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FUNCTIONAL CALCULI AND DECOMPOSABILITY OF
UNBOUNDED MULTIPLIER OPERATORS IN LP(UN)
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It is known, for each l<p<oo, p#2, that there exist differential operators in L'(W) which are not
(unbounded) decomposable operators in the sense of C. Foia$. In this note we exhibit large classes of
differential (and unbounded multiplier operators which are decomposable in LP(U") and hence have good
spectral mapping properties; the arguments are based on the existence of a sufficiently rich functional calculus.
The basic idea is to take advantage of existing classical results on p-multipliers and use them to generate
appropriate functional calculi.

1991 Mathematics subject classification: 47B40, 42B15.

0. Introduction

When investigating the global nature of linear differential operators with constant
coefficients in spaces like L"{UN) an effective tool, when available, is the existence of a
sufficiently rich functional calculus for the operator. Interpreting such operators as
unbounded p-multiplier operators has the advantage of allowing the use of harmonic
analysis techniques and shows the difficulties involved when p ̂  2. Since the range of the
polynomial Q determining the differential operator is always a subset of the spectrum of
the operator, one cannot expect a large class of such operators to be infinitesimal
generators of semigroups or integrated semigroups. Similarly, for p#2, differential
operators with constant coefficients are never spectral (in the sense of N. Dunford [4])
in the space LP(UN) except in the trivial case that Q is constant [2]. Despite this
negative aspect, there is a large class of operators which are not required to decompose
the underlying Lp-space in such a strong way and whose members still enjoy the
spectral mapping property; this is the class of those unbounded multiplier operators
which are decomposable in the sense of C. Foia§.

It is shown in [2] that all (constant coefficient) elliptic differential operators are
decomposable in LP(UN), for every l<p<oo; the arguments are based on the existence
of a sufficiently rich functional calculus. An example is given there of a (non-elliptic)
differential operator which is not decomposable for every p#2. The characterization of
all (constant coefficient) differential operators which are decomposable seems to be a
difficult task. The aim of this note is to present further classes of differential (and more
general unbounded multiplier) operators which admit reasonable functional calculi and
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152 ERNST ALBRECHT AND WERNER J. RICKER

are decomposable. For instance, the generator of the Poisson semigroup, which
corresponds to the unbounded multiplier £i->|<!;| in LP(UN), turns out to be decompos-
able, as does the wave operator

dx2 dy2

in L"(U2). The basic idea is to take advantage of existing classical results on
p-multipliers (e.g. Mihlin, Marcinkiewicz, Littman-McCarthy-Riviere) and use them to
generate appropriate functional calculi.

1. Notation and preliminary results

Given a Banach space X we denote the space of all bounded linear operators in X by
1£(X) and write lx (or simply 1) for the identity operator on X. We recall that a
Banach space has the Banach-Saks property (resp. weak Banach-Saks property) if every
bounded sequence (resp. every weakly convergent sequence) has a subsequence whose
arithmetic means are norm-convergent. Uniformly convex spaces (hence Lp-spaces for
l<p<oo) have the Banach-Saks property [8] and I^-spaces have the weak Banach-
Saks property [13]. The following fact is probably known; we include a proof for the
sake of completeness.

Lemma 1.1. Let X be a separable Banach space with the weak Banach-Saks property
and let (Tn)™=1 be a sequence in ^(X) which converges to some operator Re^C(X) with
respect to the weak operator topology. Then there is a sequence of operators (Sn)™= t

converging to R in the strong operator topology, where each operator Sn belongs to the
convex hull of the set {Tn;neN}.

Proof. Note that K: = sup{||Tn||;neN} is finite. Let {fn;neN} be a dense subset of
X. By the weak Banach-Saks property, there exists a sequence (Ti

n
1))^'=1, whose

members are the arithmetic means (and hence, finite convex combinations) of a
subsequence of (7;)™=1) such that T!,1 >/,->/?/, in norm, as «->oo, and still Tj,1'-*/?, as
n->oo, with respect to the weak operator topology. Moreover, suplHrJ^Hjn
Using the weak Banach-Saks property we can find, by induction, sequences
for each j e N, with the following properties.

(i) T\p-*R in the weak operator topology, as M-KX>.

(ii) Each operator Tj/', for j,neN, is a finite convex combination of operators in

(iii) supfllri/'H; neN}^K, for all jeN.

(iv) T^pfk-yRfk in norm, as n->oo, for all l^k^j and je N.

Now choose S^iT^ineN} such that H S i / i - K / i H ^ " 1 and, inductively,
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Sje{1*P;neN} such that \\Sjfk-Rfk\\<2-J for all l^k^j. It follows that Sjfk-+Rfk, as
;->oo, for all keN, and that sup{||sy||;./eftl}gK. Accordingly, Sj-*R in the strong
operator topology. •

The set of all closed linear operators with domain D(T) and range ran(T) contained
in a given Banach space X is denoted by ^(X). If Te<g(X) and Y is a closed subspace
of X, then Y is invariant for T if T(YnD(T))cY. The operator T\Y with
£>(r| Y): = YnD(T) and defined by (T | Y)y: = Ty, for every >>GD(T| 7), is an element of
#(Y). Recall that T is decomposable in the sense of C. Foias, (cf. [14]) if, for every finite
open cover {Uu...,Ur} of the one-point compactification C: = Cu{oo} of the complex
plane, there are closed invariant subspaces Xu...,Xrior T such that o(T\Xj)s UJ, for
all l^j^r, and X^ •• -+Xr = X. If Se^(X) and F is a closed subset of C, we write
ST^F) for the set of all those xeX for which there exists an analytic X-valued function
f:£\F-+X such that f(z)eD(S) and {z-S)f(z) = x on C\F. Then S has the Ljubic-
Macaev property [11] if, for every locally finite open cover (t/,)JLi of C by bounded
open sets, the space X coincides with the closed linear span of the linear submanifolds

j

By Jf(UN) we denote the semisimple, unital, commutative Banach algebra of all
p-multipliers on UN, for l g p < o o , considered as essentially bounded functions on UN.
Let ^"(IR*) denote the set of all local p-multipliers on IR*, that is, those measurable
functions 4>:UN-+C with the property that pfyeJCiU") whenever pe^f^lR").

Let 1 <p< oo and fix i^e^^lR^). Let ^"(IR*) be the subspace of L"(U") defined by

Ny. = {feLp(UN);supp{?) is compact},

where / : = ^ ( / ) is the Fourier transform of / considered in the sense of distributions.
The operator S0 defined by D{S4,): = ̂ ''(UN) and SJ-.^^'^J), for every feS>"(UN),
is closable; its closure is denoted by SJ. For 1 < p ̂  2 it turns out that

= {/ e L"(UN); </>/ e &(LP(UN)) c L«(UN)}

and S%f = &~l{<t>J), for every feD(S%), where p~1+q~1 = l. Using the fact that an
element of Se(L"(UN)) is a p-multiplier operator if and only if it commutes with all
translations it follows that if X is in the resolvent set p(S£) of S£, then necessarily
(Al —SJ)"1 is a p-multiplier operator. This observation implies that the essential range
ess ran(0) of <f> is always contained in o{S%). If, in addition, SJ is also decomposable,
then essran(0) = <x(S5); see [2, Corollary 3.4].

For ( teNo = N u { 0 } , let s/k denote the algebra of all functions <l>e<gk(C) satisfying
(with x=x1 + ix2eC identified with (xux2)eU2),

<00,
MS* xeC

where we use standard multi-index notation and aeNn. Endowed with this norm s/k is
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a commutative, semisimple Banach algebra with unit which has the following two
properties.

(A) For every open cover {Ult...,Ur} of C there are elements 0 l 5 . . . ,0 r in s/k

(having continuous extensions at oo) such that s u p p l e I/,, for j=l,...,r, and
#! + •• + 0 r = l on C.

(B) For every <j> e s/k and every A e C\supp <f> the function

is in sik and vanishes at oo.
Let N and k be positive integers. Denote by ^Tk(IR/v) the family of all functions

if/e<tfk(UN\{0}) which satisfy the condition

'sup <00,

where /Jef^ft and \£\ denotes the usual Euclidean norm on W. Endowed with this norm
oVk(W) is a commutative, semisimple Banach algebra with unit. If k>N/2 then the
classical Mihlin multiplier theorem [12, p. 96], ensures that *Vk(MN) is continuously
imbedded in JC(RN), for every l<p<oo.

The following fact can be established by induction.

Lemma 1.2. Let k and N be positive integers and QcR*1 be an open set. Let (p
and i/fe#*(n). Identify C with U2 and write x = (xux2) for points in C. Denote \j/ by
(*Pi,<p2) where ^ , = R e ^ and î 2 = Im^. Let fieN% satisfy \P\^k. Then, for each aef^J^
satisfying |a|^|)?|, there exist numbers cae{0,1} and r(a,P)eN, integers »/(,/,a,m)e{ 1,2}
and multi-indices y(j,ix,m)^P (co-ordinatewise), for l^_/^|a| and l£m^r(a,P), satisfying
P=V£iyU,*,m) such that

for every t, e Q.

We can now establish some facts about the algebras s/k and 4̂/"*((R'v) which are
needed later but which may also be of independent interest. For the definition of an
operator Te££(X) being generalized scalar we refer to the monograph [3].

Lemma 13. (i) Let keNQ and

(a) The multiplication operator M^:f\-nl/f, for fesfk, is generalized scalar in

(b) The Banach algebra s/k is regular.
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UNBOUNDED MULTIPLIER OPERATORS IN L"(UN) 155

(ii) Let k and N be positive integers and p ^ )

(a) The multiplication operator M^.gi-npg, for g6^/"*(RJV), is generalized scalar in
Se(Jr\UN))

(b) The Banach algebra . ^ ' ( R " ) is regular.

(c) / / fc> 1/2, then for each l < p < o o , the (bounded) p-multiplier operator S£ is
generalized scalar in ^

Proof, (i) To establish (a) it suffices to show that pi-tpoip defines a continuous
homomorphism from #K(C) into s/k. This follows from Lemma 1.2 (by direct
computation). Part (b) follows from (a) and [5, Theorem 2], after noting that
generalized scalar operators are decomposable.

Parts (a) and (b) of (ii) can be proved similarly to those in (i). Finally, (c) follows from
(a) and continuity of the canonical imbedding of ^K{UN) into JC(UN). •

Given a positive integer k, let ^Ck denote the space of all functions h e #(C) n
#2*(C\{0}) satisfying

/JP'sup •—(8 <00.

Endowed with this norm Jfk is a unital, commutative, semisimple Banach algebra. The
following can be established along the lines of the proof of Lemma 1.3(i).

Lemma 1.4. Let keN and ipe JlCk.

(a) The multiplication operator M^ift-nj/f, for feJVk, is generalized scalar in
k

(b) Jf * is a regular Banach algebra.

Given keN, let Zk: = {Jk
j=1{xeUk;Xj=0}. Let /Sef^o be a multi-index satisfying

| = k. Then &*(Uk) denotes the space of all functions $ e<g\Uk\Zk) such that

<00.

Equipped with this submultiplicative norm SCfi(Uk) is a unital, commutative, normed
algebra.

Lemma 13. (i) Let keN and PeNk
0 satisfy \P\ = k. Fix <peSe\Uk). For each pe<$k(C)

the composition po<pe£Cfi(Uk) and the homomorphism p\-*po(j> is continuous from the
Frechet algebra <g\£) into JSf"(IR*).

(ii) Let P:=(l,..., 1). Then each ^6JSf0(R*) belongs to JC(Uk),for every 1 < p < o o , and
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the canonical inclusion of Jiffi(Uk) into J/"(Uk) is continuous. Moreover, the (bounded)
p-multiplier operator SJ is generalized scalar in £f(Lp(UN)).

Proof, (i) follows from the definition of the norm \\-\\f and Lemma 1.2.

(ii) The first claim follows from Theorems 4.4 and 4.5 of [9]; put there d = r = k and
let P-.U^-*^ be the identity transformation. To establish the second claim it suffices to
show that the map p>-*Sp^ is continuous. This follows from (i) and the continuity of
the homomorphism g>-*Sp from Jt"(Uk) into &(Lp(Uk)). •

2. Main results

It was shown in [2] that elliptic differential operators with constant coefficients are
always decomposable in LP(UN), l<p<co, and have a rich functional calculus. This is
not the case in general [2, Corollary 3.5]. In this section we wish to exhibit further
classes of multiplier operators which are decomposable. We begin with a result which is
an extended version of Theorem 3.1 in [2] and shows that "elliptic" multiplier operators
have a functional calculus rich enough to ensure that they are decomposable.

Theorem 2.1. Let pe(l , oo). Let k and N be positive integers such that k>N/2 and
il/e'#k(MN\{0}). Assume, for some m^O, that the following conditions are satisfied.

(i) 1/|*(0| = O(|£|-") for |{|-»oo.

(ii) For all yel^o with lyl^k we have

(iii) For all yeNQ with \y\^k we have

d?
for

for

Then, for every <t>es/k, the function <f>o\j/ is a p-multiplier on UN and the homomorphism
<&:s/k->£?(Lp{UN)) defined by <J>((f>): = S^^, for <pes/k, is continuous and has the following
properties.

(a) For all compactly supported elements <j) e s/k,

(b) There exists a sequence (pn)"= i of functions in s/k with compact supports such that

-»l, as n->ao with respect to the strong operator topology. (1)
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Moreover,

D(S$) = {feL"(Ms); lim 0>(pnWc)/ exists in L"(UN)}
F!-*CO

and
= lim ®(Pnidc)f, f

(c) The closed linear operator Sg is decomposable and has the Ljubic-Macaev property.
Moreover, op(SJ) = ^(RiV\{0}) = supp(<D), where the bar denotes closure in C.

(d) Every operator S^e&(LP{UN)), for <pes/k, is generalized scalar. In particular, for
every X e p(SJ), the operator (Al — SJ) ~i is generalized scalar.

Proof. For aeN% with \cc\^k it follows from the definition of s/k that

|o|

dx'

for some constant C>0. Hence, for /Jef^o with |0|^&> w e obtain from assumptions (i)
and (ii) and Lemma 1.2 that there exist constants R>0 and C > 0 such that

*, \t\>R- (2)

On the other hand, by assumption (iii) and Lemma 1.2 this inequality also holds in a
deleted neighbourhood of 0 in UN (with a possibly larger constant C" than C). Since \j/
maps compact subsets of R^XlO} into compact subsets of C we conclude (again via
Lemma 1.2) that (2) holds in R"\{0} (with a constant Co possibly larger than C and C"
but still independent of 4>). By the Mihlin multiplier theorem [12, p. 96], (p o ij> is a p-
multiplier on UN and

I OP II ^^ f^P II A\\ few A\ c o$
I1 dx't/' I l^ti^^lR v)) -^ 0II T I l«af I U I u/ t oof .

It follows that <P:s/k-*££>(L"(UN)) is a continuous unital homomorphism. Then (a)
follows, after noting that condition (i) implies that the range of $(</>) is contained in

whenever supp(#) is compact.
To prove (b) fix any 0et>™(C) with <r(0) = 1 and any n>0. Define

~"z), zeC,

for each neN. Since n " " ^ l it follows from the definition of s/k that ones/k and
||ffn|U*^|Hl^k ' o r a " n e ^ - Accordingly, {<D(<rn);neftJ} is uniformly bounded in
SC(LP(UN)). Since anoi/f-^l pointwise in R ^ O } , as n-»oo, it follows that O(ffn) =
SJnO^->l, as n-K», with respect to the weak operator topology [6]. By Lemma 1.1 there
is a sequence (Sn)"=, of the form

Sn= £ ay"<D(ff,.), with a f ^ O satisfying J a J - ^ l ,
7= i i= i
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158 ERNST ALBRECHT AND WERNER J. RICKER

such that Sn-*1, as n->oo, for the strong operator topology. This proves (1) with

The remaining statements in (b) can now be obtained from (1) and part (a) along the
lines of the proof of Theorem 3.1 in [2].

(c) The subalgebra 38k of all / e <$/k having continuous extensions at oo is quasi-
admissible in the sense of [14, Def. IV.9.2]. Hence, by the properties of <1> and [14,
Corollary IV.9.8], the operator S£ is decomposable. The Ljubic-Macaev property is
obtained in the same way as for elliptic polynomials (c.f. the last part of the proof of
Theorem 3.6 in [2]), as is the spectral mapping statement given in (c).

(d) As seen above, for each <pestfk, the function cfxnp is in jVk(UN). Then Lemma 1.3
implies that SJO^ is generalized scalar. Suppose now that kep(S§). Let e>0 be such that
the closure of the open disc Be(X) in C (centred at X and of radius e) is contained in
p(SJ). Let Ue<£x(C) be any function such that u = \ in C\Be(A) and M=0 in Be/2(1).
Define </>(z): = u(z)/(A —z) for XeC. Then <j>es/k and <f>(z) = (X — z) ~i in a neighbourhood
of ff(Sg) = supp(<D). Accordingly, $(</>) is generalized scalar. But, <J>(<̂>) = S501̂  =
(Ai-s^r1. •

Remark, (i) The original version of the above result, formulated for elliptic polyno-
mials of degree m (c.f. [2, Theorems 3.1 and 3.6]) contained an algebra sfk

m depending
on m. The present proof shows that we can always replace $4k

m by the larger algebra $4k.
(ii) Examples of functions satisfying conditions (i)-(iii) of Theorem 2.1, besides elliptic

polynomials, include all functions of the form \p = fx + • • • + fr, where fj is a homo-
geneous function in %k(MN\{0}) (k>N/2) of order v^O, with vy<vr for all lg>j<r, and
fr has no zeros in R^XlO}. For instance, this includes the local p-multiplier ^(^) = |(j|a,
for any a > 0, and hence in particular, includes the generator of the Poisson semigroup
(puta=l) . •

It is easy to exhibit local multipliers (even polynomials) which do not fall into the
scheme covered by Theorem 2.1. The wave operator in 2-dimensions, whose symbol is
x2 — y2, is such an example. We wish now to suggest an approach which treats a class of
operators of the form Q(D) where Q = Qi + iQ2 is a polynomial in UN (with Qj being
IR-valued) such that both Qt and Q2 can be factorized into the product of real affine
functionals. The underlying technique is a modification of a multiplier result of Littman,
McCarthy and Riviere, [9, Theorem 4.6].

Theorem 2.2. Let pe(l,oo) and let k and N be positive integers. Let lr:M
N-*M and

mr:M
N-*M, for lgr^ /c , be affine functionals and define

r = l
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UNBOUNDED MULTIPLIER OPERATORS IN LP(UN) 159

Then, for each (f> e J f *, the function (p°Q is a p-multiplier on UN and the homomorphism
®:J#'k-*2'(L''(nN)) given by Q{<p): = S%.Q, for $etfk, is continuous and has the following
properties.

(a) For all fyetf* with compact support,

(b) There exists a sequence (pB)"=i of functions in <#?{<£) cz3ffk such that <D(pB)->l as
7i->oo, in the strong operator topology. With this sequence we have

D{Sp
Q) = Dp: = {f eL"(MN);lim <b(pnidc)f exists in L"(UN)}

and

S'Qf=lim<t>(pnidc)f / eD(Sg) .
n-*co

(c) The differential operator Q(D) = S£ is decomposable in LP(UN), has the Ljubic-
Macaev property and satisfies <r(Sg) = 6(R)V) = supp(0).

(d) Every operator S^Qe£C{Lp(UN)), for 0 e J f \ is generalized scalar. In particular,
the operator (XI — Sg) ~x is generalized scalar whenever

Proof. We proceed as in the proof of Theorem 4.6 in [9]. Consider the afline
transformation from UN into U2k given by £r = /,.(*) and £k+r = mr(x), for l ^ r ^ k . Define

F(fl = ?(<M0,<MO). for ZeM2k, where <MS): = rC=i«r a n d +Aft = YlUiZk+r, and <t>
is considered as a function in R 2 s C . That is, F = <po\j/ where \j/ = (1^1,1^2) maps U2k into
R2 = C. As in the proof of Theorem 4.6 in [9], it suffices to show that

(3)

for any 2fe-tuple a consisting of zeros and ones only. It follows from the chain rule and
an inductive argument that, for every such a,

where u = Y,m=itxm a ° d u = l]m=iak+in> a n d the Cj r are constants depending only on a
and k. From the assumption that <peJi?k it follows that (3) is satisfied and hence
<f>oQeJf(RN). Moreover, (3) also establishes the estimate

where B only depends on N, k and p; see Theorems 4.4 and 4.5 in [9].
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(a) A "Banach-Saks type argument" along the lines of the proof of Theorem 2.1(b)
shows that there exists a sequence (xm)m = i ' n ^"(W) such that S£m->1, as m->oo, in the
strong operator topology. Note that the range of Sp

m is contained in D(S%), for all
meM. For / e D(SP

Q) we have

Since the left-hand-side of this identity converges to <1>(0)S£/, as m->oo, and
f, as m-+oo, the closedness of Sg implies that <&(</>)/eD(SP

Q) and

(b) The functions (pn)™= i are constructed in the same way as in the proof of Theorem
2.1(b) to deduce that <J>(pn)->l, as n-*ao, in the strong operator topology. The inclusion
D(Sfy^Dp is obtained as in the proof of Theorem 3.1 in [2]. The converse inclusion is
not so obvious as in Theorem 2.1. Fix feDp and let (Xm)m=i be as in the proof of (a).
Then, for each meN, we have Sp

mfeDp and

lim <D(Pn • idJS'J = S'm lim <t>(pn • idc)f.
n-»oo n-*co

The left-hand-side of this equation is also equal to

Letting now m-»oo and using the closedness of S£ it follows that feD(Sfe) and

idc)f.

To establish (c) observe that the algebra X* of all functions in Jf * having continuous
extensions at oo is again quasiadmissible and then proceed as in the proof of Theorem

(d) By (3) we have 0 o Q e ^ ( R ' v ) with ]8=(l,...,l). Hence, Lemma 1.5(ii) shows that
<!>(</>) is generalized scalar whenever (t>eJ^k. The remainder of the argument follows
along the lines of the proof of Theorem 2.1.(d). •

It follows from Theorem 2.2 that the wave operator

dx2 dy2

in two dimensions is decomposable in LP(IR2), for all l<p<oo; put li(x,y)
I2(x,y) = y — x and mi = m2 = 0. Similarly
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2dx2 dy

is decomposable in LP(U2); put lt and l2 as above and mi(x,y) = x and m2= —1. So,
Theorem 2.2 applies to a different class of differential operators than Theorem 2.1.

We now suggest a third result which applies to yet another class of multiplier
operators. First we need some further notation.

Let JVbea positive integer and write e:=(l l)eNK. For any multi-index /?^e we
define Uf: = {xeUN;xj=0 if ^=O, l^ j^JV} and consider Rf as a subspace of UN. For
xeUN we denote by xfieUfi the canonical projection of x into R", that is

f x ) _{0 if fij-0

A bounded function m=<i^'v(RiV\Zw) is said to have the Marcinkiewicz property if there
exists a constant B>0 such that Hm^^S and for each non-zero /?^e,

r dpm
SUPJ 5 ?

for every dyadic rectangle p of M? (see [12, p. 103], for the definition of dyadic
rectangles). If P = e, the "sup" sign is omitted. The classical Marcinkiewicz multiplier
theorem [12, p. 109], states that such a function m belongs to Jip(UN), for every
l<p<oo. Moreover, an examination of the proof of Theorem 6' in [12, p. 109], shows
that ||SJ1||.2>(Lp(RN))̂ B-Cpijv, where CpN is a constant only depending on N and p. Let
llmll denote the infimum of all constants B>0 with the above property. Then also
B = llwill satisfies this property and so

gC,.,-llmll. (4)

Moreover, II II is a norm on the linear subspace of ^N(UN\ZN) consisting of all
functions m having the Marcinkiewicz property. Unlike the spaces of multipliers in the
previous parts of this section, the Marcinkiewicz multipliers do not form an algebra.

Proposition 23. Let \j/s(SN{UN\ZN) be a bounded function. Assume that there exists
some constant A>0 such that, for each non-zero P^e and each partition
/? = y(l)+ •• +y(v), 1 ^v^|/?|, with y(j) non-zero for all _/ = !,..., v, we have

supj

for every dyadic rectangle p of Ufi and every choice of n(l),...,n(v)e{\,2}, where
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W), the functionand II/2 = ITTHJ/. Then, for any function
Marcinkiewicz property and satisfies

has the

(5)

where Co is a constant depending only on A and N, and with K: = i]/(MN\ZN),

zeK

In particular, (f>oi]/e JC(MN),for every pe(1, oo), and

The map O:<f*(C)->JSf(L|I(Rw)) given by ( # £
<#"(C)-functiona\ calculus for Sg and hence each operator
scalar, too.

(6)

for <t>e<#N(C), defines a
%.*, <pe<#N(C), is generalized

Proof. The fact that ^>o^ has the Marcinkiewicz property and the estimate (5)
follow by means of Lemma 1.2. By (4) and (5) we obtain (6) which implies the remaining
statements. •

We illustrate the use of Proposition 2.3 in some examples.
First consider i/<(x,.y) = |x|1/2|)>|1/2(x2 + .y2)~1/2 which is an element of <tf2(U2\Z2)

satisfying the Marcinkiewicz property; see [12, p. 110]. Noting that Imi /^0 and ip is
symmetric with respect to the variables x and y, we see that the assumptions of
Proposition 2.3 reduce to checking that

supj dxdy< oo, (7)

where the sup is taken over all dyadic rectangles in the positive quadrant of U2. Direct
calculation shows that

dx dy ~x2+y2'

Accordingly, for

p = [2n,2n+1] x [2m,2m+1] or p = \_2

the estimate (7) clearly holds. For "mixed" cases
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or the other possibility, a change to polar coordinates shows that (7) holds. So, the
conditions of Proposition 2.3 are satisfied. Hence, the operator S$ is generalized scalar,
for every l<p<oo.

For the next consequence of Proposition 2.3 we need the following general fact, which
is probably known. For the sake of completeness we include a proof.

Lemma 2.4. Let X be a Banach space and Te^(X) be a closed, injective operator in
X.

(a) For all closed sets F e e , we have a"r(F) = ̂ "7-,(F"1)) where *F~i = {z~i;zeF}
with the convention oo ~' =0 and 0~l = oo.

(b) T is decomposable if and only ifT~l is decomposable.

Proof, (a) Fix an arbitrary element xe#V(F). Hence we have x=(z — T)f(z) on C\F,
where / is an analytic X-valued function on C\F with /(z)eD(T) for all zeC\F. It
follows that xs(z""1-T"I)(-zT/(z)) on C\F. The ^-valued function

is analytic on CVF^ufO}) with g(w) eD(T"1) = ran(T), for all w e C ^ F " 1 u {0}), and
oo is a removable singularity if 0 e F. If oo $ F, we still have to show that 0 is a
removable singularity for g. Notice that in this case, the limit

lim T(z~7(z))= lim (f(z)-z~lx)
z~* oo z~* oo

exists on X. Since T is a closed operator and z~if(z)-^O for z->oo this shows that
/(oo) = 0 (this fact is also contained in the proof of Satz 3.19 in [1]). The function /
being analytic at oo, this implies that \\mz^aozf{z) exists in X. Using again the fact that
T is closed we see that

lim zf{z) = lim (Tf(z) + x) = x.
2~* CO Z~* 00

Therefore the function h with

-w-lf(w~l) for weCVF-^fO})
for w=0

is analytic on C\F~l. This shows that

exists in X. In particular, 0 is a removable singularity of g. Moreover, from the
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closedness of the operator T~l and the equation x = (w— T~i)g(w) on C\(F"'u{0})
we see that giOy.^h'^eDiT'1). Thus we have proved that «'r(f)car7..l(F~1). The
proof of the reverse inclusion is now obtained by interchanging T with T~l and F with
F~l in the first part of the proof.

(b) Let T be decomposable. A straight forward consideration using (a) and some
basic facts from local spectral theory ([14, Sections IV.3 and IV.4] show that the map
F-*9CT-i(F~l) then defines a spectral capacity for T. Hence, T~l is decomposable by
[14, IV.4.26]. The converse implication is obtained by interchanging T with T~l in
these arguments. •

Corollary 2.5. Let pe(1, oo) and let Qe<gN(MN\ZN) nW(UN) be a function such that
for some XeC\Q(UN\ZN) the function \j/{x) = (A — Q(x))~1 satisfies the assumptions in
Proposition 2.3. Then the (possibly unbounded) multiplier operator SP

Q is decomposable and
hence satisfies o{S%) = Q(UN\ZN).

Proof. By Proposition 2.3 the operator SJ is bounded and generalized scalar. Since
then S$=(A — Sg)~x it follows from the preceding lemma that Sg is decomposable. •

Corollary 2.5 is applicable to certain differential operators Q(D) which do not satisfy
the criteria of Theorems 2.1 and 2.2. The idea is to find a point AeC such that
(A — Q{x))~l satisfies the criteria of Proposition 2.3. For example, consider the differen-
tial operator

-^+^+2^-2
dx2 dy2 8x

It is clearly not elliptic nor does its symbol Q(x,y) = Qi(x,y) + iQ2(x,y), where Qi(x,y) =
x2—y2 — 2 and Q2(x,y) = 2x, have the property that both Q^ and Q2 factorize into a
product of real affine functionals (Qi is the problem). Consider the point A = 0 and let

(or(x,y)eM2

and hence, i/'e<^°o(C)s(^a>(IR2) with lim(x-),)^ooi/'(x,y) = 0. Making the change of vari-
ables s = x—y and t = x + y we see that Retp and Inn/f belong to J?P(U2) if and only if
the transformed functions

belong to Jt"{U2). The Mihlin multiplier theorem does not apply as
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ds2

is not bounded. However, direct computation shows that both ^ t and \]/2 satisfy the
conditions of Proposition 2.3. So, Corollary 2.5 implies that SJ1 +^2 and hence, also
S£ = (A1 — Q(D))~l is generalized scalar. In particular, the (unbounded) differential
operator Q(D) is decomposable and the spectral mapping property a(Q(D)) = Q(U2)
holds for every 1 < p < oo.

We have restricted our attention to the particular case of local p-multipliers (often
just polynomials) because in this setting it is possible to use a systematic approach to
develop results (via classical multiplier theorems) which apply to large classes of p-
multiplier operators. However, it should be noted that there exist relatively simple
functions which may fail to be local multipliers (even bounded reciprocals of polyno-
mials); see [10], for example. Such "multipliers", although not covered by the framework
of this note, may still be "nice". For example, consider i^(x) = ln|x|, for 0 # x e R . Then i/r
is not a local p-multiplier in our sense, for any l < p < o o . Let A(x)=(i + ln|x|)"1, for
0 # x e R . Then direct calculation shows that AejV"1^). Accordingly, the resolvent
operator S^+I)-i = S£ is generalized scalar and, in particular, SJ is decomposable. A
point which has been passed over, but actually needs checking, is that S£ is closed and
densely defined. This can be seen as follows (for 1 < p ^ 2 ) . Define (/>,(z) = e"z, for z e C , in
which case </>(e

<g>0O(C)s<^0O(IR2) for every teU. Then </>r^6<^0O(IR\{0}) and the estimates
for the Mihlin theorem show that H^r.^Up^Cpltl, teU. So, W, = S?,.^ for teU, is a
group of bounded operators in LP(U). Since <j>tno\j/-*\ pointwise on R\{0} as n->oo,
whenever rn->0, and sup{||W^J|;ne^J}<oo, it follows that Wta-*l in the weak operator
topology as n->oo, [6]. By general semigroup theory it follows that actually W,n-*\ in
the strong operator topology as w-*oo, [7, Theorem 10.6.5]. That is {W^},£R is a strongly
continuous C0-group and hence, its infinitesimal generator (defined via general semi-
group theory) is closed and densely defined. That this infinitesimal generator coincides
with the multiplier operator Sf^, with its natural domain

D(S{;) = {ge LP(U); i\pg - /j for some h e LP((R)},

can be argued as in the proof of Theorem 21.4.2 in [7].
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