f(hg™ = ¢! __(h) = 0 by definition of f-rank. If m > k, then

(g™ = [ h@g™ @)@ dm@) = 0

since f annihilates the ideal generated by g.

ProPOSITION 7. Let M C HP be a closed g-invariant supspace of f-rank k, where
f € (gHP)*. Then an f-extremal function of M is g-p-inner.

PrROOF. Let h be the extremal function for (26). Without loss of generality we may
assume that ZL(h) > 0. Letr > 1. Consider the function
(L + =g) _ H
I +egllp 1K +eg)llp

(the second equality follows from the above note) where e € C. The extremality of h
implies that F has local maximum at the origin. A direct computation shows that

F(e) =

oF | =340 h@P(s@) dm@)
0c Lm0 B |
Now the condition %—F . = Oyields
/T Ih(2)|Pg’ (2) dm(2) = 0. .

ProPOSITION 8. A function h is g-p-inner if and only if for every polynomial Q the
following equality holds

1h@) - Q(9(@)llp = IIh@lp - 1Q@lp = Rp-
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PROOF. Leth = h;h bethe canonical factorization of h, where hy isinner, hisouter.
If his g-p-inner tpen the same is true for h and, therefore, h?/2 is g-2-inner. Write the
representation of hP/2

/70 = 3 s(@h(a(a).
By Corollary 2 we have
(Z |F\k(Z)|2)‘ =1.
k=0 T ae

Then by (7)
Ihll5 = [Ihlls = |[AP/2)3 = 1.

LeteQ =gq- Q be the Riesz factorization of Q, where q is inner, Q is outer. Now the
relation (7) yields

Ih@Q(a@)]; = [AaQ(ew@)]; = [P (e@)™ [,
= [1Q@"2[15 = IQIIE = QI
Conversely, let ||h||, = 1 and
|h@Q(e@)], = 1_QAI
for al Q. In particular,
27) [h@(1+d"@) HS = |1+ 2B

forall k > 1, ¢ € C. Differentiate both sidesof (27) with respecttoe at e = 0. We obtain

P [ In@Patak o) = ([ 1+ 2P dm(a)

=0. n
0

e=!

Asinthecasep # 2, wedenoteby MP theclosed g-invariant subspaceof HP generated
by f:
MP = span{f - ¢, k > 0}.

COROLLARY 6. Letv € (gHP)" andf(2) = h 5(2). Fy(9(2)) bethe g-p-factorization
(25) of an HP-function f. Then hy ;, is the y-extremal function of M?.

PROOF.  Supposethat the y-rank of Mf isk. Since Fy, is outer, we have
MP = Mﬁfp.
Now, if p(2) = b x(2) - Q(g(z)) € MP, |l¢|lp = 1 then, by Proposition 8,

1@l =1
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and, therefore,

Q) < 1.
Write Q(2) = ¥, ¢iZ . The note preceding Proposition 8 implies

£ (M p@Q(0@) ) = coli () = AO ().

Therefore,
102(0)) <168 (he p)- .

Asinthecasep = 2 for asubset A C HP we denote by [A]g4 the minimal closed
g-invariant subspace of HP which contains A.

COROLLARY 7. If M C HPisg-invariant and M, is the collection of all g-p-inner
functions of M, then
M = [M]q.

ProoF. Letf € M. By Proposition 6

f(@ =t p(2 - Fo(92)

where by , is g-p-inner and F,, is outer in HP. Let P, be a sequence of polynomials such
that F, - P, convergesto 1in HP. By Proposition 8

|12 — 1 p(DF5(92) - Po(9@) |, = 11— Fo(@Pu(@lp — 0

ash — oo. Thisimplies
hf'p(Z) e M,. ]

THEOREM. If g is a finite Blaschke product of order n and p > 0 then any g-p-
invariant subspaceM has a set of g-p-inner generatorsconsisting of at most n elements.
If p > 1 then these generatorsforma g-basis: that is, every ¢ € M isuniquely written
as

K
v(2) = Z; hi @i (92)

wherethe g-p-inner functionsh;p, i = 1,...,k, k < narethegeneratorsand ¢; € HP.

PrOOF.  First, we note that if g is afinite Blaschke product then any g-p-inner func-
tionisin H*°. Indeed, if f is g-p-inner, f = pF, where o isinner, F is outer, then F is
g-p-inner and FP/2 is g-2-inner. By Corollary 2, F?/2 € H*® and so is F. By Corollary 7,
M = MNH,, isdensein M. Obviously, M isg-invariant. Let M bethe closureof M in H2.
Then M is ag-invariant subspace of H2 and by (3) and (4) there are g-2-inner functions
?1, ..., Pr, kK < nwhich form ag-basisof M. Let

(28) 7@ =hip(@ Fip(9(2), i=1....k
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bethe factorization (25). Thenh;, € H®,i = 1,...,k By Corollary 7, hj , € M and h; ,,
i=1,...,k generate M. Letf € M and

k P
> Ma@R(9(2) 5 £,

We must provethat R convergesin HP asn — oo, i = 1, ..., n. By the Wold decompo-
sition theorem we might choose i, i = 1,. ..,k such that

(29) pig Lpg" i#j, Lm=01,....
Since %1, ..., & form ag-basisof M, (29) implies
(30) hip(2 = 2i@Pip(9)-
Since h; , € H*, Proposition 5 yields
®jp, € H®
Fip®ip=1
Since both F; , and ®; , are bounded, this implies

(31) essinf(|Fip|) > 0, and essinf(|®; ,|) > 0.
zeN zeA

We have

k k
fa(2) = ;hi,p(Z)W(G(Z)) = Zl¢i(2)¢i,p(g(2))R”(g(Z))-

By (29) @1, ...,  satisfy Proposition 5 and, sincef, — f in HP asn — oo, we conclude
by this Proposition that ®; ;R convergein H? asn — oo. Because of (31) thisimplies
that R convergesin HP, i = 1,... k. "

5. Application to operatorssimilar to a contraction. Let A: X — X beabounded
operator in a Hilbert space X. In accordance with the standard notation we denote by
Sp(A) the spectrum of A. Let f be aholomorphic function in an open neighborhood U of
Sp(A), and V be another open neighborhood of Sp(A), whichiscompactinU. If oV =T
is asmooth manifold in R?, then, as usual,

1 -1
(32) f(A) = o /r f@Q@z— A tdz
In particular, if gisan inner function, g = B - S where
X A —Z
B =2 ] ===
@ kl;Il || 1— &z
is aBlaschke product and
or @f + 7
2 = exp{— b ég—_zdu(@)}, p=>0
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isasingular function, and (supp(x) U {%}ﬁil) N Sp(A) = ¢, then the relation (32) de-
termines g(A) = B(A)S(A). It is easy to show that
BA) = A T] - (a— AL — A
k=1 |2
Consider the following problem:
Let g = B- Sheaninner function satisfying the above condition

(39 (supp) {5} ) P sos) = .

Given that g(A) is similar to a contraction, doesthisimply that A is similar to a contrac-
tion?

The answer in general is unknown. To the best of our knowledge the only published
result related to this problem is the following theorem by V. Mascioni [8].

THEOREM (V. MAscIONI).  If Bisafinite Blaschke product satisfying (33), and B(A)
issimilar to a contraction, then A is similar to a contraction.

As we mentioned before, R. Douglas suggested that there must be a proof of this
theorem different from the one of [8] and based on the estimate (10). Below we sketch
this proof.

We denote by HR? the space of n-dimensional vector-functions F(z) =
(f@.....f(2), z€ A, fi € HP, with the norm

n 1/p
Fllnpz = 1@P) am)) . 1<
o IFlnpz = ( (35 11aF) | 2) § p< o0
[Fllnsez = sup( 3 61)
zel 1

Itisclear that HR? isaBanach spaceandif 1 < p < oo itsdual consistsof n-dimensional
vector-functions ® = (1, ..., ¢n) € HE? (of course, the dual norm is different from
the HE ®-norm) with the duality given by

(F.®) = [ > f(E@Aw )

Let g be an inner function. We denote by Hﬁ’z[g] the subspace of HP? consisti ng of
vector-functions whose components are in HP[g]. As in the case n = 1, we use the
similar notation Pg for the operator

Pp: HB? — HE2[],
PSF = (ngl, ceey ngn)

where Py is the projection used in Proposition 3.
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PROPOSITION 9. The projection Pg has norm 1 as an operator Pg: HP? — HP? for
all<p<oo.

REMARK. Unfortunately the definition (34) of the normin HP? does not allow usto
use conditional expectation (asin Proposition 3) to prove this result. Instead we use the
technique based on invariant minimal interpolation ([10]).

PROOF OF PROPOSITION 9. Let1 < p < oo, F € HR?. Consider the following
extremal problem. Find

(35) bk p = INF{[|G|lnp2 : (G, ®) = (F,®) for al ® € HY?[g]}.

The following standard argument shows that there is a unique extremal function of this
problem. Let {®,} 2, be aminimizing sequence. It is bounded in HP? and, therefore, it

is weak-x compact, so without loss of generality we may assume that ¢k£F* € HR?,
Then for any ® € HR?[q]

(F*,®) = lim (0, ®) = (F, )

and ||[F*||np2 < iMoo || Pxllnp2 = bFp- Thisimplies ||F*||np2 = 6 p. The uniqueness
follows from strict convexity.

Further, the application of the variational principle similar to [2] shows that Fj, =
(f{ps - -, fop) isthe extremal function of the problem (35) if and only if

(i) (F;®) = (F,®)foral ® € HY ?[g]
(i) For any W € HR? suchthat (¥, ®) = Ofor all ® € HE*? the following equality
holds

n E-1n ppu—
(36) S 16@F)" S f@n@ dm = o

i=
Therest of the proof is based on the following result.

LEMMA. Let F € H2>2. Then the extremal function Fy, of the problem (35) is the
samefor all 1 < p < oo.

PROOF. Let (HP[g])* bethe annihilator of HP[g], and x € (H”[g])*. Then for any
polynomial P = co+ 1z + - - - + 6 = o + zP1(2) we have

.92 (@)P(9@) dm@) = ¢ [ 9@x((@) dM@) + | X@P1(9(@) dM(@)
= cog0)x (@) =0,

since x is orthogonal to 1 and, therefore, vanishes at the origin. Thus, y € (HP[g])*" =
gx € (HY[g))* and, therefore, for any ¢ € H* we have

(37) x € H[g)" = (wog)-x € (H[d)"
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Further, it is obvious that the annihilator of HR/'Z[g] consists of all vector-functions

W= (1,...,v¥n), wherey; € (H”[g])".

Now, let ® € HX?[g], @ = (¢1,..., pn). Without loss of generality we may assume
n /
that sup>_ |¢i(2)]? < 1. Fix W € (Hf 2[g])* and consider the function
zelh i=1

Fle) = (S le@PR) " o @h@dma)

Thisfunctionisanalytic and boundedin the halfplane {Rea > —1}. If o = k (apositive
integer), we have by (37)

FR=> ¥ [l1a@P @ @h@ dne)

i=1 (1+-+l=k
n
14 n n 14 Yol \ —
=2“§ k<wf~~wﬁ”-~¢ﬁ,(M‘-'wﬁ)w&—o-
S

Since the sequence of positive integers does not satisfy the Blaschke condition, this im-
plies F (@) = 0in {Rea > —1}. Since W was an arbitrary element of (H} 2[g])" we
conclude by (36) that for any pair ® € H>?[g], W € H>2 N (HR [g])*, we have

(38) (@+W); =, for 1 <p< oo.
Itiseasy to show that Hy>2[g] & (H>2N (HR *[g]) ") is denseon H and then to deduce
the result of the Lemma from this and (38). ]
Now we are ready to finish the Proof of Proposition 9. Since for p = 2 we obviously
have
F; = PyF,

we conclude by the Lemmathat
(39) Fp=PgF, 1<p<oo.
In particular, (39) implies
IPgFllnp2 < [[Fllnpz < [[Fllnoo.2

and
[[PgFlInco2 = sup|IPgF|Inp2 < [[Fllno.2-
p>1

The proof is complete. ]
Now, let A(2) be a holomorphic polynomial (n x n)-matrix function in A. Put

IA@)]] = sup (sup [AD(&)])

l7<1 ¢kt
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where & = (€1,...,&n) € C" (asusual |(by,. .., by)| = (= [bi2)Y2). Write

A@) = [a;D]]j=1

where g;j(2) are polynomials.
For an inner function g let So, sy, ... be arational g-basis of H? which satisfies the
condition of Corollary 1. Write each entry a;;(2) in the form

%@=23®$@m.
This decomposition leads to the following decomposition of A(2)
(40) A9 = kgo «(2A(92),
where, by Proposition 3,

A = [a(@)],, k=01...

are H>*-matrix functionsin A.
The following result is the matrix-function version of the estimate (10).

ProPOSITION 10. Thereare constants Dy, k = 0,1, ..., depending only on g such
that for any H>°-matrix function

ND=2§®&MM

the estimate || A||o < Dk||Al|» holds.

PrROOF. Let asabove Ts, standsfor the Toeplitz operator with symbol s,. We extend
the action of Tg, to H3>? by componentwise action. Now (13) and the usual estimate
which uses the Cauchy formula shows that there are constants Dy, depending only on g
such that for any F € H*2

(41) ITsFllnso.2 < DillFllnco.2-
Forany z € A, ¢ € C"we have by Proposition 9 and (41)

|ADE| = PgTSA@DE| < [PgTsADE o2
< ITsA@)EInoo2
< Dil|A®@)Ino2 < Dil|A@ ]l - [€]- -

L et B be aBlaschke product of order mand G an operator on aHilbert space X whose
spectrum is off the poles of B and such that

B(G) = C'RC,
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where ||R|| < 1. For any holomorphic polynomia n x n-matrix function, F (G), in G
write the representation (40) for F (G)

F(G) = (G)F °(B(G)) +- - +sn-2(GF ™ *(B(G))
= 5(G)CIFORC+--- +s-1(G)C'F ™ LR)C.

Since G is bounded, so(G), . . ., sn-1(G) are bounded (recall that the spectrum G is off
the poles of B). Say
[s@ <M, i=0,....m—1

Further, we have _ _
IFRI <F'@)~ j=0,...,m=-1

([1, Proposition 3.6.1]). Finally, Proposition 10 yields
m—1 X
IF@) < ;) Is@I - Il - Ic7 - IF'®

m=1 )
<M-c|l-[c 2 IF' @l

<M-J|c||- [[IC7H(X Di)IF @l-

Thus, G is completely polynomialy bounded. The theorem of Mascioni now follows
from the theorem of V. Paulsen[9].
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